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ABSTRACT 
The general problem of answering top-k queries can be modeled 
using lists of data items sorted by their local scores. The most 
efficient algorithm proposed so far for answering top-k queries 
over sorted lists is the Threshold Algorithm (TA). However, TA 
may still incur a lot of useless accesses to the lists. In this paper, 
we propose two new algorithms which stop much sooner. First, 
we propose the best position algorithm (BPA) which executes 
top-k queries more efficiently than TA. For any database instance 
(i.e. set of sorted lists), we prove that BPA stops as early as TA, 
and that its execution cost is never higher than TA. We show that 
the position at which BPA stops can be (m-1) times lower than 
that of TA, where m is the number of lists. We also show that the 
execution cost of our algorithm can be (m-1) times lower than that 
of TA. Second, we propose the BPA2 algorithm which is much 
more efficient than BPA. We show that the number of accesses to 
the lists done by BPA2 can be about (m-1) times lower than that 
of BPA. Our performance evaluation shows that over our test 
databases, BPA and BPA2 achieve significant performance gains 
in comparison with TA. 

1. INTRODUCTION  
Top-k queries have attracted much interest in many different areas 
such as network and system monitoring �[4]�[8]�[19], information 
retrieval �[5]�[18]�[20]�[26], sensor networks �[27]�[28],  multimedia 
databases �[10]�[16]�[25], spatial data analysis �[11]�[17], P2P 
systems �[1]�[3]�[5], data stream management systems �[22]�[24], etc. 
The main reason for such interest is that they avoid overwhelming 
the user with large numbers of uninteresting answers which are 
resource-consuming. 

The problem of answering top-k queries can be modeled as 
follows �[13]�[15]. Suppose we have m lists of n data items such 
that each data item has a local score in each list and the lists are 
sorted according to the local scores of their data items. And each 
data item has an overall score which is computed based on its 
local scores in all lists using a given scoring function. Then the 
problem is to find the k data items whose overall scores are the 
highest. This problem model is simple and general. Let us 

illustrate with the following examples. Suppose we want to find 
the top-k tuples in a relational table according to some scoring 
function over its attributes. To answer this query, it is sufficient to 
have a sorted (indexed) list of the values of each attribute 
involved in the scoring function, and return the k tuples whose 
overall scores in the lists are the highest. As another example, 
suppose we want to find the top-k documents whose aggregate 
rank is the highest wrt. some given keywords. To answer this 
query, the solution is to have for each keyword a ranked list of 
documents, and return the k documents whose aggregate rank in 
all lists are the highest.  

There has been much work on efficient top-k query processing 
over sorted lists. A naïve algorithm is to scan all lists from 
beginning to end and, maintain the local scores of each data item, 
compute the overall scores, and return the k highest scored data 
items. However, this algorithm is executed in O(m∗n) and thus it 
is inefficient for very large lists.  

The most efficient algorithm for answering top-k queries over 
sorted lists is the Threshold Algorithm (TA) �[14]�[16]�[25]. TA is 
applicable for queries where the scoring function is monotonic. It 
is simple and elegant. Based on TA, many algorithms have been 
proposed for top-k query processing in centralized and distributed 
applications, e.g. �[6]�[7]�[9]�[12]�[21]�[23]. The main difference 
between TA and previously designed algorithms, e.g. Fagin’s 
algorithm (FA) �[13], is its stopping mechanism that enables TA to 
stop scanning the lists very soon. However, there are many 
database instances over which TA keeps scanning the lists 
although it has seen all top-k answers (see Example 2 in Section 
�3.2). And it is possible to stop much sooner. 

In this paper, we propose two new algorithms for processing top-k 
queries over sorted lists. First, we propose the best position 
algorithm (BPA) which executes top-k queries much more 
efficiently than TA. The key idea of BPA is that its stopping 
mechanism takes into account special seen positions in the lists, 
the best positions. For any database instance (i.e. set of sorted 
lists), we prove that BPA stops as early as TA, and that its 
execution cost (called middleware cost in �[15]) is never higher 
than TA. We prove that the position at which BPA stops can be 
(m-1) times lower than that of TA, where m is the number of lists. 
We also prove that the execution cost of our algorithm can be (m-
1) times lower than that of TA. Second, based on BPA, we 
propose the BPA2 algorithm which is much more efficient than 
BPA. We show that the number of accesses to the lists done by 
BPA2 can be about (m-1) times lower than that of BPA. To 
validate our contributions, we implemented our algorithms (and 
TA). The performance evaluation shows that over our test 
databases, BPA and BPA2 outperform TA by a factor of about 

1 Work partially funded by ARA “Massive Data” of the French ministry of 
research and the European Strep Grid4All project. 
2 Partially supported by a fellowship from Shahid Bahonar University of 
Kerman, Iran. 
 
Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the VLDB copyright notice and the title of the publication and its date 
appear, and notice is given that copying is by permission of the Very Large 
Database Endowment. To copy otherwise, or to republish, to post on servers 
or to redistribute to lists, requires a fee and/or special permissions from the 
publisher, ACM. 
VLDB ’07, September 23-28, 2007, Vienna, Austria. 
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09. 



(m+6)/8 and (m+1)/2 respectively, e.g. for m=10, the factor is 
about 2 and 5.5, respectively.  

The rest of this paper is organized as follows. In Section 2, we 
define the problem which we address in this paper. Section 3 
presents some background on FA and TA. In Sections 4 and 5, we 
present the BPA and BPA2 algorithms, respectively, with a cost 
analysis. Section 6 gives a performance evaluation of our 
algorithms. In Section 7, we discuss related work. Section 8 
concludes. 

2. PROBLEM DEFINITION 
Let D be a set of n data items, and L1, L2, …, Lm be m lists such 
that each list Li contains n pairs of the form (d, si(d)) where d∈D 
and si(d) is a non-negative real number that denotes the local 
score of d in Li. Any data item d∈D appears once and only once 
in each list. Each list Li is sorted in descending order of its local 
scores, hence called “sorted list”. Let j be the number of data 
items which are before a data item d in a list Li, then the position 
of d in Li is equal to (j + 1). 

The set of m sorted lists is called a database. In a distributed 
system, sorted lists may be maintained at different nodes. A node 
that maintains a list is called a list owner. In centralized systems, 
the owner of all lists is only one node. 

