
34 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992 

A FAD for Data Intensive Applications 
Scott Danforth and Patrick Valduriez 

Abstruct- FAD is a strongly-typed database programming 
language designed for uniformly manipulating transient and 
persistent data on Bubba, a parallel database system developed 
at MCC. This paper provides an overall description of FAD, and 
discusses the design rationale behind a number of its distinguish- 
ing features. Comparisons with other database programming 
languages are provided. 

Index Terms-Complex objects, data model, database program- 
ming language, parallel database system, query optimization. 

I. INTRODUCTION 
ANY knowledge based application domains such as M CAD, CAM, CASE, and office automation require 

efficient representation and manipulation of “complex ob- 
jects”-arbitrarily nested data structures including sets and 
tuples. Once created, such data structures may persist be- 
tween different program invocations, and may be concurrently 
accessed by multiple users. Although databases support persis- 
tent data, and generally support concurrency (in the sense of 
multiprogrammed transactions), many database data models do 
not support complex objects. A case in point is the relational 
model [ 11. Because relational systems impose the first normal 
form constraint, complex objects must be mapped into a 
collection of “flat” relations. With this approach, much of the 
inherent semantics of complex object composition is lost, and 
potentially expensive foreign key joins are required to recover 
and use this information. 

There have been several attempts to address representa- 
tional deficiencies of the relational model by relaxing the 
first normal form constraint-for example by developing a 
relational algebra that allows attributes to be sets of atomic 
objects [2]. Another approach is to develop an algebra that 
supports tuple valued attributes [3]. More recently Schek and 
Scholl have presented a model where relational attributes 
may themselves be relations [4]. A variety of approaches to 
modeling and representing unnormalized relations have been 
suggested [5]-[ll]. 

In addition to posing representational problems, traditional 
database languages are often not computationally complete. 
For example, it is not possible to evaluate the transitive closure 
of a binary relation in relational algebra. One response to this 
problem has been to embed database management calls within 
a general purpose programming language. Unfortunately, such 
couplings generally suffer from an “impedance mismatch” be- 

Manuscript received September 15, 1989; revised April 15, 1991. The work 
described in this paper was performed at MCC, Austin, TX. 

S. Danforth is with IBM Zip 9641, Austin, TX 78759. 
P. Valduriez is with INRIA Rocquencourt, 78153 Le Chesnay, Cedex, 

IEEE Log Number 9105289. 
France. 

tween the programming language data model and the database 
data model (121. This problem is seen in the interface between 
embedded SQL products and their host languages. Another ap- 
proach is to add persistence and database oriented data types to 
the data model of an existing general purpose language. While 
addressing the impedance mismatch problem, such an add-on 
approach may produce nonuniformities within the resulting 
language. Pascal/R [13], in which the Pascal data types are 
augmented with relations, provides an example of this [14]. 

The above approaches generalize the representaitonal and 
computational capabilities of systems based on the relational 
model, but do not support sharing of objects [15]. Sharing is 
a powerful and useful notion for data modeling, and allows a 
given object to be considered part of more than one data struc- 
ture; when a shared object is modified, all parent structures see 
the result. Database data models that support sharing include 
the Logical Data Model [16], GEM [17], and 0 2  [18], as well 
as the Entity-Relationship model [19], and the semantic data 
model SDM [20]. 

FAD is a general purpose database programming language 
that uses data types representing a natural extension of the 
relational model in order to support complex objects with 
sharing. The language is a research tool that supported and 
became part of an investigation of issues important to efficient 
general purpose utilization of multiprocessor database archi- 
tectures [21]. In the remainder of the Introduction, we state 
our overall design rationale for FAD and provide an overview 
of some important concepts. Section I1 presents the FAD data 
model, focusing on its type domains and the corresponding 
type expression language. Section 111 presents the FAD lan- 
guage, used for creating and manipulating data, and Section IV 
describes FAD modules, the unit of compilation. Section V 
discusses how our design objectives influenced our decisions, 
and Section VI provides comparisons of FAD with other pro- 
gramming languages. We conclude with a critical evaluation 
of FAD based on our experiences using the language. 

A. FAD Overview 

FAD (which stands for Franco-Armenian Data language 
[22]) was developed with the intention of providing an easy 
to use, powerful, general purpose programming language 
interface to Bubba, a parallel database system developed at 
MCC [23]. The overall design objective for FAD was that 
it be a simple, declarative language, incorporating support 
for general purpose computational mechanisms and a uniform 
model of transient and persistent data. It was desired that the 
data model include sets, tuples, shared complex objects, and 
null data as necessary for handling a wide variety of realistic 
database applications. 
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Problems to be solved at the FAD compiler level included 
optimization for distributed data access, and automatic par- 
allelization of FAD programs for dealing with horizontally 
declustered data within an overall dataflow model of compu- 
tation. We chose this approach to demonstrate the feasibility 
of developing compiler technology for efficient utilization of 
“shared-nothing’’ multicomputer databases [24], [25], and also 
to allow the use of FAD as an intermediate target for other 
languages (in particular, LDL [26]) wanting an easy access 
path to the scalable high performance offered by the Bubba 
architecture. 

The original FAD language was based on ideas and syntax 
suggested by FP [27]. A number of high level, declarative 
set oriented operations were provided as primitives, and major 
emphasis was placed on mapping these into parallel operations 
on Bubba. Subsequent enhancements to FAD retained the 
expression-based functional style of the original version, but 
provided additional flexibility and a more hospitable syntax. 
To support strong static typing, the original data model was 
enhanced and provided with a formal type expression lan- 
guage. Type expressions were then made available in FAD 
programs, and used as the basis for a data definition language 
(for describing the persistent database). Finally, a compiler 
was developed to implement strong static typing with type 
inference [28], optimization for distributed data access [29], 
and parallel code generation for execution on Bubba [30]. The 
multiprogrammed parallel system on which FAD programs 
now execute has been operational since early 1989 [21]. 

B. Data and Identifiers 

The FAD data model supports arbitrary nestings of complex 
data structures, and is based on atomic values in conjunction 
with the following data structures: tuples (i.e., records), dis- 
juncts (i.e., variant records), sets, and updatable objects. The 
word object is used in a special sense here; values and objects 
are distinguished as different types of data in FAD. A value 
may have any structure (simple or complex, as determined by 
its type), but may never be updated or modified in any way. 
An object has a modifiable state (again, of arbitrary structure, 
as determined by its type), and can be shared. Subsequent use 
of the word object in this paper should be understood in this 
special sense. We will use the terms data item and complex 
data structure when speaking of objects in the generic sense. 

In FAD programs, any given data item can be named by 
associating an identifier with it. Such an association is lexically 
scoped, and is called an identifier definition. Within the scope 
of an identifier definition, any occurrence of the identifier 
denotes the data with which it is associated. We avoid using the 
term variable because it typically encompasses ideas related to 
data storage and updatability, as well as naming. Assignment 
in FAD is an operation on objects, not data identifiers. 

C. Uniform Persistent and Transient Data 

FAD supports a single database, identified in programs 
as db. Although some applications might require access to 
multiple databases, this simplification serves FAD’s purpose 
as a research tool without precluding future enhancements. 

Persistence of data in a FAD program is defined by reachability 
(data are persistent if and only if it is reachable from db). There 
is no other distinction between transient (i.e., program-created) 
and persistent data in FAD-they are treated uniformly, and 
persistence is orthogonal to type [14]). 

In Bubba, the database is physically distributed over a col- 
lection of “intelligent repositories” (IR’s), each composed of 
a local processor, memory, disk, and communication interface 
[31]. Distribution of data within Bubba (including horizontal 
declustering of relations over multiple IR’s in the interest 
of parallel execution) is invisible within FAD programs. The 
FAD compiler automatically optimizes and parallelizes general 
purpose FAD programs for execution on Bubba, using abstract 
interpretation for analysis of the data required by program 
actions [29], [30], [32]. 

D. Strong Static Typing 

By strong typing we mean that a given data item must 
always have the same type during its lifetime. Static typing 
guarantees that this type is known at compile time, and allows 
type errors to be identified before program execution while 
supporting generation of efficient code for data manipulation 
and structure access. FAD incorporates a type expression 
language used for describing the types of all data created and 
manipulated by a program. This type language provides the 
basis for a data definition language (DDL) used to describe 
the persistent database accessible to FAD programs. DDL 
is compiled into a persistent schema, which, in addition to 
maintaining the conceptual (i.e., user level) types of db data, 
also specifies a mapping from conceptual database types to 
their physical representations. Although the conceptual types 
of two database data items may be the same, their physical 
representations may be different, based on decisions expressed 
in FAD DDL. 

A unification-based algorithm for strong static typechecking 
is used in conjunction with abstract interpretation to infer 
unstated types and identify type errors in a FAD program at 
compile time [28]. The type inference algorithm for FAD is not 
syntactically complete-there exist ambiguous FAD programs 
with more than one valid type assignment. Such situations are 
easily handled by explicitly declaring the necessary types. An 
example of an ambiguous untyped program would be one that 
accepts two arguments, x and y, and adds them using the 
operator +. In this case, 5 and y could be integers or floating 
point numbers; a solution is to explicitly indicate the types of 
x and y. 

