
SQLB: A Query Allocation Framework
for Autonomous Consumers and Providers∗

J.-A. Quiané-Ruiz†

Atlas group, INRIA and LINA
Université de Nantes

quiane@univ-nantes.fr

Philippe Lamarre
Atlas group, LINA

Université de Nantes

lamarre@univ-nantes.fr

Patrick Valduriez
Atlas group, INRIA and LINA

Université de Nantes

Patrick.Valduriez@inria.fr

ABSTRACT
In large-scale distributed information systems, where par-
ticipants are autonomous and have special interests for
some queries, query allocation is a challenge. Much work
in this context has focused on distributing queries among
providers in a way that maximizes overall performance (typ-
ically throughput and response time). However, preserving
the participants’ interests is also important. In this pa-
per, we make two main contributions. First, we provide a
model to define participants’ perception of the system w.r.t.
their interests and propose metrics to evaluate the quality of
query allocation methods. This model facilitates the design
and evaluation of new query allocation methods that take
into account the participants’ interests. Second, we pro-
pose a framework for query allocation called Satisfaction-
based Query Load Balancing (SQLB). To be fair, SQLB

dynamically trades consumers’ interests for providers’ inter-
ests. And it continuously adapts to changes in participants’
interests and to the workload. We implemented SQLB and
compared it, through experimentation, to two important
baseline query allocation methods, namely Capacity based
and Mariposa-like . The results demonstrate that SQLB

yields high efficiency while satisfying the participants’ inter-
ests and significantly outperforms the baseline methods.

1. INTRODUCTION
We consider distributed information systems with a medi-

ator that allows consumers to access information providers
through queries [4, 19]. Consumers and providers are au-
tonomous in the sense that they are free to leave the media-
tor at any time and do not depend on anyone to do so. For
clarity, we henceforth refer to both consumers and providers
together as participants. Leaving the mediator is equivalent

∗Work partially funded by ARA “Massive Data” of the
French ministry of research (Respire project) and the Eu-
ropean Strep Grid4All project.
†This author is supported by the Mexican National Council
for Science and Technology (CONACyT).

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

to depart from the system, but it could be that a participant
registers to another competing mediator. Providers can be
heterogeneous in terms of capacity and data. Heterogeneous
capacity means that some providers are more powerful than
others and can treat more queries per time unit. Data het-
erogeneity means that providers provide different data and
thus produce different results for a same query. Providers
declare their capabilities for performing queries to the me-
diator. Then, the main function of the mediator is to allo-
cate each incoming query to the providers that can satisfy
it. Much work in this context has focused on distributing
the query load among the providers in a way that max-
imizes overall performance (typically throughput and re-
sponse time) [8, 13, 18, 21], i.e. query load balancing (QLB).
Nevertheless, participants usually have certain expectations
w.r.t. the mediator, which are not only performance-related
(see Example 1). Such expectations mainly reflect their pref-
erences to allocate and perform queries, respectively. Con-
sumers’ preferences may represent, for example, their inter-
ests towards providers (e.g. reputation), preferred providers,
or quality of service. Providers’ preferences may represent
e.g. their topics of interests, relationships, or strategies.

Example 1. Consider a provider that represents a
courier company. During promotion of its new international
shipping service, the provider is more interested in treat-
ing queries related to international shipments rather than
national ones. Once the advertising campaign is over, the
provider’s preferences may change. Similarly, consumers ex-
pect the system to provide them with information that best
fits their preferences.

In such distributed information systems, query allocation
is a challenge. Participants’ autonomy is the main source of
the problem, because they may leave the system if they are
too dissatisfied. Thus, it is important to apply a query allo-
cation strategy that balances queries such that participants
are satisfied. In this context, the consumer or provider’s
satisfaction means that a query allocation method meets
its expectations. To make this possible, the participants’
preferences must be taken into consideration when balanc-
ing queries. However, preferences are usually considered as
private data by participants (e.g. in an e-commerce sce-
nario, enterprises do not reveal their business strategies).
In addition, preferences are quite static data, i.e. long-
term, while the desire of a provider (resp. a consumer)
to perform (allocate) a query may depend on the context
and thus is more dynamic, i.e. short-term. For instance, a
provider may prefer to perform some kind of queries, but,
at some time, it may not desire to perform such queries

Figure 1: The Query Allocation Schema.

because local reasons, e.g. by overload. Thus, consumers
and providers are required to express their desire to allocate
and perform queries, respectively, via an intention notion,
which may stem e.g. from combining their preferences and
other private local consideration such as load (see Figure 1).
When providers can express their intentions, queries may
not be treated because no provider wants to perform them
(as in several economic models [5, 6, 22]). This may hurt the
providers as well, because consumers that do not get results
from a mediator may simply leave it.

To the best of our knowledge, this problem has not been
addressed completely before. Thus, there is no query alloca-
tion method that considers any notion of satisfaction nor the
intentions of participants. Our first objective is to propose
a model that provides a satisfaction notion to characterize
how well the mediator meets the participants’ expectations
in the long-run. Our second objective is to propose a query
allocation framework that considers the satisfaction and in-
tentions of participants.

1.1 Motivations
As a motivating example, consider a public e-marketplace

where thousands of companies can share information and
do business (such as ebay-business [1] and freightquote [2]).
Here, business is understood in a very general sense, not
necessarily involving money. Each site, which represents a
company, preserves its preferences for allocating and per-
forming queries. In the rest of this paper, we will often base
our concepts definitions on this example. To scale up and
be attractive over time, an e-marketplace should (i) pro-
tect, in the long-run, the participants’ intentions for doing
business, (ii) allow consumers to quickly obtain results, and
(iii) allocate queries so that providers should have the same
possibilities for doing business (i.e. to avoid starvation) [7].

Consider a simple scenario where a company (eWine),
which desires to ship wine from France to USA, requests
the mediator for companies providing international ship-
ping services, such as freightquote [2]. Here, a query is a
call for proposals that providers have to answer so as to
provide their services. Consider a second scenario where a
company desires to run a specific application, so it requests
the mediator for companies providing computing resources
(e.g. CPU units), as in [3]. The following details are sym-
metrical for both scenarios. Suppose that eWine, to make
its final choice, desires to receive proposals from the two
best providers that meet its intentions, i.e. its expectations.
Similarly, providers desire to participate only in those nego-
tiations that involve queries meeting their intentions.

In these two scenarios, the mediator must perform several
tasks. First, it needs to identify the sites that are able to

Table 1: Providers for eWine’s query.

Providers Prov.’s Int. Cons.’s Int. Avail. Cap.
p1 Yes No 0.85
p2 No Yes 0.57
p3 Yes No 0.22
p4 No Yes 0.15
p5 Yes Yes 0

deal with eWine’s query (i.e. to find the providers). Next,
the mediator should obtain eWine’s intentions to deal with
such providers and the providers’ intention to deal with
eWine’s query1. Assume that the resulting list contains,
for simplicity, only 5 providers: p1, . . . , p5. Table 1 shows
these providers with their intention to perform the query
and eWine’s intention to deal with each of them. To bet-
ter illustrate the query allocation problem in these environ-
ments, we also show in Table 1 the providers’ available ca-
pacity. However, it is not always possible to know this infor-
mation since providers may consider it as private. Suppose,
then, that p5 is overloaded, i.e. has no more resources for
doing business, and that p2 and p4 do not intend to deal
with eWine’s query (notice that this does not means they
can refuse it) because e.g. p2 is more interested in its new
shipping service to the Asian continent and p3 has bad ex-
perience with eWine. Also, assume that eWine does not
intend to deal with p1 nor p3 since it does not trust them.

