
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

�Correspond
fax: +332 51 12

E-mail addr

(S. Ganc-arski),

Esther.Pacitti@

Patrick.Valduri
Information Systems 32 (2007) 320–343

www.elsevier.com/locate/infosys
The leganet system: Freshness-aware transaction routing
in a database cluster

Stéphane Ganc-arskia, Hubert Naackea, Esther Pacittib, Patrick Valduriezb,�

aLIP6, University Paris 6, France
bINRIA and LINA, University of Nantes, France

Received 17 February 2004; received in revised form 14 September 2005; accepted 20 September 2005

Recommended by: B. Kemme
Abstract

We consider the use of a database cluster for Application Service Provider (ASP). In the ASP context, applications and

databases can be update-intensive and must remain autonomous. In this paper, we describe the Leganet system which

performs freshness-aware transaction routing in a database cluster. We use multi-master replication and relaxed replica

freshness to increase load balancing. Our transaction routing takes into account freshness requirements of queries at the

relation level and uses a cost function that takes into account the cluster load and the cost to refresh replicas to the required

level. We implemented the Leganet prototype on an 11-node Linux cluster running Oracle8i. Using experimentation and

emulation up to 128 nodes, our validation based on the TPC-C benchmark demonstrates the performance benefits of our

approach.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Database cluster; Transaction routing; Load balancing; Replication; Freshness; Performance
1. Introduction

Database clusters now provide a cost-effective
alternative to parallel database systems. A database

cluster [1] is a cluster of PC servers, each running an
off-the-shelf DBMS. A major difference with
parallel database systems implemented on PC
clusters [2], e.g., Oracle Real Application Cluster,
e front matter r 2005 Elsevier B.V. All rights reserved

2005.09.004

ing author. Tel.: +33 2 51 12 58 24;

58 97.

esses: Stephane.Gancarski@lip6.fr

Hubert.Naacke@lip6.fr (H. Naacke),

univ-nantes.fr (E. Pacitti),

ez@inria.fr (P. Valduriez).
is the use of a ‘‘black-box’’ DBMS at each node
which avoids expensive data migration. However,
since the DBMS source code is not necessarily
available and cannot be changed or extended to be
‘‘cluster-aware’’, additional capabilities like parallel
query processing must be implemented via middle-
ware. Database clusters make new businesses like
Application Service Provider (ASP) economically
viable. In the ASP model, customers’ applications
and databases (including data and DBMS) are
hosted at the provider site and need be available,
typically through the Internet, as efficiently as if
they were local to the customer site. Thus, the
challenge for a provider is to fully exploit the
.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 321
cluster’s parallelism and load balancing capabilities
to obtain a good cost/performance ratio. The
typical solution to obtain good load balancing in a
database cluster is to replicate applications and data
at different nodes so that users can be served by any
of the nodes depending on the current load. This
also provides high-availability since, in the event of
a node failure, other nodes can still do the work.
This solution has been successfully used by Web
search engines using high-volume server farms (e.g.,
Google). However, Web search engines are typically
read-intensive which makes it easier to exploit
parallelism.

In the ASP context, the problem is far more
difficult. First, applications and databases must
remain autonomous, i.e., remain unchanged when
moved to the provider site’s cluster and remain
under the control of the customers as if they were
local, using the same DBMS. Preserving autonomy
is critical to avoid the high costs and problems
associated with code modification. Second, applica-
tions can be update-intensive and the use of
replication can create consistency problems [3,4].
For instance, two users at different nodes could
generate conflicting updates to the same data,
thereby producing an inconsistent database. This
is because consistency control is done at each node
through its local DBMS. The main solution readily
available to enforce global consistency is to use a
parallel database system such as Oracle Real
Application Cluster or DB2 Parallel Edition. If the
customer’s DBMS is from a different vendor, this
requires heavy migration (for rewriting customer
applications and converting databases). Further-
more, this hurts the autonomy of applications and
databases which must be under the control of the
parallel database system.

In this paper, we describe a new solution for
routing transactions in a database cluster which
addresses these problems. This work has been done
in the context of the Leg@Net project sponsored by
the RNTL1 whose objective was to demonstrate the
viability of the ASP model for legacy (pharmacy)
applications in France. Our solution exploits a
replicated database organization. The main idea is
to allow the system administrator to control the
tradeoff between database consistency and perfor-
mance when placing applications and databases
1www.industrie.gouv.fr/rntl/AAP2001/Fiches_Resume/

LEG@NET.htm, between LIP6, Prologue Software and ASP-

Line.
onto cluster nodes. Databases and applications are
replicated at multiple nodes to increase access
performance. Application requirements are cap-
tured (at compile time) and stored in a shared
directory used (at run time) to allocate cluster nodes
to user requests. Depending on the users’ require-
ments, we can control database consistency at the
cluster level. For instance, if an application is read-
only or the required consistency is weak, then it is
easy to execute multiple requests in parallel at
different nodes. But if an application is update-
intensive and requires strong consistency (e.g.,
integrity constraint satisfaction), an extreme solu-
tion is to run it at a single node and trade
performance for consistency.

There are important cases where consistency can
be relaxed. With lazy replication [5], transactions
can be locally committed and different replicas may
get different values. Replica divergence remains
until reconciliation. Meanwhile, the divergence
must be controlled for at least two reasons. First,
since synchronization consists in producing a single
history from several diverging ones, the higher the
divergence is, the more difficult the reconciliation.
The second reason is that read-only applications
may tolerate reading inconsistent data. In this case,
inconsistency reflects a divergence between the
values actually read and the values that should
have been read in ACID mode.

In most approaches (including ours), consistency
reduces to freshness: update transactions are glob-
ally serialized over the different cluster nodes, so
that whenever a query is sent to a given node, it
reads a consistent state of the database. In this
paper, global consistency is achieved by ensuring
that conflicting transactions are executed at each
node in the same relative order. However, the
consistent state may not be the latest one, since
update transactions may be running at other nodes.
Then, the data freshness of a node reflects the
difference between the data state of the node and
the state it would have if all the running transac-
tions had already been applied to that node.

In this paper, we describe the design and
implementation of the Leganet system which per-
forms freshness-aware transaction routing in a
database cluster. We use multi-master replication
and relaxed replica freshness to increase load
balancing. The Leganet architecture, initially pro-
posed in [6], preserves database and application
autonomy using non-intrusive techniques that
work independently of any DBMS. The main

mailto:http://www.industrie.gouv.fr/rntl/AAP2001/Fiches_Resume/LEG@NET.htm
mailto:http://www.industrie.gouv.fr/rntl/AAP2001/Fiches_Resume/LEG@NET.htm

ARTICLE IN PRESS

Incoming applications

D13
O12
D12

O22
D22

Q2
Q1

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343322
contribution of this paper is a transaction router
which takes into account freshness requirements of
queries at the relation level to improve load
balancing. This router uses a cost function that
takes into account not only the cluster load in terms
of concurrently executing transactions and queries,
but also the estimated time to refresh replicas to the
level required by incoming queries. Using the
Leganet prototype implemented on an 11-node
cluster running Oracle8i and using emulation up
to 128 nodes, our validation based on the TPC-C
OLTP benchmark [7] demonstrates the performance
benefits of our approach.

This paper is organized as follows. Section 2
provides a motivating example for transaction
routing with freshness control. Section 3 introduces
the basic concepts and assumptions regarding our
replication model and freshness model. Section 4
describes the architecture of our database cluster,
focusing on the transaction router. Section 5
presents the strategies for transaction routing with
freshness control, with the cost functions used by
those strategies. Section 6 describes the Leganet
prototype. Section 7 gives a performance evaluation
using a combination of experimentation and emula-
tion. Section 8 compares our approach with related
work. Section 9 concludes.

2. Motivations

To illustrate how transaction routing with fresh-
ness control can improve load balancing, let us
consider a simple example (derived from the TPC-C
benchmark). We use the relations Stock (item,
quantity, threshold) and Order (item, quantity).

Transaction D decreases the stock quantity of
item id by q.

procedure D(id, q):
update Stock set quantity ¼ quantity–q

where item ¼ id;

Query Q that checks for the stocks to renew:
DBMS DBMS
select item from Stock
where quantity o threshold
N1 N2

D11, D21Running D/O transactions

0Staleness w.r.t Q

O11, O21

22Load
2

D20, D10Executed D/O transactions O20, O10

Fig. 1. Routing example.
Finally, transaction O increases the ordered
quantity of item id by q.

procedure O(id, q):
update Order set quantity ¼ quantity+q

where item ¼ id;
Since D and O do not access the same relation, it is
easy for the system to detect that they do not
potentially conflict. In other words, any D transac-
tion is commutative with any O transaction. In this
example, for simplicity, we measure transaction’s
changes and data’s staleness as a number of
modified tuples, and the cost of executing a
transaction (resp. query) is 1 (resp. 4). Let us
assume that both D and O change 1 tuple and that
Q tolerates a staleness of 2 (i.e., Q can be executed
on a replica that has not yet received 2 D

transactions executed on other replicas). Let us
consider a sale application that executes a sequence
of D and O transactions, until reaching the state
depicted in Fig. 1. D11 and D21 have been routed to
node N1, thus its load is 2. O21 and O11 have been
routed to N2, thus its load is 2. As D20 and D10
have already been executed on N1 but not yet
propagated to N2, and D accesses a relation read by
Q, the staleness of N2 with respect to Q is 2. It is 0
on N1, since all the executed transactions on N2 do
not conflict with Q. As shown in the figure, the
transactions are balanced over the two nodes
without needing any refreshment, since D transac-
tions do not conflict with O transactions. Without
conflict detection, all the transactions would have
been sent to the same (perfectly fresh) node or
refresh transactions would have been sent to both
nodes to maintain them perfectly fresh for the next
transactions. In both cases, this increases transac-
tion latency. Of course, O (resp. D) transactions
need be propagated to N1 (resp. N2), but this can be
done later on, when N1 (resp. N2) is less loaded. Let

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 323
us assume now that a user issues query Q1. Node N1

is fresh enough for the query (i.e., with respect to
relation Stock) and its load is 2. Thus the cost of
executing Q1 on N1 is 2. It is 4 on N2, since the load
of N2 is 2 and the cost to refresh it for Q is 2, for
propagating D20 and D10. Thus, Q1 is routed to
N1, the load of which becomes 6 (2 plus 4 for Q1).
Now assume a user issues query Q2. Since the cost is
now 6 on N1 and still 4 on N2, Q2 is routed to N2,
which gives the best response time despite the cost
of refreshment. A strategy which does not take into
account the possibility of refreshing a node before
sending it a transaction would choose (and thus
overload) N1, which is the only node fresh enough at
routing time. This example illustrates the impor-
tance of considering the processing cost of refresh-
ing a node for making the routing decision.

3. Basic concepts

In this section, we introduce the basic concepts
and assumptions regarding metadata, our replica-
tion model and freshness model.