E. Actions and Functions 

In FAD, the term action is used to indicate a computation 
that returns data after possibly accessing or updating data. 
Actions in FAD thus correspond to expression evaluation and 
command execution. User-defined functions in FAD allow 
specification of actions that are parameterized with respect to 
data. FAD provides a fixed set of higher order functions (called 
action constructors) for writing programs. These construct 
aggregate actions from action and function expressions. A 
number of FAD action constructors are provided for declar- 
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atively expressing powerful operations on sets. For instance, 
a filter action conceptually applies a function to each element 
of the Cartesian product of a number of sets to produce a 
new set composed of the application results, thus combining 
generalized selection, projection, and wary join capabilities 
within a single operation. 

denotes the domain of tuples that map the string “a” to an 
element of ints, and the string “b” to an ordered tuple (with 
implicit integer field labels). This ordered tuple maps the 
integer 1 to an element of floats, and the integer 2 to an element 
of bools. Because of the similarity of ordered tuples to those 
whose fields are labeled with strings, ordered tuples will not 
be considered further in this section. 

A disjunct is a tuple in which only one field is allowed 11. THE FAD DATA MODEL 
We now present the FAD data domain and the corresponding 

type expression language. As a first step, atomic types and 
structured type constructors are introduced. The FAD data 
domain is then based on the atomic types and closed with 
respect to a set of recursive domain equations involving the 
type constructors. Types in FAD are domains (i.e., sets) of 
distinguishable data elements. We do not concern ourselves 
here with the particular representation of the individual el- 
ements within a semantic domain, but feel free to name 
individual elements when they are limited in number or of 
special importance. 

A. Atomic Types 

A representative sampling of the FAD atomic types in- 
cludes: 

bools the set {true, false, null} 
ints a set of computer integers U {null} 
floats a set of computer floating point numbers U {null} 
strings a set of computer strings (of arbitrary length) U 

{null}. 
Null is an element of every FAD type (including the con- 

structed types, introduced below), and is generally considered 
by FAD actions as representing an unknown element of a given 
type. It can be used in tuples to indicate “no-information’’ for 
fields that have not yet been assigned. By itself and without 
a surrounding context, the FAD constant expression null is 
ambiguous; it could be any type. As indicated earlier, however, 
static typing guarantees that the type of every data expression 
in a FAD program is known at compile time, either as a result 
of explicit typing, or as a result of type inference-otherwise 
a compile-time type error is issued. Using null as an argument 
to a function never results in a run-time error, although many 
functions are defined to return null if any of their arguments 
are null. 

B. Structured Types 

The structured type constructors are now introduced. They 
will be used in the following section to construct semantic 
domains for FAD tuples, disjuncts, sets, and objects. FAD does 
not provide a list constructor because binary tuples provide this 
capability. An array constructor was omitted because keyed 
sets provide this capability. 

A tuple is a partial function from label values to data 
elements called fields. The corresponding tuple type is a 
domain characterized by the type of the label values (either 
strings or ints), and a fixed number of associations between 
different field labels and the corresponding field types. Square 
brackets are used to represent the tuple type constructor. Thus, 
for example, the type expression [a:ints, b:[floats, bools]] 

to be nonnull. A tag method is provided for disjuncts that 
returns the label of the field stored in a disjunct. If no field 
is stored, a null label is returned. Vertical brackets are used 
to represent the disjunct type constructor. Thus, for example, 
the type expression la:ints, b:stringsl denotes the domain of 
all disjuncts that, if tagged with “a” store an integer, and if 
tagged with “b” store a string. 

A set is an unordered collection of data elements, all of 
which have the same type. No two elements of a set are 
identical (two data items are identical if and only if they are 
the same element of a data domain). The corresponding set 
type is a domain characterized by the type of the set elements, 
and an optional key specification (no two elements of a keyed 
set are allowed to have the same key value). Curly brackets are 
used to represent the set type constructor. Thus, for example, 
the type expression {[a:ints, b:strings]; key is a }  denotes the 
domain of all sets of tuples of the specified type, for which no 
two set elements have the same “a” field. Multisets (i.e., sets 
containing duplicate elements) were omitted in FAD because 
sets of objects provide this capability. 

An object is a sharable data item consisting of a unique, 
unchanging identity and an updatable state. An object type is 
characterized by indicating the semantic domain of its state, 
and is represented in FAD semantics as the domain (object- 
ids x t),  where t is the state domain. The identity portion 
of an object is a logical address that uniquely identifies the 
updatable state portion of an object, and therefore supports 
sharing. Although the primitive operations of FAD are allowed 
to access the identity and state portions of an object separately 
as necessary to perform their functions, the FAD programmer 
is only given access to an object as an integral combination 
of identity and state. The identity portion of an object is not 
FAD data (there are no pointers in the language), and neither 
in general is the state portion. This is a result of the FAD data 
domain equations presented in the next section. Obj is used 
to represent the object type constructor. Thus, for example, 
the type expression obj([a: ints, b: obj(strings)]) denotes the 
domain of updatable sharable object tuples that map the string 
“a” to an integer value, and the string “b” to an updatable 
sharable atomic object whose state is a string. All objects 
support an assign operation, which replaces an object state with 
another from the same semantic domain. Other (incremental) 
changes to object state depend on the structure of the object: 
individual fields of an object tuple may be replaced using 
tupleassign; the contents of an object set may be changed by 
insert and delete. 

C. The FAD Data Domain 

Fig. 1 defines the FAD data domain in terms of the above 
atomic types and type constructors. Every FAD data item is an 
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Data = Values + Objects 
Values = Atomics + 

[Values] + 
IValuesl + 
{Values( optional-key-spec) } 

obj([Data]) + 
obj(lData1) + 
obj ({ Data(optiona1-key-spec)}) 

Objects = obj(Atomics) + 

Fig. 1. The FAD data domain. 

element of a FAD type, and the FAD types are exactly those 
that are constructed as indicated in Fig. 1. In the interest of 
brevity, constructor syntax is generalized in Fig. 1 to allow 
(for example) expressions of the form [t],  which denotes the 
domain of tuples all of whose component fields are elements 
of the semantic domain t. 

An important aspect of the above equations concerns the 
way in which values and objects are stratified: objects can 
contain values, but not vice versa. The primary reason for 
defining the FAD data domain this way was our desire to 

1) provide a conservative extension to the relational data 
model that supports complex data structures with updates 
and sharing, and 

2) enforce the idea that values do not change; ifany portion 
of a data item can change over time, it must be an object. 

The first of these objectives is primarily a result of our 
belief that relational database technology is a well-developed 
approach for management of data. We wanted to stay fairly 
close to the relational model in order to assure that SQL 
applications would be easily mapped to FAD, and to use 
proven optimization techniques developed in the context of 
distributed relational databases. 

The second objective arose from a desire to cleanly reflect 
updatability in the type system. Value types in a FAD program 
are known at compile time, and knowing that values cannot be 
updated is useful when generating code for efficient execution 
on a parallel, distributed architecture (in which special consid- 
eration for updatable objects is required). Also, when doing 
scavenging garbage collection in support of data clustering, the 
underlying system is guided by types and can make effective 
use of this information. 

The FAD data model achieves both of the above objectives. 
With respect to the first objective, sets of tuples provide a 
natural model for relations. Also, the absence of pointers in 
FAD means that when an object is placed in a tuple, the 
operational view seen by the FAD programmer is that the 
complete object is there (as opposed to a pointer that must be 
dereferenced in order to access the object state). This coincides 
with the relational view of data as being stored “in place” in 
tuples. This view also relates to the second objective. Because 
the view uniformly presented is that data are stored in place, 
and because no part of a structured value such as a tuple 
is allowed to change over time, placing an object within a 

structured value makes no sense (since the object could change 
over time, and it is seen as being part of any containing 
structures). 

As an aid to visualization of objects and sharing in FAD, 
Fig. 2 provides a graphical depiction of three FAD data items 
(named A, B, and C) from the FAD types{ints}, obj{ints}, 
and obj([obj(ints), {ints}]). Dashed lines surround the objects 
in this example, identified as id-1, and id-2. Data items B and 
C share the object whose identity is id-1. Note that, by itself, 
the state portion of the object named C is not an element of 
the FAD data domain defined in Fig. 1. The state of C is not a 
value because it is a structure that contains an object; it is not 
an object because it has no identity portion (id-2 is not part 
of the state; it is part of the overall object named C, which is 
FAD data). This highlights the fact that the FAD programmer 
is only given access to an object as an integral combination 
of identity and state; in general, the state of an object is not 
even an element of a FAD type. 

D. The FAD Type Expression language 

Fig. 3 presents a grammar for FAD type expressions. Within 
this paper, informal grammar segments are provided to sum- 
marize syntax. Nonterminals are enclosed in angle brackets, 
the notation (xyz)* indicates zero or more occurrences of the 
xyz nonterminal; (xyz)’ indicates one or more occurences. 
Undefined nonterminals are given self-explanatory names. 

In addition to the atomic types and the type constructors 
already introduced, Fig. 3 shows that FAD type expressions 
include type references. These allow referring to type domains 
by name, using identifiers (called type-ids) that appear on 
the left-hand side of a schema type declaration. In order to 
illustrate type-ids, type references, and the type expression 
language as a whole, Fig. 4 presents an example database 
schema. Line numbers are placed in FAD comments to aid 
discussion. 