Finally, the mediator needs to select the two most avail-
able providers, such that eWine’s and providers’ intentions
be respected. To the best of our knowledge, no existing e-
marketplace is able to do so. In fact, current QLB methods
(whose aim is to select the most available providers) also fail
in such scenarios since neither p2 intends to deal with the
query nor p1 is of eWine’s interest. Allocating the query
to these providers may cause the departure from the system
of p2 and eWine. The only satisfactory option (regarding
the consumer and providers’ intention) is p5, but allocat-
ing the query to it may considerably hurt response time and
cause eWine’s and p5’s departure from the system. Besides,
eWine desires to receive two different proposals.

So, what should the mediator do in the above scenarios?
Should it consider the consumer’s intention? the providers’
intention? or the providers’ available capacity? In this pa-
per, we address this question so that a query allocation
method can decide online what to do according to the status
of participants (see Section 5).

1.2 Contributions and Organization
The rest of this paper is organized as follows. After defin-

ing the problem in Section 2, we present the main contribu-
tions of this paper:

• We propose a new model to characterize the partici-
pants’ expectations in the long-run, which allows eval-
uating a system from a satisfaction point of view. This
model facilitates the design and evaluation of query al-
location methods for environments with autonomous
participants (Section 3). We define the properties to
evaluate the quality of QLB methods and propose met-
rics to do so (Section 4).

1For simplicity, we assume in this example that intentions’
values are binary.

• We propose Satisfaction-based Query Load Balancing
(SQLB), a flexible framework with self-adapting algo-
rithms for balancing queries while considering partic-
ipants’ intentions. SQLB allows to trade consumers’
intentions for providers’ intentions. Furthermore, it
affords consumers the flexibility to trade their prefer-
ences for the providers’ reputation and providers the
flexibility to trade their preferences for their utilization
(Section 5).

• We demonstrate, through experimental validation,
that SQLB significantly outperforms baseline query
allocation methods (namely Capacity based and
Mariposa-like) and yields significant performance ben-
efits. We also show that applying the proposed metrics
over the provided model allows the prediction of pos-
sible departures of participants (Section 6).

Finally, we survey related work in Section 7 and conclude
the paper in Section 8.

2. PROBLEM DEFINITION
We consider a system consisting of a mediator m, of a set

of consumers C, and of a set of providers P . These sets are
not necessary disjoint, an entity may play more than one
role. Queries are formulated in a format abstracted as a
triple q = < c, d, n > such that q.c ∈ C is the identifier of
the consumer that has issued the query, q.d is the descrip-
tion of the task to be done, and q.n ∈ N

∗ is the number of
providers to which the consumer wishes to allocate its query.
Parameter q.d is intended to be used within a matchmaking
procedure to find the set of providers, denoted by the set
Pq , that are able to treat q. There is a large body of work
on matchmaking, see e.g. [11, 14], so we do not focus on
this problem and we assume there exists one in the system
that is sound and complete: it does not return false posi-
tive nor false negatives. We use Nq for denoting ||Pq ||, or
simply N when there is no ambiguity on q. Consumers send
their queries to the mediator m that allocates each incoming
query q to min(q.n, N) providers in Pq. We only consider
the arrival of feasible queries, that is, those queries in which
there exists at least one provider, which is able to perform
them, in the system. For the sake of simplicity we only use,
throughout this paper, the “query” term to denote a fea-
sible query. Query allocation of some query q among the
providers in Pq is a vector All−→oc , or All−→ocq if there is an
ambiguity on q, of length N such that,

∀p ∈ Pq , All−→oc [p] =
1 if p gets the query
0 otherwise

As we assume that queries should be treated if possible,
this leads to

P
p∈Pq

All−→oc [p] = min(q.n, N). In the follow-

ing, the set of providers such that All−→oc [p] = 1 is noted cPq .
Notice that, without any loss of generality, in some cases
(e.g. when consumers pay services with real money) the
query allocation term just means that providers are selected
for participating in a negotiation process with consumers.
Providers have a finite capacity that may denote e.g. the
number of computational units or physical resources they
have (depending on their kind of business, e.g. if they pro-
vide computational or physical services). Thus, the utiliza-
tion of a provider p ∈ P at time t, Ut(p), denotes how much
it is loaded w.r.t. its capacity.

A consumer c ∈ C is free to express its intention, denoted
by the function cic(q, p), for allocating its query q to each

provider p ∈ Pq . Results are memorized in the vector
−→
CIq.

Similarly, a provider p ∈ Pq is free to express its intention for
performing a query q, denoted by the function pip(q). Val-
ues of participants’ intention are in [−1..1]. A positive value
means that a provider (resp. a consumer) intends to per-
form (allocate) a query, while a negative value means that a
provider (a consumer) does not intend to perform (allocate)
a query2. A null value, i.e. a 0 value, denotes a participant’s
indifference. It is up to a participant to compute its own
intentions by combining different local and external crite-
ria (e.g. utilization, preferences, response time, reputation,
past experiences...). The way in which participants compute
their intentions is considered as private information and not
revealed to others.

In these environments, where participants are au-
tonomous, it is crucial that a query allocation method con-
siders their intentions in order to preserve the total system
capacity, i.e. the aggregate capacity of all providers (e.g. in
terms of computational or physical resources). To summa-
rize, we can state the problem as follows.

Problem Statement. Given a mediator and au-
tonomous participants, the problem we address is comput-
ing and using participants’ intentions to perform query al-
location at the mediator such that response time, system
capacity, and participants’ satisfaction are ensured.

3. THE MODEL
We define in this section a model that allows comparing,

from a satisfaction point of view, query allocation methods
that have different approaches to regulate the system (such
as the QLB and economic methods). We are interested in
three characteristics of participants that show how they per-
ceive the system. The first one is adequation. From a general
point of view, two kinds of adequations could be considered:
(i) the system’s adequation to a participant, e.g. a system
where a provider cannot find any query it intends to perform
is considered inadequate to such a provider, and (ii) the par-
ticipant’s adequation to the system, e.g. a consumer issuing
queries that no provider intends to treat is considered in-
adequate to the system. Because of space limitations, we
only consider the former in this paper, which we simply call
adequation. The adequation notion helps a participant to
evaluate if it might reach its goals in the system. The second
one, called satisfaction, represents the feeling that a partic-
ipant has about what it really gets from the system, e.g. a
consumer that receives results from the providers it wants to
avoid is simply not satisfied. The third one is allocation sat-
isfaction, which allows a participant to evaluate the query
allocation method regarding its intentions. For instance,
a provider that performs queries that it does not want is
not satisfied with the query allocation method if there exist
queries of its interests that it does not get. These last two
notions (satisfaction and allocation satisfaction) may have a
deep impact on the system because a participant may decide
whether to stay or to leave the system based on them.

Therefore, preserving the participants’ intentions, in the
long-run, is quite important so they stay in the system. A
way to achieve this is to make a regular assessment over

2It is worth remembering that this does not means it can
refuse to perform (resp. allocate) the query.

their k last interactions with the system3, i.e. the k last
query allocations. This is why we define these characteristics
over the k last interactions. In addition, those values may
evolve with time, but, for the sake of simplicity, we do not
introduce time in our notations.

