
34 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

A FAD for Data Intensive Applications
Scott Danforth and Patrick Valduriez

Abstruct- FAD is a strongly-typed database programming
language designed for uniformly manipulating transient and
persistent data on Bubba, a parallel database system developed
at MCC. This paper provides an overall description of FAD, and
discusses the design rationale behind a number of its distinguish-
ing features. Comparisons with other database programming
languages are provided.

Index Terms-Complex objects, data model, database program-
ming language, parallel database system, query optimization.

I. INTRODUCTION
ANY knowledge based application domains such as M CAD, CAM, CASE, and office automation require

efficient representation and manipulation of “complex ob-
jects”-arbitrarily nested data structures including sets and
tuples. Once created, such data structures may persist be-
tween different program invocations, and may be concurrently
accessed by multiple users. Although databases support persis-
tent data, and generally support concurrency (in the sense of
multiprogrammed transactions), many database data models do
not support complex objects. A case in point is the relational
model [11. Because relational systems impose the first normal
form constraint, complex objects must be mapped into a
collection of “flat” relations. With this approach, much of the
inherent semantics of complex object composition is lost, and
potentially expensive foreign key joins are required to recover
and use this information.

There have been several attempts to address representa-
tional deficiencies of the relational model by relaxing the
first normal form constraint-for example by developing a
relational algebra that allows attributes to be sets of atomic
objects [2]. Another approach is to develop an algebra that
supports tuple valued attributes [3]. More recently Schek and
Scholl have presented a model where relational attributes
may themselves be relations [4]. A variety of approaches to
modeling and representing unnormalized relations have been
suggested [5]-[ll].

In addition to posing representational problems, traditional
database languages are often not computationally complete.
For example, it is not possible to evaluate the transitive closure
of a binary relation in relational algebra. One response to this
problem has been to embed database management calls within
a general purpose programming language. Unfortunately, such
couplings generally suffer from an “impedance mismatch” be-

Manuscript received September 15, 1989; revised April 15, 1991. The work
described in this paper was performed at MCC, Austin, TX.

S. Danforth is with IBM Zip 9641, Austin, TX 78759.
P. Valduriez is with INRIA Rocquencourt, 78153 Le Chesnay, Cedex,

IEEE Log Number 9105289.
France.

tween the programming language data model and the database
data model (121. This problem is seen in the interface between
embedded SQL products and their host languages. Another ap-
proach is to add persistence and database oriented data types to
the data model of an existing general purpose language. While
addressing the impedance mismatch problem, such an add-on
approach may produce nonuniformities within the resulting
language. Pascal/R [13], in which the Pascal data types are
augmented with relations, provides an example of this [14].

The above approaches generalize the representaitonal and
computational capabilities of systems based on the relational
model, but do not support sharing of objects [15]. Sharing is
a powerful and useful notion for data modeling, and allows a
given object to be considered part of more than one data struc-
ture; when a shared object is modified, all parent structures see
the result. Database data models that support sharing include
the Logical Data Model [16], GEM [17], and 0 2 [18], as well
as the Entity-Relationship model [19], and the semantic data
model SDM [20].

FAD is a general purpose database programming language
that uses data types representing a natural extension of the
relational model in order to support complex objects with
sharing. The language is a research tool that supported and
became part of an investigation of issues important to efficient
general purpose utilization of multiprocessor database archi-
tectures [21]. In the remainder of the Introduction, we state
our overall design rationale for FAD and provide an overview
of some important concepts. Section I1 presents the FAD data
model, focusing on its type domains and the corresponding
type expression language. Section 111 presents the FAD lan-
guage, used for creating and manipulating data, and Section IV
describes FAD modules, the unit of compilation. Section V
discusses how our design objectives influenced our decisions,
and Section VI provides comparisons of FAD with other pro-
gramming languages. We conclude with a critical evaluation
of FAD based on our experiences using the language.

A. FAD Overview

FAD (which stands for Franco-Armenian Data language
[22]) was developed with the intention of providing an easy
to use, powerful, general purpose programming language
interface to Bubba, a parallel database system developed at
MCC [23]. The overall design objective for FAD was that
it be a simple, declarative language, incorporating support
for general purpose computational mechanisms and a uniform
model of transient and persistent data. It was desired that the
data model include sets, tuples, shared complex objects, and
null data as necessary for handling a wide variety of realistic
database applications.

10414347/92$03.00 0 1991 IEEE

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 35

Problems to be solved at the FAD compiler level included
optimization for distributed data access, and automatic par-
allelization of FAD programs for dealing with horizontally
declustered data within an overall dataflow model of compu-
tation. We chose this approach to demonstrate the feasibility
of developing compiler technology for efficient utilization of
“shared-nothing’’ multicomputer databases [24], [25], and also
to allow the use of FAD as an intermediate target for other
languages (in particular, LDL [26]) wanting an easy access
path to the scalable high performance offered by the Bubba
architecture.

The original FAD language was based on ideas and syntax
suggested by FP [27]. A number of high level, declarative
set oriented operations were provided as primitives, and major
emphasis was placed on mapping these into parallel operations
on Bubba. Subsequent enhancements to FAD retained the
expression-based functional style of the original version, but
provided additional flexibility and a more hospitable syntax.
To support strong static typing, the original data model was
enhanced and provided with a formal type expression lan-
guage. Type expressions were then made available in FAD
programs, and used as the basis for a data definition language
(for describing the persistent database). Finally, a compiler
was developed to implement strong static typing with type
inference [28], optimization for distributed data access [29],
and parallel code generation for execution on Bubba [30]. The
multiprogrammed parallel system on which FAD programs
now execute has been operational since early 1989 [21].

B. Data and Identifiers

The FAD data model supports arbitrary nestings of complex
data structures, and is based on atomic values in conjunction
with the following data structures: tuples (i.e., records), dis-
juncts (i.e., variant records), sets, and updatable objects. The
word object is used in a special sense here; values and objects
are distinguished as different types of data in FAD. A value
may have any structure (simple or complex, as determined by
its type), but may never be updated or modified in any way.
An object has a modifiable state (again, of arbitrary structure,
as determined by its type), and can be shared. Subsequent use
of the word object in this paper should be understood in this
special sense. We will use the terms data item and complex
data structure when speaking of objects in the generic sense.

In FAD programs, any given data item can be named by
associating an identifier with it. Such an association is lexically
scoped, and is called an identifier definition. Within the scope
of an identifier definition, any occurrence of the identifier
denotes the data with which it is associated. We avoid using the
term variable because it typically encompasses ideas related to
data storage and updatability, as well as naming. Assignment
in FAD is an operation on objects, not data identifiers.

C. Uniform Persistent and Transient Data

FAD supports a single database, identified in programs
as db. Although some applications might require access to
multiple databases, this simplification serves FAD’s purpose
as a research tool without precluding future enhancements.

Persistence of data in a FAD program is defined by reachability
(data are persistent if and only if it is reachable from db). There
is no other distinction between transient (i.e., program-created)
and persistent data in FAD-they are treated uniformly, and
persistence is orthogonal to type [14]).

In Bubba, the database is physically distributed over a col-
lection of “intelligent repositories” (IR’s), each composed of
a local processor, memory, disk, and communication interface
[31]. Distribution of data within Bubba (including horizontal
declustering of relations over multiple IR’s in the interest
of parallel execution) is invisible within FAD programs. The
FAD compiler automatically optimizes and parallelizes general
purpose FAD programs for execution on Bubba, using abstract
interpretation for analysis of the data required by program
actions [29], [30], [32].

D. Strong Static Typing

By strong typing we mean that a given data item must
always have the same type during its lifetime. Static typing
guarantees that this type is known at compile time, and allows
type errors to be identified before program execution while
supporting generation of efficient code for data manipulation
and structure access. FAD incorporates a type expression
language used for describing the types of all data created and
manipulated by a program. This type language provides the
basis for a data definition language (DDL) used to describe
the persistent database accessible to FAD programs. DDL
is compiled into a persistent schema, which, in addition to
maintaining the conceptual (i.e., user level) types of db data,
also specifies a mapping from conceptual database types to
their physical representations. Although the conceptual types
of two database data items may be the same, their physical
representations may be different, based on decisions expressed
in FAD DDL.

A unification-based algorithm for strong static typechecking
is used in conjunction with abstract interpretation to infer
unstated types and identify type errors in a FAD program at
compile time [28]. The type inference algorithm for FAD is not
syntactically complete-there exist ambiguous FAD programs
with more than one valid type assignment. Such situations are
easily handled by explicitly declaring the necessary types. An
example of an ambiguous untyped program would be one that
accepts two arguments, x and y, and adds them using the
operator +. In this case, 5 and y could be integers or floating
point numbers; a solution is to explicitly indicate the types of
x and y.

E. Actions and Functions

In FAD, the term action is used to indicate a computation
that returns data after possibly accessing or updating data.
Actions in FAD thus correspond to expression evaluation and
command execution. User-defined functions in FAD allow
specification of actions that are parameterized with respect to
data. FAD provides a fixed set of higher order functions (called
action constructors) for writing programs. These construct
aggregate actions from action and function expressions. A
number of FAD action constructors are provided for declar-

36 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

atively expressing powerful operations on sets. For instance,
a filter action conceptually applies a function to each element
of the Cartesian product of a number of sets to produce a
new set composed of the application results, thus combining
generalized selection, projection, and wary join capabilities
within a single operation.

denotes the domain of tuples that map the string “a” to an
element of ints, and the string “b” to an ordered tuple (with
implicit integer field labels). This ordered tuple maps the
integer 1 to an element of floats, and the integer 2 to an element
of bools. Because of the similarity of ordered tuples to those
whose fields are labeled with strings, ordered tuples will not
be considered further in this section.

A disjunct is a tuple in which only one field is allowed 11. THE FAD DATA MODEL
We now present the FAD data domain and the corresponding

type expression language. As a first step, atomic types and
structured type constructors are introduced. The FAD data
domain is then based on the atomic types and closed with
respect to a set of recursive domain equations involving the
type constructors. Types in FAD are domains (i.e., sets) of
distinguishable data elements. We do not concern ourselves
here with the particular representation of the individual el-
ements within a semantic domain, but feel free to name
individual elements when they are limited in number or of
special importance.