The overall score of each data item d is computed as f(s1(d), s2(d), 
…, sm(d)) where f is a given scoring function. In other words, the 
overall score is the output of f where the input is the local scores 
of d in all lists. In this paper, we assume that the scoring function 
is monotonic. A function f is monotonic if f(x1, …, xm) ≤ f(x'1, …, 
x'm) whenever xi ≤ x'i for every i. Many of the popular aggregation 
functions, e.g. Min, Max, Average, are monotonic. The k data 
items whose overall scores are the highest among all data items, 
are called the top-k data items. 

As defined in �[15], we consider two modes of access to a sorted 
list. The first mode is sorted (or sequential) access by which we 
access the next data item in the sorted list. Sorted access begins 
by accessing the first data item of the list. The second mode of 
access is random access by which we lookup a given data item in 
the list. Let cs be the cost of a sorted access, and cr be the cost of a 
random access. Then, if an algorithm does as sorted accesses and 
ar random accesses for finding the top-k data items, then its 
execution cost is computed as as∗cs + ar∗cr. The execution cost 
(called middleware cost in �[15]) is a main metric to evaluate the 
performance of a top-k query processing algorithm over sorted 
lists �[15]. 

Let us now state the problem we address. Let L1, L2, …, Lm be m 
sorted lists, and D be the set of data items involved in the lists. 
Given a top-k query which involves a number k≤n and a 
monotonic scoring function f, our goal is to find a set D'⊆D such 
that �D'�= k, and ∀d1∈D' and∀d2∈(D-D') the overall score of d1 
is at least the overall score of d2, while minimizing the execution 
cost. 

3. BACKGROUND 
The background for this paper is the TA algorithm which is itself 
based on Fagin's Algorithm (FA). FA and TA are designed for 
processing top-k queries over sorted lists. In this section, we 
briefly describe and illustrate FA and TA. 

3.1 FA  
The basic idea of FA is to scan the lists until having at least k data 
items which have been seen in all lists, then there is no need to 
continue scanning the rest of the lists �[13]. FA works as follows:  

1. Do sorted access in parallel to each of the m sorted lists, and 
maintain each seen data item in a set S. If there are at least k 
data items in S such that each of them has been seen in each 
of the m lists, then stop doing sorted access to the lists. 

 
2. For each data item d involved in S, do random access as 

needed to each of the lists Li to find the local score of d in Li, 
compute the overall score of d, and maintain it in a set Y if its 
score is one of the k highest scores computed so far. 

 
3. Return Y. 
 
 
The correctness proof of FA can be found in �[13]. Let us illustrate 
FA with the following example.  

Example 1. Consider the database (i.e. three sorted lists) shown 
in Figure 1.a. Assume a top-3 query Q, i.e. k=3, and suppose the 
scoring function computes the sum of the local scores of the data 
item in all lists. In this example, before position 7, there is no data 
item which can be seen in all lists, so FA cannot stop before this 
position.  After doing the sorted access at position 7, FA sees d5 
and d8 which are seen in all lists, but this is not sufficient for 
stopping sorted access. At position 8, the number of data items 
which are seen in all lists is 5, i.e. d1, d3, d5, d6 and d8. Thus, at 
position 8, there are at least k data items which are seen by FA in 
all lists, thus FA stops doing sorted access to the lists. Then, for 
the data items which are seen only in some of the lists, e.g. d2, FA 
does random access and finds their local scores in all lists, e.g. d2 
is not seen in L1 so FA needs a random access to L1 to find the 
local score of d2 in this list. It computes the overall score of all 
seen data items, and returns to the user the k highest scored ones. 

3.2 TA  
The main difference between TA and FA is their stopping 
mechanism which decides when to stop doing sorted access to the 
lists. The stopping mechanism of TA uses a threshold which is 
computed using the last local scores seen under sorted access in 
the lists. Thanks to its stopping mechanism, over any database, 
TA stops at a position (under sorted access) which is less than or 
equal to the position at which FA stops �[15]. TA works as 
follows: 

1. Do sorted access in parallel to each of the m sorted lists. As a 
data item d is seen under sorted access in some list, do 
random access to the other lists to find the local score of d in 
every list, and compute the overall score of d. Maintain in a 
set Y the k seen data items whose overall scores are the 
highest among all data items seen so far. 

 
2. For each list Li, let si be the last local score seen under sorted 

access in Li. Define the threshold to be δ = f(s1, s2, …, sm). If 
Y involves k data items whose overall scores are higher than 
or equal to δ, then stop doing sorted access to the lists. 
Otherwise, go to 1. 

 



3. Return Y. 
 
The correctness proof of TA can be found in �[15]. Let us illustrate 
TA with the following example.  

Example 2. Consider the three sorted lists shown in Figure 1.a 
and the query Q of Example 1, i.e. k=3 and the scoring function 
computes the sum of the local scores. The thresholds of the 
positions and the overall score of data items are shown in Figure 
1.b and 1.c, respectively. TA first looks at the data items which 
are at position 1 in all lists, i.e. d1, d2, and d3. It looks up the local 
score of these data item in other lists using random access and 
computes their overall scores. But, the overall score of none of 
them is as high as the threshold of position 1. Thus, at position 1, 
TA does not stop. At this position, we have Y={d1, d2, d3}, i.e. the 
k highest scored data items seen so far. At positions 2 and 3, Y 
involves {d3, d4, d5} and {d3, d5, d8} respectively. Before position 
6, none of the data items involved in Y has an overall score higher 
than or equal to the threshold value. At position 6, the threshold 
value gets 63, which is less than the overall score of the three data 
items involved in Y, i.e. Y={d3, d5, d8}. Thus, there are k data 
items in Y whose overall scores are higher than or equal to the 
threshold value, so TA stops at position 6. The contents of Y at 
position 6 are exactly equal to its contents at position 3. In other 
words, at position 3, Y already contains all top-k answers. But TA 
cannot detect this and continues until position 6. In this example, 
TA does three useless sorted accesses in each list, thus a total of 9 
useless sorted accesses and 9∗2 useless random accesses. 

In the next section, we propose an algorithm that always stops as 
early as TA, so it is as fast as TA. Over some databases, our 
algorithm can stop at a position which is (m-1) times lower than 
the stopping position of TA. 

4. BEST POSITION ALGORITHM 
In this section, we first propose our Best Position Algorithm 
(BPA), which is an efficient algorithm for the problem of 
answering top-k queries over sorted lists. Then, we analyze its 
execution cost and discuss its instance optimality. 