3.1. Metadata

Our system acts as a middleware layer between
black-box applications and black-box DBMSs.
Thus, it needs some information, i.e., metadata,
about transactions to route updates and queries to
the appropriate nodes. Transaction’s metadata
essentially capture the potential effects of a transac-
tion: the transaction type (update or read-only), the
tables accessed (read or written) by the transaction,
the number of tuples potentially involved (inserted/
updated/deleted) by the transactions. Potential
effects of a transaction represent all the effects that
the transaction can produce. Thus, the actual effects
of a transaction when executed on a node are always
a subset of the potential effects.

Let T be a transaction, WriteT is the write set of
relations potentially updated by T and ReadT is the
read set of relations potentially read by T. WriteT

and ReadT may be easily obtained by parsing the
transaction code. They are defined at the relation
level for simplicity. Defining the write set and read
set at the tuple level is not practical in our ASP
context where applications typically call stored
procedures with parameter values so we cannot
know in advance which tuples will be updated.

A transaction’s changes typically involve rela-
tions. Thus, we define the quantity of change at the
relation level. Let Ri be a relation, and T an update
transaction which modifies Ri. We denote by
Change(T, Ri) the maximum number of tuples
which T may modify in Ri. Change(T, Ri) is an
upper-bound of the number of tuples that T may
update in Ri. It may be obtained in several ways: by
parsing the transaction code; using statistics about
Ri in the database catalog; or by sniffing the log
after T has been executed on its initial node. If T is a
single statement transaction, the number of mod-
ified tuples can also be obtained as the transaction
return value. For simplicity, we assume that this
upper bound is known by the application and stored
as metadata. We define the changes of T as

ChangeðTÞ ¼ fðRi; ChangeðT ;RiÞÞjRi 2WriteT g.

Obviously, over-estimating Change(T, Ri) may
lead to process useless refreshment, since the system
would assume that the nodes on which T has not
been propagated are staler than they actually are.
Useless refreshment may affect the performance of
queries that tolerate ‘‘medium’’ staleness with
respect to T ’s change. Queries that tolerate very
small staleness are not affected by inaccuracies in
Change(T, Ri), since they require nodes to be
refreshed anyway. Queries that tolerate very high
staleness are not affected since they do not require
nodes to be refreshed. If the application is not able to
supply good estimates of the upper bound, then the
only viable solution is to get the value of Change(T,

Ri) on-line, through log-sniffing or using triggers.

3.2. Replication model

Our replication model specifies the way databases
are replicated in our cluster system and how we
handle transactions. We assume a single database
composed of relations R1, R2,y Rn that is fully
replicated at nodes N1, N2,y,Nm. The local copy of
Ri at node Nj is denoted by Ri

j

and is managed by
the local DBMS, without any specific requirement.
We use a lazy multi-master (or update everywhere)
replication scheme. Each node can be updated by
any incoming transaction and is called the initial

node of the transaction. Other nodes are later
refreshed by propagating the transaction through
refresh transactions.

We distinguish between three kinds of transac-
tions:
�
 Update transactions are composed of one or
several SQL statements which update the

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343324
database. Update transactions can be seen as
stored procedures, so the metadata associated
with the transaction (see Section 3.1) can be
known when the transaction’s execution is
started.

�
 Refresh transactions are used to propagate

update transactions to the other nodes for
refreshment. A refresh transaction can be made
by either replaying the initial transaction or by
propagating its effects to the database as a
sequence of write operations. The former solu-
tion is straightforward but may incur redundant
computation. The latter may be more efficient in
some cases (e.g., many tuples read, few tuples
updated) but requires log sniffing at the initial
node for extracting write operations. Sniffing the
log of a black-box DBMS is doable but quite
complex. Furthermore, the performance gain
may be quickly offset by the cost of sniffing the
log, typically organized as a sequential file. Thus,
in this paper, we choose the former solution, i.e.,
refresh transactions replay the initial transaction.

�
 Queries are read-only transactions, and thus need

not be refreshed.

Let us note that, because we assume a single
replicated database, we do not need to deal with
distributed transactions, i.e., each incoming transac-
tion can be entirely executed at a single node.

In a multi-master replicated database, the mutual
consistency of the database can be compromised by
conflicting transactions executing at different mas-
ter nodes. A solution that preserves mutual con-
sistency is to enforce one-copy serializability [8]. In
lazy multi-master replication, one-copy serializabil-
ity can be obtained by ensuring that conflicting
transactions are executed at each node in the same
relative order [9,10]. In this paper, we use a weaker
form of one-copy serializability, which makes a
distinction between update transactions and queries.
Update transactions are executed at database nodes
in compatible orders, thus producing mutually
consistent states on all database replicas. Queries
are sent to any node that is fresh enough with
respect to the query requirement. This implies that a
query can read different database states according
to the node it is sent to. However, since queries are
not distributed, they always read a consistent
(though stale) state. To achieve this, we maintain
a graph, called global precedence order graph, which
keeps track of the conflict dependencies among
active transactions, i.e., the transactions currently
running in the system but not yet committed. It is
based on the notion of potential conflict: an
incoming transaction potentially conflicts with a
running transaction if they potentially access at least
one relation in common, and at least one of the
transactions performs a write on that relation. We
define global precedence and global precedence
order graph as follows.

Definition 1 (global precedence). Let T and T 0 be
two active transactions, we say that T 0 globally

precedes T, denoted by T!T 0, if
�
 T and T 0 potentially conflict, i.e.,

WriteT \ ðWriteT 0 [ReadT 0 Þ

a+ or WriteT 0 \ ðWriteT [ReadT Þa+; and
�
 When T arrives in the system, T 0 is already
running at least on one node.

Definition 2 (global precedence order graph). The

global precedence order graph is a couple (T, !)
where
�
 T is the set of active transactions (each node in
the graph represents an active transaction), and

�
 ! is the global precedence order among transac-

tions (each edge in the graph represents a global
precedence between the two related transactions).

Note that, following Definition 1, the global
precedence order graph is acyclic. We now define
refresh sequences, which are built according to this
global order, in order to propagate transactions to a
given node.

Definition 3 (refresh sequence). Let T be a transac-
tion and N a node. S ¼ {T1, T2, T3, y, Tk} is a
refresh sequence for T on N if:
�
 8iA(1,2,y, k), Ti has not yet been executed on N,
and,

�
 8i, 8j A(1,2, y, k) , if Ti ! Tj then i4j (the

sequence order is compatible with the global
order), and,

�
 If T is an update transaction, then 8i A(1,2, y,

k) (Ti ! T).

Refresh sequences are executed sequentially. This
ensures that, whenever a transaction is executed on
a node, all the preceding transactions have already

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 325
been executed on that node. Since transactions are
not distributed, a transaction always reads a
consistent, possibly stale, state of the database. As
the global order is not a total order, transactions
can be executed in different orders, each of them
compatible with the global order, on different
nodes. This gives more flexibility for load balancing.
For instance, assume that transaction T1, then T2,
then T3 arrives in a cluster composed of two nodes,
N1 and N2. T3 potentially conflicts with both T1 and
T2, T2 does not conflict with T1. T1 is sent to node
N1, then, as T2 does not conflict with T1, it can be
sent to node N2. The global order is still empty.
Then, when T3 arrives, as it potentially conflicts
with both T1 and T2 and both T1 and T2 are already
running, the global order now contains T3 ! T1

and T3!T2. Thus, T3 can been executed on N1 after
the refresh sequence (T2). It can also be executed on
N2 after the refresh sequence (T1). Note that the
sequential orders on N1 (T1; T2; T3) and on N2 (T2;
T1; T3) are different but both compatible with the
global order.
3.3. Freshness model

Our freshness model defines the concept of
replica’s staleness. Based on this definition, we can
define node refreshment, or synchronization, and
transaction execution plans that are freshness-
aware.

With our replication scheme, several replicas at
different cluster nodes can have different states
because they have not yet reached the latest
consistent database state,2 i.e., the state obtained
after correct execution of all transactions received.
Furthermore, transactions (updates or queries)
submitted to the cluster system may have specific
freshness requirements. Intuitively, the freshness of
a replica captures the quantity of changes (made to
other replicas) which have not yet been applied to it.
This quantity of changes is referred to as import-
limit in epsilon transactions [11]. If the quantity of
changes is zero, we say that the replica has
maximum freshness, i.e., has the latest consistent
state. However, freshness is not a concept easy to
use, since its value is not defined for perfectly fresh
database states. Thus, we use the opposite concept
of staleness, which is always defined and is equal to
2A replica can be in a consistent state which is not necessarily

the latest state of some other replicas.
0 for perfectly fresh database states. The staleness of

a relation replica Ri
j can then be captured by the

quantity of change which has been made to the
other replicas of Ri but Ri

j. Let TRi
j be the set of

transactions which have modified at least one of
these other replicas:

TR
j
i ¼ fTkjChange ðTk; RiÞ40

and 9N l; Tk has been executed on N l

and Tk has not been executed on Njg.

Definition 4 (staleness of a relation replica). The
staleness of a relation replica Ri

j is defined as the sum
of all the changes made by TRi

j, i.e.,

StalenessðR
j
iÞ ¼

X
k
ðChangeðTk;RiÞjTk 2 TR

j
i Þ.

Thus, we can define the staleness of a cluster node

N j as the following vector:

StalenessðNjÞ ¼ fðR
j
i ; StalenessðR

j
i ÞÞji ¼ 1; ng.

The tolerated staleness of a transaction expresses
the maximum staleness that the transaction accepts
when reading data on a node. It is based on the
tolerated staleness of all the relations accessed by
the transaction.

Definition 5 (tolerated staleness of a transac-

tion). We define the tolerated staleness of T as

ToleratedStalenessðTÞ

¼ fðRi; toleratedStalenessðRi;TÞjRi 2 ReadT g.

where toleratedStaleness(Ri, T) is a user-defined
positive value, which expresses the maximal toler-
ated staleness required by the user for her transac-
tion T, when reading relation Ri. If T is an update
transaction, this value is always equal to 0.

In other words, update transactions do not
tolerate staleness, in order to ensure that conflicting
transactions are executed at each node in the same
relative order. Defining a tolerated staleness for
update transactions is not necessary, since always
equal to 0. However, it allows treating update
transactions and queries homogeneously, and sim-
plifies the definitions of the routing and refreshment
algorithms.

The tolerated staleness associated with a transac-
tion allows sending a transaction to a node even if it
is not perfectly fresh. However, the node must be
fresh enough with respect to the transaction
requirements. For an update transaction, this means
that all the transactions which precede it must be

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343326
executed on the node before it starts. For a query,
this means that the node must have received enough
refresh transactions so that its data is close enough
to the data at the nodes where the transactions have
already been executed. To compute how many and
which refresh transactions must be sent to a node to
make it fresh enough for a query, we define the
Synch property. This property states that a refresh
sequence S is sufficient to make a node N j fresh
enough w.r.t. the tolerated staleness of a transaction
T. The MinSynch property states that S is not only
sufficient to refresh Nj, but also does not contain
any unnecessary refreshment, and thus, minimizes
the amount of work for synchronization.

