
Optimization of Object-Oriented Recursive Queries

using Cost-Controlled Strategies *

Rosana S.G. Lanzelottej Patrick Valcluriez, Mohamed Zait

Projet Rodin, INRIA, Rocquencourt, France

Abstract

Object-oriented data models are being extended with recur-

sion to gain expressive power. This complicates the opti-

mization problem which has to deal with recursive queries on

complex objects. Because unary operations invoking meth-

ods or path expressions on objects may be costly to execute,

traditional heuristics for optimizing recursive queries are no

ionger valid. In this paper we propose a cost-based optimiza-

tion method which handles object-oriented recursive queries.

In particular, it is able to detay the decision of pushing se-

lective operations through recursion until the effect of such

a transformation can be measured by a cost model. The ap-

proach integrates rewriting and increases the optimization

opportunities for recursive queries on objects while aliowing

for eficient optimization.

1 Introduction

An advantage of object-oriented DBs (OODBS) is the

direct modelling of complex objects. The value of an

object attribute can be an object (possibly of the same

class) or a collection of objects. Thus, a query in

an 00DB query language, such as ESQL [GV92] or

02Query [BCD89], may reference attributes of objects

through path expressions [MS86], e.g., 01 .A1 .Az . . . An

where 01 is an object and each Ai an attribute of an

object Oi referencing an object 0~+1 or a collection of

objects.

Most of the work in OODB query optimization has

concentrated on optimizing path traversals, e.g., by

exploiting path indices [MS86] or predicate selectivity

[KM90]. In [LVZC91], we have proposed a comprehen-
sive approach for optimizing non-recursive queries on

*This work was partially funded by the Esprit project EDS.
t vi~iting INRIA, on leave from Pontificia Universidade

Catolica do Rio de Janeiro (PUC-RIO).

Permission to 00PV without fee all or part of this material is
granted providad that the copies ara not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
1992 ACM SIGMOD - 6/92/CA, USA

01992 ACM 0-89791 -522-41921000510256 ...$1 .50

objects, including path expressions, selects and joins,

which allows any interleaving of operations. The opti-

mizer actions are specified in a way that their impact

on the cost of the execution plan is directly computable.

Unlike most rewriting approaches (e.g., [KM90]), this

approach enables the application of deterministic search

strategies.

00DB data models are now being extended with re-

cursion to gain expressive power [AK89, GV92]. For in-

stance, object-oriented recursive queries are important

in engineering DBs [CS90], e.g., execute a method for

each subpart (recursively) connected to a given part ob-

ject, However, no comprehensive attempt haa been pro-

posed to optimize recursive queries on objects. This is

surprising given the large amount of work on recursive

query processing in deductive DBs [BR86].

The reason may be the difficulty of keeping the

typical dichotomy between rewriting and optimization.

Rewriting is heuristics-based and proceeds by applying

transformations to the initial query supposing they

do not incur any loss of optimality. No selection

among alternatives is involved because the heuristics

are always considered worth applying. On the contrary,

optimization proceeds by applying actions whose effect

is measured by a cost function in order to select an

optimal solution. The isolation between the two steps

essentially reduces the complexity of optimization.

Recursive query processing in deductive DBs typically

proceeds by rewriting using a simple heuristic: restrict-

ing the computation of recursive predicates to the re/e-

vant facts is better. Similar to pushing selection through

join, this is achieved by pushing selection through recur-

sion [BR86]. In 00DBs, however, selections involving

method calls or path traversals on complex objects may

be expensive to compute. Therefore, pushing selection

through recursion needs to be decided in the presence of

a cost model. Thus, a task that is typically performed

by the query rewriter becomes a matter of cost-based

optimization. This observation suggests a different ap-

proach which integrates somehow rewriting and cost-

256

based optimization.

In this paper, we propose a cost-based approach to

optimize recursive queries on objects. Unlike rewriting

approaches where the transformations apply to the

conceptual query, we propose an optimizer that acts

upon physical entities. Thus, the impact of the

optimizer actions on the cost of an execution plan is

directly computable. In particular, our approach delays

the pushing of selective operations (i.e., selections and

joins) through recursion until the cost of a plan can be

estimated. In order to better integrate rewriting and

cost-based optimization tasks (e.g., join enumeration)

and to reduce the overall complexity, the optimizer is

able to focus on subproblems of different granularities,

from a path or a select-project-join (spj) to the entire

query. As the optimizer actions are controlled by cost-

based strategies, the optimizer is able to investigate

more general solutions than in previous work, while

guaranteeing optimality in an acceptable time.

The paper is organized as follows. Section 2 intro-

duces a model for object-oriented recursive queries as a

support for optimization. Section 3 introduces a model

for query execution plans and an associated cost model

which considers several options for storing complex ob-

jects (e.g., multiclass clustering, decomposition, path

indices). In Section 4, we propose an optimization ap-

proach that integrates rewriting and cost-based opti-

mization. Also, we show that this approach is general

enough to implement several optimization techniques.

Section 5 concludes.