(*1*) associates ages with the type denoted by the type 
expression on the right-hand side of the declaration-in this 
case, the domain named ints. 

(“2’) associates person with an object tuple type. Person 
is automatically inferred to be an object tuple type because 
the age field is an object type (recall that any FAD type 
constructed from an object type must itself be an object type). 
The right-hand side of the type equation for person is thus a 
supported shorthand for the expression, obj([name : strings, 
age : object(ages), dept : insts]). This type is the set of all 
object tuples that map “name” to an element of type strings, 
“age” to an element of type obj(ages), and “dept” to an element 
of the type ints. As an example of a type reference, personage 
is the type of the age field for a person, i.e., obj(ages). The 
domain obj(ages) is identical to the domain obj(ints) because 
ages = ints. Because person is an object tuple type, the fields 
of any data of type person may be replaced (using tupleassign) 
without loss or change of the object tuple’s identity. Also, the 
state of the age field may be replaced (using assign) without 
loss or change of its identity. 

(“3*) associatespeople with an object set type. This type is 
the domain of all FAD object sets containing elements of type 
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Fig. 2. Three data items 

(type-expr) ::= (atomic-typeid) 
I (type-construction) 
I (type-reference) 

(atomic-type-id) ::= bools(ints(floatslstrings1 . . .  
(type-construction) ::= [(field-spec)’] 

I I (field-spec) + I 
I { (type-expr)(optional-key-spec)} 
I obj((type-expr)) 

(type-reference) ::= (type-id) 
1 (type-reference) . CB 

111. THE FAD ACTION LANGUAGE 

The FAD action language is a lexically scoped expression 
language used to represent two things: actions and first-order 
functions (actions parameterized with respect to FAD data). 
Every action expression in FAD returns data, and without 
exception may be followed with an optional type expression 
enclosed in angle braces indicating the type of this data. For 
example, the expression +( 1 ,  2( ints))(  ints) denotes an action 
that returns an integer. In the following presentation (with 
occasional exceptions), explicit typing of FAD actions will be 
omitted. The FAD compiler infers these types, and the focus 
of this section concerns the action language. 

I (type-reference) . (fielddabel) A. User-Defined Functions 
Fig. 3. The FAD type expression language. Function specifications appear in top level function declara- 

tions, and can also be used as arguments to action constructors 
that take functions as arguments (e.g., filter). Free data iden- 
tifiers are allowed in function specifications as long as these 
identifiers are defined within an enclosing lexical scope. 

ages = ints 
person = [name : strings, age : obj(ages),dep : i n t s ]  
people = {person; key is name} 
d b  = [employees : people, depts : obj({ints})] 

(fun-spec) ::= fun( (params))(action-expr) 

Fig. 4. An example schema. 

person (person is a type reference). In addition, no element 
of the people domain contains two person tuples with the 
same name field. This is because name is a key for sets of 
the constructed type. As another example of a type reference, 
people.@ is the type of the elements of a set of type people, 
namely person. Because people is an object set type, the 
contents of any set of type people may be modified (using 
insert or delete) without loss or change of the set’s identity. 

(*4*) associates db  with an object tuple type. The two fields 
of such a tuple, employees and depts, respectively, contain 
people and an updatable set of integer values. The type-id db 
is reserved, and is normally dewithoufined using FAD DDL. 
Although the above schema is a legal DDL persistent schema 
specification, other information such as indexes and physical 
representations are normally also provided. The following 
type expressions (the last three of which are type refer- 
ences) all denote exactly the same type: obj(ints), person.age, 
people.@.age, and db.employees.@.age. Although not illus- 
trated in this example, the ordering of type declarations is 
immaterial, and recursive type declarations are supported (e.g. 
intlist = [ints, intlist]). 

B. Actions 

FAD is intended to be a simple, regular language, with an 
intuitive inventory of actions. The following grammar presents 
an overall view of the different FAD action categories. 

(action-expr) ::= (simple-action) 
I (structure-construction) 
I (structure-selection) 
I (structure-modification) 
I (function-application) 
I (action-construction) 

In examples that follow, we occasionally use simple let 
expressions (before presenting the let action constructor in 
Section 111-C). These uses are intended to be self-explanatory. 
For example, the expression let  z = 1 in + (z,2) denotes 
an action that returns the value 3. 

1) Simple Actions: A simple action is either a constant (e.g., 
3.14) or an identifier that names data. The reserved identifier 
db names the persistent database. 

2) Structure Construction: Structure constructions return 
structures that hold data. Structures in FAD are tuples, dis- 
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juncts, sets, and objects. 

(structure-construction) ::= [(field-expr)’] 

I I (fieldexpr) I 
I { (action-expr)’} 
I new( (action-expr)) 

For example, the expression [a  : “a”,  c : 3.141 denotes an 
action that returns a value tuple of type [a:strings, c:floats]. The 
disjunct and set constructions are similarly straightforward, but 
object constructions require additional comment. The FAD 
function new is applied to a value, and returns an object 
whose state is the value. Thus, for example, the expression 
new({l))  denotes an action that returns a new object set of type 
obj({ints}). The only other possibility with respect to object- 
construction is creation of a structure that includes an object. 
Such structures, when built, are automatically objects, due to 
FAD’s stratified data model. For example, the FAD expression 
le t  x = new(1) in {x}  first creates a new, unique atomic object 
named 2 whose state is an integer, and then returns a new, 

value 42. The set in this example is given an explicit type in 
order to indicate an index key on the “a” attribute: 

{[a :1, b : 11, [a : 2 ,  b :42], [a : 3, b : 11) 
< {[a : ints, b : ints]; key is a} > Q2.b 

The value structure selection operation returns a value that 
corresponds to the state of an object. If the state of an object 
is a value, then this value is returned. If the state of an object is 
a structure that contains objects, then a corresponding structure 
all of whose subobjects have been (recursively) converted to 
values is returned. 

4)  Structure Modification: Structure modification operations 
are provided for each FAD structure. These operations (with 
the exception of assign, which is only meaningful on objects) 
may be used on either objects or values. When applied to 
an object, they update (destructively change) the object state 
and return the modified object as the operation result. When 
applied to a value, they create and return a new value, 
incrementally different from the original. 

(structure-modification) ::= tupleassign( (action-expr), (action-expr), (action-expr)) 
1 insert( (action-expr) , (action-expr)) 
I delete( (action-expr), (action-expr)) 
I assign( (action-expr), (action-expr)) 

unique object set whose single element is the object named 
2-the type of the overall expression is obj({obj(ints)}). 

3)  Structure Selection: Structure selections are actions that 
return data held by structures. 

(structure-selection) ::= (action-expr). (action-expr) 
I (action-expr) @( action-expr) 
I value( (action-expr)) 

The infix tuple select operator . is left associative, and is 
used to represent field selections from tuples and disjuncts. 
In most languages with tuples (or records), field labels in 
tuple selections are not data, but syntax processed at compile 
time. Although FAD avoids this restriction, the field selector 
is usually a constant (a special case that is optimized) rather 
than an identifier or an arbitrary data expression.’ The infix 
set selection operator @ is left associative, and is used to 
represent element selections from sets that are keyed. The set 
being selected from is indicated to the left of the @, and the 
value of the search key is indicated on the right of the @. 
Theresult returned is the set element that has the indicated 
key if such an element exists, otherwise null (of the type of 
the set elements) is returned. 

For example, the following action expression (in which a 
set selection is composed with a tuple selection) returns the 

‘As a notational convenience, the FAD compiler assumes that an undefined 
identifier found in the field label position is intended as a string constant. For 
example, assuming that the identifier b is undefined, both of the expressions 
[a:1, b:2].b and [a:l, b:2].“b” mean the same thing (an action that returns the 
value 2). 

Tupleassign is used to replace a tuple field. The first 
argument of the tupleassign operation must either be a tuple 
or an object whose state is a tuple. The second argument is a 
field label, and the third argument is the data to be placed in 
the designated field. As with tuple selections, the compiler will 
treat undefined identifiers in the second argument position as 
string constants. For example, the action letx = new ([age: 11) 
in tupleassign(x, age, 3) returns the object named x, modified 
so it contains the value 3 in its age field. 

Insert is used to add a new element to a set. The first 
argument of the insert operation must either be a set or an 
object whose state is a set. The second argument is the element 
to be inserted. Delete is used to remove an element from a set. 
The first argument of the delete operation must either be a set 
or an object whose state is a set. The second argument is the 
element to be deleted. The action let x = new ({1,2)) in insert 
(x, 3) returns the object set named x, modified so it contains 
the values 1, 2, and 3. 