Definition 6 (minimum synchronizing sequence). Let
S be a refresh sequence of T on N j, we say that S

synchronizes N j for T, denoted by Synch(T, N j, S),
if, after executing all the transactions in S at N j,
N j’s staleness is less than or equal to the tolerated
staleness of Q, i.e.,

SynchðT ;Nj ;SÞ ¼ true if 8Ri 2 ReadT ;X

Tl2TR
j
i
�S

ChangeðTl ;RiÞptoleratedStalenessðRi;TÞ

¼ false otherwise:

We say that S is a minimum synchronizing

sequence for T on N j, denoted by MinSynch(T, N j,

S), if S synchronizes N j for T and no transaction is
useless in S, i.e.,

MinSynchðT ;Nj ;SÞ

¼ true if SynchðT ;Nj ;SÞ and

8Tk 2 S; ðSynchðT ;Nj ;S � fTkgÞÞ

¼ false otherwise:

Based on the definition of MinSynch, we can now
define the concept of transaction execution plan
needed to specify where and how to execute a
transaction in the cluster. Given a transaction T, its
transaction execution plan (TEP) specifies the
node N j to process T and the minimal refresh-
ment to perform in order to reach the database
state required by the user as toleratedStaleness

(Ri,T).

Definition 7 (transaction execution plan). Let T a
transaction to execute, we define a transaction

execution plan for T, denoted TEP (T), as

TEPðTÞ ¼ ðNj ;SÞ such that MinSynchðT ;Nj ;SÞ.
Note that there is no reason for S to be unique. S

is minimal with respect to set inclusion: if any
transaction is dropped from S, then MinSynch

(T, N j, S) ¼ false. This does not imply that S is
minimal with respect to the number of transactions
it contains, or with respect to the number of
tuples changed by the transactions it contains. In
Section 5, we will describe how to compute a
possible S.
4. Database cluster architecture

In this section, we introduce the architecture for
processing user requests coming, for instance, from
the Internet, into our cluster system and discuss our
solution for placing applications, DBMS and
databases in the system. Then, we describe in detail
the architecture of the transaction router which is
the main focus of this paper.

4.1. Cluster system architecture

The general processing of a user request is as
follows. First, the request is authenticated and
authorized using a shared directory which captures
information about users and applications. The
directory is also used to route requests to nodes. If
successful, the user gets a connection to the
application (possibly after instantiation) at some
node which can then connect to a DBMS at some,
possibly different, node and issue transactions for
retrieving and updating database data.

We consider a cluster system with similar nodes,
each having one or more processors, main memory
(RAM) and disk. We assume applications typically
written in a programming language like C++ or
Java making DBMS calls to stored procedures using
a standard interface like ODBC or JDBC. In this
paper, we use a lazy multi-master replication
scheme, which is the most general as it provides
for both application and database access paralle-
lism. Based on these choices, we propose the cluster
system architecture in Fig. 2. Applications, data-
bases and DBMS can be replicated at different
nodes without any change. Besides the directory, we
add three new modules which can be implemented
at any node. The application load balancer simply
routes user requests to the application node that has
the lowest load. The transaction router intercepts
DBMS procedure calls (in JDBC) from the applica-
tions, and for each one, generates a TEP, based

ARTICLE IN PRESS

DB

DBMS

Application Load Balancer

App1 App2 Appm

DB

DBMS

DB

DBMS

Shared
Directory

Cluster

Transaction Router

Fig. 2. Leganet cluster system architecture.

Router

Transactions

Cluster
State

Probe

Execution control

Probe

Synchronization

AppmApp1

Legend:

Metadata

Module

C
os

t E
va

l

Function

static data

dynamic data Autonomous DBMS (cluster node)

App Autonomous Application (cluste node)

TEP

S

S1 Sp

Transaction
Execution
Plan
Generation

Refresh

Fig. 3. Router architecture.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 327
on application and user freshness requirements
obtained from the shared directory. Finally, it
triggers transaction execution (to execute stored
procedures) at the best nodes, using run-time
information on nodes’ load. When necessary, it
also triggers refresh transactions in order to make
some nodes fresher for executing subsequent trans-
actions (update or queries). There may be several
instances of the transaction router, in order to scale
up with the number of DBMS nodes, each one
accessing the shared directory.

4.2. Router architecture

Typically, an application is a program that
connects to a DBMS to process a transaction.
During execution, the application may process
several transactions but it is not aware of transac-
tion load balancing opportunities offered by the
cluster. For that reason, we design a router in
charge of transaction load balancing. The general
processing of a transaction is as follows. First, the
transaction executes at a cluster node. When the
transaction calls a DBMS, the call is trapped to be
redirected to the router. The router chooses a
DBMS node to process the transaction, and sends
the result back to the application. The router
seamlessly integrates with existing applications and
their DBMS, to take advantage of the cluster
computing power and parallelism.

The router architecture is designed for preserving
applications and databases’ autonomy. To preserve
database autonomy, the cluster system exploits a
shared-nothing architecture among DBMS nodes,
so that each DBMS node accesses data on separate
disks. Our router architecture is motivated by the
following requirements:
(a)
 The router must be aware of which node is able
to process a transaction. Thus, it must know if a
node is fresh enough to meet the transaction
requirements. In case the node is not fresh
enough, the router must know which refresh
transactions must be sent to make it fresh
enough.
(b)
 If several nodes can process a transaction, the
router should choose the one that yields the
most efficient execution.
(c)
 Because of replication, the router must propa-
gate deferred refresh transactions to replicas.
This synchronization work should interfere as
little as possible with the actual transaction
processing, to reduce overhead.
The router architecture is shown in Fig. 3, with its
two main modules: TEP generation module and
synchronization module.

In the current Leganet system, the router is
centralized (running at one node). However, a
centralized router can obviously be a single point
of failure. And for very large cluster configurations,
it may also become a performance bottleneck. The
last problem can be simply solved by using a
powerful router node, e.g., a 4-processor node.
However, the first problem is more involved and

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343328
suggests replicating the router at two or more nodes.
To enable each router node to perform transaction
routing in parallel, the directory must thus be
available at each node. The directory static meta-
data (e.g., tolerated staleness) could be simply
replicated and periodically refreshed. However, the
directory dynamic metadata regarding the cluster
state (e.g., nodes’ load, transactions to be propa-
gated, etc.) may change frequently and need to be
up-to-date at each router node. Thus, lazy replica-
tion is not appropriate for such dynamic metadata.
Instead, we could use a more efficient, eager
replication technique tailored to cluster systems to
maintain strong consistency of such data, e.g., [12].
Another solution would be to have the directory
virtually shared by all router nodes using distributed
shared memory (DSM) software [13]. By providing
support for shared data structures, DSM software
simplifies parallel programming and can provide
good scalability. However, a more detailed study of
these two solutions is beyond the scope of this paper
and subject to future work.

4.3. TEP generation module

Upon receiving a transaction T, the TEP genera-
tion module first accesses the metadata stored in the
shared directory. If T is a query it finds the maximal
staleness tolerated for processing T, assuming that
high staleness will yield more parallel access to
replicas, thus increasing overall performance. If T is
an update transaction, it computes the effect of
processing T at a node, i.e., computes the Change(T)
vector defined in Section 3.1 and uses it to compute
the replica’s staleness. To perform load balancing,
the TEP generation module chooses a replica (i.e., a
node) to process a transaction with high efficiency.
It considers all the nodes as potential candidates. If
a candidate node is too stale, it computes the set of
transactions to propagate to that node in order to
meet the transaction freshness requirements. To
choose an efficient node, the TEP generation
module uses a cost model to estimate transaction
processing time. The cost model takes as input the
cluster state which describes the current cluster load
including which transaction is at which node and
the freshness of each node, as well as the node’s load
obtained through load probes.

We consider each incoming transaction individu-
ally, with the objective of minimizing its response
time. A possible optimization would be to globally
consider all the transactions waiting for execution
and reorder them in the incoming queue (schedul-
ing). However, this is much more complex and not
always better, since the gain on response time can be
offset by the overhead needed to reorder the
incoming queue. Thus, we do not consider this
optimization.

4.4. Synchronization module

The synchronization module finds the appropri-
ate timings to propagate transactions to other
replicas. To avoid useless synchronization, an
obvious solution is to lazily propagate as late as
possible, only when needed by a transaction. But
late synchronization is not always optimal as it may
increase transaction latency. For instance, consider
a period of incoming transactions which do not
require any freshness. During that period, the
nodes’ freshness decreases continuously. Then, if
the next incoming transaction requires some fresh-
ness, the amount of synchronization to perform can
be high and may slow down the transaction.
Forecasting that such a transaction will eventually
occur gives the opportunity to prepare the cluster by
starting synchronization work earlier. Thus, the
synchronization module propagates a transaction at
a node depending on two conditions: (i) if the node’s
staleness is above a given limit (late synchroniza-
tion) or (ii) if the node’s load is below a given limit
(early synchronization). The values of the node’s
staleness and node load’s limit depend on the
application and workload.

5. Transaction routing with freshness control

In this section, we describe how transactions are
routed in order to improve performance. First, we
present the routing and refresh strategies. Then, we
introduce the cost function used by these strategies.

5.1. Routing algorithms

We propose two routing strategies, each well-
suited to different application needs. The first
strategy (Section 5.1.1) makes no assumption about
the workload. The second strategy (Section 5.1.2)
favors update transactions to deal with OLTP
workloads. Both strategies are cost-based and use
late synchronization, thus they take into account the
cost of refreshing a node before sending it a
transaction. For a fixed workload, the routing
complexity is O(m)�O(p), where m is the number

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 329
of nodes and p the number of active transactions in
the system. O(p) corresponds to computing the
minimum refresh sequence to make a node fresh
enough for an incoming transaction. More pre-
cisely, it is always less than p, and thus remains
always small. This complexity makes our approach
scalable. Finally, we show how early synchroniza-
tion could be integrated within the routing process.

5.1.1. Cost-based only strategy

The cost-based only strategy (CB) simply evalu-
ates, for each node, the cost of refreshing the node
enough (if necessary) to meet the transaction
freshness requirements as well as the cost of
executing the transaction itself. Then it chooses
the node which minimizes the cost. This strategy is
described in Fig. 4 by algorithm CBroute.