A. Atomic Types

A representative sampling of the FAD atomic types in-
cludes:

bools the set {true, false, null}
ints a set of computer integers U {null}
floats a set of computer floating point numbers U {null}
strings a set of computer strings (of arbitrary length) U

{null}.
Null is an element of every FAD type (including the con-

structed types, introduced below), and is generally considered
by FAD actions as representing an unknown element of a given
type. It can be used in tuples to indicate “no-information’’ for
fields that have not yet been assigned. By itself and without
a surrounding context, the FAD constant expression null is
ambiguous; it could be any type. As indicated earlier, however,
static typing guarantees that the type of every data expression
in a FAD program is known at compile time, either as a result
of explicit typing, or as a result of type inference-otherwise
a compile-time type error is issued. Using null as an argument
to a function never results in a run-time error, although many
functions are defined to return null if any of their arguments
are null.

B. Structured Types

The structured type constructors are now introduced. They
will be used in the following section to construct semantic
domains for FAD tuples, disjuncts, sets, and objects. FAD does
not provide a list constructor because binary tuples provide this
capability. An array constructor was omitted because keyed
sets provide this capability.

A tuple is a partial function from label values to data
elements called fields. The corresponding tuple type is a
domain characterized by the type of the label values (either
strings or ints), and a fixed number of associations between
different field labels and the corresponding field types. Square
brackets are used to represent the tuple type constructor. Thus,
for example, the type expression [a:ints, b:[floats, bools]]

to be nonnull. A tag method is provided for disjuncts that
returns the label of the field stored in a disjunct. If no field
is stored, a null label is returned. Vertical brackets are used
to represent the disjunct type constructor. Thus, for example,
the type expression la:ints, b:stringsl denotes the domain of
all disjuncts that, if tagged with “a” store an integer, and if
tagged with “b” store a string.

A set is an unordered collection of data elements, all of
which have the same type. No two elements of a set are
identical (two data items are identical if and only if they are
the same element of a data domain). The corresponding set
type is a domain characterized by the type of the set elements,
and an optional key specification (no two elements of a keyed
set are allowed to have the same key value). Curly brackets are
used to represent the set type constructor. Thus, for example,
the type expression {[a:ints, b:strings]; key is a } denotes the
domain of all sets of tuples of the specified type, for which no
two set elements have the same “a” field. Multisets (i.e., sets
containing duplicate elements) were omitted in FAD because
sets of objects provide this capability.

An object is a sharable data item consisting of a unique,
unchanging identity and an updatable state. An object type is
characterized by indicating the semantic domain of its state,
and is represented in FAD semantics as the domain (object-
ids x t), where t is the state domain. The identity portion
of an object is a logical address that uniquely identifies the
updatable state portion of an object, and therefore supports
sharing. Although the primitive operations of FAD are allowed
to access the identity and state portions of an object separately
as necessary to perform their functions, the FAD programmer
is only given access to an object as an integral combination
of identity and state. The identity portion of an object is not
FAD data (there are no pointers in the language), and neither
in general is the state portion. This is a result of the FAD data
domain equations presented in the next section. Obj is used
to represent the object type constructor. Thus, for example,
the type expression obj([a: ints, b: obj(strings)]) denotes the
domain of updatable sharable object tuples that map the string
“a” to an integer value, and the string “b” to an updatable
sharable atomic object whose state is a string. All objects
support an assign operation, which replaces an object state with
another from the same semantic domain. Other (incremental)
changes to object state depend on the structure of the object:
individual fields of an object tuple may be replaced using
tupleassign; the contents of an object set may be changed by
insert and delete.

C. The FAD Data Domain

Fig. 1 defines the FAD data domain in terms of the above
atomic types and type constructors. Every FAD data item is an

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 37

Data = Values + Objects
Values = Atomics +

[Values] +
IValuesl +
{Values(optional-key-spec) }

obj([Data]) +
obj(lData1) +
obj ({ Data(optiona1-key-spec)})

Objects = obj(Atomics) +

Fig. 1. The FAD data domain.

element of a FAD type, and the FAD types are exactly those
that are constructed as indicated in Fig. 1. In the interest of
brevity, constructor syntax is generalized in Fig. 1 to allow
(for example) expressions of the form [t], which denotes the
domain of tuples all of whose component fields are elements
of the semantic domain t.

An important aspect of the above equations concerns the
way in which values and objects are stratified: objects can
contain values, but not vice versa. The primary reason for
defining the FAD data domain this way was our desire to

1) provide a conservative extension to the relational data
model that supports complex data structures with updates
and sharing, and

2) enforce the idea that values do not change; ifany portion
of a data item can change over time, it must be an object.

The first of these objectives is primarily a result of our
belief that relational database technology is a well-developed
approach for management of data. We wanted to stay fairly
close to the relational model in order to assure that SQL
applications would be easily mapped to FAD, and to use
proven optimization techniques developed in the context of
distributed relational databases.

The second objective arose from a desire to cleanly reflect
updatability in the type system. Value types in a FAD program
are known at compile time, and knowing that values cannot be
updated is useful when generating code for efficient execution
on a parallel, distributed architecture (in which special consid-
eration for updatable objects is required). Also, when doing
scavenging garbage collection in support of data clustering, the
underlying system is guided by types and can make effective
use of this information.

The FAD data model achieves both of the above objectives.
With respect to the first objective, sets of tuples provide a
natural model for relations. Also, the absence of pointers in
FAD means that when an object is placed in a tuple, the
operational view seen by the FAD programmer is that the
complete object is there (as opposed to a pointer that must be
dereferenced in order to access the object state). This coincides
with the relational view of data as being stored “in place” in
tuples. This view also relates to the second objective. Because
the view uniformly presented is that data are stored in place,
and because no part of a structured value such as a tuple
is allowed to change over time, placing an object within a

structured value makes no sense (since the object could change
over time, and it is seen as being part of any containing
structures).

As an aid to visualization of objects and sharing in FAD,
Fig. 2 provides a graphical depiction of three FAD data items
(named A, B, and C) from the FAD types{ints}, obj{ints},
and obj([obj(ints), {ints}]). Dashed lines surround the objects
in this example, identified as id-1, and id-2. Data items B and
C share the object whose identity is id-1. Note that, by itself,
the state portion of the object named C is not an element of
the FAD data domain defined in Fig. 1. The state of C is not a
value because it is a structure that contains an object; it is not
an object because it has no identity portion (id-2 is not part
of the state; it is part of the overall object named C, which is
FAD data). This highlights the fact that the FAD programmer
is only given access to an object as an integral combination
of identity and state; in general, the state of an object is not
even an element of a FAD type.

D. The FAD Type Expression language

Fig. 3 presents a grammar for FAD type expressions. Within
this paper, informal grammar segments are provided to sum-
marize syntax. Nonterminals are enclosed in angle brackets,
the notation (xyz)* indicates zero or more occurrences of the
xyz nonterminal; (xyz)’ indicates one or more occurences.
Undefined nonterminals are given self-explanatory names.

In addition to the atomic types and the type constructors
already introduced, Fig. 3 shows that FAD type expressions
include type references. These allow referring to type domains
by name, using identifiers (called type-ids) that appear on
the left-hand side of a schema type declaration. In order to
illustrate type-ids, type references, and the type expression
language as a whole, Fig. 4 presents an example database
schema. Line numbers are placed in FAD comments to aid
discussion.

(*1*) associates ages with the type denoted by the type
expression on the right-hand side of the declaration-in this
case, the domain named ints.

(“2’) associates person with an object tuple type. Person
is automatically inferred to be an object tuple type because
the age field is an object type (recall that any FAD type
constructed from an object type must itself be an object type).
The right-hand side of the type equation for person is thus a
supported shorthand for the expression, obj([name : strings,
age : object(ages), dept : insts]). This type is the set of all
object tuples that map “name” to an element of type strings,
“age” to an element of type obj(ages), and “dept” to an element
of the type ints. As an example of a type reference, personage
is the type of the age field for a person, i.e., obj(ages). The
domain obj(ages) is identical to the domain obj(ints) because
ages = ints. Because person is an object tuple type, the fields
of any data of type person may be replaced (using tupleassign)
without loss or change of the object tuple’s identity. Also, the
state of the age field may be replaced (using assign) without
loss or change of its identity.

(“3*) associatespeople with an object set type. This type is
the domain of all FAD object sets containing elements of type

38 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

A:

B:

...
C : ; id-2

{ 1 9 2 1 i
...... 1 [,..f id-;) , { 1 , 2 1 1 ;

..........

....... : ..’ 1

/

....... ; _/ ... !

/ jd.1

..x.

..... \

1 I

Fig. 2. Three data items

(type-expr) ::= (atomic-typeid)
I (type-construction)
I (type-reference)

(atomic-type-id) ::= bools(ints(floatslstrings1 . . .
(type-construction) ::= [(field-spec)’]

I I (field-spec) + I
I { (type-expr)(optional-key-spec)}
I obj((type-expr))

(type-reference) ::= (type-id)
1 (type-reference) . CB

111. THE FAD ACTION LANGUAGE

The FAD action language is a lexically scoped expression
language used to represent two things: actions and first-order
functions (actions parameterized with respect to FAD data).
Every action expression in FAD returns data, and without
exception may be followed with an optional type expression
enclosed in angle braces indicating the type of this data. For
example, the expression +(1 , 2(ints))(ints) denotes an action
that returns an integer. In the following presentation (with
occasional exceptions), explicit typing of FAD actions will be
omitted. The FAD compiler infers these types, and the focus
of this section concerns the action language.

I (type-reference) . (fielddabel) A. User-Defined Functions
Fig. 3. The FAD type expression language. Function specifications appear in top level function declara-

tions, and can also be used as arguments to action constructors
that take functions as arguments (e.g., filter). Free data iden-
tifiers are allowed in function specifications as long as these
identifiers are defined within an enclosing lexical scope.

ages = ints
person = [name : strings, age : obj(ages),dep : i n t s]
people = {person; key is name}
d b = [employees : people, depts : obj({ints})]

(fun-spec) ::= fun((params))(action-expr)

Fig. 4. An example schema.

person (person is a type reference). In addition, no element
of the people domain contains two person tuples with the
same name field. This is because name is a key for sets of
the constructed type. As another example of a type reference,
people.@ is the type of the elements of a set of type people,
namely person. Because people is an object set type, the
contents of any set of type people may be modified (using
insert or delete) without loss or change of the set’s identity.