Assign is used to update an object-i.e., replace its state 
with another from the same semantic domain. The assign 
operation requires an object as its first argument, and the 
second argument may be either an object or a value. If the 
second argument is a value, then the assignment replaces 
the state of the first argument with this value. If the second 
argument is an object, the assignment replaces the state of the 
first argument with the state of the second. For example, the 
action let x = new ([age: 11) in assign (x, [age: 21) returns the 
object tuple named x, modified so its state contains the tuple 
[age: 21. 
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5) Function Application: 

(function-application) ::= (fcn-name)( (arg s)) 
(fcn-name) ::= (id) I (typeclass) .(id) 

As shown by the above grammar segment, there are two 
different representations for function names. The first possi- 
bility is simply an identifier, which is the usual form. Because a 
number of FAD functions are overloaded, however, a typeclass 
can also be specified in order to remove any ambiguity. All 
FAD functions have a typeclass with which they are associated. 
This represents a grouping of functions according to the kind 
of data on which they act. For instance, object-setshsert and 
value-setsinsert are the explicitly typeclassed insert operations 
for objects whose state is a set, and for value sets, respectively. 
Another example is ints.+ and floats.+, which are the addition 
functions for ints and floats. 

-Example Function Applications- 

+(% 3) 
ints.+ ( 2 . 3 )  
user-defined-fcn(z. y) 

a)  Equality Tests: It is not the purpose of this paper to 
discuss all the functions provided by FAD-these include 
the usual set of arithmetic, logical, and string manipulation 
operations. But it is useful to discuss the equality tests, which 

returns true, and equaZ?([new(l)], (new(l)]) returns false. All- 
equal? tests for deep equality of two objects. All equal?(ol, 0 2 )  
is equivalent to eq?(value(ol). value(o2)) with one exception: 
converting an object set to a value removes duplicates, but sets 
of objects are only all-equal? if they have the same number 
of all-equal? elements. Sets of objects are therefore treated by 
all-equal? as multisets of object states. Thus, for example, 

all-equal?( { new( I ), new( 2 ) ,  new( 2 ) } ,  
{new(I),new(2), n e w ( 2 ) ) )  returns true, and 

all-equal?({new( I ) ,  new(2). new(Z)}, 
{ n e w ( I ) ,  new(2))) returns false. 

C. Constructed Actions 

The last category of FAD action expression is called an 
action construction. These allow definition of data identifiers 
(let), control over the sequencing of actions (let, begin-end, 
do-end, if, whiledo), specialized processing of sets (fil- 
ter, pump, group), and unstructured control transfers (escape, 
and abort). 

I )  Let: Let expressions are the FAD mechanism for iden- 
tifier definition. A let expression represents an action that 
sequentially orders interspersed groups of parallel identifier 
definitions and actions, followed by execution of a final action 
whose result is returned as the overall let action result. 

closely reflect the FAD data domain structure. As with the 
original FAD language [22] ,  there are three levels of equality 
testing available, provided by the following functions: 

(let) : : = let (defgroup/act ) + in (action-expr) 
(defgroup/act) : := (id_def)+ 1 (action-expr) 

(id-def) ::= (id) = (action-expr) 
data.eq? (id)%(id) = (action-expr) 
objects.equal? 
objects. all-equal? 

Each equality test requires two arguments of the same type. 
As indicated by the typeclasses, the eq? function is available 
on all data; the functions equal? and all-equal? are available 
on all objects. 

Eq? tests for identity of two data items in FAD. Two data 
items are identical if and only if they are the same element 
of a FAD data domain, thus identity for objects can simply 
compare object-ids for equality. For example, eq?(new(l), 
new(1)) returns false, while the expression let x = new(1) in 
eq?(x, x) returns true. Identity for values is based on recursive 
comparison of all structure levels down to atomic values, with 
sets being eq? if they have identical elements. Eq? treats null 
as known data, thus eq?(null( ints), null( ints)) returns true, 
and eq?(null(ints), 1) returns false. There is an important 
interaction between eq? and set elements in FAD: No two 
elements of a set are identical, therefore no two elements of 
a set are ever eq?. this is not the case for the weaker equality 
tests, equal? and all-equal?-two elements of an object set 
may be equal? or all-equal?. 

Equal? tests for shallow equality of two objects in FAD 
by using eq? to compare object states in the case of atomic 
objects, or the top level state components in the case of 
structured objects. Thus, for example, equal?(new(l), new(1)) 

Each definition group is a comma-separated collection of 
identifier definitions. Sequencing within a definition group is 
undefined (allowing parallel execution of the actions whose 
results are named). Scoping of identifier definitions extends 
from their introduction through the final (action-expr) that 
concludes the let expression, with later definitions masking 
earlier ones in the case of name conflicts. Expressions within 
a definition group are evaluated using the identifier definitions 
in effect upon entry to the definition group, and the same 
identifier cannot be defined twice within the same group. 

A let expression need not contain identifier definitions. This 
is a useful special case, since it provides a mechanism for 
sequentially performing a number of actions for their side- 
effects, and then returning the result of a final action. There 
are two varieties of identifier definition. The first, involving a 
single identifier, is the usual form and requires no elaboration. 
The second, involving a % followed by a second identifier, 
allows access to action status results. 

In addition to a data result, every FAD action sets an integer 
status code. For example, in the case of set insertions, a status 
code indicates whether the inserted element was already in the 
set. This status is normally invisible to FAD programs, but the 
second identifier definition syntax allows FAD code to receive 
and inspect this status-the second identifier names the status 
returned by the action indicated to the right of the equal sign. 
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The escape action constructor (discussed below) allows user- 
defined functions to escape their execution context and return 
status codes. 

-example Let actions- 

let z = 1, y = new(2) 
assign(y. 3 )  

in + (x. y) 
let x = new([a : 1, b : 21) 

(*returns 4*) 

y = let tupleassign(s, a. 2 )  in x.6 
in + (z.a. y) (*returns 4*) 

2) Begin-End and Do-End: 

(begin-end) :: = begin(action-expr)’ end 

(do-end) :: = do(action_expr)+ end 

These action constructors allow explicit sequencing of actions 
performed for their side-effects. The actions they construct 
return null(ints). Actions in a begin-end construction are 
executed sequentially. Actions in a do-end construction are 
executed in no particular order, and may be executed in 
parallel. 

3) IF 

(if) ::= if(test-expr) then (then-expr) 

1 if(test-expr) then (then-expr) else (else-expr) 

If expressions support conditional execution. The constructed 
action first executes the action denoted by (test-expr) (which 
must be of type bools), and, if the result is true, then executes 
and returns the result of the action denoted by (t,hen-expr); 
otherwise, the (else-expr) action is executed and its result 
returned (if there is no (else-expr), null of the same type 
as (then-expr) is returned). The types of (then-expr) and 
(else-expr) must be the same. 

-example If actions- 

if eq?(z, 1) then assign(y, 3 )  
(*returns data of type obj(ints)*) 

if f(w) then 3 else 4 
(*returns data of type ints*) 

4 )  Whiledo: 

(whiledo) ::= whiledo( (loop-fcn). (exit-fcn), (start-action)) 

Whiledo expressions support iteration without updates. The 
constructed action iteratively loops through applications of 
(loop-fcn) to an implicit “loop state” until the result returned 
is null, at which point (exit-fcn) is applied to the loop 
state, producing the final whiledo action result. The loop 
state is initially the result of (start-action), and thereafter 
is the nonnull result obtained from the previous application 
of (loop-fcn). In practice, the body of (loop-fcn) is an if 
expression without an else branch. 

-example Whiledo actions- 

whiledo(fun(z) if <?(z. 10) then + (2, l), 

fun(.) - (x, IO). 
1) (*returns 0*) 

whiledo( fun(loop) 
if >?(loop.counter, 1) then 

[counter : -(loop.counter.l), 
accum : *(loop.counter, loop.accum)] 

fun(exit) exit.accum, 
[counter : 5 .  accum : 11) (returns 120, factorial of 5 )  

5) Filter: 

(filter) ::= filter((function), (set-expr)+) 

A filter action applies a function to each element of the 
Cartesian product of the sets given as arguments to the filter 
action constructor. The function must have as many parameters 
as there are sets to filter. The result of the filter action is a set 
made up of the application results. If the filter function returns 
an object, the filter result is an object set, otherwise the result 
is a value set. Filter actions are the backbone of many FAD 
database applications, and their optimization is essential when 
multiple sets are involved [29]. 

-example Filter actions- 

filter(+ 
{1,2,3) 

filter(fun(e) 

filter(fun(r) + ( x .  1), {1,2,3})) (*returns {3,4,5,6,7}*) 

if < ?  (e.salary, 10000) 
then begin tupleassign(e,salary,+(e.salary, 1000)) end, 

db.employees) (*returns { } after side-effecting some employees*) 



42 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992 

6)  Pump: 8) Escape: 

(pump) ::= pump( (unary-fen), (binary-fcn). 
(identity) , (set-expr)) 

(escape) ::= escape( (int-expr)) 

A pump action reduces a set to a single result by applying 
a unary function to each element of the set to produce 

reduced to a single result using a binary function to combine 
the set members. The binary function is assumed 
to be both associative and commutative (with (identity) as 
the identity element) so that the reduction can be performed 
in any order, and in parallel. If the set to be pumped is empty, 
then the identity element for the binary function is returned. 