Algorithm CBroute iterates over all the nodes in
NSet to find out the node that minimizes the cost of
executing T, taking into account the necessary
synchronization to make the node fresh enough
with respect to the tolerated staleness of T. Function
computeMinSynch returns a minimal sequence of
refresh transactions sufficient to make N i fresh
enough for T, i.e., a sequence of transactions S such
that MinSynch(T, N i, S). It iterates over the refresh
transactions waiting for being propagated to N i and
decrements the node staleness according to the
refresh transaction changes. It stops when the node
staleness satisfies T ’s tolerated staleness (always
equal to 0 for update transactions). In order to
ensure global consistency, refresh transactions are
inserted in the refresh sequence according to the
global serialization order: whenever a refresh
transaction is inserted, all its predecessors not yet
executed on the node are also inserted, in the
appropriate order, so that the sequence order is
compatible with the global precedence order (see
Section 3.2). Function costEval evaluates the cost of
Fig. 4. Algorithm for cost-ba
executing the transaction execution plan TEP(T) ¼
(S, Ni). This cost function is detailed in Section 5.2.
Finally, function executeTEP(T,S, Nk) executes the
TEP which minimizes the cost, i.e., it first executes
all the transactions in S on Nk, and then, if T is an
update transaction, T is inserted in the global
precedence order graph as a child of all the
transactions in S with no child. Finally, it executes
T itself on Nk. It also updates the cluster state: all
the transactions in S are dropped from the set of
transactions waiting to be refreshed on Nk. When a
transaction has been executed on all the nodes, it is
removed from the global precedence order graph.

5.1.2. Cost-based with bounded response time

strategy

The CB strategy works well for applications
where there is no difference between update
transactions and queries. However, most applica-
tions in the ASP context are OLTP-oriented: update
transactions represent front-office procedures (e.g.,
a drug sale in a pharmacy) which must be executed
as fast as possible while queries represent back-
office procedures (e.g., computing statistics for
marketing purposes). Thus, the main requirement
for such applications is to guarantee that the
response time of update transactions never increases
beyond an acceptable limit. Our main objective is
first to ensure that queries do not slow down the
transaction throughput. Once we reach this objec-
tive, the secondary objective is to reduce the
response time of these queries. Therefore, the
optimization objective is to: ensure that update

transactions’ response time is below a given limit,

and minimize query response time without interfering

with running update transactions. To this end, we
propose a second strategy with bounded response
time (BRT) which dynamically separates the nodes
responsible for update transaction processing from
sed only (CB) strategy.

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343330
the nodes responsible for query processing. Because
the number of concurrent incoming transactions is
not constant over time, the algorithm dynamically
assigns a node either for update transaction or
query processing. Let NS be the set of all cluster
nodes, NST be the set of nodes dedicated to update
transactions, NSQ be the set of nodes dedicated to
queries (with NS ¼ NSQ[NST and NSQ\NST ¼

+), and Tmax be the maximum allowed response
time for an update transaction. NSQ , NST and Tmax

are global variables stored in the shared directory.
To ensure suitable usage of cluster nodes, our
algorithm dynamically dedicates the minimal set of
nodes to update transactions, the remaining nodes
being available for long running queries. Whenever
no node in NST is able to handle an update
transaction within Tmax, the nodes in NSQ are
considered. If one of them can execute T within
Tmax, it is removed from NSQ and added to NST. If
no node is able to execute T within Tmax, the node
which minimizes the cost is chosen. Nodes are
removed from NST and added to NSQ when, after
executing an update transaction, they become idle,
i.e., their current load is below a given limit. Queries
are treated by the cost-based algorithm CBroute in
Fig. 4, over the nodes assigned to queries.

As algorithm BRTroute favors update transac-
tions, it may happen that, temporarily, no node is
Fig. 5. Algorithm for bounded re
assigned for queries, i.e., NSQ ¼+, until a node
becomes idle and added to NSQ. In this case, an
error is raised and the query execution is delayed
(Fig. 5).

5.1.3. Early synchronization

Early synchronization is important to avoid
increasing the response time of some transactions
because of nodes being too stale. When the router
receives an incoming transaction T, it chooses a
node. Then, if the node requires refreshment, the
router first sends the required refresh transactions to
the node before sending T. Therefore, the refreshing
time may greatly increase the overall transaction
response time. To avoid this situation, the router
may propagate transactions in advance to prepare
some nodes for subsequent incoming transactions
(early synchronization). To minimize the overhead,
it operates only on idle nodes, i.e., nodes with a load
under a given threshold, using algorithm RefreshI-
dleNode in Fig. 6. In order to use the computeMin-

Synch() function, we use a virtual transaction Tall

which potentially conflicts with all the possible
transactions. This ensures that the refresh sequence
S will bring all the relations to a perfect freshness.
As we focus in this paper on late synchronization,
we will leave experimentation with early synchroni-
zation as future work.
sponse time (BRT) strategy.

ARTICLE IN PRESS

Fig. 6. Algorithm for early synchronization.

3www.objectweb.org/rmijdbc.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 331
5.2. Cost function

In this section, we show how we compute the cost
of a TEP, which corresponds to the costEval

function call in the algorithms of Section 5.1. The
cost of a TEP is that of processing the transaction at
a node including the necessary refreshment. In our
context, because of the application autonomy
requirement, we do not know the details about the
read and write operations of a transaction. There-
fore, we assume that system resource consumption
(CPU, I/O) is uniformly distributed during the
transaction processing time. Let load(N) represent
the DBMS load at node N. Such information is
based on operating system load whose value
increases with the number of concurrent transac-
tions and aggregates CPU and I/O load (in our
implementation, it is obtained by the load_average()
Linux probe). load(N) is always greater than 1 and is
always close to the number of concurrent transac-
tions running at N. However, the current node’s
load is not sufficient for load balancing, since we
must also estimate the load of executing a TEP in
order to estimate the response time of a transaction.
Let avgTime(T, N) be the average time of processing
T at N. avgTime is a moving average based on
previous executions of T on N. It is initialized by a
default value obtained by running T on an unloaded
node. Let Dt be the elapsed time for T at N, we
define rt(T, N), the remaining time for T at N as

rtðT ;NÞ ¼ avgTimeðT ;NÞ �
Dt

loadðNÞ
.

Then, given RTN the set of running transactions
at node N, we define procTime(T, N) based on node
load and elapsed time of running transactions at N as

procTimeðT ;NÞ ¼ avgTimeðT ;NÞ

þ
X

Ti2RTN

minðavgTimeðT ;NÞ; rtðTi;NÞÞ.

The time interval, during which T is running
concurrently with another transaction of RTN, is the
minimum among the execution time of T and the
remaining execution time of the concurrent transac-
tion. Let us now define the function costEval(T,S,N)
to process a TEP, taking into account the time to
process T at N, along with its necessary synchroni-
zation S:

costEvalðT ;S;NÞ ¼ procTimeðT ;NÞ þ synchTimeðS;NÞ,

where

synchTimeðS;NÞ ¼
X

Si2S

procTimeðSi;NÞ.
6. Implementation

We implemented the Leganet prototype on an 11-
node Linux cluster running Oracle8i. However, we
use standards like LDAP and JDBC, so the main
part of our prototype is independent of the target
environment. In this section, we briefly describe our
current implementation.

6.1. Transaction router

The transaction router is implemented in Java. It
acts as a JDBC server for the application, preserving
the application autonomy through the JDBC
standard interface. Inter-process communication
between the application and the load balancer uses
RmiJdbc open source software.3 To reduce conten-
tion, the router takes advantage of the multi-
threading capabilities of Java based on Linux’s
native threads. For each incoming transaction, the
router delegates TEP generation and execution to a
distinct thread. The router sends transactions for
execution to DBMS nodes through JDBC drivers
provided by the DBMS vendors. To reduce latency
when executing transactions, the router maintains a
pool of connections to all cluster nodes.

6.2. Leganet GUI

The user interface has a Web-based architecture
shown in Fig. 7. A Web server controls the Leganet
services: transaction router, node probes, and
application workload. We benefit from the browser
capabilities to display dynamic graphical content.
The prototype activity can be visualized in two
complementary ways. First, we can visualize gra-
phically (through SQL queries + JFreeChart) a
trace database produced by the prototype during
execution. Second, we can follow the prototype
activity through a monitoring panel that is dyna-
mically updated by run-time events generated by the

http://www.objectweb.org/rmijdbc

ARTICLE IN PRESS

Fig. 7. GUI architecture and control panel.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343332
prototype (using DHTML functionalities and Java-
script for applet/browser communication).

Using the control panel, we can select a pre-
defined scenario or specify scenario characteristics.
Then, we run the scenario and visualize the evolving
node load, the number of transactions per node and
the node freshness. After execution, we visualize
various reports and charts that are dynamically
generated, e.g., the transactions response time
versus the freshness level, or the transaction
response time at each node.

7. Performance evaluation

In this section, we evaluate the performance of
our approach through experimentation and emula-
tion. We first describe the experimental environment
for transaction routing. Then, we compare the
efficiency of our cost function with that of two
baseline cost functions. Then, we study the perfor-
mance of our two cost-based routing strategies.
Then, we evaluate the performance speed up when
increasing the number of cluster nodes. Finally, we
analyze the impact of tolerating staleness on the
system throughput.

7.1. Experimental environment

We have implemented all the router modules in
Java. The router acts as a JDBC server for the
application, preserving the application autonomy
through the JDBC standard interface. Inter-process
communication between the application and the
router uses the RMI standard. The cluster has 11
nodes (Pentium IV 2Ghz, 512Mb RAM) connected
by a 1Gb/s network. To ease experimentation, we
use one node as router node and all other 10 nodes
as database nodes, each hosting a database replica.
Given the relatively small number of database
nodes, one router node is sufficient. All database
nodes run the Oracle 8i DBMS under Linux. We
have implemented the load(node) function (see
Section 5.2), used for cost estimation, by calling
the OS level load_average function which returns the
mean load (CPU and I/O) observed during the last
minute. We do not use the instantaneous load since
it is too instable and differs too much from the
average load in the time interval (a few seconds in
our context) of processing a transaction.

To measure the router performance for typical
OLTP applications, we have implemented the main
parts of the TPC-C benchmark [7]. The TPC-C
database (2Gb of data within 9 relations, the Stock

relation has 1 million items and the OrderLine

relation has 3 million tuples) is replicated at each
DBMS node. TPC-C transactions are implemented
as stored procedures. In the following experiments,
we consider the new-order update transaction, and
the order-status query. We developed a workload
generator as a set of application terminals sending

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 333
transactions simultaneously. During an experiment,
the number of application terminals remains con-
stant. A terminal sends either front-office transac-
tions (new-order) or back-office queries (order-

status). The standalone response, which is the time
to process a transaction alone at a node, is 0.32 s for
transactions and 10 s for queries.

We divide transactions into distinct classes.
Within the same class, transactions interfere and
access the same data subsets of relations Order and
OrderLine. However, transactions from two differ-
ent classes do not interfere and access disjoint
subsets of relations Order and OrderLine. Each
terminal delivers transactions randomly chosen
among all classes. To exploit parallel transaction
execution, the number of classes is set to twice the
number of cluster nodes.