4.1 Algorithm 
BPA works as follows:  

1. Do sorted access in parallel to each of the m sorted lists. As a 
data item d is seen under sorted access in some list, do 
random access to the other lists to find the local score and 
the position of d in every list. Maintain the seen positions 
and their corresponding local scores. Compute the overall 
score of d. Maintain in a set Y the k seen data items whose 
overall scores are the highest among all data items seen so 
far. 

 
2. For each list Li, let Pi be the set of positions which are seen 

under sorted or random access in Li. Let bpi, called best 
position1 in Li, be the greatest position in Pi such that any 
position of Li between 1 and bpi is also in Pi. Let si(bpi) be 
the local score of the data item which is at position bpi in list 
Li .  

 
3. Let best positions overall score be λ = f(s1(bp1), s2(bp2), …, 

sm(bpm)). If Y involves k data items whose overall scores are 
higher than or equal to λ, then stop doing sorted access to the 
lists. Otherwise, go to 1. 

 

                                                                 
1 bpi is called best because we are sure that all positions of Li 

between 1 and bpi have been seen under sorted or random 
access. 

 List 1  List 2  List 3  f = s1 + s2 + s3 

Position  Data 
item 

Local 
score    

s1 

 Data 
item 

Local 
score 

s2 

 Data 
item 

Local 
score 

s3 

 TA 
Threshold 

 Data 
item 

Overall 
Score 

1  d1 30  d2 28  d3 30  88  d1 65 

2  d4 28  d6 27  d5 29  84  d2 63 

3  d9 27  d7 25  d8 28  80  d3 70 

4  d3 26  d5 24  d4 25  75  d4 66 

5  d7 25  d9 23  d2 24  72  d5 70 

6  d8 23  d1 21  d6 19  63  d6 60 

7  d5 17  d8 20  d13 15  52  d7 61 

8  d6 14  d3 14  d1 14  42  d8 71 

9  d2 11  d4 13  d9 12  36  d9 62 

10  d11 10  d14 12  d7 11  33  … … 

…  … …  … …  … …  …  … … 

(a) 
 

      (b)                                  (c)  

Figure 1. Example database. a) 3 sorted lists. b) TA threshold at positions 1 to 10. c) The overall score of each data item. 



4. Return Y. 
 

Example 3. To illustrate our algorithm, consider again the three 
sorted lists shown in Figure 1.a and the query Q in Example 1. At 
position 1, BPA sees the data items d1, d2, and d3. For each seen 
data item, it does random access and obtains its local score and 
position in all lists. Therefore, at this step, the positions which are 
seen in list L1 are the positions 1, 4, and 9 which are respectively 
the positions of d1, d3 and d2. Thus, we have P1={1, 4, 9} and the 
best position in L1 is bp1 = 1 (since the next position in P1 is 4 
meaning that positions 2 and 3 have not been seen). For L2 and L3 
we have P2={1, 6, 8} and P3={1, 5, 8}, so bp2 = 1 and bp3 = 1. 
Therefore, the best positions overall score is λ = f(s1(1), s2(1), 
s3(1)) = 30 + 28 +30 = 88. At position 1, the set of three highest 
scored data items is Y={d1, d2, d3}, and  since the overall score of 
these data items is less than λ, BPA cannot stop. At position 2, 
BPA sees d4, d5, and d6. Thus, we have P1={1, 2, 4, 7, 8, 9}, 
P2={1, 2, 4, 6, 8, 9} and P3={1, 2, 4, 5, 6, 8}. Therefore, we have 
bp1=2, bp2=2 and bp3=2, so λ = f(s1(2), s2(2), s3(2)) = 28 + 27 + 
29 = 84. The overall score of the data items involved in Y={d3, d4, 
d5} is less than 84, so BPA does not stop. At position 3, BPA sees 
d7, d8, and d9. Thus, we have P1 = P2 ={1, 2, 3, 4, 5, 6, 7, 8, 9}, 
and P3 ={1, 2, 3, 4, 5, 6, 8, 9, 10}. Thus, we have bp1=9, bp2=9 
and bp3=6.  The best positions overall score is λ = f(s1(9), s2(9), 
s3(6)) = 11 + 13 + 19 = 43. At this position, we have Y={d3, d5, 
d8}. Since the score of all data items involved in Y is higher than 
λ, our algorithm stops. Thus, BPA stops at position 3, i.e. exactly 
at the first position where BPA has all top-k answers. Remember 
that over this database, TA and FA stop at positions 6 and 8 
respectively. 

The following theorem provides the correctness of our algorithm. 

Theorem 1. If the scoring function f is monotonic, then BPA 
correctly finds the top-k answers. 

Proof. For each list Li, let bpi be the best position in Li at the 
moment when BPA stops. Let Y be the set of the k data items 
found by BPA, and d be the lowest scored data item in Y. Let s be 
the overall score of d, then we show that each data item, which is 
not involved in Y, has an overall score less than or equal to s. We 
do the proof by contradiction. Assume there is a data item d'∉Y 
with an overall score s' such that s' >s. Since d' is not involved in 
Y and its overall score is higher than s, we can imply that d' has 
not been seen by BPA under sorted or random access. Thus, its 
position in any list Li is greater than the best position in Li, i.e. bpi. 
Therefore, the local score of d' in any list Li is less than the local 
score which is at bpi, and since the scoring function is monotonic, 
the overall score of d' is less than or equal to the best positions 
overall score, i.e. s'≤λ.  Since the score of all data items involved 
in Y is higher than or equal to λ,, we have s≥λ. By comparing the 
two latter inequalities, we have s≥ s', which yields to a 
contradiction. � 

4.2 Cost Analysis 
In this section, we compare the execution cost of BPA and TA. 
Since TA and BPA are designed for monotonic scoring functions, 
we implicitly assume that the scoring function is monotonic. 

The two following lemmas compare the number of sorted/random 
accesses done by BPA and TA. 

Lemma 1. The number of sorted accesses done by BPA is always 
less than or equal to that of TA. In other words, BPA stops always 
as early as TA. 