(*4*) associates db with an object tuple type. The two fields
of such a tuple, employees and depts, respectively, contain
people and an updatable set of integer values. The type-id db
is reserved, and is normally dewithoufined using FAD DDL.
Although the above schema is a legal DDL persistent schema
specification, other information such as indexes and physical
representations are normally also provided. The following
type expressions (the last three of which are type refer-
ences) all denote exactly the same type: obj(ints), person.age,
people.@.age, and db.employees.@.age. Although not illus-
trated in this example, the ordering of type declarations is
immaterial, and recursive type declarations are supported (e.g.
intlist = [ints, intlist]).

B. Actions

FAD is intended to be a simple, regular language, with an
intuitive inventory of actions. The following grammar presents
an overall view of the different FAD action categories.

(action-expr) ::= (simple-action)
I (structure-construction)
I (structure-selection)
I (structure-modification)
I (function-application)
I (action-construction)

In examples that follow, we occasionally use simple let
expressions (before presenting the let action constructor in
Section 111-C). These uses are intended to be self-explanatory.
For example, the expression let z = 1 in + (z,2) denotes
an action that returns the value 3.

1) Simple Actions: A simple action is either a constant (e.g.,
3.14) or an identifier that names data. The reserved identifier
db names the persistent database.

2) Structure Construction: Structure constructions return
structures that hold data. Structures in FAD are tuples, dis-

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 39

juncts, sets, and objects.

(structure-construction) ::= [(field-expr)’]

I I (fieldexpr) I
I { (action-expr)’}
I new((action-expr))

For example, the expression [a : “a”, c : 3.141 denotes an
action that returns a value tuple of type [a:strings, c:floats]. The
disjunct and set constructions are similarly straightforward, but
object constructions require additional comment. The FAD
function new is applied to a value, and returns an object
whose state is the value. Thus, for example, the expression
new({l)) denotes an action that returns a new object set of type
obj({ints}). The only other possibility with respect to object-
construction is creation of a structure that includes an object.
Such structures, when built, are automatically objects, due to
FAD’s stratified data model. For example, the FAD expression
le t x = new(1) in {x} first creates a new, unique atomic object
named 2 whose state is an integer, and then returns a new,

value 42. The set in this example is given an explicit type in
order to indicate an index key on the “a” attribute:

{[a :1, b : 11, [a : 2 , b :42], [a : 3, b : 11)
< {[a : ints, b : ints]; key is a} > Q2.b

The value structure selection operation returns a value that
corresponds to the state of an object. If the state of an object
is a value, then this value is returned. If the state of an object is
a structure that contains objects, then a corresponding structure
all of whose subobjects have been (recursively) converted to
values is returned.

4) Structure Modification: Structure modification operations
are provided for each FAD structure. These operations (with
the exception of assign, which is only meaningful on objects)
may be used on either objects or values. When applied to
an object, they update (destructively change) the object state
and return the modified object as the operation result. When
applied to a value, they create and return a new value,
incrementally different from the original.

(structure-modification) ::= tupleassign((action-expr), (action-expr), (action-expr))
1 insert((action-expr) , (action-expr))
I delete((action-expr), (action-expr))
I assign((action-expr), (action-expr))

unique object set whose single element is the object named
2-the type of the overall expression is obj({obj(ints)}).

3) Structure Selection: Structure selections are actions that
return data held by structures.

(structure-selection) ::= (action-expr). (action-expr)
I (action-expr) @(action-expr)
I value((action-expr))

The infix tuple select operator . is left associative, and is
used to represent field selections from tuples and disjuncts.
In most languages with tuples (or records), field labels in
tuple selections are not data, but syntax processed at compile
time. Although FAD avoids this restriction, the field selector
is usually a constant (a special case that is optimized) rather
than an identifier or an arbitrary data expression.’ The infix
set selection operator @ is left associative, and is used to
represent element selections from sets that are keyed. The set
being selected from is indicated to the left of the @, and the
value of the search key is indicated on the right of the @.
Theresult returned is the set element that has the indicated
key if such an element exists, otherwise null (of the type of
the set elements) is returned.

For example, the following action expression (in which a
set selection is composed with a tuple selection) returns the

‘As a notational convenience, the FAD compiler assumes that an undefined
identifier found in the field label position is intended as a string constant. For
example, assuming that the identifier b is undefined, both of the expressions
[a:1, b:2].b and [a:l, b:2].“b” mean the same thing (an action that returns the
value 2).

Tupleassign is used to replace a tuple field. The first
argument of the tupleassign operation must either be a tuple
or an object whose state is a tuple. The second argument is a
field label, and the third argument is the data to be placed in
the designated field. As with tuple selections, the compiler will
treat undefined identifiers in the second argument position as
string constants. For example, the action letx = new ([age: 11)
in tupleassign(x, age, 3) returns the object named x, modified
so it contains the value 3 in its age field.

Insert is used to add a new element to a set. The first
argument of the insert operation must either be a set or an
object whose state is a set. The second argument is the element
to be inserted. Delete is used to remove an element from a set.
The first argument of the delete operation must either be a set
or an object whose state is a set. The second argument is the
element to be deleted. The action let x = new ({1,2)) in insert
(x, 3) returns the object set named x, modified so it contains
the values 1, 2, and 3.

Assign is used to update an object-i.e., replace its state
with another from the same semantic domain. The assign
operation requires an object as its first argument, and the
second argument may be either an object or a value. If the
second argument is a value, then the assignment replaces
the state of the first argument with this value. If the second
argument is an object, the assignment replaces the state of the
first argument with the state of the second. For example, the
action let x = new ([age: 11) in assign (x, [age: 21) returns the
object tuple named x, modified so its state contains the tuple
[age: 21.

40 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1 , FEBRUARY 1992

5) Function Application:

(function-application) ::= (fcn-name)((arg s))
(fcn-name) ::= (id) I (typeclass) .(id)

As shown by the above grammar segment, there are two
different representations for function names. The first possi-
bility is simply an identifier, which is the usual form. Because a
number of FAD functions are overloaded, however, a typeclass
can also be specified in order to remove any ambiguity. All
FAD functions have a typeclass with which they are associated.
This represents a grouping of functions according to the kind
of data on which they act. For instance, object-setshsert and
value-setsinsert are the explicitly typeclassed insert operations
for objects whose state is a set, and for value sets, respectively.
Another example is ints.+ and floats.+, which are the addition
functions for ints and floats.

-Example Function Applications-

+(% 3)
ints.+ (2 . 3)
user-defined-fcn(z. y)

a) Equality Tests: It is not the purpose of this paper to
discuss all the functions provided by FAD-these include
the usual set of arithmetic, logical, and string manipulation
operations. But it is useful to discuss the equality tests, which

returns true, and equaZ?([new(l)], (new(l)]) returns false. All-
equal? tests for deep equality of two objects. All equal?(ol, 0 2)
is equivalent to eq?(value(ol). value(o2)) with one exception:
converting an object set to a value removes duplicates, but sets
of objects are only all-equal? if they have the same number
of all-equal? elements. Sets of objects are therefore treated by
all-equal? as multisets of object states. Thus, for example,

all-equal?({ new(I), new(2) , new(2) } ,
{new(I),new(2), n e w (2))) returns true, and

all-equal?({new(I) , new(2). new(Z)},
{ n e w (I) , new(2))) returns false.

C. Constructed Actions

The last category of FAD action expression is called an
action construction. These allow definition of data identifiers
(let), control over the sequencing of actions (let, begin-end,
do-end, if, whiledo), specialized processing of sets (fil-
ter, pump, group), and unstructured control transfers (escape,
and abort).

I) Let: Let expressions are the FAD mechanism for iden-
tifier definition. A let expression represents an action that
sequentially orders interspersed groups of parallel identifier
definitions and actions, followed by execution of a final action
whose result is returned as the overall let action result.

closely reflect the FAD data domain structure. As with the
original FAD language [22] , there are three levels of equality
testing available, provided by the following functions:

(let) : : = let (defgroup/act) + in (action-expr)
(defgroup/act) : := (id_def)+ 1 (action-expr)

(id-def) ::= (id) = (action-expr)
data.eq? (id)%(id) = (action-expr)
objects.equal?
objects. all-equal?

Each equality test requires two arguments of the same type.
As indicated by the typeclasses, the eq? function is available
on all data; the functions equal? and all-equal? are available
on all objects.

Eq? tests for identity of two data items in FAD. Two data
items are identical if and only if they are the same element
of a FAD data domain, thus identity for objects can simply
compare object-ids for equality. For example, eq?(new(l),
new(1)) returns false, while the expression let x = new(1) in
eq?(x, x) returns true. Identity for values is based on recursive
comparison of all structure levels down to atomic values, with
sets being eq? if they have identical elements. Eq? treats null
as known data, thus eq?(null(ints), null(ints)) returns true,
and eq?(null(ints), 1) returns false. There is an important
interaction between eq? and set elements in FAD: No two
elements of a set are identical, therefore no two elements of
a set are ever eq?. this is not the case for the weaker equality
tests, equal? and all-equal?-two elements of an object set
may be equal? or all-equal?.

Equal? tests for shallow equality of two objects in FAD
by using eq? to compare object states in the case of atomic
objects, or the top level state components in the case of
structured objects. Thus, for example, equal?(new(l), new(1))

Each definition group is a comma-separated collection of
identifier definitions. Sequencing within a definition group is
undefined (allowing parallel execution of the actions whose
results are named). Scoping of identifier definitions extends
from their introduction through the final (action-expr) that
concludes the let expression, with later definitions masking
earlier ones in the case of name conflicts. Expressions within
a definition group are evaluated using the identifier definitions
in effect upon entry to the definition group, and the same
identifier cannot be defined twice within the same group.