We use the following setup. First, except for the
experiments of Section 7.5 which investigate the
impact of freshness control on performance, both
update transactions and queries do not tolerate any
staleness. Second, the workload is high enough to
keep the system fully busy during the experiments.
The workload is composed of t terminals. Each
terminal sends a sequence of transactions or queries
interleaved with a randomly distributed think time
(with a mean of half the transaction standalone
time). In order to measure the maximum through-
put that the router can support, we choose t such
that all the cluster resources are fully used during
the entire experiment, i.e., increasing t would not
increase throughput since the system is fully loaded.
As a consequence, there is duality between the
results obtained in response time and in throughput.
Since the number of terminals remains constant
during an experiment, the response time is always
inversely proportional to the throughput. Thus, in
the following, we only analyze the results related to
throughput. Results related to response time are
only given as a confirmation and lead to the same
observation and conclusions.

7.2. Comparison of costEval function with baseline

cost functions

In this section, we compare our costEval function
with two baseline cost functions:
�
 basicLoad ¼
P

Ti2RTN
rtðTi;NÞ which represents

the estimated cost of processing the outstanding
transaction/query load at each node N (see
Section 5.2).
�
 basicSynch ¼ SynchTime(T,S,N) which repre-
sents the cost of synchronizing node N for
transaction T through refresh sequence S (see
Section 5.2).

The idea behind including the node’s freshness in
the cost function is that we can achieve better
performance by reducing the total amount of
synchronization performed during an experiment.
Thus, routing a transaction to the freshest node (i.e.,
with the least work to synchronize) would minimize
the total amount of work. But it may increase node
staleness, thus yielding under utilization of the
cluster, and low performance, which justifies includ-
ing the node’s load as well.

In order to experimentally prove this assumption,
we investigate whether choosing either the freshest
node or the least loaded node would be as efficient
as our costEval function. We run the router with the
CBroute algorithm (see Section 5.1.1) which calls
costEval, basicLoad or basicSynch, respectively, and
compare the results. We set up a cluster with 10
nodes. The workload is composed of 20 transaction
terminals. The number of query terminals is varied
from 0 to 100. A terminal accesses any part of the
database with the same probability (the transaction
class is randomly and uniformly assigned). Thus,
the number of terminals accessing the same part at
the same time (concurrency rate) is 5%. Queries do
not tolerate staleness. We run three experiments,
one for each cost function. We report the average
transaction response time in Fig. 8 (Fig. 8b is a
focus of 8a).

The first observation is that costEval is the best
overall cost function, whatever the number of query
terminals. For very light workloads (1 or 2
terminals), costEval performs as basicSynch, due
to the fact that nodes are lightly loaded. For higher
workloads, basicSynch is outperformed by the two
other functions. This is because basicSynch does not
take into account the nodes (high) load: when a
node is too stale, it is never selected and thus
remains idle. On the contrary, for heavy workloads
(more than 50 query terminals), costEval performs
as basicLoad. This is due to the fact that, when the
load is high, nodes are always working and thus,
they are kept almost perfectly fresh by synchroniza-
tion. Hence, the cost of synchronization is negligible
with respect to the node’s load. Between 2 and 50
terminals, costEval is much better than the two
other cost functions, since it combines the advan-
tages of both.

ARTICLE IN PRESS

0

20

40

60

80

100

120

0 50 100

Tr
an

s.
 R

es
p.

 T
im

e
(s

)

costEval
basicSynch
basicLoad

(a)

0

5

10

15

20

25

0 2 4 6 8 10 12 14

Tr
an

s.
 R

es
p.

 T
im

e
(s

)

costEval

basicSynch

basicLoad

(b)

Fig. 8. Transaction response time vs. number of query terminals:

(a) 0 to 100 query terminals; (b) 0 to 14 query terminals.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Concurrency (%)

Tr
an

s
R

es
p.

 T
im

e
(s

) costEval
basicLoad
basicSynch

(a)

0 20 40 60 80 100

Concurrency (%)

0
5

10
15
20
25
30
35
40
45

Q
ue

ry
 R

es
p.

 T
im

e
(s

) costEval

basicLoad
basicSynch

(b)

Fig. 9. Transaction and query response time vs. data access skew.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343334
In the next experiment, we evaluate the impact of
the concurrency rate on the routing performance.
The number of terminals is fixed. We slightly
modify the workload to increase concurrent data
access: concurrency rate is varied from 5% (i.e., 2
out of 40 terminals) to 100%. We report update
transaction and query response times in Fig. 9.

Fig. 9 shows that basicSynch is not adapted for
highly concurrent workloads. This is not surprising
since with a higher concurrency rate, the probability
that a node is never selected is higher. We also see
that costEval outperforms basicLoad by a factor of 4
for low concurrent data access. The benefit is slowly
decreasing but still remains above 20% for the
update transaction response time in case of a fully
concurrent workload. Concerning the query re-
sponse time, costEval is outperformed by basicLoad

when the concurrency rate is extremely high.
However, this case is not realistic with a fine-
grained conflict detection. In fact, workloads with a
concurrency rate higher than 50% are extremely
rare. Under this value, costEval always outperforms
basicLoad by more than 30%. This illustrates the
advantage of using a cost function that takes into
account node load as well as synchronization to run
highly skewed workloads.

7.3. Comparison of routing algorithms

In this section, we compare the performance of
the two routing strategies proposed in Section 5.
The CB only strategy routes every incoming
transaction to the node that minimizes the costEval

function. The cost based with BRT strategy
dynamically dedicates a subset of nodes to ensure
an upper bound (Tmax) for transaction response
time, and routes queries to remaining nodes that
minimize the costEval function. The goal is to study
cluster resource allocation, among queries and
transactions, depending on the routing strategy
and to compare their respective performance in
terms of update transaction and query throughput.

The workload is composed of 20 transaction
terminals and 20 query terminals. With the CB
strategy, we get an average response time of 3.76 s
for update transactions and 240 s for queries. We
measure the corresponding throughputs of 303
transactions per minute (TPM) and 4.81 queries
per minute (QPM), respectively. We now compare

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 335
this result with the performance of the BRT strategy
when Tmax varies from 0.67 to 6.67 s. Since BRT
dynamically dedicates nodes to either update
transactions or queries, we first observe the number
of nodes dynamically dedicated to update transac-
tions. As Tmax increases, update transactions need
fewer resources to be executed within Tmax and the
number of dedicated nodes decreases. Thus, the
number of nodes available for queries increases.
With Tmax under 0.67 s, all the 10 database nodes
are needed to perform update transactions within
the time limit. With Tmax over 6.67 s, one node is
sufficient. Table 1 shows, for each possible number
of nodes NbNodes, the minimal value of Tmax

leading to dedicating NbNodes nodes to update
transactions (i.e., Tmax such that NbNodes ¼ jNSTj

of Section 5.1.2).
Fig. 10 shows the response time and throughput

for update transactions and queries with the BRT
strategy, compared with the CB strategy. Tmax

varies within the interval [0.67, 6.67]. Outside this
Table 1

Minimal Tmax needed to dedicate NbNode to update transactions

NbNode 10 9 8 7 6 5 4 3 2 1

Tmax 0.67 0.74 0.83 0.95 1.11 1.33 1.67 2.22 3.33 6.67

0

300

600

900

1200

1500

0 1 2 3 4 6

Tmax (s)

Tr
an

s.
 T

hr
. (

T
P

M
)

BRT Strategy
CB Strategy

Tr
an

s.
 R

es
p.

 T
im

e
(s

)

0

5

10

15

20

25

30

Q
ue

ry
 T

hr
. (

Q
P

M
) BRT Strategy

CB Strategy

Q
ue

ry
 R

es
p.

T
im

e
(s

)

75

0 1 2 3 4 6

Tmax (s)

75

(a) (b)

(c) (d)

Fig. 10. Throughput and response time for update transactions and qu

transaction response time; (c) query throughput; (d) query response tim
interval, as the number of nodes dynamically
allocated to update transactions is constant, re-
sponse times remain constant as well. As Tmax is
only relevant for the BRT strategy, the CB strategy
is represented by a horizontal line.

An expected result with BRT is that, when
increasing Tmax, the response time of update
transactions increases linearly. Therefore, since
fewer nodes are dedicated to update transactions,
queries have more resources for execution and their
response time decreases.

When Tmax is small, we observe in Fig. 10a that
BRT outperforms CB for Tmax under a given value,
3.9 in our experimental conditions. However, for
Tmax under this value, we observe in Fig. 10c that
CB has better query response time than BRT. This
is a general result because BRT, with a small Tmax,
acts in favor of transactions at the expense of sub-
optimal routing for queries. In order to provide a
transaction response time below Tmax, the algorithm
does not release idle nodes for queries too quickly to
anticipate forthcoming transactions. This slows
down query processing, but is necessary to keep
most of the transactions under Tmax. In all our
experiments, we obtain at least 91% of transactions
having their response time below Tmax. This
complies with the TPC-C specification for new-
order transactions which states that 90% must have
a response time less than Tmax.
0
1
2
3
4
5
6
7

0 1 6 7

BRT Strategy

CB Strategy

0
200
400
600
800

1000
1200
1400
1600
1800

BRT Strategy

CB Strategy

0 1 2 3 4 6

Tmax (s)

75

2 3 4

Tmax (s)

5

eries with CB and BRT strategy: (a) transaction throughput; (b)

e.

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

Tr
an

s.
 T

hr
. (

T
P

M
)

experimental

linear

0 16 32 48 64 80 96 112 128
number of nodes(a)

0

2

4

6

8

0 16 32 48 64 80 96 112 128
number of nodes

Tr
an

s.
 R

es
p.

 T
im

e
(s

)

(b)

Fig. 11. Transaction throughput and response time vs. number

of nodes: (a) transaction throughput vs. number of nodes; (b)

transaction response time vs. number of nodes.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343336
When Tmax increases, we observe in Fig. 10a and
c that the two strategies behave differently. Above a
given value, 3.5 in our experiments, BRT is no more
efficient for update transactions. This result is
obvious since a large Tmax implies that the system
can execute update transactions with a large delay,
and thus uses only a few nodes for update
transactions. As more nodes are available, queries
perform faster and BRT outperforms CB for
queries, at the expense of increased update transac-
tion time.

In conclusion, CB provides the best overall
performance, thus it should be used as soon as it
meets the application needs. BRT should be used
only in cases where the application requires favoring
the execution of update transactions (resp. queries),
using a small Tmax (resp. large Tmax).

7.4. Speed up experiments

In this section, we study the performance speed
up of our transaction routing when increasing the
number of cluster nodes. Since CB provides the best
overall performance, we ignore the BRT strategy.

To experiment with more than 11 nodes (up to
128 nodes), we consider 8 cluster nodes, each of
them running a node emulator that acts as a set of
16 DBMS nodes. This emulates up to 128 nodes.
The emulator supports the same interface as the
other nodes. Thus, our router can connect to the
emulator as if it was connected to real DBMS
nodes. This lets us measure whether our router
remains efficient with a growing number of nodes
and application terminals, or whether one router
becomes a bottleneck. We calibrated the emulator
so that it matches the real throughput we get for 4 to
10 nodes without emulation.