An escape action returns its argument as an action result status 
to the closest lexically enclosing action whose result status is 

type) as the result of this action. If there is no such lexically 
enclosing action, then the program itself is exited with a null 
result and a message based on the escape status. 

an intermediate set (possibly with duplicates) which is then named in a let expression, and returns (Of the appropriate 

Escape actions- 

let y = ”ubc” 
-example Pump actions- 2% s = if substring(y, “bcd”) 

then append(y, “ d e f ” )  else escape(2) 
pump(fun(z) 1, +, 0, {5,6,7,8}) (*returns 4- 

in[z, S I  (*returns [null(strings), 2]*) 
the set cardinality*) 

pump(fun(e) if =?(e.age130) then{e} else { } 
union, 

{ I  
db.employees) (*returns the set of employees of 

age 30”) 

7) Group: 

(group) ::= group( (function). (set-expr)) 

A group action creates a set of ordered tuples representing the 
equivalence classes of the argument set under application of 
the argument function. Within the set returned by group, each 
tuple is composed of two fields. The first field contains the 
result of applying the function to one of the set elements, and 
the second field contains the set of all argument set elements 
that are mapped to the datum in the first field by the argument 
function. 

-example Group actions- 

9)  Abort: 

(abort) ::= abort((string-expr)) 

A FAD program is considered a transaction by the database 
system, and multiple concurrent transactions are supported by 
Bubba although this is invisible to a FAD program. Upon 
program termination, any updates to the database performed 
by the program must be committed, and this is handled 
automatically by Bubba transaction management facilities. 
Because it is sometimes necessary to abort a transaction 
and avoid committing any database updates that have been 
performed, FAD provides an abort action, which causes an 
immediate exit from the program, aborts the transaction, and 
returns its string argument as the program result. 

-example Abort actions- 

abort (append(“no members in”, y)) 

group(even?, {I, 2,3,4,5}) 

grouP(fun(z)x.l, {[I- 21, [I, 31, [2,21}) 

IV. FAD MODULES 
A module (the unit of program compilation) provides a 

scope within which recursively defined types, recursively 
defined functions, and a transaction program can be declared. 

(*returns{[true, {2,4}], [false, {1,3.5}]}*) 

(*returns{[L {[I, 21, [I, 31)l. [a, {[a, 2l}l}*) 

(module) ::= module(id) 
(d bname) 
(optional-transient-schema) 
(fen-decl) * 
(program-def) 

(dbname) ::= db = (id) 
(transient-schema) ::= schema(type-decl)* 
(type-decl) ::= (id) = (type-expr) 
( fen-decl) 
(program-def) ::= def prog( (params))(action-expr) 

::= define( id) fun( (params)) (action-expr) 
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A (dbname) is used to indicate the persistent schema 
that should be used when checking the module. A 
(transient-schema) enables a programmer to declare types 
that are useful in the function definitions that follow. Although 
the FAD compiler infers types, explicit type declarations can 
provide a convenient form of documentation in the form of 
assertions that are checked by the compiler. Two example 
modules are shown in Figs. 5 and 6. 

When compiling the new-parts module in Fig. 5, the FAD 
compiler determines that the formal parameter p for add-part 
must have the same type as the tuples in the parts database 
relation, and therefore insures that the tuple constructed in the 
main transaction filter function (the tuple passed to add-part) 
is of this type. A n  equivalent new-parts module (expressed 
using types inferred by the FAD compiler is shown in Fig. 7 
for comparison. 

v. DESIGN OBJECTIVES AND DECISIONS 

As mentioned in the Introduction, we wanted FAD to 
be a conceptually simple database programming language 
with declarative, set-oriented operations, support for general 
purpose computational mechanisms, and a uniform model of 
transient and persistent data including shared complex objects 
and null data. Further, we wanted this in a context of strong 
static typing, in order to assist reliable program development 
and execution efficiency. None of these objectives seemed 
particularly aggressive, and it would therefore be surprising 
if FAD were somehow a revolutionary language; this was not 
our purpose at all. In this section, we review our decisions 
with respect to 1) the overall character of the language, 2) its 
data model, and 3) our implementation of strong static typing. 
Section VI will compare our decisions with those reflected by 
related work. 

A.  Overall Language Character 

By overall language character, we mean the general style 
of expressing individual operations, and the mechanisms used 
to combine individual operations into complete programs. A 
number of different possibilities are available: purely func- 
tional (no update operations), functional-style (expression- 
based), procedural, logical, and object-oriented. Also, we feel 
an important aspect influencing the character of a database 
programming language concerns the relationship between tran- 
sient data and persistent data: Is there a division between these 
two that requires translation between different formats, the use 
of a special query subsystem, the use of loadhtore operations, 
or are these two classes of data uniformly presented [14] so 
that persistence is orthogonal to type, and based on reachability 
as opposed to declaration? 

Because a primary goal was showing the feasibility of 
automatic, efficient utilization of a Bubba-style architecture 
for scalable support of general purpose database programs, 
an initial language focus concerned the need to program with 
declarative, set-oriented operations on a uniform model of tran- 
sient and persistent data. It was felt that this style of program- 
ming would handle a wide variety of realistic applications, be 
simple enough to allow the necessary compile time analysis, 

and allow direct manipulation of persistent data by object 
code executing in a virtual single level store. Unfortunately, 
although filter, group and pump operations (or restrictions 
thereof) are the bread and butter operations of SQL, we were 
aware of no general purpose database programming languages 
that provided these operations within a uniform model of 
persistent and transient data. FAD was therefore developed 
to provide such a language in support our research objectives. 

The initial designers of FAD [22] chose an expression- 
oriented, functional style of programming, similar to that 
suggested by Backus [27], because of its conceptual and 
syntactic simplicity. The declarative, set-oriented operations 
important to FAD fit nicely within this framework, which 
included conditionals and iteration as necessary for compu- 
tational completeness. Unfortunately, although it was compu- 
tationally complete, the initial version of FAD was difficult to 
use. The absence of data identifiers, and the required use of 
function composition as the sole program building mechanism 
were problematic. 

In order to include data identifiers, support common subex- 
pressions, and allow specification of sequentially sequenced 
actions, FAD was enhanced with ideas found in more tradi- 
tional functional-style languages. In particular, function pa- 
rameters and a let action constructor were added. Another 
enhancement was the idea of a module, to provide a scope for 
naming and referring to user-defined functions. Thus, although 
the current version of FAD retains an FP flavored whiledo (in 
which an internally maintained loop state supports iteration 
without requiring updates to objects), the overall style of 
programming supported by the language is now closer to that 
seen in environment-based functional-style languages such as 
Common Lisp [33]. 

Persistence in FAD is based on reachability from a single 
root, db, and is orthogonal to type. Bubba allows FAD pro- 
grams to execute in parallel, as concurrent, multiprogrammed 
database transactions. This is essential for efficient utilization 
of the bubba architecture, but does not directly impact FAD 
(the abort statement is the only place where FAD recognizes 
the connection between programs and transactions). Bubba 
includes a specially designed virtual memory OS that supports 
a single level store (into which the persistent address space 
is mapped), page-level locking of the persistent space, and 
transaction-private address spaces for updated persistent data. 
At the close of a transaction, a distributed two-phase commit 
is used to incorporate updates into the persistent database [21]. 

B. The Data Model 

The initial FAD data model included no values-only 
sharable, updatable, atomic and structured objects [22] .  Early 
application experience with FAD, however, indicated a number 
of somewhat problematic aspects related to an absence of 
values in the data model. For example, FAD originally had 
“predicates” that returned true or false values as needed to 
control conditionals and iteration. But the results of predicates 
were not available to the user as data (because true and false 
were not objects). While this had not seemed restrictive with 
the original language, in which neither data nor functions could 
be named, enhancements to allow named data (which support 
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-parts-suppliers db- 
(* 

part = [part-num: ints, part-name: strings, supplier: ints] 
supplier = [supplier-num: ints, parts: obj({ ints})] 
db = [parts: obj({part; key is part-num}), 

suppliers: obj( { supplier; key is supplier-num})] 
*I 

module new-parts (*add new parts for an existing supplier*) 
db = parts-suppliers 
define add-part fun(p) (*add a new part*) 

do 
insert(db.parts,p), 
insert(db.suppliers@(p.supplier).parts, p.part-num) 

end 

filter(fun(p) add-part([part-num:p.l, part-name:p.2, supplier: s-code]), 
define prog(s-code, new-parts) 

new-parts) 

Fig. 5.  Parts-suppliers example 

-ancestors db- 
db = [parents: obj({ [person: strings, child: strings]})] 

(* 

*I 

module get-ancestors (*return the ancestors of a given person*) 
db = ancestors 
define ancestors fun(parents) (*start w. partents, and extend frontier*) 

whiledo( 
fun(1oop) (*try to extend frontier*) 

let frontier = loop.frontier, accum = 1oop.accum 
in if non-empty?(frontier) then 

let new-front = 
filter( 

fun(parent, frontier) 
if =? (parent.child,frontier.ancestor) 
then [person: frontier .person 

ancestor:parent.person], 
db.parents,frontier) 

in [frontier:new-front, accum:union(new~front,accum)] 
fun(exit) exit.accum, (*return accumulated ancestors*) 
[frontier:parents, accum:parents]) 

define prog(name) 
let parents = 

filter( 
fun(p) if =? (p.child, name) 

db.parents) 
in ancestors(parents) 

then [person:name, ancestor:p.person] 

Fig. 6. Ancestors example 

factoring out common subexpressions in the interest of both 
readability and efficiency) suggested that the result of a test 
performed by a predicate might be named to allow its use more 
than once. A dual problem, highlighted by adding modules to 
support named functions (another factoring operation useful 
to program development), was that complex predicates built 
up from primitive comparisons and Boolean connectives could 
not be implemented as user defined functions (since functions 
should return data, and values were not FAD data). 