The following definitions may be introduced w.r.t. inten-
tions or preferences as well (no technical difference). How-
ever, it is worth noting that preferences are frequently con-
sidered as private. In which case, only the participants can
apply the following definitions. As far we intend to observe
the system’s behavior and for simplicity, we just develop the
following definitions for intentions, which are public.

3.1 Consumer Characterization
Intuitively, the consumer’s characteristics are useful to an-

swer the following questions: “How well do my expectations
correspond to the providers that were able to deal with my
last queries?” – Consumer Adequation – ; “How far the
providers that have dealt with my last queries meet my ex-
pectations?” – Consumer Satisfaction – ; and “Am I sat-
isfied with the job done by the query allocation process?”
– Consumer Allocation Satisfaction –. To make this rea-
soning, a consumer c needs a memory of its k last issued
queries, which is denoted by the set IQk

c .

3.1.1 Adequation
This notion characterizes how a consumer considers the

mediator. For example, in our motivating example of
Section 1.1, eWine considers the mediator as interesting
(i.e. adequate), in such a query allocation, because it has
providers that eWine considers interesting: p2, p4, and p5.
The adequation of a consumer c ∈ C concerning its query
q allocation, noted δa(c, q), is defined as the average of c’s
shown intentions towards the set Pq of providers (Equa-
tion 1). Its values are between 0 and 1.

δa(c, q) =
“` 1

Nq

X

p∈Pq

−→
CIq[p]

´
+ 1

”.
2 (1)

Let
−→
CAc[q] denote the vector of the adequations obtained

by the consumer c concerning its k last queries. Thus, we
define the adequation of a consumer c ∈ C, δa(c), as the

average of the
−→
CAc[q] values (see Definition 1). Its values

are between 0 and 1. The closer δa’s value from 1, the greater
the adequation of the mediator to a consumer.

Definition 1. Consumer Adequation

δa(c) =
1

||IQk
c ||

X

q∈IQk
c

−→
CAc[q]

3.1.2 Satisfaction
This notion helps a consumer to evaluate if the mediator

is allocating its queries to the providers it wants. To define
the consumer’s satisfaction over its k last issued queries,
we first define the satisfaction of a consumer concerning the
allocation of a given query. Intuitively, it corresponds to
the average of the intentions that a consumer has shown to
the providers that have performed its query. Nevertheless,
a simple average does not take into account the fact that a

3k’s value may be different for each participant depending
on its storage capacity, or strategy. For simplicity, we have
assumed here that they all use the same k.

consumer may desire different results. Let us illustrate this
using our example scenario presented in Section 1.1. As-
sume that the mediator allocates eWine’s query only to p2,
to which eWine has an intention of 1. In such a query al-
location, eWine is completely satisfied (with a satisfaction
of 1) even if it did not receive the number of results it de-
sired. Thus, to consider the number of providers desired by
a consumer, we define the satisfaction of a consumer c ∈ C
concerning the allocation of its query q, δs(c, q), as follows,

δs(c, q) =
“` 1

n

X

p∈cPq

−→
CIq [p]

´
+ 1

”.
2 (2)

where n stands for q.n, i.e. it is the number of results that
c desires to obtain. Its values are between 0 and 1.

Let
−→
CSc[q] denote the vector of the obtained satisfaction

by a consumer c concerning its k last queries. Then, the
satisfaction of a consumer c ∈ C, δs(c), is a simple average

of the
−→
CSc[q] values (Definition 2). Its values are between 0

and 1. The closer the consumer’s satisfaction value from 1,
the more a consumer is satisfied.

Definition 2. Consumer Satisfaction

δs(c) =
1

||IQk
c ||

X

q∈IQk
c

−→
CSc[q]

3.1.3 Allocation Satisfaction
Let us introduce this notion by means of our example sce-

nario presented in Section 1.1. Assume that eWine has an
intention of 1, 0.9, and 0.7 for allocating its query to p2,
p4, and p5, respectively. Now, suppose that the mediator
allocates the query to p4. Such a query allocation corre-
sponds to eWine’s high intentions, so eWine is satisfied.
However, there is still a provider to which its intention is
higher (p2). The Consumer Allocation Satisfaction notion,
δas(c) in Definition 3, reflects how much a query allocation
method strives to give the best providers to a consumer.
Values of the function δas(c) are between 0 and ∞.

Definition 3. Consumer Allocation Satisfaction

δas(c) =
δs(c)

δa(c)

If the allocation satisfaction of a consumer c is greater than
1, it means that the query allocation method works well for
c (from c’s point of view). If the value is smaller than 1, the
closer it is to zero, the more c is dissatisfied with the query
allocation method. Finally, a value equal to 1 means that
the query allocation method is neutral for c.

3.2 Provider Characterization
Intuitively, the provider’s characteristics answer the fol-

lowing questions: “How well do my expectations correspond
to the last queries that have been proposed to me?” –
Provider Adequation – ; “How well the last queries I have
treated meet my expectations?” – Provider Satisfaction – ;
and “Am I satisfied with the job done by the query allo-
cation process?” – Provider Allocation Satisfaction –. To
define these characteristics, a provider p tracks its shown
intentions for performing the k last proposed queries (allo-

cated to it or not) in the vector
−−→
PPIp. The k last proposed

queries to a provider p is denoted by the set PQk
p.

3.2.1 Adequation
The adequation notion helps a provider to evaluate if the

queries that consumers issue correspond to its expectations.
Considering our example scenario of Section 1.1, one can
consider the mediator as adequate to p1, p3, and p5, be-
cause eWine’s query is of their interest. However, we can-
not consider the mediator as inadequate to p2 and p4 only
by this query proposition. What is more important for a
provider is that consumers generally issue queries of its (the
provider’s) interests. Thus, we define the adequation of a
provider p ∈ P , δa(p), as the average of its shown intentions
towards the set PQk

p (Definition 4). Its values are between
0 and 1. The closer the δa(p) value from 1, the greater the
adequation of the mediator to a provider.

Definition 4. Provider Adequation

δa(p) =

˛̨
˛̨
˛̨
˛

“` 1

||PQk
p||

X

q∈PQk
p

−−→
PPIp[q]

´
+ 1

”.
2 if PQk

p 6= ∅

0 otherwise

3.2.2 Satisfaction
Conversely to adequation, the satisfaction notion depends

only on the queries that a provider performs. Thus, it helps
a provider to evaluate whether it performs queries that allow
it to fulfill its objectives or not. To illustrate this notion,
suppose that in our motivating example (see Section 1.1)
the mediator allocates eWine’ query to p2. In such a query
allocation, p2 is not satisfied since it did not intend to per-
form the query. Nonetheless, what is more important for a
provider is to be globally satisfied with the queries it per-
forms, even if it sometimes performs queries that are not of
its interest. Let SQk

p ⊆ PQk
p denote the set of queries that a

provider p performed among the set PQk
p. Then, the satis-

faction of a provider p ∈ P , δs(p) in Definition 5, is defined
as a simple average of its SQk

p values. The δs(p) values are
between 0 and 1. The closer the value from 1, the greater
the satisfaction of a provider.

Definition 5. Provider Satisfaction

δs(p) =

˛̨
˛̨
˛̨
˛

“` 1

||SQk
p ||

X

q∈SQk
p

−−→
PPIp[q]

´
+ 1

”.
2 if SQk

p 6= ∅

0 otherwise

3.2.3 Allocation Satisfaction
As for consumers, a provider is not satisfied when it does

not get what it expects. There are different reasons for this.
First, it may be because the system does not have interesting
resources, i.e. the provider has low adequation. Second,
the query allocation method may go against the provider’s
intention. This is measured by the allocation satisfaction
notion. In other words, by means of this notion a provider
can evaluate how well the query allocation method works
for it. We formally define the Allocation Satisfaction of a
provider p ∈ P , δas(p), as the ratio of its satisfaction to its
adequation (see Definition 6). Its values are in [0..∞].