A let expression need not contain identifier definitions. This
is a useful special case, since it provides a mechanism for
sequentially performing a number of actions for their side-
effects, and then returning the result of a final action. There
are two varieties of identifier definition. The first, involving a
single identifier, is the usual form and requires no elaboration.
The second, involving a % followed by a second identifier,
allows access to action status results.

In addition to a data result, every FAD action sets an integer
status code. For example, in the case of set insertions, a status
code indicates whether the inserted element was already in the
set. This status is normally invisible to FAD programs, but the
second identifier definition syntax allows FAD code to receive
and inspect this status-the second identifier names the status
returned by the action indicated to the right of the equal sign.

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 41

The escape action constructor (discussed below) allows user-
defined functions to escape their execution context and return
status codes.

-example Let actions-

let z = 1, y = new(2)
assign(y. 3)

in + (x. y)
let x = new([a : 1, b : 21)

(*returns 4*)

y = let tupleassign(s, a. 2) in x.6
in + (z.a. y) (*returns 4*)

2) Begin-End and Do-End:

(begin-end) :: = begin(action-expr)’ end

(do-end) :: = do(action_expr)+ end

These action constructors allow explicit sequencing of actions
performed for their side-effects. The actions they construct
return null(ints). Actions in a begin-end construction are
executed sequentially. Actions in a do-end construction are
executed in no particular order, and may be executed in
parallel.

3) IF

(if) ::= if(test-expr) then (then-expr)

1 if(test-expr) then (then-expr) else (else-expr)

If expressions support conditional execution. The constructed
action first executes the action denoted by (test-expr) (which
must be of type bools), and, if the result is true, then executes
and returns the result of the action denoted by (t,hen-expr);
otherwise, the (else-expr) action is executed and its result
returned (if there is no (else-expr), null of the same type
as (then-expr) is returned). The types of (then-expr) and
(else-expr) must be the same.

-example If actions-

if eq?(z, 1) then assign(y, 3)
(*returns data of type obj(ints)*)

if f(w) then 3 else 4
(*returns data of type ints*)

4) Whiledo:

(whiledo) ::= whiledo((loop-fcn). (exit-fcn), (start-action))

Whiledo expressions support iteration without updates. The
constructed action iteratively loops through applications of
(loop-fcn) to an implicit “loop state” until the result returned
is null, at which point (exit-fcn) is applied to the loop
state, producing the final whiledo action result. The loop
state is initially the result of (start-action), and thereafter
is the nonnull result obtained from the previous application
of (loop-fcn). In practice, the body of (loop-fcn) is an if
expression without an else branch.

-example Whiledo actions-

whiledo(fun(z) if <?(z. 10) then + (2, l),

fun(.) - (x, IO).
1) (*returns 0*)

whiledo(fun(loop)
if >?(loop.counter, 1) then

[counter : -(loop.counter.l),
accum : *(loop.counter, loop.accum)]

fun(exit) exit.accum,
[counter : 5 . accum : 11) (returns 120, factorial of 5)

5) Filter:

(filter) ::= filter((function), (set-expr)+)

A filter action applies a function to each element of the
Cartesian product of the sets given as arguments to the filter
action constructor. The function must have as many parameters
as there are sets to filter. The result of the filter action is a set
made up of the application results. If the filter function returns
an object, the filter result is an object set, otherwise the result
is a value set. Filter actions are the backbone of many FAD
database applications, and their optimization is essential when
multiple sets are involved [29].

-example Filter actions-

filter(+
{1,2,3)

filter(fun(e)

filter(fun(r) + (x . 1), {1,2,3})) (*returns {3,4,5,6,7}*)

if < ? (e.salary, 10000)
then begin tupleassign(e,salary,+(e.salary, 1000)) end,

db.employees) (*returns { } after side-effecting some employees*)

42 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

6) Pump: 8) Escape:

(pump) ::= pump((unary-fen), (binary-fcn).
(identity) , (set-expr))

(escape) ::= escape((int-expr))

A pump action reduces a set to a single result by applying
a unary function to each element of the set to produce

reduced to a single result using a binary function to combine
the set members. The binary function is assumed
to be both associative and commutative (with (identity) as
the identity element) so that the reduction can be performed
in any order, and in parallel. If the set to be pumped is empty,
then the identity element for the binary function is returned.

An escape action returns its argument as an action result status
to the closest lexically enclosing action whose result status is

type) as the result of this action. If there is no such lexically
enclosing action, then the program itself is exited with a null
result and a message based on the escape status.

an intermediate set (possibly with duplicates) which is then named in a let expression, and returns (Of the appropriate

Escape actions-

let y = ”ubc”
-example Pump actions- 2% s = if substring(y, “bcd”)

then append(y, “ d e f ”) else escape(2)
pump(fun(z) 1, +, 0, {5,6,7,8}) (*returns 4-

in[z, S I (*returns [null(strings), 2]*)
the set cardinality*)

pump(fun(e) if =?(e.age130) then{e} else { }
union,

{ I
db.employees) (*returns the set of employees of

age 30”)

7) Group:

(group) ::= group((function). (set-expr))

A group action creates a set of ordered tuples representing the
equivalence classes of the argument set under application of
the argument function. Within the set returned by group, each
tuple is composed of two fields. The first field contains the
result of applying the function to one of the set elements, and
the second field contains the set of all argument set elements
that are mapped to the datum in the first field by the argument
function.

-example Group actions-

9) Abort:

(abort) ::= abort((string-expr))

A FAD program is considered a transaction by the database
system, and multiple concurrent transactions are supported by
Bubba although this is invisible to a FAD program. Upon
program termination, any updates to the database performed
by the program must be committed, and this is handled
automatically by Bubba transaction management facilities.
Because it is sometimes necessary to abort a transaction
and avoid committing any database updates that have been
performed, FAD provides an abort action, which causes an
immediate exit from the program, aborts the transaction, and
returns its string argument as the program result.

-example Abort actions-

abort (append(“no members in”, y))

group(even?, {I, 2,3,4,5})

grouP(fun(z)x.l, {[I- 21, [I, 31, [2,21})

IV. FAD MODULES
A module (the unit of program compilation) provides a

scope within which recursively defined types, recursively
defined functions, and a transaction program can be declared.

(*returns{[true, {2,4}], [false, {1,3.5}]}*)

(*returns{[L {[I, 21, [I, 31)l. [a, {[a, 2l}l}*)

(module) ::= module(id)
(d bname)
(optional-transient-schema)
(fen-decl) *
(program-def)

(dbname) ::= db = (id)
(transient-schema) ::= schema(type-decl)*
(type-decl) ::= (id) = (type-expr)
(fen-decl)
(program-def) ::= def prog((params))(action-expr)

::= define(id) fun((params)) (action-expr)

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 43

A (dbname) is used to indicate the persistent schema
that should be used when checking the module. A
(transient-schema) enables a programmer to declare types
that are useful in the function definitions that follow. Although
the FAD compiler infers types, explicit type declarations can
provide a convenient form of documentation in the form of
assertions that are checked by the compiler. Two example
modules are shown in Figs. 5 and 6.

When compiling the new-parts module in Fig. 5, the FAD
compiler determines that the formal parameter p for add-part
must have the same type as the tuples in the parts database
relation, and therefore insures that the tuple constructed in the
main transaction filter function (the tuple passed to add-part)
is of this type. A n equivalent new-parts module (expressed
using types inferred by the FAD compiler is shown in Fig. 7
for comparison.

v. DESIGN OBJECTIVES AND DECISIONS

As mentioned in the Introduction, we wanted FAD to
be a conceptually simple database programming language
with declarative, set-oriented operations, support for general
purpose computational mechanisms, and a uniform model of
transient and persistent data including shared complex objects
and null data. Further, we wanted this in a context of strong
static typing, in order to assist reliable program development
and execution efficiency. None of these objectives seemed
particularly aggressive, and it would therefore be surprising
if FAD were somehow a revolutionary language; this was not
our purpose at all. In this section, we review our decisions
with respect to 1) the overall character of the language, 2) its
data model, and 3) our implementation of strong static typing.
Section VI will compare our decisions with those reflected by
related work.

A. Overall Language Character

By overall language character, we mean the general style
of expressing individual operations, and the mechanisms used
to combine individual operations into complete programs. A
number of different possibilities are available: purely func-
tional (no update operations), functional-style (expression-
based), procedural, logical, and object-oriented. Also, we feel
an important aspect influencing the character of a database
programming language concerns the relationship between tran-
sient data and persistent data: Is there a division between these
two that requires translation between different formats, the use
of a special query subsystem, the use of loadhtore operations,
or are these two classes of data uniformly presented [14] so
that persistence is orthogonal to type, and based on reachability
as opposed to declaration?

Because a primary goal was showing the feasibility of
automatic, efficient utilization of a Bubba-style architecture
for scalable support of general purpose database programs,
an initial language focus concerned the need to program with
declarative, set-oriented operations on a uniform model of tran-
sient and persistent data. It was felt that this style of program-
ming would handle a wide variety of realistic applications, be
simple enough to allow the necessary compile time analysis,

and allow direct manipulation of persistent data by object
code executing in a virtual single level store. Unfortunately,
although filter, group and pump operations (or restrictions
thereof) are the bread and butter operations of SQL, we were
aware of no general purpose database programming languages
that provided these operations within a uniform model of
persistent and transient data. FAD was therefore developed
to provide such a language in support our research objectives.

The initial designers of FAD [22] chose an expression-
oriented, functional style of programming, similar to that
suggested by Backus [27], because of its conceptual and
syntactic simplicity. The declarative, set-oriented operations
important to FAD fit nicely within this framework, which
included conditionals and iteration as necessary for compu-
tational completeness. Unfortunately, although it was compu-
tationally complete, the initial version of FAD was difficult to
use. The absence of data identifiers, and the required use of
function composition as the sole program building mechanism
were problematic.