Adding values to FAD offered a number of benefits. In 
addition to cleaning up problems like those mentioned above, 
supporting values strengthened the relationship between FAD 
and the value-based relational model (in which relations and 
tuples may be viewed as FAD objects, and attributes as FAD 
values [34]). In addition, the notions of identity, sharing, 
and updating do not apply to FAD values, so they can be 
implemented more efficiently than objects in an underlying 
database management system. 
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module new-parts (*showing types inferred by the FAD compiler*) 
db = parts-suppliers 
schema 
T$100 = [T$101] 
T$101 = [db.parts.@.part-no, db.parts.@.part-name] 
define add-part fun(p (db. part s. 0)) 

object-sets.insert(db."parts",p) 
object-sets.insert(db."suppliers"@(p."supplier")."parts", p."part-no" 

do 

end 

filter( 
define prog(s-code (db. parts. 0 .supplier), new-parts (T$lOO)) 

fun(p( T$100)) 
add-part([part-no: p.1, 

part-name: p.2 
supplier: s-code] (db. parts. @ ) ), 

new-parts( T$100)) 

Fig. 7. Inferred types. 

The decision to add values to FAD required us to address 
two related questions: Should structured values be supported, 
and, if so, should structured values be allowed to contain 
objects? We chose to allow structured values because they 
seemed appropriate within the overall FAD context. As men- 
tioned above, FP was an initial source of inspiration for 
the language, and FP operations (including whiledo) were 
specifically designed for handling structured values. Although 
our approach of supporting object updates prevented FAD from 
being a purely functional language like FP, adding structured 
values to FAD produced a computationally complete, purely 
functional sublanguage well-suited to expressing queries. This 
would not have been possible had FAD employed the more 
usual approach to iteration (which is based on testing data 
changed by updates), so we felt that we were simply making 
good use of the initial FAD language framework. 

Another reason for supporting structured values had to do 
with duplicate elimination in sets of structured data. FAD sets 
do not contain duplicates, but objects are identical only if they 
have the same identity. Thus, for example, insert({new([l, 21)): 
new([l,2])) returns a set with two elements. Originally this 
was viewed as an asset for the language, since it was a way 
of handling multisets, but in our applications, data placed in 
sets were often more appropriately viewed without the concept 
of identity because duplicate elimination was desired. This 
problem could have been solved by providing different kinds 
of sets in FAD (perhaps, by parameterizing the set constructor 
with a comparison test), but the implications of such an 
approach for strong static typing seemed unclear. Instead, 
supporting structured values in addition to structured objects 
provided a simple solution to this problem while allowing us to 
retain and make good use of the traditional concept of sets as 
not containing duplicates. With this approach, the expression 
insert({[l, 211, [1,2]) returns a set with a single element, which 
was what many applications required. 

The question of whether structured values could contain 
objects was a difficult one, because either approach can be 
rationalized. We were ultimately guided by the specific concept 
of values that we wanted to maintain for the programmer, 
the underlying database system, and portions of the compiler 

concerned with parallel execution: no observable portion or 
aspect of a value should ever change. Allowing updatable 
objects in structured values would allow values to change 
over time (i.e., a test performed on a value at one point 
during program execution might return a different result when 
performed on the "same" value at a later time). An example 
may help clarify this issue. 

let x = [Il  new(l)] 
y = +(x.1,2.2) 

a s ~ i g n ( z . 2 ~ 2 )  
z = +(2.1,2.2)  

in eq?(y, z )  

The fundamental guarantee we wanted FAD to offer con- 
cerning values was that y and z must be the same if 2 is a 
value (because values do not change over time, and both y 
and z depend only on x). But in this example y is 2 and z is 
3.  Therefore, in FAD (according to the simple view of values 
and objects we wanted to support), the data named by x in the 
above example is not a value, but rather an object-of type 
obj([ints, obj(ints)]). The fact that y and z differ is explained 
by the fact that portions of the object x were changed by an 
update in between the definitions of y and z .  

Coining a term, we characterize our decision to support this 
programmer view as one of supporting an "identity-based" 
semantics, as opposed to the more traditional "reference- 
based" approach (in which pointers of one form or another 
explicitly appear as data). A distinguishing aspect of our 
approach is that object identifiers are not FAD data, and neither 
in general are object states. 

C. Strong Static Typing 

What we mean by strong static typing is that the data 
created and manipulated by a FAD program have the same 
type throughout its lifetime, and this type is known by the 
compiler as a result of static analysis of the program text and 
the persistent database schema. 

The original FAD language was not strongly typed; opera- 
tions such as tuple selection required run-time examination of 
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whatever fields happened to be stored in a tuple at the time 
of the select. If the requested field was not present, null was 
returned [22]. In addition to not being able to generate efficient 
code for structure access, run-time type errors were possible 
(e.g., a tuple select operation might be applied to a set during 
program execution). Because a major objective of our research 
was efficient use of the Bubba architecture, such an approach 
was deemed unacceptable. Strong static typing was therefore 
required to provide efficiency and prevent run-time type errors. 

Initially, we had to decide whether the types of data used 
in a program would be explicitly declared, or automatically 
inferred by the compiler. We decided to attempt support 
for both approaches. We felt that explicitly declared types 
would be a useful documentation technique whose consistency 
could be checked by the compiler, and, although automatic 
inferencing was very attractive, we were initially unsure as to 
whether complete type inferencing was possible for a language 
such as FAD (it was clear that some degree of inferencing 
was possible). 

After having designed the FAD data model, our first step 
towards supporting strong static typing was to develop the 
language framework necessary for explicit type declarations 
(automatic inferencing was viewed as a means of supplying 
declarations wherever they were omitted). Our solution com- 
bined the transient schema section of a module, the FAD 
type expression language presented in Fig. 3, and the use 
of type expressions within angle brackets following action 
expressions. 

A central issue for type languages concerns the question 
of when two type expressions represent the same type. Two 
different approaches to this question are based on structural 
equivalence, and name equivalence. Because our approach 
to the FAD data model was based on considering types to 
be domains, and because we wanted to do unification-based 
type inferencing (which is based on structural equivalence), 
we chose structure-based equivalence as opposed to a name- 
based approach. Within this context, however, type references 
turned out to be extremely useful (if not essential), because 
they allowed us to refer to types defined in the persistent 
schema by name. 

The type information associated with persistent data is held 
in a persistent schema, which, in addition to reflecting the 
“conceptual” types in the database, also includes concern for 
many of the physical level aspects related to storage of data 
within a database (e.g., ordering of fields in tuple structures 
is invisible to conceptual level tuple types-a fact that is 
useful as type constraints concerning the fields that are in 
a tuple are incrementally accumulated during inferencing). 
Although there are default physical level representations for 
conceptual level types, in general the same conceptual level 
type may be implemented in different ways within the Bubba 
data storage and access system. Generating efficient code for 
data manipulation requires that the physical representation be 
known. 

This distinction between conceptual and physical level 
type information represented a subtle complication for type 
inferencing of FAD program modules. The result was that 
unification of types (as used in type inferencing) ultimately 

reflected the need to be aware of both conceptual and physical 
levels, giving precedence to persistent schema types. The ex- 
plicitly typed parts-supplier example given in Fig. 7 illustrates 
this. None of the database programs we have written have 
required explicit type declarations, and these programs include 
fairly complicated decision support algorithms. Because these 
programs ultimately deal with the database, all the necessary 
type information is ultimately found in the persistent schema. 
Type inferencing thus provides a reliable and useful service for 
the FAD database programmer, even though it is conceivable 
that explicit type declarations might be required in some 
situations. 

VI. COMPARISONS WITH RELATED WORK 

A. Overall Language Character 
Aside from supporting persistence, one difference between 

FAD and more sophisticated, higher order functional-style 
languages (e.g., Scheme [35] and ML [36]) is that functions 
are not data in FAD. Although the FAD actions constructors 
accept functions as arguments, user-defined functions in FAD 
can neither accept functions as arguments or return functions 
as results. 

Amber [37] is a higher order functional-style language with 
persistence. Persistence in Amber is somewhat orthogonal to 
type, and is not based on reachability. Explicit import and 
export statements are required to load and store persistent 
data from a file system, and the data imported and exported 
must have a “dynamic type” (which means that the data 
carries its type description with it [38]). Galileo [39] is 
a higher order functional-style language with persistence, 
based on ideas of ML extended with support for inheritance. 
Persistence in Galileo is orthogonal to type, and is based 
on reachability from a global identifier binding environment 
(to which new identifiers can be added using an explicit 
declaration statement). PS-Algol [40] is a procedural-style 
language with a persistent heap. This provides uniform support 
for transient and persistent data, as well as reachability- 
based persistence. PS-Algol appears to have been the first 
language to support reachability-based persistence and uniform 
transient/persistent data. It has been the focus of a sustained 
development effort. Like Amber and Galileo, PS-Algol is a 
higher order language with the ability to treat functions as data. 