Proof. Let Y be the set of answers found by TA, and δ be the 
value of TA's threshold at the time it stops. We know that the 
overall score of any data item involved in Y is less than or equal 
to δ. For each list Li, let pi be the position of the last data item 
seen by TA under sorted access. Since any position less than or 
equal to pi has been seen under sorted access, the best position in 
Li, i.e. bpi, is greater than or equal to pi. Thus, the local score 
which is at pi is higher than or equal to the local score at bpi. 
Therefore, considering the monotonicity of the scoring function, 
the TA's threshold, i.e. δ, is higher than or equal to the best 
positions overall score which is used by BPA, i.e. λ,. Thus, the 
overall scores of the data items involved in Y get higher than or 
equal to λ when the position of BPA under sorted access is less 
than or equal to pi. Therefore, BPA stops with a number of sorted 
accesses less than or equal to TA. � 

Lemma 2. The number of random accesses done by BPA is 
always less than or equal to that of TA. 

Proof. The number of random accesses done by both BPA and 
TA is equal to the number of sorted accesses multiplied by (m-1) 
where m is the number of lists. Thus, the proof is implied by 
Lemma 1. � 

Using the two above lemmas, the following theorem compares the 
execution cost of BPA and TA.  

Theorem 2. The execution cost of BPA is always less than or 
equal to that of TA. 

Proof. Considering the definition of execution cost, the proof is 
implied using Lemma 1 and Lemma 2. � 

Lemmas 1 and 2 show that BPA always stops as early as TA. But 
how much faster than TA can it be? In the following, we answer 
this question. Assume that when BPA stops, its position in all lists 
is u. Then, during its execution, BPA has seen u∗m positions in 
each list, i.e. u positions under sorted access and u∗(m-1) under 
random access. If these are the positions from 1 to u∗m, then the 
best position in each list is the (u∗m)th position. In other words, 
the best position can be m times greater than the position under 
sorted access. Based on this observation, we may conclude that 
BPA can stop at a position which is m times lower than TA. 
However, we did not find any case where this happens. Instead, 
we can prove that there are cases where BPA stops at a position 
which is (m-1) times smaller than TA. In other words, the number 
of sorted accesses done by BPA can be (m-1) times lower than 
TA. This is shown by the following lemma. 

Lemma 3. Let m be the number of lists, then the number of sorted 
accesses done by BPA can be (m-1) times lower than that of TA. 

Proof. To prove this lemma, it is sufficient to show that there are 
databases over which the number of sorted accesses done by BPA 
is (m-1) times lower than that of TA. In other words, under sorted 
access, BPA stops at a position which is (m-1) times lower than 
the position at which TA stops. Let δ be the value of TA's 
threshold at the moment when it stops. For each list Li, let pi be 
the position (under sorted access) at which TA stops. Without loss 
of generality, we assume p1=p2=…=pm=j, i.e. when TA stops its 



position in all lists is j. For simplicity assume that j=(m-1)∗u  
where u is an integer. Consider all cases where the two following 
conditions hold: 

1) Each of the top-k answers have a local score at a position 
which is less than or equal to j/(m-1), i.e. each of the top-k 
answers are seen under sorted access at a position which is less 
than or equal to j/(m-1).  

2) If a data item is at a position in interval [1 .. (j/(m-1))] in any 
list Li, then m-2 of its corresponding local scores in other lists are 
at positions which are in interval [((j/(m-1) + 1) .. j], and one2 of 
its corresponding local scores is in a position higher than j.  

In all cases where the two above conditions hold, we can argue as 
follows. After doing its sorted access and random access at 
position j/(m-1), BPA has seen all positions in interval [1 .. (j/(m-
1))], i.e. under sorted access, and for each seen data item it has 
seen m-2 positions in interval [((j/(m-1) + 1) .. j], i.e. under 
random access. Let ns be the total number of seen positions in 
interval [1..j], then we have: 

ns = (number of seen positions in [1..(j/(m-1))]) + (number of seen 
positions in [((j/(m-1) + 1) .. j]) 

After replacing the number of seen positions, we have:  

ns = ((j/(m-1)∗m) + (((j/(m-1) ∗m) ∗ (m-2))  

After simplifying the right side of the equation, we have ns=m∗j. 
Thus, when BPA is at position j/(m-1), it has seen all positions in 
interval [1 .. j] in all lists. Therefore, the best position in each list 
is at least j. Hence, the best positions overall score, i.e. λ, is 
higher than or equal to the value of TA's threshold at position j, 
i.e. δ.  In other words, we have λ≥δ. Since at position j/(m-1), all 
top-k answers are in the set Y (see the first condition above) and 
their scores are less than or equal to δ (i.e. this is enforced by 
TA's stopping mechanism), the score of all data items involved in 
Y is less than or equal to λ. Thus, BPA stops at j/(m-1), i.e. at a 
position which is (m-1) times lower than the position of TA. � 

Lemma 4. Let m be the number of lists, then the number of 
random accesses done by BPA can be (m-1) times lower than that 
of TA. 

Proof. Since the number of random accesses done by both BPA 
and TA is proportional to the number of sorted accesses, the proof 
is implied by Lemma 3. � 

The following theorem shows that the execution cost of BPA can 
be (m-1) times lower than that of TA. 

Theorem 3. Let m be the number of lists, then the execution cost 
of BPA can be (m-1) times lower than that of TA. 

Proof. The proof is implied by Lemma 3 and Lemma 4. � 

Example 3 (i.e. the database shown in Figure 1) is one of the 
cases where the execution cost of BPA is (m-1) times lower than 

                                                                 
2 Choosing one of the corresponding local scores at a position 

greater than j allows us to adjust the local scores of top-k 
answers such that their overall scores do not get higher than 
TA's threshold at a position smaller than j, i.e. TA does not stop 
before j. 

TA. In that example, m=3 and TA stops at position 6, whereas 
BPA stops at position 3, i.e. (m-1) times lower than TA. For TA, 
the total number of sorted accesses is 6∗3=18 and the number of 
random accesses is 18∗2=36, i.e. for each sorted access (m-1) 
random accesses. With BPA, the number of sorted accesses and 
random accesses is 3∗3=9 and 9∗2=18, respectively. 

4.3 Instance Optimality 
Instance optimality corresponds to optimality in every instance, as 
opposed to just the worst case or the average case. It is defined as 
follows �[15]. Let A be a class of algorithms, D be a class of 
databases, and cost(a, d) be the execution cost incurred by 
running algorithm a over database d. An algorithm a∈A is 
instance optimal over A and D if for every b∈A and every d∈D 
we have: 

cost(a, d) = O(cost(b, d)) 

 The above equation says that there are two constants c1 and c2 
such that cost(a, d) ≤ c1∗cost(b, d) + c2 for every choice of b∈A 
and d∈D. The constant c1 is called the optimality ratio of a. 