Definition 6. Provider Allocation Satisfaction

δas(p) =
δs(p)

δa(p)

If the allocation satisfaction of a provider p is greater than
1, it means that the query allocation method works well for

p (from the point of view of p). If the value is smaller than
1, the closer it is to zero, the more p is dissatisfied with the
query allocation method. Finally, a value equal to 1 means
that the query allocation method is neutral for p.

3.3 Discussion
The proposed model can be applied with three main pur-

poses. First, to evaluate how well a query allocation method
satisfies the participants’ expectations. Second, to evaluate
the reasons of the participants’ departures from the system.
For example, to know if they are leaving the system be-
cause (i) they are dissatisfied with the queries they perform,
(ii) they are dissatisfied with the mediator’s job, or (iii) the
system is inadequate to them. To do so, one has to apply
metrics, which reflect a global behavior, over the adequa-
tion, satisfaction, and allocation satisfaction of participants
(see Section 4). Third, to design new self-adaptable query
allocation methods that meet the participants’ expectations
in the long-run (see Section 5).

Reputation does not directly appear, but it is clear that
it has a major role to play in the manner that participants
work out their intentions. Thus, it is taken into account as
much as participants consider it important.

4. SYSTEM METRICS
The metrics we use are the same for consumers and

providers, and can be used to measure the δa, δs, δas, and
Ut functions. Thus, for simplicity, the g function denotes
one of these four functions and S denotes either a set of
consumers or providers, i.e. S ⊆ C or S ⊆ P . To better
evaluate the quality of a query allocation method for bal-
ancing queries, one should reflect (i) the effort that a query
allocation method does for maximizing or minimizing a set
S of g values - efficiency -, (ii) any change in a set S of g
values - sensitivity -, and (iii) the distance from the minimal
value to the maximal one in a set S of g values - balance -.

A well-known metric that reflects the efficiency of a query
allocation method is the mean µ function. Because partici-
pants’ characteristics (see Section 3) are additive values and
may take zero values, we utilize the arithmetic mean to ob-
tain this representative number (Equation 3).

µ(g, S) =
1

||S||

X

s∈S

g(s) (3)

However, the mean metric might be severely affected by
outlier values. Thus, we have to reflect the g values’ fluctua-
tions in S, i.e. the sensitivity of a query allocation method.
In other words, we evaluate how fair a query allocation
method is w.r.t. a set S of g values. An appropriate metric
to do so is the fairness index f proposed in [9] (defined in
Equation 4). Its values are between 0 and 1.

f(g, S) =

` X

s∈S

g(s)
´2

||S||
` X

s∈S

g(s)2
´ (4)

Intuitively, the greater the fairness value of a set S of g
values, the fairer the query allocation process w.r.t. such
values. To illustrate the sensitivity property, suppose that
there exist two competitive mediators m and m′ in the mo-
tivating example of Section 1.1. Assume, then, that the set
of providers registered to m and m′ are P = {p1, p2, p3}

and P ′ = {p′
1, p

′
2, p

′
3}, respectively. Now, consider that the

satisfaction of such providers are δs(p1) = 0.2, δs(p2) = 1,
δs(p3) = 0.6, δs(p

′
1) = 1, δs(p

′
2) = 0.7, and δs(p

′
3) = 0.9. Re-

flecting the sensitivity of both mediators w.r.t. satisfaction
(0.77 and 0.97 for m and m′ respectively), we can observe
that enterprises have almost the same chances of doing busi-
ness in m′ than in m.

Finally, a traditional metric that reflects the ensured bal-
ance by a query allocation method is the Min-Max ratio.
The Min-Max ratio σ is defined in Equation 5, where c0 > 0
is some pre-fixed constant. Values of the function σ are be-
tween 0 and 1. The greater the balance value of a set S of g
values, the better the balance of such values. The Min-Max
ratio is useful to know whether there exists a punished en-
tity s ∈ S, and then, one can evaluate if this is because of
the query allocation method or the entity’s adequation.

σ(g, S) =
min
s∈S

g(s) + c0

max
s′∈S

g(s′) + c0

(5)

These metrics are complementary to evaluate the global
behavior of the system, and the use of only one of them may
cause the loss of some important information.

5. THE SQLB FRAMEWORK
We now present SQLB, a flexible framework for balanc-

ing queries in considering the participants’ intentions. A
salient feature of SQLB is that it affords consumers the
flexibility to trade their preferences for the providers’ rep-
utation (Section 5.1) and providers the flexibility to trade
their preferences for their utilization (Section 5.2). Then,
SQLB allows to trade consumers’ intentions for providers’
intentions in according to their satisfaction (Section 5.3). In
this way, SQLB continuously adapts to changes in partici-
pants’ expectations and workload. So far, we assumed that a
matchmaking technique has found the set of providers that
are able to deal with a query, named Pq. Therefore, we only
focus on the allocation of q among the Pq set (Section 5.4).
Without any loss of generality, participants may differently
obtain their intentions.

5.1 Consumer Intentions
The idea is that a consumer makes a balance between its

preferences for allocating queries and the providers’ reputa-
tion, in accordance to its past experiences with providers.
For example, if a consumer does not have any past experi-
ence with a provider p, it pays more attention to the repu-
tation of p. We formally define the intention of a consumer
c ∈ C to allocate its query q to a given provider p ∈ Pq as
in Definition 7. Function prfc(q, p) ∈ [−1..1] gives c’s pref-
erence for allocating q to p, and function rep(p) ∈ [−1..1]
gives the reputation of p.

Definition 7. Consumer’s Intention

cic(q, p) =

prfc(q, p)υ
× rep(p)1−υ if prfc(q, p) > 0∧

∧ rep(p) > 0

−

“

`

1 − prfc(q, p) + ǫ
´υ

×

`

1 − rep(p) + ǫ
´1−υ

”

else

Parameter ǫ > 0, usually set to 1, prevents the consumer’s
intention from taking zero values when the consumer’s pref-
erence or provider’s reputation values are equal to 1. Pa-
rameter υ ∈ [0..1] ensures a balance between the consumer’s

-2.5
-2
-1.5
-1
-0.5
 0
 0.5
 1

In
te

n
tio

n

-1
-0.5

 0
 0.5

 1

Preference

 0
 0.5

 1
 1.5

 2
Utilization

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

Figure 2: Tradeoff between preference and utiliza-

tion for providers’ intention when satisfaction is 0.5.

preferences and the providers’ reputation. In particular, if
υ = 1 (resp. 0) the consumer only takes into account its pref-
erences (the provider’s reputation) to allocate its query. So,
if a consumer has enough experiences with a given provider
p, it sets υ > 0.5, or else it sets υ < 0.5. When υ = 0.5
means that a consumer gives the same importance to its
preferences and the provider’s reputation.