2 A Model for Recursive Queries on

Objects

In this section we propose a model for representing

object-oriented recursive queries. The main goal is

to provide a canonical input representation for the

optimizer which support the capabilities of 00DB

query languages. Our query model is derived from the

System Graphs [KL86] and enables us to express queries

involving path expressions, joins, recursion and method

calls. By easing the factorization of overlapping path

expressions, it is well-suited for optimization.

2.1 A Conceptual DB Schema

The conceptual model deals with classes, whose ill-

stances are objects, and relations, whose instances are

values. There is a mapping from each class or relation

name to a type. Types are built from atomic types and

the usual tuple, list and set constructors (denoted [],

<> or { } respectively). An instance of the conceptual

schema associates eziensions (i.e., the set of instances)

to class and relation names of the schema. The con-

ceptual schema of Figure 1 will serve as a basis for the

sample queries of the paper.

class Person: class Composition:

[name: string [title: string,

birth: date author: Composer inverse

age: integer has of Composer. works,

value computeAgeo] instruments: {Instrument}]

class Instrument: class Composer: isa Person and

[name: string, [master: Composer,

family: string] works: {Composition}]

relation Play: [who: Person, instrument: Instrument]

Figure 1: A Sample Conceptual Schema

..lQ!rp:eComposer — il. harpsichord and [Q] -Answer

@ f)

[1
6t

. .
&’ ,nymr.

J%[1[1
name name

@@

Figure 2: A Query Graph

We say that Composer is a subclass of Person. The

model allows for specifying that an attribute is the

inverse of another one (e.g., Cornposition.author is the

inverse of Composer. works). Methods are considered as

computed attributes (e.g., age in class person).

2.2 Query Graphs

Queries are represented by means of query graphs.

Figure 2 shows the query graph for a query that retrieves

“the title of the works of Bach including a harpsichord

and a flute”.

A query graph includes predicate nodes, represented

by squares, name nodes (e.g., Composer and Answer

in Figure 2), and directed arcs connecting name nodes to

predicate nodes and vice-versa. Name nodes correspond

to relation or class names of the conceptual schema. A

predicate node has one or more incoming arcs originated

at name nodes, one Boolean predicate and one outgoing

am. The name node that is the destination of an outoing

arc is called the output name node of the predicate node

(e.g., Answer in Figure 2). The incoming arcs are

labelled by trees (e.g., trl) which indicate, by means

of variables (e.g., n, t, il, i2), the subobjects needed

in the predicate or in the outgoing arc of a predicate

257

nodel. The outgoing arcs are labelled by trees (e.g., tr2)

which indicate the type of the predicate node output.

To denote the output projection, they reference the

variables inthetrees onthe incoming arcs (e.g., t). The

structure of a tree label is derived from a type of the

conceptual schema (e.g., the structure of trl is derived

from the type of Composer). In the tree labels, atomic

typed nodes are denoted by a circle and non-atomic

typed nodes are denoted by circles surrounded by the

corresponding type constructor (i.e., { }, [] or <>).

The semantics of a query graph is as follows. Each

predicate node denotes an spj applied to the instances of

the incoming name nodes (e.g., Composer in Figure 2);

the order in which the operations are performed is not

fixed. The result is stored in the output name node

(e.g., Answer in Figure 2).

We denote a query graph by the set Q = {(Name +

p)t }, i~ 1, where each p is one of its predicate nodes and

Name is the output name node of p. A predicate nocle

p is denoted as S.PJ(ln, pred, outproj), where In is its

set of incoming arcs, pred is the Boolean predicate and

owtproj is the tree label of its outgoing arc. An incoming

arc is denoted as a pair (Name, tree), in which Name

is its name node and tree is its tree label. Thus, the

query graph of Figure 2 is denoted as

Q= {(Answer + SPJ({(Composer, trl)}, (n= “Bach”
and il= “harpsichord” and i2= “flute”), t r2)) }

We denote a tree label or any subtree by a set

{(Att, tree, variable)} of its children. Att is NIL when

a subtree does not implement a named attribute, e.g.,

a subtree corresponding to a set- or list-typed node.

Var-iable is NIL if there is no variable associated with the

node. A subtree corresponding to an atomic attribute is

denoted by the empty set. For example, in Figure 2, trl

is {(name, trName,n), (works, trWorks, NIL)}, trName is

{ }, trWorks is {(NIL,trComposition, NIL)}.

2.3 Recursive Queries

Our query graphs are designed for expressing object-

oriented recursive queries. Suppose that the conceptual

schema of Figure 1 is extended with a recursive view

Influencer defined as:

relation Influencer
includes (select [master: x.master, ciisciple:x, gen: 1]

from x in Composer)

union (select [master: i.master, disciple:x,

gen:addlgen(i.gen)]

from i in Influencer, x in Composer

where i disciple = x.master)

1These trees can be viewed as tree-shaped adornments [BR86]
that depict the bindings of the input objects. In the relational
model, adornments are strings (because relations are unidimen-
sional) but in an object-oriented model they are trees.