In order to include data identifiers, support common subex-
pressions, and allow specification of sequentially sequenced
actions, FAD was enhanced with ideas found in more tradi-
tional functional-style languages. In particular, function pa-
rameters and a let action constructor were added. Another
enhancement was the idea of a module, to provide a scope for
naming and referring to user-defined functions. Thus, although
the current version of FAD retains an FP flavored whiledo (in
which an internally maintained loop state supports iteration
without requiring updates to objects), the overall style of
programming supported by the language is now closer to that
seen in environment-based functional-style languages such as
Common Lisp [33].

Persistence in FAD is based on reachability from a single
root, db, and is orthogonal to type. Bubba allows FAD pro-
grams to execute in parallel, as concurrent, multiprogrammed
database transactions. This is essential for efficient utilization
of the bubba architecture, but does not directly impact FAD
(the abort statement is the only place where FAD recognizes
the connection between programs and transactions). Bubba
includes a specially designed virtual memory OS that supports
a single level store (into which the persistent address space
is mapped), page-level locking of the persistent space, and
transaction-private address spaces for updated persistent data.
At the close of a transaction, a distributed two-phase commit
is used to incorporate updates into the persistent database [21].

B. The Data Model

The initial FAD data model included no values-only
sharable, updatable, atomic and structured objects [22] . Early
application experience with FAD, however, indicated a number
of somewhat problematic aspects related to an absence of
values in the data model. For example, FAD originally had
“predicates” that returned true or false values as needed to
control conditionals and iteration. But the results of predicates
were not available to the user as data (because true and false
were not objects). While this had not seemed restrictive with
the original language, in which neither data nor functions could
be named, enhancements to allow named data (which support

44 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

-parts-suppliers db-
(*

part = [part-num: ints, part-name: strings, supplier: ints]
supplier = [supplier-num: ints, parts: obj({ ints})]
db = [parts: obj({part; key is part-num}),

suppliers: obj({ supplier; key is supplier-num})]
*I

module new-parts (*add new parts for an existing supplier*)
db = parts-suppliers
define add-part fun(p) (*add a new part*)

do
insert(db.parts,p),
insert(db.suppliers@(p.supplier).parts, p.part-num)

end

filter(fun(p) add-part([part-num:p.l, part-name:p.2, supplier: s-code]),
define prog(s-code, new-parts)

new-parts)

Fig. 5. Parts-suppliers example

-ancestors db-
db = [parents: obj({ [person: strings, child: strings]})]

(*

*I

module get-ancestors (*return the ancestors of a given person*)
db = ancestors
define ancestors fun(parents) (*start w. partents, and extend frontier*)

whiledo(
fun(1oop) (*try to extend frontier*)

let frontier = loop.frontier, accum = 1oop.accum
in if non-empty?(frontier) then

let new-front =
filter(

fun(parent, frontier)
if =? (parent.child,frontier.ancestor)
then [person: frontier .person

ancestor:parent.person],
db.parents,frontier)

in [frontier:new-front, accum:union(new~front,accum)]
fun(exit) exit.accum, (*return accumulated ancestors*)
[frontier:parents, accum:parents])

define prog(name)
let parents =

filter(
fun(p) if =? (p.child, name)

db.parents)
in ancestors(parents)

then [person:name, ancestor:p.person]

Fig. 6. Ancestors example

factoring out common subexpressions in the interest of both
readability and efficiency) suggested that the result of a test
performed by a predicate might be named to allow its use more
than once. A dual problem, highlighted by adding modules to
support named functions (another factoring operation useful
to program development), was that complex predicates built
up from primitive comparisons and Boolean connectives could
not be implemented as user defined functions (since functions
should return data, and values were not FAD data).

Adding values to FAD offered a number of benefits. In
addition to cleaning up problems like those mentioned above,
supporting values strengthened the relationship between FAD
and the value-based relational model (in which relations and
tuples may be viewed as FAD objects, and attributes as FAD
values [34]). In addition, the notions of identity, sharing,
and updating do not apply to FAD values, so they can be
implemented more efficiently than objects in an underlying
database management system.

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS

~

45

module new-parts (*showing types inferred by the FAD compiler*)
db = parts-suppliers
schema
T$100 = [T$101]
T$101 = [db.parts.@.part-no, db.parts.@.part-name]
define add-part fun(p (db. part s. 0))

object-sets.insert(db."parts",p)
object-sets.insert(db."suppliers"@(p."supplier")."parts", p."part-no"

do

end

filter(
define prog(s-code (db. parts. 0 .supplier), new-parts (T$lOO))

fun(p(T$100))
add-part([part-no: p.1,

part-name: p.2
supplier: s-code] (db. parts. @)),

new-parts(T$100))

Fig. 7. Inferred types.

The decision to add values to FAD required us to address
two related questions: Should structured values be supported,
and, if so, should structured values be allowed to contain
objects? We chose to allow structured values because they
seemed appropriate within the overall FAD context. As men-
tioned above, FP was an initial source of inspiration for
the language, and FP operations (including whiledo) were
specifically designed for handling structured values. Although
our approach of supporting object updates prevented FAD from
being a purely functional language like FP, adding structured
values to FAD produced a computationally complete, purely
functional sublanguage well-suited to expressing queries. This
would not have been possible had FAD employed the more
usual approach to iteration (which is based on testing data
changed by updates), so we felt that we were simply making
good use of the initial FAD language framework.

Another reason for supporting structured values had to do
with duplicate elimination in sets of structured data. FAD sets
do not contain duplicates, but objects are identical only if they
have the same identity. Thus, for example, insert({new([l, 21)):
new([l,2])) returns a set with two elements. Originally this
was viewed as an asset for the language, since it was a way
of handling multisets, but in our applications, data placed in
sets were often more appropriately viewed without the concept
of identity because duplicate elimination was desired. This
problem could have been solved by providing different kinds
of sets in FAD (perhaps, by parameterizing the set constructor
with a comparison test), but the implications of such an
approach for strong static typing seemed unclear. Instead,
supporting structured values in addition to structured objects
provided a simple solution to this problem while allowing us to
retain and make good use of the traditional concept of sets as
not containing duplicates. With this approach, the expression
insert({[l, 211, [1,2]) returns a set with a single element, which
was what many applications required.

The question of whether structured values could contain
objects was a difficult one, because either approach can be
rationalized. We were ultimately guided by the specific concept
of values that we wanted to maintain for the programmer,
the underlying database system, and portions of the compiler

concerned with parallel execution: no observable portion or
aspect of a value should ever change. Allowing updatable
objects in structured values would allow values to change
over time (i.e., a test performed on a value at one point
during program execution might return a different result when
performed on the "same" value at a later time). An example
may help clarify this issue.

let x = [Il new(l)]
y = +(x.1,2.2)

a s ~ i g n (z . 2 ~ 2)
z = +(2.1,2.2)

in eq?(y, z)

The fundamental guarantee we wanted FAD to offer con-
cerning values was that y and z must be the same if 2 is a
value (because values do not change over time, and both y
and z depend only on x). But in this example y is 2 and z is
3. Therefore, in FAD (according to the simple view of values
and objects we wanted to support), the data named by x in the
above example is not a value, but rather an object-of type
obj([ints, obj(ints)]). The fact that y and z differ is explained
by the fact that portions of the object x were changed by an
update in between the definitions of y and z .

Coining a term, we characterize our decision to support this
programmer view as one of supporting an "identity-based"
semantics, as opposed to the more traditional "reference-
based" approach (in which pointers of one form or another
explicitly appear as data). A distinguishing aspect of our
approach is that object identifiers are not FAD data, and neither
in general are object states.

C. Strong Static Typing

What we mean by strong static typing is that the data
created and manipulated by a FAD program have the same
type throughout its lifetime, and this type is known by the
compiler as a result of static analysis of the program text and
the persistent database schema.

The original FAD language was not strongly typed; opera-
tions such as tuple selection required run-time examination of

46 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1 , FEBRUARY 1992

whatever fields happened to be stored in a tuple at the time
of the select. If the requested field was not present, null was
returned [22]. In addition to not being able to generate efficient
code for structure access, run-time type errors were possible
(e.g., a tuple select operation might be applied to a set during
program execution). Because a major objective of our research
was efficient use of the Bubba architecture, such an approach
was deemed unacceptable. Strong static typing was therefore
required to provide efficiency and prevent run-time type errors.

Initially, we had to decide whether the types of data used
in a program would be explicitly declared, or automatically
inferred by the compiler. We decided to attempt support
for both approaches. We felt that explicitly declared types
would be a useful documentation technique whose consistency
could be checked by the compiler, and, although automatic
inferencing was very attractive, we were initially unsure as to
whether complete type inferencing was possible for a language
such as FAD (it was clear that some degree of inferencing
was possible).

After having designed the FAD data model, our first step
towards supporting strong static typing was to develop the
language framework necessary for explicit type declarations
(automatic inferencing was viewed as a means of supplying
declarations wherever they were omitted). Our solution com-
bined the transient schema section of a module, the FAD
type expression language presented in Fig. 3, and the use
of type expressions within angle brackets following action
expressions.

A central issue for type languages concerns the question
of when two type expressions represent the same type. Two
different approaches to this question are based on structural
equivalence, and name equivalence. Because our approach
to the FAD data model was based on considering types to
be domains, and because we wanted to do unification-based
type inferencing (which is based on structural equivalence),
we chose structure-based equivalence as opposed to a name-
based approach. Within this context, however, type references
turned out to be extremely useful (if not essential), because
they allowed us to refer to types defined in the persistent
schema by name.

The type information associated with persistent data is held
in a persistent schema, which, in addition to reflecting the
“conceptual” types in the database, also includes concern for
many of the physical level aspects related to storage of data
within a database (e.g., ordering of fields in tuple structures
is invisible to conceptual level tuple types-a fact that is
useful as type constraints concerning the fields that are in
a tuple are incrementally accumulated during inferencing).
Although there are default physical level representations for
conceptual level types, in general the same conceptual level
type may be implemented in different ways within the Bubba
data storage and access system. Generating efficient code for
data manipulation requires that the physical representation be
known.