None of the above languages includes an operation 
equivalent in power to FAD’s filter operation. This includes 
Machiavelli [41], a higher order functional-style language that 
incorporates typing ideas that seem promising for database 
programming. Although, as shown in [41], it is possible to 
write an expression in Machiavelli that produces the overall 
result of a filter operation, this expression makes use of 
very general combining forms and higher order functions-an 
approach that would currently result in disastrous performance 
penalties for an application. 

This problem has been and continues to be a critical focus 
of research in compiler technology for advanced functional 
languages [42] - [46]. Although optimizing compiler technol- 
ogy may someday support such an approach (so that, for 
instance, a complete Cartesian product of filtered sets will not 
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(*FAD Version*) 
filter(fun(customer, order, item-ordered) 

if and?(eq?(customer.name, “John”), 
eq?(customer.code, order.ccode), 
eq?(order.ocode, item-ordered.ocode)) 

db.customers, db.orders, db.items-ordered) 
then assign(item-ordered.qty, 5) ,  

(*SQL Version) 
update items-ordered 

set qty = 5 
where ocode in 
( select ocode 

from customer c, order o 
where c.code = o.,ccode and c.name = “John“) 

Fig. 8. FAD filter versus SQL select and update 

be created even though the function implementing the filter 
is expressed this way), this is not currently possible. And, as 
we have pointed out, optimization of FAD’s filter operation is 
absolutely essential for real applications. 

The approach suggested by Machiavelli is similar to others 
that have been proposed [47]-[50], which finesse optimization 
issues raised by the use of extremely general operations and 
combining forms to support important database operations. 
In contrast, the FAD implementation of filter is specialized 
to its particular (though widely applicable) job-it does not 
necessarily create or even visit the Cartesian product of 
its argument sets, and uses proven technology developed 
for distributed relational systems to minimize the size of 
any intermediate sets that are required [29]. Given current 
compiler technology, we believe that FAD represents a realistic 
design tradeoff between the desire for powerful, declarative 
operations, and the critical need to automatically optimize 
programs expressed in terms of these operations. 

Although FAD’s filter operation is specialized to handle 
queries similar to those supported by SQL’s select operation, 
it is more expressive. To illustrate this, Fig. 8 compares FAD 
with SQL by presenting FAD and SQL programs that update 
a single relation. Although both program segments do the 
same thing, the SQL version is handicapped by the fact that 
SQL’s update operation can only process one relation at a 
time. This results in an SQL program segment that is difficult 
to understand (in comparison with the FAD version). 

B. The Data Model 

The primary comparison of FAD with other languages that 
we want to make here concerns the use of reference-objects 
in database programming languages such as Galileo [39] and 
Machiavelli [41]. These languages may be understood as 
having a single kind of updatable object (the reference-object), 
and an unstratified data model (i.e., there is no value/object 
dichotomy). Because pointer assignment is the only update 
operation in these languages, updates to data structures such 
as sets and tuples cannot be directly expressed. Although 
this approach may be acceptable for modeling purposes, it 
does not seem appropriate in a realistic database programming 
language. 

Reference-objects originated with ML [36]. They hold an 
updatable pointer to another object. For example, an int 
ref is an object that holds an updatable reference to an 
integer; a string ref holds an updatable reference to a string. 
The reference object approach requires that pointers be data 
in the language; an expression whose result is assigned to 
a reference-object must be understood to return a pointer 
(because reference objects hold pointers, and because it is 
necessary to explicitly dereference such pointers). An update to 
a data structure pointed to by a reference-object is modeled by 
first constructing a new structure, often incrementally different 
from the original, and then updating the reference-object 
pointer so it points to the newly created structure. 

We provide in Fig. 9 an example to illustrate the difference 
between FAD and reference-object languages. Two code seg- 
ments are illustrated-the first uses updatable, sharable objects 
as provided by the FAD data model; the second uses FAD-like 
syntax and an unstratified data model containing updatable, 
sharable reference-objects. We begin by constructing a set 
containing a single tuple representing a person named Jack. 
Type declarations are omitted, but these would indicate that 
the name field is a key for this set. We then insert another 
tuple into the set, and then update Jack’s age, so that any 
succeeding statements using 5 will see a set containing two 
tuples and Jack’s changed age. The assumption within this 
example is that the set should be an updatable, sharable object 
(so that new tuples can be incrementally added to it, and 
others sharing the set will see added tuples), and the tuples 
representing people should be updatable, sharable objects (so 
that an age field can be changed, and other database structures 
sharing the tuple will see the changed age field). 

In the Fig. 9 code segment that uses reference-objects, the 
operation semantics are as follows. Ref is somewhat analogous 
to new in FAD-it creates a new object (in this case, a 
reference-object pointing to data). The dereference operation 
! is used to traverse the pointer stored in a reference-object. 
Assign is the only update operation-it replaces the pointer 
stored in a reference-object with the address denoted by 
its second argument. Insert creates a new set, incrementally 
different from the original set, and returns a pointer to the new 
set. Tupleassign performs in a similar fashion for tuples. The 
outermost ref used in the set creation is necessary because the 
data model is unstratified. 

Fig. 10 provides an illustration of the data structures that 
exist during execution of the two different program seg- 
ments of Fig. 9. An implementation level combination of 
pointer/structure used for sharing and seen integrally by the 
programmer is illustrated with a dashed arrow (rather than 
being surrounded with dashed lines as in Fig. 2); reference 
objects and pointers visible to the programmer are shown 
using circles and solid arrows, respectively. Note that in the 
reference-object illustration, after the second update operation, 
there are two unreachable data items: the original set structure, 
which still holds a single (but not the original!) tuple, and the 
original tuple. These two structures are now garbage that must 
be collected. 

It is unclear what advantage reference-objects provide, and 
the comparisons offered by Fig. 10 and the different program 
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Updatable, Sharable Objects 

ieaple: 

{ ; )  

[name:'?jack". age: 8 ] 

(*using updatable objects as in FAD*) 
let people = { new([name: "jack", age: 81) ) 

insert(people, new([name: "jill", age:7])) 
tupleassign(people@"jack", age, 9) 

in . . .  

Updamble, Sharable Reference-Objects 

people: . 

e{: ) 

(*using reference-ojbects as in ML*) 
let people = ref({ref([name:"jack", age:8])}) 

assign(people, insert(!people,ref([name:"jill", age:7])) 
assign((!people)@"jack", tupleassign(!((!people)@"jack"), age, 9) 

in . . .  

Fig. 9. Updatable objects versus reference objects 

After TupleAssign 

people:: 

After TupleAssign 

people : 

After Insert After Insert 

people: 1 1 people. 

I 

Fig. 10. Data structures for Fig. 9. 

segments in Fig. 9 show that programming with updatable 
reference-objects as opposed to updatable structured objects 
adds a significant amount of programming complexity. Simply 
compare the two different versions in Fig. 9 of the final update 
that replaces the age field of Jack's tuple (each use of ! in 
Fig. 9 represents a traversal of a solid arrow in Fig. lo). 

Our belief is that reference-objects were added to ML 
because they were a minimal extension to support side- 
effect based programming in what was otherwise a purely 
functional language. But ML was not intended as a database 
programming language (it was originally the meta language 
used for declaratively representing proof strategies in a theo- 
rem proving system [51]). In contrast, FAD started out with 
updatable structured objects because this was seen as being 

appropriate for database applications. Given objects as in FAD, 
there is no need for reference-objects. Perhaps because ML is 
an elegant and well-received functional-style language, other 
functional-style languages oriented towards database program- 
ming have borrowed ML's approach to updates. An essential 
difference between these languages and FAD is therefore that 
they support an unstratified reference-based data model with a 
single kind of updatable, sharable object containing an explicit 
pointer, whereas FAD supports a stratified identity-based data 
model with structured objects, none of which contain explicit 
pointers. 

FAD's data model is unique in that it provides Values and 
Objects (as defined in Fig. 1) within a single language; other 
languages provide one or the other, or an unstratified mixture 
of the two (if both structured values and structured objects 
are supported). For example, purely functional languages 
provide Values. The original version of FAD provided Objects. 
Amber [37] and 0 2  [18] provide atomic values and structured 
objects. The unstratified EXTRA data model [52] supports 
both structured values and objects through use of the own, 
own ref, and ref type constructors. 

In comparison with other data models, stratification repre- 
sents a new approach to integrating structured values and ob- 
jects. It avoids situations like that seen above in the reference- 
object example (in which the original set of people, not 
updated by the set insertion, ultimately ends up with a different 
tuple inside it), and it avoids referential integrity problems such 
as those of the EXTRA data model, in which own ref objects 
may be deleted even though they are referenced from other 
objects' ref attributes. 

C. Strong Static Typing 

1) Type Inferencing: Unification-based type inferencing was 
invented by Milner for use in ML [36], [53]. In this approach, 
unification of type expressions is used to incrementally solve 
the system of type equations corresponding to a given program. 
The free variables of such an equation system correspond to 
the unknown types within a program, and the type equations 
themselves arise from two sources: First, there are language- 
specific semantic axioms describing the types of data required 
and produced by the primitive operations of the language; and 
second, as specific actions as composed within a program, the 
output types of one action must be equated with the input 
types of another. The set of typing axioms for a language may 
be considered to define an inference system within which one 
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can prove that an expression in that language has a given type. 
Languages with different primitive operations have different 
sets of axioms. 