Figure 3 shows a query that retrieves “the names of

the composers influenced by composers for harpsichord

that lived 6 generations before”. Predicate nodes PI

and P2 define the recursive Influencer view, which is

the “transitive closure” of Composer with respect to

the master attribute. The instances of Influencer are

the union of the output instances of predicate nodes

P 1 and P2. Predicate node P3 represents the query

on the view. Note the similarity between query graphs

and representations proposed for queries on sets of rules,

such as System Graphs [K L86].

With a query like the one in Figure 3, most deductive

query processors would push selection and projection

through recursion [BR86]. The objective is to restrict

the recursive computation to only the relevant facts

needed for answering the query. Pushing the projec-

tion on the name attribute of the disciple does not incur

any overhead, as it is an atomic attribute and can be

retrieved when accessing the master attribute of a Com-

poser. However, pushing the selection Z= “harpsichord”

introduces a complex path expression, the path mas-

ier. work. instruments. narnel inside the recursion. If the

query is rewritten at the conceptual level, it is not pos-

sible to tell which form is better. When objects and

recursion are involved, such transformation cannot be

blindly applied as a heuristic and must be decided in

the presence of a cost model.

3 A Model for Query Execution Plans

The input to the optimizer is a query graph and its

output a query execution plan. Here we are concerned

with cost-based optimization, where the effects of the

optimizer actions are measured by a cost function. To

allow this, an execution plan must be expressed as a

sequence of operations on physical entities unlike query

graphs which deal with conceptual entities. This section

presents our model for query execution plans (based on

a physical schema) and the associated cost model.

YfJe assume that the physical DB model follows the

direct storage approach, in which the identifiers (oid’s)

of sub-objects are stored within the owner objects

[VKC86]. This is the most frequent approach imple-

mented in 00DBs. This physical model allows for clus-

tering the instances of the sub-objects close to the owner

object record (e.g., in a same or neighbor disk page). A

static clustering strategy is assumed, which is appropri-

ate for general purpose transactions accessing several

objects. The physical model also allows for decompos-

ing extensions into horizontal or vertical fragments to

optimize the processing of selections and projections.

Path in dzces [MS86] are available for accelerating ac-

cesses that span over a whole hierarchy of nested at-

tributes. A path index is denoted by the sequence of

attributes which it spans. For example, a path index on

258

R[1Influencer

Y

i=’’harpsichord’
maste disc gen and g>=6

[0[01 b

.aate!!-~~gen ~
[d]

h

000 @@o ,d ,2 [I

4

name

PI TRUE = instruments

{}

~81

7

%v[”~
[

Answer

mastel is addlgen name
Composer

600 0

Figure 3: A Recursive Query

works. instruments is available, whose entries are triples

composed of the oid’s of the classes Composer, Compo-

sition, Instrument. This index speeds the access of the

instruments used in the works of a Composer.

We say that an atomic entity of the physical schema

is either a non-decomposed extension or a fragment

of a decomposed extension. We say that two atomic

entities are connected through an implicit join if they

correspond to class extensions which implement an

object and its sub-objects [e. g., the extensions of classes

Composer and Composition are connected through the

works attribute). The usual joins are called hereafter

explicit joins (e.g., y=d in the query of Figure 3).

3.1 Execution Plans as Processing Trees

We model execution plans by means of processing frees

(PTs) extending the definition of [KZ88]. Figure 4

shows two PTs for the query of Figure 3.

PTs can be considered as an algebra for specifying

the query execution: the interior nodes are operators

(e.g., join, union) and the leaf nodes are atomic entities

of the physical schema referenced in the query.

Definition: A PT rooted at node IV, denoted by

N(childo, childl, childk - 1), is such that each node

N or childi, O < i < k–1, is either

● a projection Proj, a selection Selpre~ (k= 1),

. . . .
● an implicit join IJatt~~a~~, an exphclt Join EJpred,

a fixpoint Fix, a union Union (k=2),

● an implicit join implemented by a path index

PIJPathI+r (k~2),

s an atomic entity of the physical schema or a

temporary file (k= O).

We define PTs in such a way that they can be

treated as functional terms. Thus, some of the

P3

optimizer actions can be specified as transformation

rules applied to PTs. For example, the functional

representation for the PT of Figure 4.(i) is Answer =

IJ~t,.(W,~~l,= “harp,ichrmdlj (. . .),cOmpOSeI’).

PT nodes also capture the specific algorithm used

to implement an operation (e.g., in the case of EJ

or Fix nocles), the materialization or pipelining of

its output and the output projection. However, for

clarity, we abstract these in the notation for PT nodes.

Fixpoint is considered here as a paradigm for recursive

queries. The temporary files mentioned in the case

1{=0 of the definition refer to the files used for storing

intermediate results (e.g., Influencer). The att rNarr~e

on au IJattrName node indicates the access to the

attribute attrName of its left argument. An explicit

predicate pred on a EJP,ed or Selpt.ea! node is a Boolean

expression on paths, e.g., name= “harpsichord”. A

patldndez indication on a PIJPathln&Z node is a path to

which corresponds an existing path index in the physical

DB schema (e.g., works. Instruments). These definitions

rely on the uniqueness of attribute name! s, which can

be enforced by renaming.