This distinction between conceptual and physical level
type information represented a subtle complication for type
inferencing of FAD program modules. The result was that
unification of types (as used in type inferencing) ultimately

reflected the need to be aware of both conceptual and physical
levels, giving precedence to persistent schema types. The ex-
plicitly typed parts-supplier example given in Fig. 7 illustrates
this. None of the database programs we have written have
required explicit type declarations, and these programs include
fairly complicated decision support algorithms. Because these
programs ultimately deal with the database, all the necessary
type information is ultimately found in the persistent schema.
Type inferencing thus provides a reliable and useful service for
the FAD database programmer, even though it is conceivable
that explicit type declarations might be required in some
situations.

VI. COMPARISONS WITH RELATED WORK

A. Overall Language Character
Aside from supporting persistence, one difference between

FAD and more sophisticated, higher order functional-style
languages (e.g., Scheme [35] and ML [36]) is that functions
are not data in FAD. Although the FAD actions constructors
accept functions as arguments, user-defined functions in FAD
can neither accept functions as arguments or return functions
as results.

Amber [37] is a higher order functional-style language with
persistence. Persistence in Amber is somewhat orthogonal to
type, and is not based on reachability. Explicit import and
export statements are required to load and store persistent
data from a file system, and the data imported and exported
must have a “dynamic type” (which means that the data
carries its type description with it [38]). Galileo [39] is
a higher order functional-style language with persistence,
based on ideas of ML extended with support for inheritance.
Persistence in Galileo is orthogonal to type, and is based
on reachability from a global identifier binding environment
(to which new identifiers can be added using an explicit
declaration statement). PS-Algol [40] is a procedural-style
language with a persistent heap. This provides uniform support
for transient and persistent data, as well as reachability-
based persistence. PS-Algol appears to have been the first
language to support reachability-based persistence and uniform
transient/persistent data. It has been the focus of a sustained
development effort. Like Amber and Galileo, PS-Algol is a
higher order language with the ability to treat functions as data.

None of the above languages includes an operation
equivalent in power to FAD’s filter operation. This includes
Machiavelli [41], a higher order functional-style language that
incorporates typing ideas that seem promising for database
programming. Although, as shown in [41], it is possible to
write an expression in Machiavelli that produces the overall
result of a filter operation, this expression makes use of
very general combining forms and higher order functions-an
approach that would currently result in disastrous performance
penalties for an application.

This problem has been and continues to be a critical focus
of research in compiler technology for advanced functional
languages [42] - [46]. Although optimizing compiler technol-
ogy may someday support such an approach (so that, for
instance, a complete Cartesian product of filtered sets will not

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 47

(*FAD Version*)
filter(fun(customer, order, item-ordered)

if and?(eq?(customer.name, “John”),
eq?(customer.code, order.ccode),
eq?(order.ocode, item-ordered.ocode))

db.customers, db.orders, db.items-ordered)
then assign(item-ordered.qty, 5) ,

(*SQL Version)
update items-ordered

set qty = 5
where ocode in
(select ocode

from customer c, order o
where c.code = o.,ccode and c.name = “John“)

Fig. 8. FAD filter versus SQL select and update

be created even though the function implementing the filter
is expressed this way), this is not currently possible. And, as
we have pointed out, optimization of FAD’s filter operation is
absolutely essential for real applications.

The approach suggested by Machiavelli is similar to others
that have been proposed [47]-[50], which finesse optimization
issues raised by the use of extremely general operations and
combining forms to support important database operations.
In contrast, the FAD implementation of filter is specialized
to its particular (though widely applicable) job-it does not
necessarily create or even visit the Cartesian product of
its argument sets, and uses proven technology developed
for distributed relational systems to minimize the size of
any intermediate sets that are required [29]. Given current
compiler technology, we believe that FAD represents a realistic
design tradeoff between the desire for powerful, declarative
operations, and the critical need to automatically optimize
programs expressed in terms of these operations.

Although FAD’s filter operation is specialized to handle
queries similar to those supported by SQL’s select operation,
it is more expressive. To illustrate this, Fig. 8 compares FAD
with SQL by presenting FAD and SQL programs that update
a single relation. Although both program segments do the
same thing, the SQL version is handicapped by the fact that
SQL’s update operation can only process one relation at a
time. This results in an SQL program segment that is difficult
to understand (in comparison with the FAD version).

B. The Data Model

The primary comparison of FAD with other languages that
we want to make here concerns the use of reference-objects
in database programming languages such as Galileo [39] and
Machiavelli [41]. These languages may be understood as
having a single kind of updatable object (the reference-object),
and an unstratified data model (i.e., there is no value/object
dichotomy). Because pointer assignment is the only update
operation in these languages, updates to data structures such
as sets and tuples cannot be directly expressed. Although
this approach may be acceptable for modeling purposes, it
does not seem appropriate in a realistic database programming
language.

Reference-objects originated with ML [36]. They hold an
updatable pointer to another object. For example, an int
ref is an object that holds an updatable reference to an
integer; a string ref holds an updatable reference to a string.
The reference object approach requires that pointers be data
in the language; an expression whose result is assigned to
a reference-object must be understood to return a pointer
(because reference objects hold pointers, and because it is
necessary to explicitly dereference such pointers). An update to
a data structure pointed to by a reference-object is modeled by
first constructing a new structure, often incrementally different
from the original, and then updating the reference-object
pointer so it points to the newly created structure.

We provide in Fig. 9 an example to illustrate the difference
between FAD and reference-object languages. Two code seg-
ments are illustrated-the first uses updatable, sharable objects
as provided by the FAD data model; the second uses FAD-like
syntax and an unstratified data model containing updatable,
sharable reference-objects. We begin by constructing a set
containing a single tuple representing a person named Jack.
Type declarations are omitted, but these would indicate that
the name field is a key for this set. We then insert another
tuple into the set, and then update Jack’s age, so that any
succeeding statements using 5 will see a set containing two
tuples and Jack’s changed age. The assumption within this
example is that the set should be an updatable, sharable object
(so that new tuples can be incrementally added to it, and
others sharing the set will see added tuples), and the tuples
representing people should be updatable, sharable objects (so
that an age field can be changed, and other database structures
sharing the tuple will see the changed age field).

In the Fig. 9 code segment that uses reference-objects, the
operation semantics are as follows. Ref is somewhat analogous
to new in FAD-it creates a new object (in this case, a
reference-object pointing to data). The dereference operation
! is used to traverse the pointer stored in a reference-object.
Assign is the only update operation-it replaces the pointer
stored in a reference-object with the address denoted by
its second argument. Insert creates a new set, incrementally
different from the original set, and returns a pointer to the new
set. Tupleassign performs in a similar fashion for tuples. The
outermost ref used in the set creation is necessary because the
data model is unstratified.

Fig. 10 provides an illustration of the data structures that
exist during execution of the two different program seg-
ments of Fig. 9. An implementation level combination of
pointer/structure used for sharing and seen integrally by the
programmer is illustrated with a dashed arrow (rather than
being surrounded with dashed lines as in Fig. 2); reference
objects and pointers visible to the programmer are shown
using circles and solid arrows, respectively. Note that in the
reference-object illustration, after the second update operation,
there are two unreachable data items: the original set structure,
which still holds a single (but not the original!) tuple, and the
original tuple. These two structures are now garbage that must
be collected.

It is unclear what advantage reference-objects provide, and
the comparisons offered by Fig. 10 and the different program

48 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

Updatable, Sharable Objects

ieaple:

{ ;)

[name:'?jack". age: 8]

(*using updatable objects as in FAD*)
let people = { new([name: "jack", age: 81))

insert(people, new([name: "jill", age:7]))
tupleassign(people@"jack", age, 9)

in . . .

Updamble, Sharable Reference-Objects

people: .

e{:)

(*using reference-ojbects as in ML*)
let people = ref({ref([name:"jack", age:8])})

assign(people, insert(!people,ref([name:"jill", age:7]))
assign((!people)@"jack", tupleassign(!((!people)@"jack"), age, 9)

in . . .

Fig. 9. Updatable objects versus reference objects

After TupleAssign

people::

After TupleAssign

people :

After Insert After Insert

people: 1 1 people.

I

Fig. 10. Data structures for Fig. 9.

segments in Fig. 9 show that programming with updatable
reference-objects as opposed to updatable structured objects
adds a significant amount of programming complexity. Simply
compare the two different versions in Fig. 9 of the final update
that replaces the age field of Jack's tuple (each use of ! in
Fig. 9 represents a traversal of a solid arrow in Fig. lo).

Our belief is that reference-objects were added to ML
because they were a minimal extension to support side-
effect based programming in what was otherwise a purely
functional language. But ML was not intended as a database
programming language (it was originally the meta language
used for declaratively representing proof strategies in a theo-
rem proving system [51]). In contrast, FAD started out with
updatable structured objects because this was seen as being

appropriate for database applications. Given objects as in FAD,
there is no need for reference-objects. Perhaps because ML is
an elegant and well-received functional-style language, other
functional-style languages oriented towards database program-
ming have borrowed ML's approach to updates. An essential
difference between these languages and FAD is therefore that
they support an unstratified reference-based data model with a
single kind of updatable, sharable object containing an explicit
pointer, whereas FAD supports a stratified identity-based data
model with structured objects, none of which contain explicit
pointers.

FAD's data model is unique in that it provides Values and
Objects (as defined in Fig. 1) within a single language; other
languages provide one or the other, or an unstratified mixture
of the two (if both structured values and structured objects
are supported). For example, purely functional languages
provide Values. The original version of FAD provided Objects.
Amber [37] and 0 2 [18] provide atomic values and structured
objects. The unstratified EXTRA data model [52] supports
both structured values and objects through use of the own,
own ref, and ref type constructors.

In comparison with other data models, stratification repre-
sents a new approach to integrating structured values and ob-
jects. It avoids situations like that seen above in the reference-
object example (in which the original set of people, not
updated by the set insertion, ultimately ends up with a different
tuple inside it), and it avoids referential integrity problems such
as those of the EXTRA data model, in which own ref objects
may be deleted even though they are referenced from other
objects' ref attributes.