The goal is to investigate linear speed-up, i.e., if
doubling the number of nodes and application
terminals results in doubling the throughput. The
workload depends on the number of nodes n. It is
composed of 2n transaction terminals and 2n query
terminals. Fig. 11a shows transaction throughput
versus the number of nodes. It shows that the
throughput scales almost linearly from 4 up to 32
nodes, the difference with a linear growth being less
than 16%. This validates our solution for medium-
scale clusters and shows the good quality of our
research prototype.

Between 32 and 96 nodes, performance increases
slightly less but the increase is still good. Beyond 96
nodes, performance no longer improves mainly
because of synchronization. The more transactions
are executed, the more synchronization is required
for queries. Speed up experiments lead to the same
conclusions for queries (linear increasing through-
put until 32 nodes, stable response time), so they are
omitted here.

7.5. Influence of tolerated freshness

In this section, we study the impact of the
tolerated staleness on performance. We measure
how much the tolerated staleness of queries can
improve the response time of both queries and
update transactions. We choose a medium size
setup: 10 nodes and 40 terminals (20 query terminals
and 20 transaction terminals). We vary the tolerated
staleness of queries. Fig. 12 shows the average
throughput and response time of queries and
transactions versus their tolerated staleness (ex-
pressed as a number of tuples).

The results in Fig. 12 show that increasing the
tolerated staleness improves significantly the query
throughput, reaching more than five times the initial
throughput, i.e., when queries do not tolerate any
staleness. The transaction throughput is also in-
creased by a factor of 2. This is mainly due to the
fact that increasing the tolerated staleness gives
more flexibility to load balancing and postpones the

ARTICLE IN PRESS

0

5

10

15

20

25

30

0 100 200 300 400 500 600
Tolerated Staleness (# tuples)

Q
ue

ry
 T

hr
ou

gh
pu

t (
Q

P
M

)

0

50

100

150

200

0 100 200 300 400 500 600

0 100 200 300 400 500 600

Tolerated Staleness (# tuples)

Q
ue

ry
 R

es
p.

 T
im

e
(s

)

0

100

200

300

400

500

600

700

Tr
an

sa
ct

io
n

T
hr

.
(T

P
M

)

0

1

2

3

4

5

Toler. Staleness of Queries (# tuples)

0 100 200 300 400 500 600

Toler. Staleness of Queries (# tuples)
Tr

an
s.

 R
es

p.
 T

im
e

(s
)

(a) (b)

(c) (d)

Fig. 12. Throughput and response time of queries and transactions vs. the tolerated staleness: (a) query throughput; (b) query response

time; (c) transaction throughput; (d) transaction response time.

4Our experimentation with Oracle’s Logminer tool showed that

reading the log takes at least 0.34 s.

S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 337
synchronization work. This result is important for
applications where a tolerated staleness of few
hundreds of missing tuples is acceptable for queries
(e.g., statistical queries over millions of tuples). We
note that, for a staleness value greater than 450, the
throughput does not increase. This is because
the system reaches the maximum throughput: the
tolerated staleness reaches the value for which the
synchronization would have started immediately
after the end of the experiment.

7.6. Concluding remarks

We now summarize the main observations and
conclusions obtained from the experiments with the
Leganet prototype. First, our cost function is more
accurate than simpler cost functions. We compared
the efficiency of our cost function with that of two
baseline cost functions, one that considers the
nodes’ outstanding load and another that considers
the nodes’ freshness. The results showed that using
our cost function yields better load balancing and
performance for all kinds of workloads and realistic
rates of concurrent data access. Second, CB out-
performs BRT in the general case. BRT should be
preferred only in some cases, when update transac-
tions are more important than queries. This is the
case for instance in pharmacy applications where
updates are generated by front-office applications
and thus are interactive, while queries are generated
by back-office applications which tolerate a greater
latency. Third, our approach scales almost linearly
for medium size clusters (up to 32 nodes). For larger
clusters, the scaling remains acceptable but is no
more linear. One solution to overcome this limita-
tion would be to reduce synchronization time using
asymmetric synchronization, i.e., sending the mod-
ified tuples obtained at the initial node of a
transaction instead of replaying the whole transac-
tion. However, as mentioned in Section 3.1, this
solution is not straightforward using black-box
DBMSs, since it implies log sniffing which cost
may be prohibitive in the general case.4 Fourth,
relaxing freshness has a great impact on transaction
processing performance (up to a factor 5), for both
updates and queries. This gain is obtained by better
balancing due to greater flexibility and by reducing
synchronization since nodes need less refreshment.

8. Related work

There has been extensive work on exploring the
trade-offs between data consistency, transaction
processing performance and scalability in database
systems. The main areas of work related to ours are:

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343338
replication and load balancing in database systems,
relaxed consistency models, replication and load
balancing in database clusters.

8.1. Replication and load balancing in database

systems

Replication has long been used in database
systems to improve both data availability and
performance. However, the major problem of data
replication is to manage the mutual consistency of
the replicas in the presence of updates [8]. The basic
solution that enforces strong replica consistency is
eager (also called synchronous) replication, typically
using the Read-One-Write All—ROWA protocol
[3]. Whenever a transaction updates a replica, it also
updates all other replicas (using a distributed
transaction), thereby enforcing the mutual consis-
tency of the replicas. However, the atomic commit-
ment of the distributed transaction typically relies
on the two-phase commit (2PC) protocol [3] which
is known to be blocking (i.e., does not deal well with
nodes’ failures) and has poor scale up.

The alternative approach to eager replication is
lazy (also called asynchronous) replication [8,14]
whereby a transaction only updates one replica, the
updates to the other replicas being propagated later
on using separate refresh transactions. Lazy replica-
tion trades consistency for performance. In the case
of single master copies (for each replica, there is a
single master node that can accept update transac-
tions), lazy replication can yield good performance
[15] and achieve mutual consistency [4]. However,
failure of a master node hurts data availability.
Lazy multi-master replication (also called update
anywhere) is supported by most commercial data-
base systems because it yields better data avail-
ability [16]. However, mutual consistency can be
compromised as a result of different master nodes
executing conflicting updates. The typical solution is
optimistic and provides for periodic conflict detec-
tion and semi-automatic replica reconciliation. In
our work, we also exploit lazy multi-master replica-
tion but we avoid conflicts by exploiting the
commutativity between transactions.

Database replication can improve performance
by increasing data access locality which reduces the
number of network accesses. It can also improve
performance by load balancing data accesses across
the database replicas, each at a different node. The
simplest way to perform load balancing is using the
ROWA protocol which reads data from any node,
e.g., randomly chosen, and writes to all nodes. Most
replicated database systems use a simple strategy for
load balancing. The Mariposa distributed data
manager [17] uses a more sophisticated strategy
based on lazy replication with rule-based conflict
resolution and a micro-economic model for load
balancing, whereby a Mariposa broker uses a
distributed advertising service to select nodes that
want to bid on queries. Using a micro-economic
paradigm is suited for very large networks of
autonomous, competing nodes.

8.2. Relaxed consistency models

The earliest form of relaxed consistency is snap-
shot isolation [18] whereby a transaction sees only
the latest database snapshot, as produced by all
transactions committed before it starts. A transac-
tion can commit only if its write set does not
intersect with those of current transactions. Other-
wise it aborts. Snapshot isolation is popular because
it is simple and increases performance by never
blocking or aborting read-only transactions. Recent
work has focused on using snapshot isolation to
improve the performance of read-only transactions
in replicated databases. The RSI-PC [19] algorithm
is a primary copy solution which separates update
transactions from read-only transactions Update
transactions are always routed to a main replica,
whereas read-only transactions are handled by any
of the remaining replicas, which act as read-only
copies. Postgres-R(SI) [20] proposes a smart solu-
tion that does not require declaring transaction
properties in advance. It uses the replication
algorithm of [12] which must be implemented inside
the DBMS. The experiments are based on a 10-node
cluster. SI-Rep [21] provides a solution similar to
Postgres-R(SI) on top of PostgreSQL which needs
the write set of a transaction before its commitment.
Write sets can be obtained by either extending the
DBMS, thus compromising DBMS autonomy, or
using triggers.

With lazy replication, consistency is relaxed until
refreshment or reconciliation. There has been much
interesting work on relaxed consistency models for
controlling the divergence between replicas accord-
ing to user requirements. Non-isolated queries are
also useful in non-replicated environments [18]. The
specification of inconsistency for queries has been
widely studied in the literature, and may be divided
in two dimensions, temporal and spatial [22].
An example of temporal dimension is found in

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 339
quasi-copies [23], where a cached (image) copy may
be read-accessed according to temporal conditions,
such as an allowable delay between the last update
of the copy and the last update of the master copy.
The spatial dimension consists of allowing a given
‘‘quantity of changes’’ between the values read-
accessed and the effective values stored at the same
time. This quantity of changes may be for instance
the number of data items changed, the number of
updates performed or the absolute value of the
update. In the continuous consistency model [24],
both the temporal dimension (staleness) and the
spatial dimension (numerical error and order error)
are controlled. Each node propagates its writes to
other nodes, so that each node maintains a
predefined level of consistency for each dimension.
Then each query can be sent to a node having a
satisfying level of consistency (w.r.t. the query) in
order to optimize load balancing

The Trapp project [25] addresses the problem of
precision/performance trade-off in the context of
wide area networks. The focus is on numeric
computation of aggregation queries with the objec-
tive of minimizing communication costs. The TACT
middleware [24] implements the continuous consis-
tency model. Although additional messages are used
to limit divergence, a substantial gain in perfor-
mance may be obtained if users accept a small error
rate. However, read and write operations are
mediated individually: an operation is blocked until
consistency requirements can be guaranteed. This
implies monitoring at the server level, and it is not
clear if it allows installation of a legacy application
in a database cluster. In the quasi-copy caching
approach [23], four consistency conditions are
defined. Quasi-copies can be seen as materialized
views with limited inconsistency. However, they
only support single-master replication. Epsilon
transactions [11] provide a nice theoretical frame-
work for dealing with divergence control. As in the
continuous consistency model [24], they allow
different consistency metrics to give answers to
queries with bounded imprecision. However, the
implementation of epsilon transactions requires to
significantly alter the concurrency control, since
each lock request must read or write an additional
counter to decide whether the lock is compatible
with the required level of consistency. Recent work
on relaxed currency [26] goes one step further in
allowing users to explicitly specify fine-grained
currency and consistency constraints (in SQL) and
in providing well-defined semantics for such con-
straints so they can be enforced by a DBMS query
processor. However, compared to our freshness
model and its implementation, none of these models
addresses the issue of leaving databases and
applications autonomous and unchanged.