5.2 Provider Intentions
The provider’s intention is based on its preferences for

performing queries and its utilization. The question that
arises is: what is more important for a provider, its prefer-
ences or its utilization? The importance of the provider’s
preferences and its utilization should be balanced on the fly
according to satisfaction. Intuitively, on the one hand, if a
provider is satisfied, it can then accept sometimes queries
it does not want. On the other hand, if a provider is dis-
satisfied, it does not pay so much consideration to its uti-
lization and focuses on its preferences in order to obtain
desired queries. To do so, the satisfaction it uses to make
the balance has to be based on its preferences and not on its
intentions as defined in Section 3.2. This is possible since a
provider has access to its private information. So, we define
the intention of a provider p ∈ Pq to deal with a given query
q as in Definition 8. The prfp(q) ∈ [−1..1] function gives p’s
preference for performing q.

Definition 8. Provider’s Intention

pip(q) =

˛

˛

˛

˛

˛

˛

˛

(prfp(q))1−δs(p)(1 − Ut(p))δs(p), if prfp(q) > 0∧
∧Ut(p) < 1

−

“

`

1 − prfp(q) + ǫ
´1−δs(p)

×

`

Ut(p) + ǫ
´δs(p)

”

else

Parameter ǫ > 0, usually set to 1, prevents the intention
of a provider from taking 0 values when its preference is
equal to 1 whatever its utilization is. Figure 2 illustrates the
behavior that the pip(q) function takes when the satisfaction
is 0.5. We can observe that the providers’ preferences and
utilization have the same importance for providers. Also,
we observe that providers show positive intentions to deal
with queries only when they are not overutilized and want
to perform the queries. This helps to keep good response
times in the system.

5.3 Scoring and Ranking Providers
Given a query q, a provider is scored by considering its

intention for performing q and q.c consumer’s intention for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

Provider Sat.
 0

 0.2
 0.4

 0.6
 0.8

 1

Consumer Sat.

 0
 0.2
 0.4
 0.6
 0.8

 1

Figure 3: The values that ω can take.

allocating q to it. Considering the mediation process pro-
posed in [10], the score of a provider p ∈ Pq regarding a
given query q is defined as the balance between the q.c’s
and p’s intentions (Definition 9).

Definition 9. Provider’s Score

scrq(p) =

˛

˛

˛

˛

˛

˛

˛

`−→
PIq [p]

´ω`−→
CIq[p]

´1−ω
if

−→
PIq[p] > 0∧

∧
−→
CIq[p] > 0

−

“

`

1 −
−→
PIq[p] + ǫ

´ω`

1 −
−→
CIq[p] + ǫ

´1−ω
”

else

Vector
−→
PIq[p] denotes the Pq’s intentions to perform q.

Parameter ǫ > 0, usually set to 1, prevents the provider’s
score from taking 0 values when the consumer or provider’s
intention is equal to 1. Parameter ω ∈ [0..1] ensures
a balance between the consumer’s intention for allocating
its query and the provider’s intention for performing such
a query. In other words, it reflects the importance that
the query allocation method gives to the consumer and
providers’ intentions. To guarantee equity at all levels,
such a balance should be done in accordance to the con-
sumer and providers’ satisfaction. That is, if the consumer
is more satisfied than the provider, then the query allocation
method should pay more attention to the provider’s inten-
tions. Thus, we compute the ω value as in Equation 6. Con-
versely to provider’s intention, the query allocation module
has not access to private information. Thus, the satisfaction
it uses has to be based on the intentions.

ω =
“`

δs(c)− δs(p)
´
+ 1

”.
2 (6)

Figure 3 illustrates the tradeoff between the consumer and
provider’ intention for obtaining the ω value. One can also
set ω’s value in according to the kind of application. For
instance, if providers are cooperative (i.e. not selfish) and
the most important is to ensure the quality of results, one
can set ω = 0. Finally, providers are ranked from the best

to the worst scored, the
−→
R q vector. Intuitively,

−→
R q[1] is the

best scored provider to deal with q,
−→
R q [2] the second, and so

on up to
−→
R q[N] which is the worst. As a result, if q.n <= N

the q.n best ranked providers are selected, or else all the N
providers are selected.

5.4 Query Allocation Principle
Algorithm 1 shows the main steps of the query allocation

process. Given a query q and a set Pq of providers that
are able to perform q, the query allocation module first asks
for q.c’s intention for allocating q to each provider p ∈ Pq

Algorithm 1: QueryAllocation

Input : q, Pq

Output: All−→ocq

begin1

// Consumer’s intentions

fork ask for q.c’s intentions;2

// Providers’ intention

foreach p ∈ Pq do3

fork ask for p’s intention w.r.t. q ;4

waituntil
−→
CIq and

−→
PIq be calculated or timeout ;5

// Scoring and ranking providers

foreach p ∈ Pq do6

compute p’s score concerning
−→
CIq [p] &

−→
PIq[p] ;7

rank the set Pq of providers,
−→
R q , regarding scrp(q) ;8

// Query Allocation

for i = 1 to min(n, Nq) do All−→oc [
−→
R q[i]]← 1 ;9

for j = min(n, Nq) + 1 to N do All−→oc [
−→
R q[j]]← 0 ;10

end11

(line 2 of the Algorithm 1). In parallel, it also asks for Pq’s
intention for performing q (lines 3 and 4). Then, it waits for
q.c and Pq ’s intentions or for a given timeout (line 5). Once
such vectors are computed, as second job, the query alloca-
tion module computes the score of each provider p ∈ Pq by
making a balance between the q.c and p’s intentions (line 6
and 7). Then, it computes Pq ’s ranking (line 8). Finally, the
query allocation module allocates q to the q.n best scored

providers in Pq and sends the mediation result to the Pq\cPq

providers (lines 9 and 10), i.e. to those that were not se-
lected for performing the query. In the case that q.n < N ,
then q is allocated to all N providers. Algorithm 1 can be
optimized, but our goal is to show the steps involved in the
query allocation process.

6. EXPERIMENTAL VALIDATION
Our experimental validation has three main objectives:

(i) to evaluate how well query allocation methods operate,
(ii) to analyze if SQLB satisfies participants while ensuring
good QLB because it is not obvious that when adding new
criteria, a query allocation method still gives good results for
the initial criteria, and (iii) to study how well our metrics
capture query allocation methods’ operation. To do so, we
carry out two kinds of evaluations. First, we evaluate the
general query allocation process as well as the computed
metrics. Second, we evaluate the impact of participants’
autonomy on performance.

6.1 Experimental Setup
We built a Java-based simulator and simulate a mono-

mediator distributed information system, which follows the
mediation system architecture presented in [10]. For all the
query allocation methods we tested, the following configu-
ration (Table 2) is the same and the only thing that changes
is the way in which each method allocates the queries.

Participants work out their adequation, satisfaction, and
allocation satisfaction as presented in Section 3. We ini-
tialize them with a satisfaction value of 0.5, which evolves
with their last 200 issued queries and 500 queries that have
been proposed to them. That is, the size of k is 200 for

Table 2: Simulation parameters.
Parameter Definition Value
nbConsumers Number of consumers 200
nbProviders Number of providers 400
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial satisfaction 0.5
conSatSize k last issued queries 200
proSatSize k last treated queries 500
nbRepeat Repetition of simulations 10

consumers and 500 for providers. The number of consumers
and providers is 200 and 400 respectively, with only one
mediator allocating all the incoming queries. We assigned
sufficient resources to the mediator so that it does not cause
bottlenecks in the system. We assume that consumers and
providers compute their intentions as defined in Sections 5.1
and 5.2, respectively. For simplicity, we set υ = 1, i.e. the
consumers’ intentions denote their preferences.