A PT models a bottom-up execution, where each

node consumes operands from left to right. The

execution ends at the root node, which corresponds to

the distinguished name of the query graph (i.e., the

query answer). The PT of Figure 4.(i) specifies the

selection i= “harpsichord” and the projection on the

disciple name to be performed after the fixpoint. In

Figure 4.(ii), both the selection and the projection have

been pushed through recursion (applying the technique

of [KL86]). Thus, the temporary file Influencer’

already captures the selection i= ‘(harpsichord)’ and

the projection on the name attribute of the disciple.

The remaining selection gen ~ 6 cannot be pushed

ancl remains to be verified after the recursion in both

PTs of Figures 4.(i) and 4,(ii). Note that pushing

259

T6 Answer

IJdisc
I

T15

T5 Sel gen>=6
z R

Sel name=’’harpaichord composer T

AT4
PIJworka.instrurnents Influencer’

T3 3
T9 T13

I1master [AComposition Instrument Sel name=’’harpsichord EJmaster=dis

n’> - I

I Sel gen>=6
1=

Composer

‘r!

COmpoJ&

(i)

InfluenZ’TGpOser

(ii)

Figure 4: Processing Trees for the query of Figure 3

the projection does not imply any overhead: the

attribute name of Influencer .disciple is obtained from

Composer.name without any additional implicit join.

This is why the implicit join on disc has disappeared in

the PT of Figure 4. (ii). However, pushing the selection

puts additional implicit joins inside the computation of

the fixpoint ! In deductive DBs, the PT of Figure 4. (ii)

would be generated although it is probably not optimal.

In order to select the optimal PT, a cost model is

needed.

3.2 Cost Model

We now sketch a cost model that associates a cost

estimate to each PT node, where cost, refers to execution

time. In a first step, we express the operation captured

by a PT node in terms of the basic operations involved.

In a second step, we derive cost formulas for PT nodes

by combining the cost formulas for the involved basic

operations. We generalize this process to compute the

cost of an entire PT. Examples of basic operations are

accessing an atomic entity of the physical schema and

evaluating a predicate.

In the following, Ci refers to the name of an atomic
entity of the physical schema (relation or class), N to

a PT node, Ai to an attribute of the class C,, and P

to a predicate. We give the cost formulas for the basic

operations.

. access.cost (Ci)2: the cost of accessing the instances

of Ci. It depends on how the instances are stored

2 when ~~tj~~ti~g ~ccess_cosi, we take into account the fact

that some of the needed data are already in main memory and
need not to be fetched from disk

and on whether an index is defined on C’i or not;

aCCeSS.COSt(Ci, P): the cost of accessing the in-

stances of Ci in the presence of predicate P. This

access is performed using an index, if P references

an indexed attribute of Ci, or is a sequential scan;

access-cost(C~, C~+l): the cost of accessing the C~+l

instances referenced by one C, instance through

attribute A,. The way this operation is performed

depends on whether the C,+l instances are clustered

or not with the Ci instance that references them

(directly or not);

er-)al.cc)d(Ci,P): cost of evaluating the predicate P

on all records stored in one page of Ci;

We assume a centralized cost model and that atomic

entities are initially stored on disk. The computed cost

includes 1/0 time and CPU time, thereby giving a fair

estimation of the use of lnachine resources. We use

the path index definition of [MS86] which we see as a

generalization of join indices [Va87]. Selection or path

indices are assumed to be implemented as B+-trees.

We use the following parameters obtained from the

physical schema, description:

~

I C, I: number of pages on which C, is stored

II C, Ii: number of instances of C,

nlde uel.s(l): number of levels of index 1

nblemes(l): number of leaves of index f

We also use the following functions:

● nbpu~e.s(Ci, P): returns the number of accessed

pages, i.e.,] C’i [reduced by the selectivity of P;

260

PT node cost formula

Sekpv.d(c) access. cost(Cj selpred) + nbpages(C, selpred) * eval-cost(C, selpred)

~Jpred(G, q) access. cost(Ci, pred) + nbtup/es(Ci, pred) * (acces.s-cost(Gj, pred)

+ nbpages(Ci, pred) * eval.cost(Cj, pred)) ‘

1~~, (C~, Cj) accessxost(C~)+ // C~ ([*access-cost(C~, C’j)

PIJPotmd(C, 6’2, en) II C1l *(nblevels(puthInd) + nbleaves(pathInd)/ II Cl II) b
n

Fiz(T, P) I
I I i=l

‘Thk formula is valid if the EJ operation is implemented using a Nested.Join Loop or Index_.Join algorithm.
bThe path index pathInd is defined on the path CI .AIAn-l, where each A, is an attribute of type C,+l defined in class C:.
Cwhere n is the number of iteration in the loop of the semi-naive algorithm, Ecp(7’,) denotes the fixpoint equation Exp (contained

in P), having 2’, aa input instead of T, and T, denotes new tuples produced at step i - 1.

Figure 5: Cost Formulas

● nbtuples(ei, P): returns the number of accessed

tuples, i.e., [] Ci II reduced by the selectivity of P.