8.3. Replication in database clusters

In the context of database clusters, recent work
on replication has dealt with the issues of scalability
(to achieve high-performance with large numbers of
nodes) and, to a lesser extent, autonomy (to exploit
black-box DBMS). A major result is that, by
exploiting efficient group communication services,
eager replication (which provides strong consis-
tency) can be made non-blocking and can scale up
to large cluster sizes. The seminal paper on this is
[12]. Its eager multi-master replication algorithm
significantly reduces the number of messages ex-
changed to commit transactions compared to 2PC.
Furthermore, it is non-blocking: when a failed node
is detected, all its transactions propagated to other
nodes are aborted. It exploits group communication
services to guarantee that messages are delivered at
each node according to some ordering criteria. The
implementation within the PostGRES DBMS
shows scale up to 15 nodes. In [27], the authors
provide a wider range of experiments and show
through emulation that the algorithm scales up well
to 100 nodes. However, the proposed implementa-
tion which combines concurrency control with
group communication primitives hurts DBMS
autonomy. Furthermore, because update transac-
tions are executed by all nodes, there is no
opportunity for transaction load balancing, only
query load balancing. An extension to this work [28]
further improves scalability and avoids redundant
transaction execution. By propagating updates to
other replicas, it enables to perform transaction
load balancing. However, it works only for single-
master copies. In [29], it is shown that this solution
can be implemented outside a DBMS, and thus
support DBMS autonomy. The experiments show
scale up to 15 nodes. In [30], the same authors show,
through performance analysis, that eager replica-
tion can scale up much better than quorums, yet
being much simpler to implement. The result is
significant as quorums are often suggested to reduce
the overhead of scale replication. However, the
analytical framework they propose, though elegant,
is not adapted to analyze how our lazy replication
scheme scales up. Indeed, as it is designed for

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343340
comparing quorums and eager replication, it does
not take into account the cost of refreshing stale
nodes. Thus, if we use this framework for analyzing
our approach, either refresh transactions are not
taken into account and the system appears to scale
perfectly, which is not true, or they are taken into
account and the system appears to behave like eager
replication, which is neither true.

Lazy replication can also be used in the context of
database clusters to provide strong consistency. A
lazy multi-master solution that achieves strong
consistency is preventive replication [10]. Instead
of using atomic broadcast as in eager group-based
replication, preventive replication uses FIFO reli-
able multicast which is a weaker constraint. It deals
with stored procedures and is able to deal with
autonomous databases. Its implementation on top
of the PostgreSQL DBMS shows good scale up in a
32-node cluster. Another lazy replication solution
that provides strong consistency in database clusters
is presented in [9]. To avoid conflicts, it makes the
scheduler conflict-aware at the table level. However,
it does not support stored procedures as in our
solution.

There are also middleware solutions that support
data replication and achieve DBMS autonomy. C-
JDBC [31,32] is a database clustering middleware
which emphasizes flexibility and adaptation to the
application needs. It provides different replication
algorithms with support for various configurations
such as full replication or partial replication.
However, the algorithms are based on optimistic
transaction-level schedulers with deadlock-detection
and thus do not support strong consistency as we
do. Middle-R [33] is another middleware for
transparent database replication which focuses on
dynamic adaptation to failures and workload
variations. It uses a synchronous replication algo-
rithm to enforce one-copy-serializability but only
supports master–slave configurations. ESCADA
[34] is another middleware that builds on the
Database State Machine model which we discussed
above. All these middleware solutions focus on
replication and fault-tolerance.

8.4. Load balancing in database clusters

Load balancing in database clusters using replica-
tion has recently received much attention. One of
the most popular projects is PowerDB at ETH
Zurich. Its solution fits well for some applications,
such as XML document management [35] or read-
intensive OLAP queries [36]. For interactive Web-
based information systems, the scheduling algo-
rithm of [37] is tailored for low-complexity read
only queries, and requires detailed information
about every query operator. However, none of
these solutions addresses the problem of seamless
integration of legacy applications.

In [38], the authors propose strategies for fresh-
ness-aware query scheduling which provide one-
copy serializability in a database cluster with mono-
master replication. In particular, their one-idle
strategy yields good cluster utilization. When a
query comes in, it is routed to the least loaded node
that is fresh enough. However, if no node is fresh
enough, the query simply waits. More generally,
they do not consider the case where refreshing an
idle node would yield better performance than an
overloaded fresh node. Our cost-based routing is
general enough to handle these important cases.
Furthermore, their freshness model has only one
level of granularity: the entire database. Whenever a
transaction updates a relation R at a given node, all
the other nodes become stale, even for other
transactions which are not reading R. In our
approach, the level of granularity is the relation:
when a query reads a relation at a node, the local
copy freshness is computed using only the running
transactions which are updating the same relation at
other nodes. This makes our freshness computation
more accurate, thus increasing query throughput.

There are also middleware solutions for database
clusters that focus on load balancing. In [39], the
authors describe a middleware for data replication
that adjusts to changes in the load submitted to the
different replicas and to the type of workload. They
propose a novel strategy which combines load-
balancing techniques with feedback-driven adjust-
ments of the number of concurrent transactions.
The proposed solution is shown to provide high
throughput, good scalability, and low response
times for changing loads and workloads with little
overhead. In [40], the authors describe a middleware
for scaling and availability of dynamic content sites
using a cluster of Web servers and database engines.
They show that replication with relaxed consistency
is key for scalability while the actual choice of the
load balancing strategy is less important.

A cooperative caching mechanism is proposed in
[41] and is shown to yield a high hit rate for
heterogeneous clusters. In [42], a scheme is proposed
for scheduling disk requests that takes advantage of
the ability of high-level functions to operate directly

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 341
at individual disk drives. Both techniques could
enhance our solution at the system level, but would
compromise database autonomy. The dynamically
ordered scheduling strategy proposed in [43] dis-
tributes CPU and disk load of OLAP queries in the
context of parallel data warehouses with a specific
data allocation scheme [44]. Affinity-based routing
[45] is another scheduling technique that partitions
transactions into affinity groups to avoid contention
and thus improve load balancing. However, these
scheduling techniques are designed for a shared-disk
architecture and are not suited for shared-nothing
cluster architectures.

Extensive work has also been done for cluster
load balancing at the system level or for Internet
services. The Neptune Project [46] proposes a
framework for scheduling service requests with
quality constraints (such as maximum response
time), but does not deal with data freshness. It also
proposes and validates routing strategies based on
random polling which is well adapted for short
requests (less than 100ms) but does not work for
longer transactions. The GMS project [47] uses
global information to optimize page replacement
and pre-fetching decisions over the cluster. How-
ever, it mainly addresses specific Internet applica-
tions such as the Porcupine mail server.

Workload allocation in distributed transaction
processing systems is surveyed in [48]. In [49], a
classification of transaction-routing algorithms for
shared-nothing transaction processing systems is
proposed. Our routing algorithm fits in the cate-
gories named Single Router, Dynamic Algorithms
based on Routing History, because our cost model
relies on response time history, and Goal Oriented
because we consider data freshness as a requirement
to reach. We note that none of the surveyed
algorithms considers transaction routing with fresh-
ness control.
9. Conclusion

In this paper, we described the Leganet system
which performs freshness-aware transaction routing
in a database cluster. To optimize load balancing,
we use lazy multi-master database replication with
freshness control, and strive to capitalize on the
work on relaxing freshness for higher performance.
The Leganet system preserves database and applica-
tion autonomy using non-intrusive techniques that
work independently of any DBMS.
The main contribution of this paper is a transac-
tion router which takes into account freshness
requirements of queries at the relation level to
improve load balancing. It uses a cost function that
takes into account not only the cluster load in terms
of concurrently executing transactions and queries,
but also the estimated time to refresh replicas to the
level required by incoming queries. The model to
estimate replica freshness estimates the freshness of
databases updated by autonomous applications at
the level of relations, which is accurate enough to
improve transaction routing. It works with multi-
master replication which provides the highest
opportunities for transaction load balancing.

We also proposed two CB routing strategies that
improve load balancing. The first routing strategy
(CB) assesses the synchronization cost to respect the
tolerated staleness by queries and transactions and
chooses the node with minimal cost. The second
strategy (BRT) is a variant with a parameter, Tmax,
which represents the maximum response time users
can accept for update transactions. It dedicates as
many cluster nodes as necessary to ensure that
updates are executed in less than Tmax, and uses the
remaining nodes for processing queries.

We implemented our solution on an 11-node
cluster running Oracle 8i under Linux. We used this
implementation for initial performance experiments
and to calibrate an emulation model that deals with
larger cluster configurations (up to 128 nodes).
First, we showed that, compared with two baseline
cost functions (one based on the nodes’ current load
and the other based on the nodes’ freshness), our
cost function yields better load balancing and
performance. Second, the experiments showed that
CB outperforms BRT in the general case and that
BRT should be preferred only when update
transactions are more important than queries.
Third, our approach scales very well (almost
linearly) for clusters up to 32 nodes and has good
scale up until 96 nodes. Finally, we showed that
relaxing freshness has a great impact on transaction
processing performance (up to a factor 5), for both
updates and queries, thanks to better load balancing
and reduced node synchronization.

In this paper, we have made the simplifying
assumption of full replication for concentrating on
the problem of freshness-aware transaction routing.
However, we could extend our approach to deal
with partial replication, with a mix of partitioned
relations (typically the largest relations) and repli-
cated relations over a subset of the cluster nodes as

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343342
in [1]. Although this approach does not violate
database autonomy, it would require some careful
database design.

Another improvement we are investigating is to
use asymmetric synchronization, i.e., sending the
modified tuples obtained at the initial node of a
transaction instead of replaying the whole transac-
tion. As explained in Section 7.6, this solution is not
straightforward using black-box DBMSs, since it
implies log sniffing. Our experimentation with
Oracle’s Logminer tool showed that reading the
log takes at least 0.34 s, thus we must study carefully
in which conditions asymmetric synchronization
may be used.

Finally, the current Leganet system uses a
centralized router which can obviously be a single
point of failure and a performance bottleneck. A
solution to this problem suggests replicating the
router and its metadata at two or more nodes.
Maintaining the consistency of the replicated
metadata is an interesting issue, for instance, using
either eager replication or distributed shared mem-
ory software, and the subject of future work.
References

[1] U. Röhm, K. Böhm, H.-J. Schek, OLAP query routing and

physical design in a database cluster, International Con-

ference on Extending Database Technology (EDBT’00),

Springer, Konstanz, Germany, 2000, pp. 254–268.

[2] P. Valduriez, Parallel database systems: open problems and

new issues, Distributed and Parallel Databases 1 (2) (1993)

137–165.

[3] T. Özsu, P. Valduriez, Principles of Distributed Database

Systems, 2nd ed, Prentice-Hall, Englewood Cliffs, NJ, 1999.

[4] E. Pacitti, P. Minet, E. Simon, Replica consistency in lazy

master replicated databases, Distributed and Parallel Data-

bases 9 (3) (2001) 237–267.

[5] E. Pacitti, O. Dedieu, Algorithms for optimistic replication

on the web, Journal of the Brazilian Computing Society 8 (2)

(2002) 7–11.

[6] S. Ganc-arski, H. Naacke, E. Pacitti, P. Valduriez, Parallel

processing with autonomous databases in a cluster system,

International Conference of Cooperative Information Sys-

tems (CoopIS’02), Irvine, California, 2002, pp. 410–428.

[7] Transaction Processing Performance Council. TPC Bench-

mark C, Rev 5.1, www.tpc.org/tpcc/.2002.