The importance of unification is that it provides a mech- 
anism for monotonically reflecting within type variables the 
most specific implications of type constraints. In particular, 
because unification of two type expressions produces a most 
general solution for the type variables in the expressions, 
constraints can be processed incrementally, as they are en- 
countered, without fear of overconstraining the overall system 
and preventing a global solution if there is one. Thus, the 
essential capability required for this style of type inference is 
not unification per se, but rather the ability to monotonically 
refine the values of type variables (from an initial value of 
“unknown”) as necessary to reflect the most specific implica- 
tions of type constraints as they are encountered. Unification 
simply provides a mechanism for accomplishing this when 
type variables range over a domain of uninterpreted terms. 

In ML, the terms used as a domain for type variables during 
inferencing are exactly those that are provided by the ML type 
expression language. For example, an expression such as f(3) 
in ML imposes the following constraint on f it must be a 
function that maps an integer to some unknown type (we do 
not know what type this is, given only this context). The most 
general type for f can be represented using a type variable 
initialized to “unknown” (say, a)  in an ML type expression: 
int-> CY. Later in the program, f might be placed in a list 
whose elements are of type int-> bool-> p (where p is also 
an unknown type). At this point, unifying the type of f  with the 
list element type (because lists are homogeneous in ML) would 
refine the value of CY from unknown to bool-> 0 (another ML 
type expression). 

In contrast, the terms used to represent FAD types are not 
sufficiently expressive as a domain for type variables during 
inferencing of FAD programs. This difference is a result of 
FAD’s data domain, which includes a richer variety of types 
than found in ML (e.g., FAD includes keyed sets and tuples). 
An expression such as S@3 in FAD imposes the following 
constraints on S:  it must be a keyed set containing elements 
of some type, and this type (whatever it  is) must have ints as 
a component (because an integer is used as the key value). 
Now, it is possible to use the FAD type expression language 
to represent a variety of types that satisfy this constraint (e.g., 
{[a:ints, b: ints]; keys is a}, {[a: ints, b: ints]; key is b}, etc.), 
but all of these types make assumptions about S that are not 
specifically implied by the above constraints-it is simply not 
possible to express the most general type of S through use of 
FAD type expression containing type variables. 

There are two approaches we could have taken to address 
this: 1) define a new term language for FAD types sufficiently 
expressive to represent the most general type satisfying any 
constraints that might he encountered during inferencing, or 
2) implement an internal representation for types in which 
the specific constraints that might be placed on a type can be 
represented. We chose the second of these two approaches, 
since, in any case, it is an internal representation of type ex- 
pressions for which unification is required during inferencing. 
Constraints that can be placed on FAD types during inferencing 

include (in addition to those appropriate in the above example) 
such requirements as the fact that a type may (or may not) 
be an object, that a tuple type must include a field with a 
particular label, that all fields in a tuple must be values, or 
that a particular tuple may (or does not) have additional fields 
not yet discovered. The “unification” procedure for FAD types 
takes all of these things into account. 

The point of this comparison is to indicate that ML is a 
language with few combining forms and a simple data model, 
and because of this its type expression language is always able 
to express the most general type satisfying constraints that 
are encountered when processing arbitrary ML expressions. 
This is not something that should be expected in general. This 
point is reflected in recent papers that address extending the 
unification-based inferencing technique originally introduced 
with ML to languages with richer data models [41], [54]-[%I. 
Few database programming languages support type inferenc- 
ing. Aside from FAD, we are only aware of Amber [37] and 
Machiavelli [41], neither of which include the range of data 
types found in FAD. 

2) Polymorphism: Another useful point of comparison in 
this context is the fact that ML is a polymorphic language, 
whereas FAD is not. What this means in the context of 
unification-based type inferencing is that in ML, unbound 
type variables are allowed to remain after all constraints have 
been reflected in type variables. The understanding is that type 
variables are universally quantified at an outermost scope. For 
example, a function with the type (a  list)->int is understood to 
return an integer when it is passed a list, no matter what type 
of elements are in the list. An example of such a function is 
length, a function that returns the number of elements in a list. 

In contrast, the FAD analyzer considers type variables that 
are unbound (after all constraints have been satisfied) to reflect 
an ambiguity in the program. Thus, although unification-based 
type checking directly supports inference of polymorphic types 
for functions, we chose not to make use of this Capability. We 
took this approach because it was unclear to us how to generate 
efficient code for FAD that was actually polymorphic (i.e., the 
same code would really work on different types of arguments), 
and efficiency was our ultimate objective. 

The reason why ML code that deals with lists may be 
polymorphic is that the compiler can generate the same code 
to get the next element of a list no matter what kind of a list is 
involved. We did not want to assume that the same code is used 
to access a tuple field with a given label, no matter what type 
of a tuple is involved. In fact, our objective was exactly the 
opposite-we wanted to generate code that directly accessed 
structure elements based on the type of the structure, and this 
code is different for different tuple types even if these types 
may have fields in common (the fields are generally at different 
offsets). Supporting polymorphism for tuple selections can be 
done by interpreting the tuple select operation based on run- 
time examination of tuple fields (as was done in the original 
untyped version of FAD, which was, of course, polymorphic, 
but also unsafe), or by using an object-oriented approach at 
the implementation level. Both of these approaches involve 
overhead we wanted to avoid. Given a willingness to accept the 
implications of polymorphic tuple selections, however, strong 
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static type inferencing for such a language is straightforward, 
as demonstrated by Machiavelli [41]. 

VII. CONCLUSIONS 

Based on the comparisons given above, and our use of 
FAD for a number of realistic database applications, we have 
come to the following conclusions. The basic functional- 
style used by FAD is similar to a number of other database 
programming languages that have been proposed. Some of 
the operations FAD provides within this context are unique to 
FAD (e.g., the filter action constructor, and element selections 
from keyed sets), and these have been very useful to us in our 
application experiments. Null data have been integrated into 
FAD through the combined interaction of many of its facilities 
(e.g., structure insertions and selections, and practically all 
of the action constructors), as well as being made uniformly 
available for use as application data. As far as we know, FAD 
is the first statically typed database language to do this to such 
an extent. Because special cases are handled uniformly, our 
approach to null greatly simplified the control of distributed 
process threads executing (for example) multiple copies of the 
same filter operation on the different portions of a persistent 
set distributed over multiple processing nodes [32]. 

We believe that FAD has achieved its objectives with respect 
to balancing user-level simplicity with generality, and feel 
that type inferencing is an important factor in this balance. It 
contributes to the ease of use of the language, while detecting 
many conceptual errors before program execution. Although 
query languages such as SQL, or those based on an extended 
relational calculus (e.g., EXCESS [52]) can offer greater 
simplicity for some queries, they are not general purpose 
programming languages. 

Given our objective of high performance, we believe we 
have achieved a realistic balance between the desire for 
powerful set-oriented database operations and the restrictions 
imposed by existing compiler technology. FAD represents a 
step upwards from SQL, but, with further progress in compiler 
technology, it may be possible to support fewer special purpose 
operations (e.g., define or otherwise support FAD’s n-ary filter 
in terms of lower level primitives), and rely on increasingly 
sophisticated optimization techniques to achieve execution 
efficiency. 

We believe that FAD successfully integrates objects and val- 
ues while supporting our objectives, and believe the resulting 
data model suggests an appropriate design space for choices 
here. We see no benefits in the reference-object approach, and 
view the absence of explicit pointers in FAD as an asset. 
Many of our applications have used structured values to good 
effect, although the persistent space has generally required 
only atomic values and structured objects. Transient structured 
values have been important to providing efficient execution of 
FAD on Bubba, in which values can be efficiently sent between 
nodes without loss of information, and we suspect it makes 
good sense to directly reflect updatability within types on any 
system whose architecture is expected to be truly parallel. 
Atomic objects have not been required by our applications, but 
they still make good sense from a data modeling standpoint. 

FAD does not support user-defined abstract data types (this 
planned feature was not implemented due to time pressure), 
but ADT instances should be treated as atomic data in a data 
model, and would be considered atomic objects if they can 
change over time. 

A. Current Implementation Status 

The FAD compiler [32] is currently operational, and com- 
prises four phases: semantic analysis (static type checking and 
inference [28]); optimization for distributed data access based 
on an architectural performance model (in support of wary 
filter operations [29]); parallelization (creation of separate code 
bodies for distributed execution based on an overall dataflow 
model of process communication [30]), and low-level code 
generation [32]. 

The ultimate result of FAD compilation is a load module 
appropriate for execution on a prototype database system 
implemented on a Flex-32 with 40 processor nodes [21]. Each 
node has a dedicated (unshared) memory and a CDC Wren 
disk drive. Persistent sets are declustered (partitioned and 
distributed) over multiple nodes to increase performance (311. 
Application performance measurements from the working pro- 
totype, and simulation results (necessary for performance 
projection of larger configurations) are reported in [21]. 

The Bubba project has been completed, but the investment 
in people represented by the project, and the lessons learned 
during the course of the project, will hopefully be reflected in 
cost-effective, scalable, and easy to use commercial systems 
of the future. 
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