To simulate high heterogeneity of the consumers’ pref-
erences for allocating their queries to providers, we di-
vide the set of providers into three classes according to
the interest of consumers: to those that consumers have
high interest (60% of providers), medium interest (30% of
providers), and low interest (10% of providers). Consumers
randomly obtain their preferences between .34 and 1 for
high-interest providers, between −.54 and .34 for medium-
interest providers, and between −1 and −.54 for low -interest
providers. On the other side, to simulate high heterogeneity
of the providers’ preferences towards the incoming queries,
we also create three classes of providers: those that have
high adaptation (35% of providers), medium adaptation
(60% of providers), and low adaptation(5% of providers).
The providers randomly obtain their preferences between
−.2 and 1 (high-adaptation), between −.6 and .6 (medium-
adaptation) or between −1 and .2 (low -adaptation). More
sophisticated mechanisms for obtaining such preferences can
be applied (for example using the TCL or Rush language),
but this is beyond the scope of this paper and orthogonal to
the problem addressed here. Without any loss of generality,
the participants’ expectations, in the long run, are static in
our simulations. We assume this to evaluate the query allo-
cation methods in a long-term trend, but our model allows
expectations to be dynamic.

We set the providers’ capacity heterogeneity in accordance
to the results presented in [20]. We generate around 10% of
providers with low -capacity, 60% with medium, and 30%
with high. The high-capacity providers are 3 times more
powerful than medium-capacity and still 7 times more pow-
erful than low -capacity providers. We generate two classes
of queries that consume, respectively, 130 and 150 treat-
ment units at the high-capacity providers. High-capacity
providers perform both classes of queries in almost 1.3 and
1.5 seconds, respectively. We consider in our experiments,
without any loss of generality, that providers offer compu-
tational services to consumers. Thus, inspired from [8], we
assume providers work out their utilization as in [16]. We
assume that queries arrive to the system in a Poisson dis-
tribution, as found in dynamic autonomous environments
[12]. We do not consider, in this paper, the bandwidth prob-
lem and assume that all participants have the same network
capacities. Finally, for the sake of simplicity, we assume

that consumers only ask for one informational answer (i.e.
q.n = 1) and all the providers in the system are able to
perform all the incoming queries.

6.2 Baseline Methods

6.2.1 Capacity based method
In distributed information systems, a well known ap-

proach is Capacity based [13, 18, 21], which allocates each
incoming query q to providers that have the highest avail-
able capacity (i.e. the least utilized) among the set Pq of
providers. Capacity based has been shown to operate well
in heterogeneous distributed information systems. Hence,
we use it as baseline method in our simulations. Note that
Capacity based does not take into account the consumers
nor providers’ intentions.

6.2.2 Economic method
Mariposa [22] is one of the most important approaches to

allocate queries in autonomous environments and that has
shown good results. Thus, we implemented a Mariposa-like
method to compare it to our SQLB. In this approach, all
the incoming queries are processed by a broker site that re-
quests providers for bids. Providers bid for obtaining queries
and then the broker selects the set of bids that has an ag-
gregate price and delay under a bid curve provided by the
consumer. In Mariposa, providers modify their bids with
their current load (i.e. bid × load) in order to ensure QLB.
Note that different economic methods may lead to different
performance results than those presented here.

6.3 Results
We start, in Section 6.3.1, with an evaluation of the qual-

ity of the query allocation methods w.r.t. satisfaction and
QLB. Then, in Section 6.3.2, we evaluate how well these
methods deal with the possible participants’ departure by
dissatisfaction, starvation, and overutilization.

6.3.1 Quality results without autonomy
If participants are autonomous, they may leave the system

by dissatisfaction, starvation, or overutilization. Neverthe-
less, the choice of such departure’s thresholds is very sub-
jective and may depend on several external factors. Thus,
for these first experiments, we consider captive participants
(i.e. they are not allowed to leave the system). To measure
the three methods’ quality, we apply the metrics defined in
Section 4. However, for space reasons, we can only present
two of them. We ran a series of experiments where each one
starts with a workload of 30% that uniformly increases up
to 100% of the total system capacity.

First, we analyze the providers results. Figure 4(a)
shows the satisfaction mean ensured by the three meth-
ods. The satisfaction used in this measurement is based
on the providers’ intentions, i.e. what a query allocation
method can see. We observe in these results that providers
are more satisfied with the SQLB than with the two others.
As the workload increases, providers’ satisfaction decreases
because their intentions decrease as they are loaded (just
because utilization becomes the most important for them).
Thus, SQLB cannot satisfy the providers’ intentions for
high workloads since their adequation (based on intentions)
is low. Capacity based and Mariposa-like do not satisfy
the providers’ intentions from the beginning, simply because

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

tis
fa

ct
io

n
 M

e
a

n
, µ(

δ s
,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(a) Providers’ satisfaction mean based on
intentions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

tis
fa

ct
io

n
 M

e
a

n
, µ(

δ s
,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(b) Providers’ satisfaction mean based on
preferences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2000 4000 6000 8000 10000A
llo

ca
tio

n
 S

a
tis

fa
ct

io
n

 M
e

a
n

, µ(
δ a

s,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(c) Providers’ allocation satisfaction
mean based on preferences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

tis
fa

ct
io

n
 F

a
ir
n

e
ss

,
f(δ s
,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(d) Provider satisfaction fairness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2000 4000 6000 8000 10000A
llo

ca
tio

n
 S

a
tis

fa
ct

io
n

 M
e

a
n

, µ(
δ a

s,
C

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(e) Consumers’ allocation satis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

tis
fa

ct
io

n
 F

a
ir
n

e
ss

,
f(δ s
,
C

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(f) Consumer satisfaction fairness.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

U
til

iz
a

tio
n

 M
e

a
n

, µ
(U

t,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(g) Query load mean.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

U
til

iz
a

tio
n

 F
a

ir
n

e
ss

,
f(

U t,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(h) Query load fairness.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(i) Response times

Figure 4: (a)-(h): quality metrics for a workload range from 30 to 100% of the total system capacity when
participants are captive, and (i): ensured response times with captive participants.

they allocate queries based on other criteria, which do not
exactly meet intention.

Nonetheless, this does not reflect what providers really feel
with respect to their preferences. To show this, we need to
measure the mean ensured by the three methods concerning
the providers’ satisfaction based on their preferences. Al-
though we can measure such satisfaction in our simulations,
this is not always possible since such preferences are usu-
ally considered as private. Figure 4(b) shows the results of
these measurements. We observe that SQLB has the same
performance as Mariposa-like even if it considers the con-
sumers’ intentions. When the workload is close to 100%, the
providers’ satisfaction slightly decreases with SQLB. This
is because providers pay more attention to their utilization
for obtaining their intentions, thus their preferences are less
considered by the SQLB method.

It is worth noting that, as expected, Capacity based is
the only one among these three methods that punishes the
providers. This is clear in Figure 4(c), which illustrates the
ensured mean by these three methods with respect to the
providers’ allocation satisfaction. We observe that Capaci-
ty based severely punishes the providers (mean values are al-
ways under 1). Then, based on these results, we can predict
that when providers will be free to leave the system, Capa-
city based will suffer from serious problems with providers’
departures by dissatisfaction reasons. Figure 4(d) illustrates
the satisfaction fairness ensured by the three methods. We
see that they guarantee almost the same satisfaction fair-
ness. However, as seen in the previous results, this does not
mean that providers are satisfied with all three methods.