Let D be the class of all databases, and A be the class of 
deterministic top-k query processing algorithms, i.e. those that do 
not make lucky guesses. Assume the scoring function is 
monotonic. Then, in �[15] it is proved that TA is instance optimal 
over D and A. Since the execution cost of BPA over every 
database is less than or equal to TA (see Theorem 2), we have the 
following theorem on the instance optimality of BPA. 

Theorem 4. Assume the scoring function is monotonic. Let D be 
the class of all databases, and A be the class of the top-k query 
processing algorithms that do not make lucky guesses. Then BPA 
is instance optimal over D and A, and its optimality ratio is better 
than or equal to that of TA. 

Proof. Implied by the above discussion and using Theorem 2. � 

5. OPTIMIZATION 
Although BPA is quite efficient, it still does redundant work. One 
of the redundancies with BPA (and also TA) is that it may access 
some data items several times under sorted access in different 
lists. For example, a data item, which is accessed at a position in a 
list through sorted access and thus accessed in other lists via 
random access, may be accessed again in the other lists by sorted 
access at the next positions. In addition to this redundancy, in a 
distributed system, BPA needs to retrieve the position of each 
accessed data item and keep the seen positions at the query 
originator, i.e. the node at which the query is issued (executed). 
This requires transferring the seen positions from the list owners 
to the query originator, thus incurring communication cost. In this 
section, based on BPA, we propose BPA2, an algorithm which is 
much more efficient than BPA. It avoids re-accessing data items 
via sorted or random access. In addition, it does not transfer the 
seen positions from list owners to the query originator. Thus, the 
query originator does not need to maintain the seen positions and 
their local scores. 

In the rest of this section, we present BPA2, with its properties, 
and compare it with BPA. To describe BPA2, we assume that the 
best positions are managed by the list owners. Finally, we propose 



solutions for the efficient management of the best positions by list 
owners. 

5.1 BPA2 Algorithm 
Let direct access be a mode of access that reads the data item 
which is at a given position in a list. Recall from the previous 
section that the best position bp in a list is the greatest seen 
position of the list such that any position between 1 and bp is also 
seen. Then, BPA2 works as follows: 

1. For each list Li, let bpi be the best position in Li. Initially set 
bpi=0. 

 
2. For each list Li and in parallel, do direct access to position 

(bpi + 1) in list Li. As a data item d is seen under direct 
access in some list, do random access to the other lists to find 
d's local score in every list. Compute the overall score of d.  
Maintain in a set Y the k seen data items whose overall 
scores are the highest among all data items seen so far. 

 
3. If a direct access or random access to a list Li changes the 

best position of Li, then along with the local score of the 
accessed data item, return also the local score of the data 
item which is at the best position. Let si(bpi) be the local 
score of the data item which is at the best position in list Li . 

 
4. Let best positions overall score be λ = f(s1(bp1), s2(bp2), …, 

s3(bpm)). If Y involves k data items whose overall scores are 
higher than or equal to λ, then stop doing sorted access to the 
lists. Otherwise, go to 1. 

 
5. Return Y. 
 
At each time, BPA2 does direct access to the position which is 
just after the best position. This position, i.e. bpi + 1, is always 
the smallest unseen position in the list.  

BPA2 has the same stopping mechanism as BPA. Thus, they both 
stop at the same (best) position. In addition, they see the same set 
of data items, i.e. those that have at least one local score before 
the best position in some list. Thus, they see the same set of 
positions in the lists. 

However, there are two main differences between BPA2 and 
BPA. The first difference is that BPA2 does not return the seen 
positions to the query originator, so the query originator does not 
need to maintain the seen positions. With BPA2 the only data that 
the query originator must maintain is the set Y (which contains at 
most k data items) and the local scores of the m best positions. 
The second difference is that with BPA some seen positions of a 
list may be accessed several times, i.e. up to m times, but with 
BPA2 each seen position of a list is accessed only once because 
BPA2 does direct access to the position which is just after the best 
position and this position is always an unseen position in the list, 
i.e. it is the smallest unseen position. 

Theorem 5. No position in a list is accessed by BPA2 more than 
once. 

Proof. Implied by the fact that BPA2 always does direct access to 
an unseen position, i.e. bpi + 1, so no seen position is accessed via 
direct access, and thus by random access. � 

The following theorem provides the correctness of BPA2. 

Theorem 6. If the scoring function is monotonic, then BPA2 
correctly finds the top-k answers. 

Proof. Since BPA2 has the same stopping mechanism as BPA, 
the proof is similar to that of Theorem 1 which proves the 
correctness of BPA. � 

In many systems, in particular distributed systems, the total 
number of accesses to the lists (composed of sorted/direct and 
random accesses) is a main metric for measuring the cost of a top-
k query processing algorithm. Below, using two theorems we 
compare BPA and BPA2 from the point of the view of this metric. 

Theorem 7. The number of accesses to the lists done by BPA2 is 
always less than or equal to that of BPA. 

Proof. BPA and BPA2 access the same set of positions in the 
lists. However, BPA2 accesses each of these positions only once, 
but BPA may access some of the positions more than once. 
Therefore, the number of accesses to the lists by BPA is less than 
or equal to BPA. � 

Theorem 8. Let m be the number of lists, then the number of 
accesses to the lists done by BPA2 can be about (m-1) times lower 
than that of BPA. 

Proof. To do the proof, we show that there are databases over 
which the number of accesses done by BPA is about (m-1) times 
higher that of BPA2. For each list Li, let bpi be the best position at 
which BPA stops. Without loss of generality, we assume 
bp1=bp2=…=bpm=j, i.e. when BPA stops, the best position in all 
lists is j. For simplicity, assume that j-1=(m-1)∗u  where u is an 
integer. We know that BPA2 stops at the same best position as 
BPA, so it also stops at j. Consider all databases at which the 
following condition holds: 

1) If a data item is at a position in interval [1 .. j] in any list Li, 
then m-2 of its corresponding local scores in other lists are at 
positions which are in interval [1 .. (j-1)], and one3 of its 
corresponding local scores is in a position higher than j. 