Figure 5 shows the cost of the PT nodes introduced
in Section 3.1. For simplicity, we do not consider the

cost of materializing the output of a PT node.

The cost of a PT rooted at node N, denoted

N(childo, childl, . . . , child~ - I),is computed aa follows
k-1

cost (PT) = cost (N) + ~cost (childi)

i=o

4 Optimizing Query Graphs

In this section, we propose a cost-based optimization

approach for object-oriented recursive queries, which

allows to separately optimize subproblems (e.g., one

path or one spj) to reduce the global complexity. Thus,

the optimization granule, denoting a subproblem, may

vary during optimization. Optimization proceeds with

the following successive steps:

rewrite: fixpoint recursion is identified. The

Union and Fix “operators, that were not explicit in

the query graphs, are generated. The optimization

granule is the entire query graph;

translate: the query graph is translated onto the

physical schema. Conceptual entities are replaced

by physical entities and paths are converted into

sequences of IJ and PIJ nodes. The granule is one

arc of the query graph and its involved paths;

generatePT: predicate nodes are optimized, which

corresponds to optimizing spj ‘s. EJ and Sel nodes

are generated. The optimization granule is one

predicate node, A PT (e.g., like the one in
Figure 4.(i)) is generated for the query graph;

transformPT: finally, the position of selective

operators with respect to recursion is decided. The

granule is again the entire query, but now in the

form of a PT (generated by the previous steps).

Reoptimization is performed when necessary.

Unlike most optimizers, the position of selective

operators (i.e., selection and join) with respect to

recursion is decided after a PT has been generated. As

PTs have an associated cost estimate, the optimizer is

able to measure the impact of such transformations.

4.1 Optimization Approach

We argued that the typical solution in deductive DBs

(i.e., restricting recursion to the relevant facts) is

not appropriate for object-oriented recursive queries.

Another proposal consists of exhaustively enumerating

all the solutions, each assigned a cost, in order to

choose the least costly as optimal [KZ88]. As this

strategy is cost-based, optimalit,y is guaranteed, but

the optimization time may become unacceptably high.

Furthermore, this approach does not take advantage of

the existence of subproblems that could he separately

optimized (e.g., one path expression or one spj).

The optimization approach herein adopted general-

izes the extensible one we proposed in [LV91], in which

extensibility is achieved by isolating the specifications

of the optimizer search space from its search strategy.

The search space is characterized by the optimizer ac-

tions and their scope of application. The search strat-

egy is responsible for controlling the application of such

actions, The optimizer combines two paradigms: pro-

cedural for specifying search strategies and dec~aratz’ve

for specifying transformation actions. Optimization is

performed by the procedure optimize below:

optin~ize(Q)

{ rewrite(Q);

for each (N,tree) of Q translate(N,tree);

for each SPJ(In,pred,out) of Q I (VN E In) isaPT(N)

Q := Q - {N+ SpJ(In,pred,out)} U

261

{N+generatePT(SPJ(In,pred,out)) };

repeat transformPT(Q) until saturation; }

This strategy postpones pushing selective operations

through recursion (i.e., performed by transformPT)

after the generation of a solution PT for the query

(i.e., performed by generatePT). This optimize

strategy is one possible choice. Our approach is

extensible and allows for specifying other optimization

strategies. The condition (YN c In) isaPT(N) requires

that all inputs N to the predicate node must have been

previously optimized, thus forcing the optimization of

the query graph to proceed bottom-up to enable cost

computations.

Figure 6 summarizes the features of the procedures

referred to in optimize with respect to their scope,

strategy and types of PT nodes generated.

A procedural paradigm for specifying strategies fits

well their procedural nature. But some optimizer

actions, referred to and controlled by the strategies, are

declaratively specified through transformation actions

as in transformation-based optimizers. Transformation

actions are suited to recognizing and transforming

“patterns” occurring in their scope of application. They

have the form:

action: F I constraint + G

where action is the action label, F and G are patterns

describing subparts of the granule to which action

is applied and constraint is a predicate whose truth

conditions the applicability of the action. When action

is applied to some object O (denoted action(0)), if F

matches some part of O, and constraint is true, then

the part matched by F in O is replaced by G (see the

next sections for examples of transformation actions).

With these two paradigms, procedura.1 and declara-

tive, we are able to implement several optimization tech-

niques and search strategies. In the rest of this section,

we illustrate their use by specifying rewriting and optim-

ization actions for query graphs.

4.2 Rewriting the Query Graph

In the present context, the purpose of rewriting is

to recognize fixpoint recursion and to generate Fix

and Union nodes that are not explicit in the query
graphs. Rewriting is performed by the procedure

rewrite below:

rewrite(Q) { repeat union(Q) until saturation;

repeat fixpoint (Q) until saturation; }

The above strategy is irrevocable: the union and

fixpoint actions are applied up-to-saturation without

any choices involved.