Now, let us analyze the consumers results. Figure 4(e)
illustrates the allocation satisfaction mean concerning the

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(a) Providers may leave by dissatisfaction
or starvation.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(b) Providers may leave by dissatisfac-
tion, starvation, or overutilization.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

D
e

p
a

rt
u

re
s

P
e

rc
e

n
t

Workload (% of the system capacity)

SQLB
Mariposa-like

Capacity based

(c) Number of providers’ departures.

Figure 5: Impact on performance of providers’ departures.

consumers’ intentions. We observe that while SQLB is the
only one to satisfy consumers, the two others are neutral to
consumers (mean values equal to 1). These results allows
us to predict that Capacity based and Mariposa-like may
suffer from consumer’s departures while SQLB does not.
The SQLB’s mean decreases for high workloads because of
providers. Remember that providers’ satisfaction decrease
because they take care of their utilization. So, SQLB pays
more attention to providers’ satisfaction than to the con-
sumers’ satisfaction. Nonetheless, consumers are never pun-
ished. Conversely to providers, the consumers’ satisfaction
fairness has less variations because they are not in direct
competition to allocate queries (Figure 4(f)).

Concerning QLB, as expected, Capacity based better
balances the queries among providers than SQLB and
Mariposa-like (see Figure 4(g)). We can see that the
Mariposa-like has serious problems to balance queries. It
may lose providers by starvation or overutilization reasons.
Figure 4(h) shows that SQLB has some difficulties to be
fair (w.r.t. QLB) for workloads under 40%. In contrast,
when the workload increases, SQLB pays more attention
to QLB and becomes fairer. This demonstrates the high
adaptability of SQLB to the variations in the workloads.

All above results show that, while Capacity based may
severely suffer from providers’ departures by dissatisfaction,
Mariposa-like may also suffer from providers’ departures by
overutilization problems. Furthermore, these results demon-
strate the SQLB’s self-adaptability to changes in the partic-
ipants’ satisfaction and to the workload. This feature makes
our proposal highly suitable for autonomous environments.

Finally, Figure 4(i) shows the ensured response times in
these environments (with captive participants). As is con-
ventional, response time is defined as the elapsed time from
the moment that a query q is issued to the moment that
q.c receives the response of q. As expected, the Capaci-
ty based method outperforms the two others. However, even
if SQLB takes into account the participants’ intentions, it
only degrades performance by a factor of 1.4 in average while
Mariposa-like does so by a factor of 3.

As concluding remark, we can say that even if not de-
signed for environments where participants are captive,
SQLB ensures quite good response times and pay atten-
tion to the quality of results and queries that consumers
and providers get from the system, respectively.

6.3.2 Dealing with autonomy
To validate our measurements and intuitions of Sec-

tion 6.3.1, we also ran several experimental simulations
where participants are given the autonomy to leave the sys-
tem. Our main goal, in this section, is to study the reasons
by which providers leave the system and evaluate the im-
pact on performance. We evaluate the ensured response
times by the three methods in autonomous environments
and compare it with those of the captive environments (see
Figure 4(i)). To do so, we have to set thresholds under, or
over, which a consumer or provider decides to leave the sys-
tem. To avoid any suspicion on the choice of such thresholds,
we assume that participants support high degrees of dissat-
isfaction, starvation, and overutilization. Thus, a consumer
leaves the system, by dissatisfaction, if its satisfaction is
smaller than its adequation, i.e. the allocation method pun-
ishes it. A provider leaves the system (i) by dissatisfaction,
if its satisfaction is smaller than its adequation minus 0.15,
(ii) by starvation, if its utilization is smaller than 20% of its
optimal utilization, and (iii) by overutilization, if its utiliza-
tion is greater than 220% of its optimal utilization. With a
workload of 80% of the total system capacity, the optimal
utilization of a provider is 0.8.

We ran a first series of experiments with different work-
loads where providers are allowed to leave the system only
by dissatisfaction or starvation. The results are shown in
Figure 5(a). We observe that SQLB significantly outper-
forms the others two methods for all workloads. Further-
more, we can see that Capacity based performs better than
Mariposa-like . This is because, as seen in Section 6.3.1, the
Mariposa-like method tends to overutilize some providers
(those that are the most adapted to the incoming queries),
which severely hurts response times.

A second series of experiments allow providers to leave
the system by dissatisfaction, starvation, or overutilization
(see Figure 5(b)). While SQLB and Mariposa-like degrade
their performance only by a factor of 1.4 in average (w.r.t.
Figure 4(i)), Capacity based does it by a factor of 3.5. Fig-
ure 5(c) shows the number of provider’s departures with
the three methods. We observe that, except for a work-
load of 20%, Capacity based and Mariposa-like lose almost
all the providers for all workloads. Note that SQLB only
loses 28% of providers in average. This demonstrates the
high efficiency of SQLB in autonomous environments. We
show, in Table 3, an analysis of providers’ reasons to leave

Table 3: Provider’s departures reasons for a workload of 80% of the total system capacity.
SQLB Capacity based Mariposa-like

low med high total low med high total low med high total
Cons. Interest to Prov. 1% 5% 13% 5% 16% 31% 1% 7% 11%

Dissat. Providers’ Adequation 2% 9% 8% 19% 3% 34% 15% 52% 0% 15% 4% 19%
Providers’ Capacity 13% 6% 0% 13% 30% 9% 5% 12% 2%

low med high total low med high total low med high total
Cons. Interest to Prov. 0% 0% 4% 0% 0% 0% 0% 2% 6%

Starv. Providers’ Adequation 4% 0% 0% 4% 0% 0% 0% 0% 3% 3% 2% 8%
Providers’ Capacity 2% 2% 0% 0% 0% 0% 3% 5% 0%

low med high total low med high total low med high total
Cons. Interest to Prov. 0% 0% 6% 0% 0% 38% 0% 0% 65%

Overuti. Providers’ Adequation 0% 3% 3% 6% 3% 8% 27% 38% 1% 15% 49% 65%
Providers’ Capacity 1% 4% 1% 0% 18% 20% 0% 30% 35%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
e

p
a

rt
u

re
s

P
e

rc
e

n
t

Workload (% of the system capacity)

SQLB
Mariposa-like

Capacity based

Figure 6: Consumers’ departures.

the system when the workload is 80%. We observe that, as
predicted in Section 6.3.1, providers leave the system with
Capacity based because of dissatisfaction, while they do
so because of overutilization with Mariposa-like . Further-
more, the providers that decide to leave in both methods are
mainly those that are the most adapted to incoming queries
and that consumers desire the most. With SQLB, providers
leave the system by dissatisfaction, but such providers are
mainly those that are low -capacity. In fact, we can see that
SQLB mainly maintains the high-interest, high-adaptation,
and high-capacity providers in the system.

Finally, Figure 6 shows the consumers’ departure by dis-
satisfaction with these three methods. Again, SQLB is a
clear winner with no consumer’s departures. Note that, the
consumer’s departures have also a direct impact on per-
formance since the less the incoming queries, the less the
chances for satisfying providers.

7. RELATED WORK
The problem of balancing queries while respecting the par-

ticipants’ intentions has not received much attention and is
still an open field. In the context of large-scale and hetero-
geneous distributed information systems, most of the work
on query allocation has mainly dealt with the problem of al-
locating queries to the least utilized providers without any
consideration to the consumers or providers’ intentions [8,
13, 18, 21]. In [16], we proposed a QLB method based on
the providers’ satisfaction, but no notion of satisfaction nor
intentions of consumers is considered. In a recent work [17],

we provide a set of strategies for balancing queries in dis-
tributed information systems with autonomous participants,
but that work is complementary to the proposal of this pa-
per and one can use such strategies to improve results (by
space reasons, it is not discussed here).