[8] P. Bernstein, E. Newcomer, Principles of Transaction

Processing, Morgan Kaufmann, 1997.

[9] C. Amza, A. Cox, W. Zwaenepoel, Conflict-aware schedul-

ing for dynamic content applications. USENIX Symposium

on Internet Technologies and Systems (USITS’03), Seattle,

Washington, 2003.

[10] E. Pacitti, T. Özsu, C. Coulon, Preventive multi-master

replication in a cluster of autonomous databases, Interna-
tional Conference on Parallel Processing (Euro-Par’03),

Klagenfurt, Austria, 2003, pp. 318–327.

[11] K. L. Wu, P. S Yu, C. Pu, Divergence control for epsilon-

serializability, IEEE International Conference on Data

Engineering (ICDE’92), Tempe, Arizona, 1992, pp. 506–515.

[12] B. Kemme, G. Alonso, Don’t be lazy be consistent: Postgres-

R. A new way to implement Database Replication,

International Conference on Very Large Databases

(VLDB’00), Cairo, Egypt, 2000, pp. 134–143.

[13] C. Amza, A. Cox, S. Dwarkadas, P.J. Keleher, H. Liu, R.

Rajamony, W. Yu, W. Zwaenepoel, TreadMarks: shared

memory computing on networks of workstations, IEEE

Computer 29 (2) (1996) 18–28.

[14] T.A. Anderson, Y. Breitbart, H.F. Kort, A. Wool, Replica-

tion, consistency, and practicality: are these mutually

exclusive? ACM SIGMOD, International Conference on

Management of Data (SIGMOD’98), 1998, Seattle, Wa-

shington, pp. 484–495.

[15] E. Pacitti, P. Minet, E. Simon, Fast algorithms for

maintaining replica consistency in lazy master replicated

Databases, International Conference on Very Large Data-

bases (VLDB’99), Edinburgh, Scotland, 1999, pp. 126–137.

[16] D. Stacey, Replication: DB2, Oracle, or Sybase?, ACM

SIGMOD Record 24 (4) (1995) 95–101.

[17] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, A.

Yu, Data replication in mariposa, IEEE International

Conference on Data Engineering (ICDE’96), New Orleans,

Louisiana, 1996, pp. 485–494.

[18] H. Berenson, P. Bernstein, J. Gray, J. Melton, E.J. O’Neil,

P.E. O’Neil, A Critique of ANSI SQL Isolation Levels.

ACM SIGMOD, International Conference on Management

of Data (SIGMOD’95), 1995, San Jose, California, pp. 1–10.

[19] C. Plattner, G. Alonso, Ganymed: scalable replication for

transactional web applicationism, International Middleware

Conference (Middleware’04), Toronto, Canada, 2004,

pp. 155–174.

[20] S. Wu, B. Kemme, Postgres-R(SI): combining replica

control with concurrency control based on snapshot isola-

tion, IEEE International Conference on Data Engineering

(ICDE’05), Tokyo, 2005, pp. 422–433.

[21] Y. Lin, B. Kemme, M. Patino-Martinez, R. Jimenez-Peris,

Middleware based data replication providing snapshot

isolation, ACM SIGMOD International Conference on

Management of Data. Baltimore, USA, 2005, pp. 419–430.

[22] A. Sheth, M. Rusinkiewicz, Management of interdependent

data: specifying dependency and consistency requirements,

Workshop on the Management of Replicated Data,

Houston, Texas, IEEE Computer Society, Silver Spring,

MD, 1990, pp. 133–136.

[23] R. Alonso, D. Barbará, H. Garcia-Molina, Data caching

issues in an information retrieval system, ACM Transactions

on Database Systems, 15 (3) (1990) 359–384.

[24] H. Yu, A. Vahdat, Efficient numerical error bounding for

replicated network services, International Conference on

Very Large Databases (VLDB’00), Cairo, Egypt, 2000,

pp. 123–133.

[25] C. Olston, J. Widom, Offering a precision-performance

tradeoff for aggregation queries over replicated data,

International Conference on Very Large Databases

(VLDB’00), Cairo, Egypt, 2000, 14–155.

[26] H. Guo, P.-A. Larson, R. Ramakrishnan, J. Goldstein,

Relaxed currency and consistency: how to say ‘‘Good

http://www.tpc.org/tpcc/.2002

ARTICLE IN PRESS
S. Ganc-arski et al. / Information Systems 32 (2007) 320–343 343
Enough’’, SQL. ACM SIGMOD International Conference

on Management of Data (SIGMOD’04), Paris, 2004,

pp. 815–826.

[27] B. Kemme, G. Alonso, A new approach to developing and

implementing eager database replication protocols,

ACM Transactions on Database Systems 25 (3) (2000)

333–379.

[28] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, G.

Alonso, Scalable replication in database clusters, Interna-

tional Conference on Distributed Computing (DISC’00),

Toledo, Spain, 2000, pp. 315–329.

[29] R. Jiménez-Peris, M. Patino-Martinez, B. Kemme, G.

Alonso, Improving the scalability of fault-tolerant Database

clusters: early Results, IEEE International Conference on

Distributed Computing Systems (ICDCS’02), Vienna, Aus-

tria, 2002, pp. 477–484.

[30] R. Jiménez-Peris, M. Patino-Martinez, B. Kemme, G.

Alonso, Are quorums an alternative for database replica-

tion, ACM Transactioins on Database Systems 28 (3) (2003)

257–294.

[31] E. Cecchet, J. Marguerite, W. Zwaenepoel, Partial replica-

tion: achieving scalability in redundant arrays of inexpensive

databases, International Conference on Principles of Dis-

tributed Systems (OPODIS’03), 2003, La Martinique,

France, pp. 58–70.

[32] E. Cecchet, J. Marguerite, W. Zwaenepoel, C-JDBC: flexible

database clustering middleware, USENIX Annual Technical

Conference (USENIX’04), Boston, MA, 2004.

[33] R. Jiménez-Peris, M. Patino-Martinez, G. Alonso. Non-

intrusive, parallel recovery of replicated data, IEEE Sympo-

sium on Reliable Distributed Systems (SRDS’02), Osaka,

Japan, 2002, pp. 150–159.

[34] ESCADA, Fault Tolerance Scalable Distributed Databases,

http://gsd.di.uminho.pt/ESCADA/escada.html.

[35] T. Grabs, K. Böhm, H.-J. Schek. Scalable distributed query

and update service implementations for XML document

elements. IEEE RIDE International Workshop on Docu-

ment Management for Data Intensive Business and Scientific

Applications (RIDE’01), Heidelberg, Germany, 2001,

pp. 35–42.

[36] U. Röhm, K. Böhm, H.-J. Schek. Cache-aware query

routing in a cluster of databases, IEEE International

Conference on Data Engineering (ICDE’01), Heidelberg,

Germany, 2001, pp. 641–650.

[37] F. Waas, M.L. Kersten, Memory-aware query routing in

interactive web-based information systems, British National

Conference on Databases (BNCOD’01), Chilton, UK,

Lecture Notes in Computer Science, vol. 2097, Springer,

2001, pp. 168–184.
[38] U. Röhm, K. Böhm, H.-J. Schek, H. Schuldt, FAS–A

freshness-sensitive coordination middleware for a cluster of

OLAP components, International Conference on Very Large

Databases (VLDB), Hong Kong, China, 2002, pp. 754–765.

[39] J.M. Milan-Franco, R. Jiménez-Peris, M. Patiño-Martı́nez,

B. Kemme, Adaptive middleware for data replication,

International Middleware Conference (Middleware’04),

Toronto, Canada, 2004, pp. 175–194.

[40] C. Amza, A. Cox, W. Zwaenepoel, Distributed versioning:

consistent replication for scaling back-end databases of

dynamic content web sites, International Middleware Con-

ference (Middleware’03), Rio de Janeiro, 2003, pp. 282–304.

[41] G. Chen, C.-L. Wang, F.C.M. Lau, Building a scalable web

server with global object space support on heterogeneous

clusters, IEEE International Conference on Cluster Com-

puting (CLUSTER’01), Newport Beach, California, 2001,

pp. 313–321.

[42] E. Riedel, C. Faloutsos, G. R. Ganger, D. Nagle, Data

mining in an OLTP system (Nearly) for free, ACM

SIGMOD International Conference on Management of

Data (SIGMOD’00), Dallas, Texas, 2000, pp. 13–21.

[43] H. Märtens, E. Rahm, T. Stöhr. Dynamic query scheduling

in parallel data warehouses, International Conference on

Parallel Processing (Euro-Par’02), Paderborn, Germany,

2002, pp. 321–331.

[44] T. Stöhr, H. Märtens, E. Rahm, Multi-dimensional database

allocation for parallel data warehouses, International Con-

ference on Very Large Databases (VLDB’00), Cairo, Egypt,

2000, pp. 273–284.

[45] P.S. Yu, D.W. Cornell, D.M. Dias, B.R. Iyer, On affinity

based routing in multi-system data sharing, International

Conference on Very Large Databases (VLDB’86), Kyoto,

Japan, 1986, pp. 249–256.

[46] K. Shen, H. Tang, T. Yang, L. Chu, Integrated resource

management for cluster-based Internet services, USENIX

Symposium on Operating Systems Design and Implementa-

tion (OSDI’02), Boston, MA, 2002.

[47] G. M. Voelker, E.J. Anderson, T. Kimbrel, M.J. Feeley, J.S.

Chase, A.R. Karlin, H.M. Levy, Implementing Cooperative

Prefetching and Caching in a Global Memory System, ACM

SIGMETRICS Conference on Performance Measurement,

Modeling, and Evaluation (SIGMETRICS’98), Madison,

WI, 1998, pp. 33–43.

[48] E. Rahm, A framework for workload allocation in

distributed transaction processing systems, Journal of

Systems and Software 18 (2) (1992) 171–190.

[49] C.N. Nikolaou, M. Marazakis, G. Georgiannakis, Transac-

tion routing for distributed OLTP systems: survey and

recent results, Information Science 97 (1,2) (1997) 45–82.

http://gsd.di.uminho.pt/ESCADA/escada.html

	The leganet system: Freshness-aware transaction routing �in a database cluster
	Introduction
	Motivations
	Basic concepts
	Metadata
	Replication model
	Freshness model

	Database cluster architecture
	Cluster system architecture
	Router architecture
	TEP generation module
	Synchronization module

	Transaction routing with freshness control
	Routing algorithms
	Cost-based only strategy
	Cost-based with bounded response time �strategy
	Early synchronization

	Cost function

	Implementation
	Transaction router
	Leganet GUI

	Performance evaluation
	Experimental environment
	Comparison of costEval function with baseline cost functions
	Comparison of routing algorithms
	Speed up experiments
	Influence of tolerated freshness
	Concluding remarks

	Related work
	Replication and load balancing in database systems
	Relaxed consistency models
	Replication in database clusters
	Load balancing in database clusters

	Conclusion
	References