C. Strong Static Typing

1) Type Inferencing: Unification-based type inferencing was
invented by Milner for use in ML [36], [53]. In this approach,
unification of type expressions is used to incrementally solve
the system of type equations corresponding to a given program.
The free variables of such an equation system correspond to
the unknown types within a program, and the type equations
themselves arise from two sources: First, there are language-
specific semantic axioms describing the types of data required
and produced by the primitive operations of the language; and
second, as specific actions as composed within a program, the
output types of one action must be equated with the input
types of another. The set of typing axioms for a language may
be considered to define an inference system within which one

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 49

can prove that an expression in that language has a given type.
Languages with different primitive operations have different
sets of axioms.

The importance of unification is that it provides a mech-
anism for monotonically reflecting within type variables the
most specific implications of type constraints. In particular,
because unification of two type expressions produces a most
general solution for the type variables in the expressions,
constraints can be processed incrementally, as they are en-
countered, without fear of overconstraining the overall system
and preventing a global solution if there is one. Thus, the
essential capability required for this style of type inference is
not unification per se, but rather the ability to monotonically
refine the values of type variables (from an initial value of
“unknown”) as necessary to reflect the most specific implica-
tions of type constraints as they are encountered. Unification
simply provides a mechanism for accomplishing this when
type variables range over a domain of uninterpreted terms.

In ML, the terms used as a domain for type variables during
inferencing are exactly those that are provided by the ML type
expression language. For example, an expression such as f(3)
in ML imposes the following constraint on f it must be a
function that maps an integer to some unknown type (we do
not know what type this is, given only this context). The most
general type for f can be represented using a type variable
initialized to “unknown” (say, a) in an ML type expression:
int-> CY. Later in the program, f might be placed in a list
whose elements are of type int-> bool-> p (where p is also
an unknown type). At this point, unifying the type of f with the
list element type (because lists are homogeneous in ML) would
refine the value of CY from unknown to bool-> 0 (another ML
type expression).

In contrast, the terms used to represent FAD types are not
sufficiently expressive as a domain for type variables during
inferencing of FAD programs. This difference is a result of
FAD’s data domain, which includes a richer variety of types
than found in ML (e.g., FAD includes keyed sets and tuples).
An expression such as S@3 in FAD imposes the following
constraints on S: it must be a keyed set containing elements
of some type, and this type (whatever it is) must have ints as
a component (because an integer is used as the key value).
Now, it is possible to use the FAD type expression language
to represent a variety of types that satisfy this constraint (e.g.,
{[a:ints, b: ints]; keys is a}, {[a: ints, b: ints]; key is b}, etc.),
but all of these types make assumptions about S that are not
specifically implied by the above constraints-it is simply not
possible to express the most general type of S through use of
FAD type expression containing type variables.

There are two approaches we could have taken to address
this: 1) define a new term language for FAD types sufficiently
expressive to represent the most general type satisfying any
constraints that might he encountered during inferencing, or
2) implement an internal representation for types in which
the specific constraints that might be placed on a type can be
represented. We chose the second of these two approaches,
since, in any case, it is an internal representation of type ex-
pressions for which unification is required during inferencing.
Constraints that can be placed on FAD types during inferencing

include (in addition to those appropriate in the above example)
such requirements as the fact that a type may (or may not)
be an object, that a tuple type must include a field with a
particular label, that all fields in a tuple must be values, or
that a particular tuple may (or does not) have additional fields
not yet discovered. The “unification” procedure for FAD types
takes all of these things into account.

The point of this comparison is to indicate that ML is a
language with few combining forms and a simple data model,
and because of this its type expression language is always able
to express the most general type satisfying constraints that
are encountered when processing arbitrary ML expressions.
This is not something that should be expected in general. This
point is reflected in recent papers that address extending the
unification-based inferencing technique originally introduced
with ML to languages with richer data models [41], [54]-[%I.
Few database programming languages support type inferenc-
ing. Aside from FAD, we are only aware of Amber [37] and
Machiavelli [41], neither of which include the range of data
types found in FAD.

2) Polymorphism: Another useful point of comparison in
this context is the fact that ML is a polymorphic language,
whereas FAD is not. What this means in the context of
unification-based type inferencing is that in ML, unbound
type variables are allowed to remain after all constraints have
been reflected in type variables. The understanding is that type
variables are universally quantified at an outermost scope. For
example, a function with the type (a list)->int is understood to
return an integer when it is passed a list, no matter what type
of elements are in the list. An example of such a function is
length, a function that returns the number of elements in a list.

In contrast, the FAD analyzer considers type variables that
are unbound (after all constraints have been satisfied) to reflect
an ambiguity in the program. Thus, although unification-based
type checking directly supports inference of polymorphic types
for functions, we chose not to make use of this Capability. We
took this approach because it was unclear to us how to generate
efficient code for FAD that was actually polymorphic (i.e., the
same code would really work on different types of arguments),
and efficiency was our ultimate objective.

The reason why ML code that deals with lists may be
polymorphic is that the compiler can generate the same code
to get the next element of a list no matter what kind of a list is
involved. We did not want to assume that the same code is used
to access a tuple field with a given label, no matter what type
of a tuple is involved. In fact, our objective was exactly the
opposite-we wanted to generate code that directly accessed
structure elements based on the type of the structure, and this
code is different for different tuple types even if these types
may have fields in common (the fields are generally at different
offsets). Supporting polymorphism for tuple selections can be
done by interpreting the tuple select operation based on run-
time examination of tuple fields (as was done in the original
untyped version of FAD, which was, of course, polymorphic,
but also unsafe), or by using an object-oriented approach at
the implementation level. Both of these approaches involve
overhead we wanted to avoid. Given a willingness to accept the
implications of polymorphic tuple selections, however, strong

50 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 1, FEBRUARY 1992

static type inferencing for such a language is straightforward,
as demonstrated by Machiavelli [41].

VII. CONCLUSIONS

Based on the comparisons given above, and our use of
FAD for a number of realistic database applications, we have
come to the following conclusions. The basic functional-
style used by FAD is similar to a number of other database
programming languages that have been proposed. Some of
the operations FAD provides within this context are unique to
FAD (e.g., the filter action constructor, and element selections
from keyed sets), and these have been very useful to us in our
application experiments. Null data have been integrated into
FAD through the combined interaction of many of its facilities
(e.g., structure insertions and selections, and practically all
of the action constructors), as well as being made uniformly
available for use as application data. As far as we know, FAD
is the first statically typed database language to do this to such
an extent. Because special cases are handled uniformly, our
approach to null greatly simplified the control of distributed
process threads executing (for example) multiple copies of the
same filter operation on the different portions of a persistent
set distributed over multiple processing nodes [32].

We believe that FAD has achieved its objectives with respect
to balancing user-level simplicity with generality, and feel
that type inferencing is an important factor in this balance. It
contributes to the ease of use of the language, while detecting
many conceptual errors before program execution. Although
query languages such as SQL, or those based on an extended
relational calculus (e.g., EXCESS [52]) can offer greater
simplicity for some queries, they are not general purpose
programming languages.

Given our objective of high performance, we believe we
have achieved a realistic balance between the desire for
powerful set-oriented database operations and the restrictions
imposed by existing compiler technology. FAD represents a
step upwards from SQL, but, with further progress in compiler
technology, it may be possible to support fewer special purpose
operations (e.g., define or otherwise support FAD’s n-ary filter
in terms of lower level primitives), and rely on increasingly
sophisticated optimization techniques to achieve execution
efficiency.

We believe that FAD successfully integrates objects and val-
ues while supporting our objectives, and believe the resulting
data model suggests an appropriate design space for choices
here. We see no benefits in the reference-object approach, and
view the absence of explicit pointers in FAD as an asset.
Many of our applications have used structured values to good
effect, although the persistent space has generally required
only atomic values and structured objects. Transient structured
values have been important to providing efficient execution of
FAD on Bubba, in which values can be efficiently sent between
nodes without loss of information, and we suspect it makes
good sense to directly reflect updatability within types on any
system whose architecture is expected to be truly parallel.
Atomic objects have not been required by our applications, but
they still make good sense from a data modeling standpoint.

FAD does not support user-defined abstract data types (this
planned feature was not implemented due to time pressure),
but ADT instances should be treated as atomic data in a data
model, and would be considered atomic objects if they can
change over time.

A. Current Implementation Status

The FAD compiler [32] is currently operational, and com-
prises four phases: semantic analysis (static type checking and
inference [28]); optimization for distributed data access based
on an architectural performance model (in support of wary
filter operations [29]); parallelization (creation of separate code
bodies for distributed execution based on an overall dataflow
model of process communication [30]), and low-level code
generation [32].

The ultimate result of FAD compilation is a load module
appropriate for execution on a prototype database system
implemented on a Flex-32 with 40 processor nodes [21]. Each
node has a dedicated (unshared) memory and a CDC Wren
disk drive. Persistent sets are declustered (partitioned and
distributed) over multiple nodes to increase performance (311.
Application performance measurements from the working pro-
totype, and simulation results (necessary for performance
projection of larger configurations) are reported in [21].

The Bubba project has been completed, but the investment
in people represented by the project, and the lessons learned
during the course of the project, will hopefully be reflected in
cost-effective, scalable, and easy to use commercial systems
of the future.

ACKNOWLEDGMENT

Primary acknowledgment for FAD is due to F. Bancilhon,
who helped shape the original FAD semantics, and to the
original developers of FAD, including S. Khoshafian, B.
Hart, and T. Briggs. The project as a whole benefited from
the management and overall direction of H. Boral. Bubba
was developed by the MCC Systems Technology laboratory,
headed by G. Lowenthal, and supported by MCC corporate
shareholders.

REF ER EN c E s

[l] E. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, June 1970.

[2] G. Jaeschke and H. Schek, “Remarks on the algebra of non first normal
form relations,” in Proc. 1st ACM Int. Symp. Principles Database Syst.,
1982.

[3] C. Zaniolo, “The representation and deductive retrieval of complex
objects,” in Proc. 11th Int. Conf Very Large Databases, 1985.

[4] H. Schek and M. Scholl, “The relational model with relational valued
attributes,” Inform. Syst., vol. 11, no. 2, 1986.

[5] M. Ozsoyoglu and L. Yuan, “A normal form for nested relations,” in
Proc. 4th ACM Int. Symp. Principles Database Syst., 1985.