The purpose of the union action

operator explicit in query graphs.

is to make the union

262

union: Q I (Name --- PI) E Q A (Name +- p2) E Q

-i Q – {(Name + PI), (Name e- P2)} U

{(Name K Union(pl, p2))}

The purpose of the fixpoint action is to recognize

fixpoint recursion and to add Fix operators:

fixpoint: Name I (Name - p) c Q

A fixpointRecursion(Name) + Fix (Name, p)

The constraint fixpointRecursion(Name) verifies the

ability of computing the recursion as the fixpoint of

an equation referencing Name, In the query graph,

this equation is captured by the predicate node p whose

outgoing arc leads to Name. Other rewriting actions
could be devised, e.g., for folding predicate nodes to

eliminate non-recursive view definitions.

After rewriting, each p such that (Name t p) E Q

may denote an SPJ, a Fix or a Union node (contrary

to the original query graph, in which only SPJ terms

occurred).

4.3 Translation to the, Physical Schema

Cost-basecl optimization requires the query graph to be

translated onto the physical schema. The main goal

is to depict the atomic entities of the physical schema

referred to in the query and the connections (i. e., due

to implicit joins) between them. Each arc (N, tree) of

the query graph is translated onto one sequence of IJ

nodes3 that, implements it:

translateArc: (N,tr) I type(N)=[. . . . Att:C, . . .] A

(.4tt,tr’,var) c tr A isaClass (C) ~ (IJ~,t(N,C),tr’)

Recall that a tree label tr is denoted by a set of

triples (Att ,tr’ ,var). For each att~ibute Att of N that

is implemented by a class C (i.e., the type of N is [. . . .

Att:C, . ..]). the arc (N,tr) is replaced by an implicit join

node IJAtt between N and C through the Att attribute.

As translateArc is applied up to saturation, it stops

the translation of one arc when the tree-labels of all arcs

do not involve any more class extensions. This process

may generate different sequences of IJ, as the tree-labels

can be scanned in many ways. Analogous translation

actions deal with the case where Att has type {C} or

<c>.
Action collapse collapses subsequent IJ nodes

into a PIJ (path implicit join) node, provided

that there is au applicable path index. For ex-

ample, it transforms the sequence of implicit joins

1Jin,trU,71,ni, (lJWOr~,(lJ,,,,a, t,r(I]~fluencer, Composer),

Composition), Instrument) into PIJWO,~$ ~n$t,ument,

3There may be several sllch sequences and the choice amOng

them is cost,-basecl.

Procedure Granularity Strategy PT nodes generated

rewrite the entire query (graph) irrevocable” Fix, Union

translate one arc cost-based IJ, PIJ

generatePT one predicate node cost-based (generative) EJ, Sel

transformPT the entire query (PT) cost-based (transformational) none

aAn iwevoca~le strategy does not involve choices and proceeds always straight-ahead, like in query rewriters.

Figure 6: Summary of Optimization Steps

(IJma$ter(Influencer, Composer), Composition, Instru-

ment) that occurs in Figure 4. This is made possible by

the existence of the path index on works. instruments.

collapse: 1Jp1(1Jp2(rw,m),N3)I

existPathIndex(p2.pl) ~ PIJP2,P1(N1,NZ,N3)

All the atomic entities of the physical schema referred

to in the query are present in the translated query

graph, They are replicated for each occurrence, so that

each ocurrence is the input of at most one predicate

or IJ node. Thus, the translated query graph becomes

a tree where the leaf nodes are atomic entities of the

physical schema. Recall that we do not represent the

output projection of each PT node for clarity, but each

arc in the translated query graph is still labelled by

simpler trees than the original ones. These labels are

of depth one or two (i.e., in the case of the set- or list-

valued nodes), Hereafter, we refer to an arc (N,tree)

by N only and consider that the needed projections

(which do not involve any more implicit joins) are also

captured.

4.4 Generating PTs for Predicate Nodes

As in relational optimizers, the main goal when op-

timizing predicate nodes (i.e., an spj) is to build an

optimal join permutation and the implementations for

the involved operations (e.g., access methods to indi-

vidual entities or join algorithms). As a consecluence of

generatePT (not shown here for space reasons), each

predicate node SPJ (In, pred,out) is replaced in the query

graph by the optimal PT that captures the chosen per-

mutation. At this step, EJ and SeI nocles are gener-

ated. A generative strategy builds several PTs from

the atomic entities of the physical schema [Se79], in a

bottom-up fashion. The generated PTs are, then, conl-

pared with respect to their costs, in order to keep the

least costly. In [LV91] we model several such strategies.

They proceed by applying the actions Sel and join until

saturation, i.e., the Boolean predicate of the predicate

node has been completely consumed.

Action sel(N,pred) (resp. join) systematically ex-

pands N by adding Sel nodes (resp. EJ). At the same

time, the Boolean predicate pred is “consumed”.

sel: (N,pred) I pred = a.nd(selpred(N) ,pred’)

+ (selselpred(N)tpred’)

In the constraint part of the join action, the predicate

disjoint(N,Inner) is true if the atomic entities captured

by N and Inner are disjoint with respect to In (i.e., the

set of inputs to the SPJ term). The requirement of the

existence of a join predicate avoids the generation of

PTs where there are Cartesian products.

join: (N,precl) I Inner E In A disjoint(N,Inner)

A pred = ancl(joinpred(N, Inner), pred’)

~ (EJjoinPred (N, Inner),pred’)

As action sel is applied before join, Sel nodes

are generated as soon as possible, according to the

relational heuristics of pushing selection through join.