Economic models can claim to take into account the par-
ticipants’ intentions and have been shown to provide effi-
cient query allocation in heterogeneous systems [5, 6, 22].
Mariposa [22] is one of the first systems to deal with the
query allocation problem in distributed information systems
using a bidding process. In Mariposa, all the incoming
queries are processed by a broker site that requests providers
for bids. Providers bid for acquiring queries based on a local
bulletin board. Then, the broker site selects a set of bids
that has an aggregate price and delay under a bid curve
provided by the consumer. Mariposa ensures a crude form
of load balancing by modifying the providers’ bid with the
providers’ load. Nevertheless, our experimentations show
that providers suffer from overutilization. Besides, queries
may not be treated even if providers exist in the system.

In [15], the authors focus on the optimization algorithms
for buying and selling query answers, and the negotiation
strategy. Their query trading algorithm runs iteratively,
progressively selecting the best execution plan. At each iter-
ation, the buyer sends requests for bids, for a set of queries,
and sellers reply with offers (bids) for dealing with them.
Then, the buyer finds the best possible execution plan based
on the offers it received. These actions are iterated un-
til either the found execution plan is not better than the
plan found in the previous iteration or the set of queries has
not been modified (i.e. there is no new subqueries). This
approach uses some kind of bargaining between the buyer
and the sellers, but with different queries at each iteration.
However, this way of dealing with subqueries optimization
is orthogonal to our proposal and one may combine them
to improve performances. In [10], the authors propose an
economic flexible mediation approach that allocates queries
by taking into account the providers’ quality (given by con-
sumers) and the providers’ bids. In contrast to our approach,
the authors inherently assume that participants are captive.
In addition, their proposed economic model is complemen-
tary to our proposal and one can combine them to obtain
an economic version of SQLB, by computing bids w.r.t. in-
tentions (which is planned as future work).

Furtheremore, the scope of this paper goes well beyond

related work by characterizing the participants’ expectations
in the long-run, proposing metrics to analyze them and new
algorithms to exploit them.

8. CONCLUSION
In this paper, we considered distributed information sys-

tems where participants are autonomous to leave the sys-
tem at will. In this context, it is crucial to consider the
consumers and providers’ intentions for allocating and per-
forming queries, respectively, so that their expectations, re-
sponse times, and system capacity are ensured. We pre-
sented a general and complete solution for balancing queries
among providers while considering the participants’ inten-
tions. Our main contributions are the following.

First, we characterized, in the long-run, the participants’
expectations in a new model, which allows to evaluate a sys-
tem from a satisfaction point of view. This model facilitates
the design and evaluation of new query allocation methods
for these environments.

Second, we proposed three different metrics to evaluate
the quality of QLB methods: (i) the mean metric that
reflects the effort that a query allocation method does for
equally either maximizing or minimizing a given set of val-
ues, (ii) the fairness metric that evaluates how fair a query
allocation method is, and (iii) the balance metric that mea-
sures the Min-Max values. We proved that using these pro-
posed metrics together, one can predict possible consumer
and provider’s departures from the system.

Third, we presented the SQLB framework for balancing
queries in these environments. SQLB strongly differs from
the related work in several ways: (i) it allows providers to
trade their preferences for their utilization while keeping
their strategic information private, (ii) it affords consumers
the flexibility to trade their preferences for the providers’
reputation, (iii) SQLB allows trading consumers’ intentions
for providers’ intentions, and (iv) SQLB strives to balance
queries at runtime via the participants’ satisfaction, thus
reducing starvation.

Finally, we evaluated and compared SQLB against two
baseline query allocation methods (Capacity based and
Mariposa-like), in two kinds of environments: captive and
autonomous. We showed through experimentation that, by
considering together the QLB and satisfaction of partici-
pants, SQLB significantly outperforms both. We showed
that, unlike the baseline methods, SQLB maintains the
high-interest, high-adaptation, and high-capacity providers
in the system. Moreover, results show that while baseline
methods lose more than 20% of consumers (for all work-
loads), SQLB has no consumer’s departures.

9. REFERENCES
[1] The eBay System, http://business.ebay.com.

[2] Freightquote.com, http://www.freightquote.com.

[3] The grid4all Project, http://grid4all.elibel.tm.fr.

[4] R. Miller, editor. Special Issue on Integration
Management. IEEE Data Eng. Bull., 25(3), 2002.

[5] D. Ferguson, C. Nikolaou, J. Sairamesh, and
Y. Yemini. Economic Models for Allocating Resources
in Computer Systems. In S. H. Clearwater, editor,
Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific, 1996.

[6] D. Ferguson, Y. Yemini, and C. Nikolaou.
Microeconomic Algorithms for Load Balancing in
Distributed computer systems. In Procs. of the ICDCS
Conf., 1988.

[7] T. Fong, D. Fowler, and P. Swatman. Success and
Failure Factors for Implementing Effective Electronic
Markets. Journal of Electronic Commerce and
Business Media, 8(1):45–47, 1998.

[8] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
Balancing of Range-Partitioned Data with
Applications to Peer-to-Peer Systems. In Procs. of the
VLDB Conf., 2004.

[9] R. K. Jain, D.-H. Chiu, and W. R. Hawe. A
Quantitive Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer Systems,
DEC-TR-301. Technical report, 1984.

[10] P. Lamarre, S. Cazalens, S. Lemp, and P. Valduriez. A
Flexible Mediation Process for Large Distributed
Information Systems. In Procs. of the CoopIS Conf.,
2004.

[11] L. Li and I. Horrocks. A Software Framework for
Matchmaking Based on Semantic Web Technology. In
Procs. of the WWW Conf., 2003.

[12] E. P. Markatos. Tracing a Large-Scale Peer to Peer
System: An Hour in the Life of Gnutella. In Procs. of
the IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002.

[13] R. Mirchandaney, D. F. Towsley, and J. A. Stankovic.
Adaptive Load Sharing in Heterogeneous Distributed
Systems. Journal of Parallel and Distributed
Computing, 9(4):331–346, 1990.

[14] M. H. Nodine, W. Bohrer, and A. H. Ngu. Semantic
Brokering over Dynamic Heterogeneous Data Sources
in InfoSleuth. In Procs. of the ICDE Conf., 1999.

[15] F. Pentaris and Y. Ioannidis. Query Optimization in
Distributed Networks of Autonomous Database
Systems. ACM TODS, 31(2):537–583, 2006.

[16] J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez.
Satisfaction Based Query Load Balancing. In Procs. of
the CoopIS Conf., 2006.

[17] J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez.
KnBest - A Balanced Request Allocation Method for
Distributed Information Systems. In Procs. of the
DASFAA Conf., 2007.

[18] E. Rahm and R. Marek. Dynamic Multi-Resource
Load Balancing in Parallel Database Systems. In
Procs. of the VLDB Conf., 1995.

[19] M. Roth and P. Schwarz. Don’t Scrap It! Wrap It! A
Wrapper Architecture for Legacy Data Sources. In
Procs. of the VLDB Conf., 1997.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Procs. of the Multimedia Computing and
Networking Conf., 2002.

[21] N. G. Shivaratri, P. Krueger, and M. Singhal. Load
Distributing for Locally Distributed Systems.
Computer, 25(12):33–44, 1992.

[22] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
Wide-Area Distributed Database System. VLDB J.,
5(1):48–63, 1996.