161 S. Abiteboul and N. Bidoit, “An algebra for non normalized relations,”
in Proc. 3rd ACM Int. Symp. Principles Database Syst., 1984.

[7] R. Hull and C. Yap, “The format model: A theory of database orgainiza-
tion,” J . ACM, vol. 31, no. 3, July 1984.

[E] A. Furtado and L. Kerschberg, “An algebra of quotient relations,” in
Proc. ACM Int. SIGMOD Conf, 1977.

[9] M. Roth, H. Korth, and A. Silberschatz, “Theory of non-first-normal-
form relational databases,” Dep. Comput. Sci., TR-84-36, Univ. of Texas
at Austin, 1984.

[IO] S. Thomas, “A non-first-normal-form relational database model,” Ph.D.
dissertation, Vanderbilt Univ., 1982.

DANFORTH AND VALDURIEZ: A FAD FOR DATA INTENSIVE APPLICATIONS 51

F. Bancilhon and S. Khoshafian, “A calculus for complex objects,” in
Proc. ACM Int. Symp. Principles Database Syst., 1986.
G. Copeland and D. Maier, “Making Smalltalk a database system,” in
Proc. ACM Int. SIGMOD Conf, 1984.
J. Schmidt, “Some highlevel language constructs for data of type
relation,” ACM Tran. Database Syst., vol. 2, no. 3, Sept. 1977.
M. Atkinson and P. Buneman, “Types and persistence in database pro-
gramming languages,”ACM Comput. Surveys, vol. 19, no. 2, June 1987.
S. Khoshafian and G. Copeland, “Object identity,” in Proc. 1st Int.
Workshop Object Oriented Programming Syst., Languages, and Appl.,
Portland, 1986.
G. Kuper and M. Vardi, “On the expressive power of the logic data
model,” in Proc. ACM Int. SIGMOD Conf., 1985.
S. Tsur and C. Zaniolo, “An implementation of GEM-Supporting a
semantic model on a relational back end,” in Proc. ACM Int. SIGMOD
Conj, 1984.
C. Lecluse, P. Richard, and F. Velez, “02, An object-oriented data
model,” in Proc. ACM Int. SIGMOD Conf, 1988.
P. Chen, “The Entity-Relationship model-Toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, Jan. 1976.
M. Hammer and D. McLeod, “Database description with SDM: A
semantic database model,” ACM Trans. Database Syst., vol. 6, no. 3,
Mar. 1981.
Bubba Team, “Protyping Bubba, A highly parallel database system,”
IEEE Trans. Knowledge Data Eng., vol. 2, Mar. 1990.
F. Bancilhon, T. Briggs, S . Khoshafian, and P. Valduriez, “FAD, A
Powerful and simple database language,” in Proc. Int. Conf Very Large
Databases, Brighton, 1987.
H. Boral, “Parallelism in Bubba,” in Proc. Int. Symp. Databases in
Parallel and Distributed Syst., Austin, Dec. 1988.
M. Stonebraker, “The case for shared-nothing,” Database Eng., vol. 9,
no. 6, June 1986.
D. DeWitt et al., ‘‘GAMMA-A high performance dataflow database
machine,” in Proc. Int. Conf. Very Large Databases, Tokyo, 1986.
S. Tsur and C. Zaniolo, “LDL: A logic-based data language,” in Proc.
12th Int. Conf Very Large Databases, 1986.
J. Backus, “Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs,” Commun. ACM, vol. 21,
no. 8, Aug. 1978.
S. Danforth, “Typechecking FAD, A database programming language,”
MCC Tech. Rep. ACA-ST-194-88(Q), June 1988.
P. Valduriez and S. Danforth, ‘‘Query optimization for database program-
ming languages,” in Proc. Ist Int. Conf. Deductive and Object Oriented
Database Syst., Kyoto, Dec. 1989.
B. Hart, S. Danforth, and P. Valduriez, “Parallelizing FAD, A database
programming language,” in Proc. Int. Symp. Databases in Parallel and
Distributed Syst., Austin, Dec. 1988.
G. Copeland, B. Alexander, and E. Boughter, “Data placement in
Bubba,” in Proc. ACM Int. SIGMOD Conf, Chicago, IL, 1988.
P. Valduriez, S. Danforth, B. Hart, T. Briggs, and M. Cochinwala,
“Compiling FAD, A database programming language,” in Proc. 2nd
Int. Workshop Database Programming languages, Salishan, June 1989.
G. Steele, The COMMON LISP Reference Manual. Bedford, MA:
Digital, 1984.
P. Valduriez and S. Danforth, “Functional SQL (FSQL), An SQL upward
compatible database programming language,” MCC Rep. ACA-ST-045-
89, 1989, to be published in Inform. Sci. -An International Journal.
G. Sussmann and G. Steele, “An interpreter for extended lambda
calculus,” MIT AI Memo 349, Dec. 1975.
R. Milner, “A proposal for standard ML,” Internal Rep. CSR-157-83,
Dep. Comput. Sci., Univ. of Edinburgh, 1984.
L. Cardelli, “Amber,” AT&T Bell Labs Tech. Memo 11271-840924-
IOTM, 1984.
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin, “Dynamic typing in a
statically typed language,” DEC SRC Rep. 47, 1989.
A. Albano, L. Cardelli, and R. Orini, “Galileo: A strongly-typed,
interactive conceptual language,” ACM Trans. Database Syst., vol. 10,
no. 2, June 1985.
M. Atkinson, K. Chisholm, and W. Cockshott, “PS-Algol: An Algol with
a persistent heap,” ACM SIGPLAN Notices, vol. 17, no. 7, July 1981.
A. Ohori, P. Buneman, and V. Breazu-Tannen, “Database programming
in Machiavelli,” in Proc. ACM Int. SIGMOD Conf., Portland, 1989.
G. Steele, “Rabbit: A compiler for scheme,” MIT Rep. AI-TR-474, 1978.
F. Bellegarde, “Rewriting systems on FP expressions that reduce the
number of sequences they yield,” in Proc. ACM Symp Lisp and Func-
tional Programming, Austin, 1984.
D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams,
“ORBIT: An optimizing compiler for scheme,” in Proc. ACM Symp.
Compiler Construction, SIGPLAN Notices, vol. 21, no. 7 , July 1986.

A. Ferguson and P. Wadler, “When will deforestation stop?” in Proc.
Glasglow Workshop Functional Programming, 1988.
K. Gopinath and J. Hennessy, “Copy elimination in functional lan-
guages,” in Proc. ACM Symp. Principles Programming Languages, 1989.
P. Buneman, R. Nikhil, and R. Frankel, “A practical functional pro-
gramming system for databases,” in Proc. ACM Conf Functional Pro-
gramming Languages and Comput. Architecture, 1981.
R. Nikhil, “Semantics of update in FDBPL,” in Proc. Int. Workshop
Database Programming Languages, Roscoff, 1987.
P. Trindler and P. Wadler, “List comprehensions and the relational calcu-
lus,” in Proc. 1988 Glasglow Workshop Functional Programming, 1988.
A. Poulovassilis, “FDL: An integration of the functional data model
and the functional computational model,” in Proc. 6th British Nut. Conf
Databases (BNCOD 6), 1988.
M. Gordon, R. Milner, and C. Wadsworth, Edingurgh LCF (A Logic of
Computable Functions), LNCS 78. New York: Springer-Verlag, 1979.
M. Carey, D. DeWitt, and S. Vandenberg, “A data model and query
language for EXODUS,” Rep. 734, Dep. Comput. Sci., Univ. of
Wisconsin, 1987.
R. Milner, “A theory of type polymorphism in programming,” J.
Comput. Syst. Sri., vol. 17, 1978.
M. Wand, “Complete type inference for simple objects,” in Proc. Second
Annu. Symp. Logic in Comput. Sci., 1987.
Y.-C. Fuh and P. Mishra, “Type inference and subtypes,” in Proc. ESOP,
’88, LNCS 300. New York: Springer-Verlag, 1988.
L. Jategaonkar and J. Mitchell, “ML with extended pattern matching
and subtypes,” in Proc. ACM Conf. Lisp and Functional Languages,
Utah, 1988.
M. Remy, “Typechecking records and variants in a natural extension of
ML,” in Proc. ACM Symp. Principles Programming Languages, 1989.
J. Gaver, Type-Checking and Type-Inference for Object-Oriented Pro-
gramming Languages, Ph.D. dissertation, Rep. UIUCDCS-R-89-1539,
Univ. of Illinois at Urbana-Champaign, 1989.

Scott Danforth received the Ph.D. degree in com-
I

puter science from the University of North Carolina
at Chapel Hill in 1983, where he assisted in the de-
sign of a cellular architecture for parallel execution
of functional languages

He is currently employed by IBM in Austin,
TX, where he is concerned with the theory and
developing technology of object-oriented systems
From 1984 to 1990, he was a senior research
scientist at MCC, where he developed parallel exe-
cution models for integrated functional and logical

programming languages, and was responsible for defining and implementing
FAD, a strongly typed functional-style language for programming Bubba, a
parallel database system developed at MCC. He has published over 20 papers
and technical reports, and is on the editorial board of the International Journal
of Parallel Programmmg. His interest areas include parallel processing,
programming languages, and compiler technology.

Dr. Danforth is a member of the Association for Computing Machinery.

Patrick Valduriez received the Ph.D. degree in
computer science from the University of Paris in
1981.

He is currently a Director of Research at INRIA,
the national research center for computer science
in France. There he heads a project on advanced
database technology including distributed, parallel,
deductive, and object-oriented database systems.
From 1985 to 1989, he was a senior scientist at
MCC, Austin, TX. There he participated in the
desien and imulementation of the Bubba oarallel v

database system, managing the design and development of the FAD database
programming language and its compiler/optimizer. He is the author or co-
author of over 60 technical papers and several books on various aspects of
database systems, among which are Relational Databases and Knowledge-
bases and Analysis and Comparison of Relational Database Systems (Reading,
MA: Addison-Wesley, 1990), and Principles of Distributed Data Systems
(Englewood Cliffs, NJ: Prentice-Hall, 1991).

Dr. Valduriez is a member of the Association for Computing Machinery.