After optimizing the predicate nodes by generatePT,

the query graph resembles that of Figure 4.(i). All

the predicate nodes were optimized and replaced by

“locally” optimal PTs with an associated cost.

4.5 ‘llansfomning PTs: pushing selective

operations through recursion

Recall that in Section 4.1, we proposed a control strat-

egy that postpones transformPT to generatePT.

This is analogous to two-pass search strategies [IC90].

The strategy of transformPT below starts by pushing

selective operations, such as selection or join, through

recursion using the filter action. Then, it tries to fur-

ther improve the obtained PT through a randomized

strategy, thus transforming the PT in Figure 4.(i) into

that in Figure 4.(ii).

transformPT(PT)

{ newPT := PT;

filter(newPT);

newPT := randOptimize(newPT);

if cost(newPT) < cost(PT) then PT := newPT; }

Action filter pushes selection through recursion follow-

ing the algorithm of [K L86]. A similar action is available

to push join through recursion.

filter: Sell,red(pt(F;x(Rec,Un;on(Base, pt’(R.cc)))))

I canPush(pred,Rec) + Fix(Rec,Union(

Selp.eC~(pt(Base)),pt’(SelPr,d(pt(Rec)))))

263

We assume that pt(X) or pt’(X) match any PT

containing X as a subtree, i.e., they capture functional

expressions containing X, In deductive DBs, it is

typically assumed that there are no operations between

the selection and the fixpoint (e.g., the filter rule would

start as Sel(Fix . . .)). In the present context, implicit

joins may come between the selection and the fixpoint

and the rule must be more general. The constraint

canPush enforces the requirements for pushing the

selection or join [KL86].

As some optimization alternatives (e.g., the choice of

an access method) are based on specific bindings, shift-

ing a portion of a PT may require its reoptirnization.

Thus, the strategy for transformPT applies a random-

ized strategy (e.g., Iterative Improvement [IC90]) to the

filtered PT, which tries to transform it in order to fur-

ther reduce the cost. The termination of a random-

ized strategy is conditioned by the optimization time

or the stability of the current solution, meaning that it

is unlikely that this solution can be further improved.

Randomized strategies are convenient for reoptimiza-

tion, because they can be customized to apply “conve-

nient” transformations, once a portion of the PT has

been shifted (e.g., use an applicable index). Also, they

stop if the filtered PT is a stable solution that cannot

be improved.

Our cost-based approach enables us to investigate

solutions where join is pushed through recursion, not

proposed before. A join may be very selective, making

it worth to push it through recursion. Only in the

presence of a cost model, one is able to judge of the

convenience of such a transformation. For example,

suppose a query that “retrieves the composers that were

influenced by the masters of Bach”. It is answered by a

join between Influencer and Composer on the master

attribute, i.e., Influencer .master = Composer .master

and Composer.name = “Bach”. It is clear that this

join is very selective and, if pushed through recursion,

would restrict the recursive computation of Influencer

to few “relevant” facts.

4.6 A Comprehensive Example

To illustrate our optimization approach, we apply it

to the query of Figure 3. First, the query graph

is rewritten: the Union operator is generated whose

destination is Influencer; the name node Influencer

is replaced by Fix(Influencer, Union(. ..)) due to the

detection of fixpoint recursion. The arcs of the que~y

graph are translated onto the physical schema: all

the conceptual name nodes are replaced by the atomic

entities of the physical schema that implement the

corresponding extensions;

extensions are translated

that implement them.

paths spanning several class

onto sequences of IJ nodes

As the atomic entities are

*

IITIO /(*(lev + lea”/ ll’dpr 11)

ICPTI *PT+ IICPTII * lTlll*(pr+ev)

COSt(EZp~g)) + (n2 –1) * cost(~~P(~nf:)

—
aInj, Ins, Cpr, and C’pn stand for Influencer, Instrument,

Composer, and Composition, respectively
bthe~e four operations constitute the fixpoint equation

Ezp(lnj’)

Figure 7: The Cost of PTs of Figure 4

replicated for each occurrence, the translated query

graph becomes a tree.

The next step optimizes predicate nodes and gener-

ates a “locally” optimal PT for each one of them; the

generative approach builds several tentative PTs and

chooses the least costly among them; the Sel and EJ

nodes are generated at this step and the resulting PT

resembles that of Figure 4.(i). The cost of this solution

is sketched in the top part of Figure 7.

To simplify cost computation, we assume that no ac-

cess structure other than the path indices are available,

instances of sub-objects are not clustered close to the

owner object, and no materialization of a. PT node re-

sult occurs. Thus, we have,

~

apr, lea, lev, and pr are constants

Then, the PT of Figure 4.(i) is transformed into

that of Figure 4.(ii) by transformPT which starts by

applying the filter action. The cost of the obtained

solution is sketched in the second part of Figure 7.