The above condition assures that BPA does not see the data items 
which are at position j by a random access. Thus, it continues 
doing sorted access until the position j. In all databases that hold 
the above condition, we can argue as follows. Let nd be the 
number of distinct data items which are in interval [1 .. (j-1)]. 
Since the total number of positions in interval [1 .. (j-1)] is m∗ (j-
1), i.e. j-1 times the number of lists, and each distinct data item 
occupies (m-1) positions in interval [1 .. (j-1)] (see the above 
condition), we have nd= m∗ (j-1)/(m-1). In other words, we have 
nd = m∗u. BPA2 sees each distinct data item by doing one direct 
access. It also does m direct accesses at position j, i.e. one per list. 
Thus, BPA2 does a total of (u+1)∗m  direct accesses. After each 
direct access, BPA2 does (m-1) random accesses, thus a total of 
(u+1)∗m∗(m-1) random accesses. Therefore, the total number of 
accesses done by BPA2 is nbpa2 = (u+1)∗m2. BPA sees all 
positions in interval [1 .. j] by sorted access,  thus a total of (j∗m) 
sorted accesses. After each sorted access, it does (m-1) random 

                                                                 
3 This allows us to adjust the local scores of top-k answers such 

that BPA does not stop at a position smaller than j. 



accesses, thus a total of j∗m∗(m-1) random accesses. Therefore, 
the total number of accesses done by BPA is nbpa = (j)∗m2. By 
comparing nbpa2 and nbpa, we have nbpa = nbpa2 ∗ (j / (u+1)) ≈ nbpa2 
∗ (m-1). � 

As an example, consider the database (i.e. the three sorted lists) 
shown in Figure 2, and suppose k=3 and the scoring function 
computes the sum of the local scores. If we apply BPA on this 
example, it stops at position 7, so it does 7∗3 sorted accesses and 
7∗3∗2 random accesses. Thus, the total number of accesses done 
by BPA is nbpa = 63. If we apply BPA2, it does direct access to 
positions 1, 2, 3 and 7 in all lists, so a total of 4∗3 direct accesses 
and 4∗3∗2 random accesses. Thus, the total number of accesses 
done by BPA2 is nbpa2 = 36. Therefore, we have nbpa ≈ 2∗ nbpa2. 

5.2 Managing Best Positions  
After each sorted/direct/random access to a list, the owner of the 
list needs to determine the best position. A simple method for 
managing the best positions is to maintain the seen positions in a 
set. Then finding the best position is done by scanning the set and 
for each position p, verifying if all positions which are less than p 
belong to the set. This method is not efficient because finding the 
best position is done in O(u2) where u is the number of seen 
positions. Note that in the worst case, u can be equal to n, i.e. the 
number of data items in the list. In this section, we propose two 
efficient techniques for managing best positions: Bit array, and 
B+tree. 

5.2.1 Bit Array 
In this approach, to know the positions which are seen, each list 
owner uses an array of n bits where n is the size of the sorted list. 
Initially all bits of the array are set to 0. There is a variable bp 
which points to the best position. Initially bp is set to 1. Let Bi be 
the bit array which is used by the owner of list Li. After doing an 
access to a data item that is at position j in Li, the following 

instructions are done by the list owner for determining the new 
best position: 

Bi[j] := 1; 

While ((bp < n) and (Bi[bp + 1] = 1)) do  

     bp := bp + 1; 

The total time needed for determining the best positions during 
the execution of the top-k query is O(n), i.e. bp can be 
incremented up to n. Let u be the total number of accesses to Li 
during the execution of the query, then the average time for 
determining the best position after each access is O(n/u). The 
space needed for this approach is an array of n bits plus a 
variable, which is typically very small.  

5.2.2  B+tree 
In this approach, each list owner uses a B+tree for maintaining the 
seen positions. B+tree is a balanced tree, which is widely used for 
efficient data storage and retrieval in databases. In a B+tree, all 
data is saved in the leaves, and the leaf nodes are at the same 
level, so any operation of insert/delete/lookup is logarithmic in 
the number of data items. The leaf nodes are also linked together 
as a linked list. Let c be a cell of the linked list, i.e. a leaf of the 
B+tree, then there is a pointer c.next that points to the next cell of 
the linked list. Let c.element be a variable that maintains the data 
in c.  

Let BTi be the B+tree which the owner of list Li uses for 
maintaining the seen positions of Li. The list owner also uses a 
pointer bp that points to the cell, i.e. leaf of BTi, which maintains 
the seen position which is the best position. After an access to a 
position p in Li, the list owner adds p to BTi. Then, it performs the 
following instructions to determine the new best position: 

While ((bp.next ≠ null) and (bp.next.element 
= bp.element + 1)) do     bp := bp.next; 

 List 1  List 2  List 3  f = s1 + s2 + s3 

Position  Data 
item 

Local 
score 

 Data 
item 

Local 
score 

 Data 
item 

Local 
score 

 Sum of 
local 
scores  

 Data 
item 

Overall 
Score 

1  d1 30  d2 28  d3 30  88  d1 65 

2  d4 28  d6 27  d5 29  84  d2 65 

3  d9 27  d7 25  d8 28  80  d3 70 

4  d3 26  d5 24  d4 27  77  d4 68 

5  d7 25  d9 23  d2 26  74  d5 63 

6  d8 24  d1 22  d6 25  71  d6 66 

7  d11 17  d14 20  d13 15  52  d7 61 

8  d6 14  d3 14  d1 13  41  d8 64 

9  d2 11  d4 13  d9 12  36  d9 62 

10  d5 10  d8 12  d7 11  33  … … 

…  … …  … …  … …  …  … … 

Figure 2. Example database over which the number of accesses to the lists done by BPA2 is about 1/(m-1) that of BPA.  



The above instructions assure that the pointer bp points always to 
the cell which maintains the best position. Let u be the total 
number of accesses to the list Li during the execution of the query, 
then the total time for determining the best positions is O(u), i.e. 
in the worst case bp moves from the head to the end of the linked 
list. Thus, the average time per access is O(1). The time needed 
for adding a seen position to the B+tree is O(log u). Therefore, 
with the B+tree approach, the average time for storing a seen 
position and determining the best position is O(log u). For the Bit 
array approach, this time is O(n/u) where n is the size of the 
sorted list. If n is much greater than u, i.e. n≥ c∗ (u ∗ log u) where 
c is a constant that depends on the B+tree implementation, then 
the B+tree approach is more efficient than the Bit array approach. 
The space needed for the B+tree approach is O(u) but is not 
usually as compact as Bit array. 

6. PERFORMANCE EVALUATION 
In the previous sections, we analytically compared our algorithms 
with TA, i.e. BPA directly and BPA2 indirectly. In this section, 
we compare these three algorithms through experimentation over 
randomly generated databases. The rest of this section is 
organized as follows. We first describe our experimental setup. 
Then, we compare the performance of our algorithms with TA by 
varying experimental parameters such as the number of lists, i.e. 
m, the number of top data items requested, i.e. k, and the number 
of data items of each list, i.e. n. Finally, we summarize the 
performance results. 

6.1 Experimental Setup 
We implemented TA, BPA and BPA2 in Java.  To evaluate our 
algorithms, we tested them over both independent and correlated 
databases, thus covering all practical cases. The independent 
databases are uniform and Gaussian databases generated using the 
two main probability distributions (i.e. uniform and Gaussian). 
With Uniform database, the positions of a data item in any two 
lists are independent of each other. To generate this database, the 
scores of the data items in each list are generated using a uniform 
random generator, and then the list is sorted. This is our default 
setting. With Gaussian database, the positions of a data item in 
any two lists are also independent of each other. To generate this 
database, the scores of the data items in each list are Gaussian 
random numbers with a mean of 0 and a standard deviation of 1. 

In addition to these independent databases, we also use correlated 
databases, i.e. databases where the positions of a data item in the 
lists are correlated. We use this type of database for taking into 
account the applications where there are correlations among the 
positions of a data item in different lists. In real-world 
applications, there are usually such correlations �[23]. Inspired 
from �[23], we use a correlation parameter α (0 �α � 1), and we 
generate the correlated databases as follows. For the first list, we 
randomly select the position of data items. Let p1 be the position 
of a data item in the first list, then for each list Li (2 � i � m) we 
generate a random number r in interval [1 .. n∗α] where n is the 
number of data items, and we put the data item at a position p 
whose distance from p1 is r. If p is not free, i.e. occupied 
previously by another data item, we put the data item at the free 
position closest to p. By controlling the value of α, we create 
databases with stronger or weaker correlations. After setting the 
positions of all data items in all lists, we generate the scores of the 

data items in each list in such a way that they follow the Zipf law 
�[29] with the Zipf parameter � = 0.7. The Zipf law states that the 
score of an item in a ranked list is inversely proportional to its 
rank (position) in the list. It is commonly observed in many kinds 
of phenomena, e.g. the frequency of words in a corpus of natural 
language utterances. 

Our default settings for different experimental parameters are 
shown in Table 1. In our tests, the default number of data items in 
each list is 100,000. Typically, users are interested in a small 
number of top answers, thus unless otherwise specified we set 
k=20. Like many previous works on top-k query processing, e.g. 
�[8], we use a scoring function that computes the sum of the local 
scores. In most of our tests, the number of lists, i.e. m, is a varying 
parameter. When m is a constant, we set it to 8 which is rather 
small but quite sufficient to show significant performance gains of 
our algorithms. Note that, in some important applications such as 
network monitoring �[8], m can be much higher. 

Table 1. Default setting of experimental parameters 

Parameter Default values 

Number of data items in each list, i.e. n 100,000 

k 20 

Number of lists  8  

 

To evaluate the performance of the algorithms, we measure the 
following metrics.  

1) Execution cost. As defined in Section �2, the execution cost is 
computed as c = as∗cs + ar∗cr where as is the number of sorted 
accesses that an algorithm does during execution, ar is the number 
of random accesses, cs is the cost of a sorted access, and cr is the 
cost of a random access. For the BPA2 algorithm, we consider 
each direct access equivalent to a random access. For each sorted 
access we consider one unit of cost, i.e. we set cs = 1. For the cost 
of each random access, we set cr = log n where n is the number of 
data items, i.e. we assume that there is an index on data items 
such that each entry of index points to the position of data item in 
the lists. The execution time which we consider here is a good 
metric for comparing the performance of the algorithms in a 
centralized system. For distributed systems, we use the next 
metric. 

2) Number of accesses. This metric measures the total number of 
accesses to the lists done by an algorithm during execution. It 
involves the sorted, direct and random accesses. In distributed 
systems, particularly in the cases where message size is small 
(which is the case of our algorithms), the main cost factor is the 
number of messages communicated between nodes. The number 
of messages, which our algorithms (and TA) communicate 
between the query originator and list owners in a distributed 
system, is proportional to the number of accesses done to the lists. 
Thus, the number of accesses is a good metric for comparing the 
performance of the algorithms in distributed systems. For TA and 
BPA, the number of accesses is also a good indicator of their 
stopping position under sorted access, i.e. the number of accesses 
is m2 multiplied by the stopping position. 

3) Response time. This is the total time (in millisecond) that an 
algorithm takes for finding the top-k data items. We conducted 



our experiments on a machine with a 2.4 GHz Intel Pentium 4 
processor and 2GB memory. In the code of BPA and BPA2, the 
best positions are managed using the Bit Array approach which is 
simpler than the B+-tree approach. 

6.2 Performance Results 
6.2.1 Effect of the number of lists 
In this section, we compare the performance of our algorithms 
with TA over the three database types while varying the number 
of lists.  

Over the uniform database, with the number of lists increasing up 
to 18 and the other parameters set as in Table 1, Figures 3, 4 and 5 

Execution cost
Uniform database, k=20

0

10000000

20000000

30000000

40000000

50000000

60000000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n 
C

os
t

TA
BPA
BPA2

 

Number of accesses
Uniform database, k=20

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 4 6 8 10 12 14 16 18
m

N
um

be
r 

of
 A

cc
es

se
s

TA
BPA
BPA2

 

Response time
Uniform database, k=20

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16 18
m

R
es

po
ns

e 
T

im
e 

(m
s)

TA
BPA
BPA2

 

 Figure 3. Execution cost vs. number of 
lists over uniform database 

Figure 4. Number of accesses vs. number 
of lists over uniform database 

Figure 5. Response time vs. number of 
lists over uniform database 
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 Figure 6. Execution cost vs. number of 
lists over Gaussian database 

Figure 7. Number of accesses vs. number 
of lists over Gaussian database 

Figure 8. Response time vs. number of 
lists over Gaussian database 
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Correlated database, alfa=0.01, k=20
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Figure 9. Execution cost vs. number of 
lists over correlated database with α=0.001 

Figure 10. Execution cost vs. number of 
lists over correlated database with α=0.01 

Figure 11. Execution cost vs. number of 
lists over correlated database with α=0.1 



show the results measuring execution cost, number of accesses, 
and response time, respectively. The execution cost of BPA is 
much better than that of TA; it outperforms TA by a factor of 
approximately (m+6)/8 for m>2.  BPA2 is the strongest 
performer; it outperforms TA by a factor of approximately 
(m+1)/2 for m>2. On the second metric, i.e. number of accesses, 
the results are similar to those on execution cost. However, BPA2 
outperforms TA by a factor which is (a little) higher than that for 
execution cost, i.e. about 1/m higher. The reason is that for 
measuring execution cost, we assume an expensive cost (i.e. log n 
units) for direct accesses which are done by BPA2. On response 
time, BPA2 (and BPA) outperforms TA by a factor which is a 
little lower than that on execution cost, just because of the time 
they need for managing the best positions. 