Reoptimization, performed by rand Opt imize, tries to

improve the PT of Figure 4.(ii) by considering unused

indices (none in this case) or changing join permutations

captured by the EJ nodes. As the final step of

transformPT, the solutions of Figures 4.(i) and 4.(ii)

are compared. The sketched costs clearly show that

264

the PT of Figure 4.(ii) is more costly than that of

Figure 4.(i). Pushing selection through recursion in this

example is not worthwhile.

5 Conclusion

In this paper, we have proposed a comprehensive ap-

proachfor optimizing object-oriented recursive queries,

Because the traditional heuristics proposed in deductive

DBs cannot be unconditionnaly applied to conceptual

queries when objects and recursion are involved, we ar-

gued for their use in the presence of a cost model. In

particular, the dichotomy between rewriting and opti-

mization needs to be revised. In our approach, execu-

tion plans are modeled by Processing Trees (PTs) which

refer to physical entities and associated cost estimates,

and the optimizer actions are expressed over PTs. Thus,

we are able to estimate the cost of the effect of each

transformation.

The main contributions of the paper are the following.

Contrary to rewriting approaches [KM90], our query

graphs enable to simultaneously optimize overlapping

paths without any additional rewriting. This is due to

the ability of using several variables along the same path

of the query graph. As the optimizer actions are ex-

pressed over physical entities, and not conceptual ones,

we are able to directly measure their impact based on a

cost model. By supporting varying optimization gran-

ules, we are able to independently optimize subproblems

(e.g., a path or a select-project-join) and then use the

results in the optimization of a larger granule (e.g., a

recursive expression). Our approach enables increas-

ing the optimization opportunities by a better integra-

tion of rewriting and optimization. Thus, it guarantees

optimality when investigating solutions where selective

operations, i.e., selection and join, are pushed through

recursion. In particular, pushing join through recursion

has not been previously explored by optimizers.

We believe that many open problems in optimization

can be tackled using this approach. For example,

distributing union over join and vice-versa, that, is

not typically examined because of the undesirable

increase in the search space [Se79, KZ&3]. We are

able to efficiently explore this transformation due to

the ability of changing the optimization granularity and

corresponding search strategy.

An optimizer prototype using this approach is cur-

rently being implemented at INRIA in C++ as part of

the DBS3 project. Most of the rules herein proposed

have been implemented. As usual, those for recursive

queries are applied at a previous rewriting step but we

plan to change the implementation of the optimizer to

make it conform to the approach herein proposed. The

cost model of the implemented optimizer is more gen-

eral than the sketch shown in this paper, because it

takes parallelism into consideration. Both enumerative

and randomized search strategies are supported.

6 Acknowledgements

The authors are very grateful to Eric Simon and Guy

Lehman for their detailed comments.

References

[AK89] S. Abiteboul, P. Kanelakis: “Object Identity as a
Query Language Primitive”, SIGMOD 1989.

[BR86] F. Bancilhon, R, Ramakrishnan: “An Amateur’s

Introduction to Recursive Query Processing Strategies”,

SIGMOD 1986.

[BCD89] F. Bancilhon, S. Cluet, C. Delobel: “Query

Languages for object-oriented database systems: the 02

proposal”, DBPL 1989.

[CS90] R.G.G. Cattell, J, Skeen: “Engineering Database

Benchmark”, ACM TODS 1990,

[GV92] G. Gardarin, P. Valduriez: “ESQL2: an Extended

SQL? with F-logic semantics”, Proc. IEEE Data

Engineering 1992.

[IC90] Y. E. Ioannidis, Y. Cha I{ang: “Randomized Algo-

rithms for Optimizing large join queries”, SIGMOD

1990.

[I{M90] A. Kemper, G. Moerkotte: “Advanced Query

Processing in Object Bases Using Access Support Re-

lations”, VLDB 199o.

[KL86] M. Kifer, E.L. Loziinski: ‘(A Framework for

an Efficient Implementation of Deductive Database

Systems”, Advanced Database Symposium 1986.

[I{Z88] R. Krishnarnurty, C. Zauiolo: “Optimization in a

Logic Based Language for I{nowledge and Data Intensive

Applications”, EDBT 1988.

[LV91] R.S.G. Lanzelotte, P. Valduriez: “Extending the

Search Strategy in a Query Optimizer”, VLDB 1991.

[LVZC91] R.S.G. Lauzelotte, P. Valduriez, M. Ziane, J.P.

Cheiney: “Optimization of Nonrecursive Queries in

00 DBs”, DOOD 1991.

[MS86] D. Maier, J. Stein: “Indexing in an Object-Oriented

DBMS”, Workshop on Object- Oriented Database Sys-

tems 1986.

[Se79] P. Cl. Selinger et al.: “Access Path Selection in a

Relational Database Management System”, SIGh40D

1979.

[VKC86] P. Valduriez, S. Khoshafian, G. Copeland: “Im-

plementation Techniclues of Complex Objects”, VLDB

1986.

[Va87] P. Valduriez: “Join Indices”, ACM TODS, Vol. 12,

N. 2, 1987.

265