Over the Gaussian database, with the number of lists increasing 
up to 18 and the other parameters set as in Table 1, Figures 6, 7 
and 8 show the results for execution cost, number of accesses, and 
response time respectively. Over the Gaussian database, the 
performance of the three algorithms is a little better than their 
performance over the uniform database. BPA and BPA2 do much 
better than TA, and they outperform it by a factor close to that 
over the uniform database. 

Overall, the performance results on the three metrics are 
qualitatively similar, in particular on execution cost and number 
of accesses. Thus, in the rest of this paper, we only report the 
results on execution cost. 

Figures 9, 10 and 11 show the execution cost of the algorithms 
over three correlated databases with correlation parameter α set to 
0.001, 0.01 and 0.1 respectively, and the other parameters set as 
in Table 1. Over these databases, the performance of the three 
algorithms is much better than that over Gaussian and uniform 
databases. In fact, the more correlated is the database; the lower is 
the execution cost of all three algorithms. The reason is that in a 
highly correlated database, the top-k data items are distributed 
over low positions of the lists, so the algorithms do not need to go 
much down in the lists, and they stop soon. However, due to their 
efficient stopping mechanism, BPA and BPA2 stop much sooner 
than TA.   

6.2.2 Effect of k 
In this section, we study the effect of k, i.e. the number of top data 
items requested, on performance. Figure 12 shows how execution 
cost increases over the uniform database, with increasing k up to 
100, and the other parameters set as in Table 1. The execution 
cost of all three algorithms increases with k because more data 
items are needed to be returned in order to obtain the top-k data 
items. However, the increase is very small. The reason is that over 
the uniform database, when an algorithm (i.e. any of the three 
algorithms) stops its execution for a top-k query, with a high 
probability, it has seen also the (k + 1)th data item. Thus, with a 
high probability, it stops at the same position for a top-(k+1) 
query. 
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 Figure 12. Execution cost vs. k over 
uniform database 

Figure 13. Execution cost vs. k over 
correlated database with α=0.01 

Figure 14. Execution cost vs. k over 
correlated database with α=0.001 
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 Figure 15. Execution cost vs. n over 
uniform database 

Figure 16. Execution cost vs. n over 
correlated database with α=0.01 

Figure 17. Execution cost vs. n over 
correlated database with α=0.0001 

 



Figures 13 and 14 show how execution cost increases with 
increasing k over two correlated databases with correlation 
parameter set to α=0.01 and α=0.001 respectively, and the other 
parameters set as in Table 1. For the database with α=0.01, i.e. 
the one which is less correlated, the impact of k is smaller. The 
reason is that when we run one of the three algorithms over a 
database with low correlation, it sees a lot of data items before 
stopping its execution. Thus, when it stops at a position for a top-
k query, there is a high probability that it stops at the same 
position for a top-(k + 1) query. But, for a highly correlated 
database, this probability is lower because the algorithm sees a 
small number of data items before stopping its execution. 

6.2.3 Effect of the number of data items 
In this section, we vary the number of data items in each list, i.e. 
n, and investigate its effect on execution cost. Figure 15 shows 
how execution cost increases over the uniform database with 
increasing n up to 200,000, and with the other parameters set as in 
Table 1. Increasing n has a considerable impact on the 
performance of the three algorithms over a uniform database. The 
reason is that when we enlarge the lists and generate uniform 
random data for them, the top-k data items are distributed over 
higher positions in the list. 

Figures 16 and 17 show how execution cost increases with 
increasing n over two correlated databases with correlation 
parameter set to α=0.01 and α=0.001 respectively, and the other 
parameters set as in Table 1. The results show that n has a smaller 
impact on a highly correlated database rather than a database with 
a low correlation. 

6.2.4 Concluding remarks 
The performance results show that, over all test databases and wrt 
all the metrics, the performance of our algorithms is much better 
than that of TA. For example, they show that wrt execution cost, 
BPA and BPA2 outperform TA by a factor of approximately 
(m+6)/8 and (m+1)/2 for m>2. Thus, as m increases, the 
performance gains of our algorithms versus TA increase 
significantly. 

7. RELATED WORK 
Efficient processing of top-k queries is both an important and hard 
problem that is still receiving much attention. A first important 
paper is �[13] which models the general problem of answering top-
k queries using lists of data items sorted by their local scores and 
proposes a simple, yet efficient algorithm, Fagin’s algorithm 
(FA), that works on sorted lists. The most efficient algorithm over 
sorted lists is the TA algorithm which was proposed by several 
groups4 �[14]�[16]�[25]. TA is simple, elegant and efficient �[15] and 
provides a significant performance improvement over FA. We 
already discussed much TA in this paper. However, because of its 
stopping mechanism (based on the last seen scores under sorted 
access), TA can still perform useless work (see Section �3). The 
fundamental differences between BPA and TA are the following. 
BPA takes into account the positions and scores of the seen data 
whereas TA only takes into account their scores. Using 

                                                                 
4 The second author of �[14] first defined TA and compared it with 

FA at the University of Maryland in the Fall of 1997. 

information about the position of the seen data, BPA develops a 
more intelligent stopping mechanism that allows choosing a much 
better time to stop (such choice is correct as proved in Lemma 1). 
This allows BPA to gain much reduction in the number of sorted 
accesses and thus much reduction in the number of random 
accesses. Even if TA were keeping track of all seen data items, it 
could not stop at a smaller position under sorted access, because 
its threshold does not allow it. 

Several TA-style algorithms, i.e. extensions of TA, have been 
proposed for processing top-k queries in distributed environments, 
e.g. �[6]�[7]�[9]�[12]�[23]. Overall, most of the TA-style algorithms 
focus on extending TA with the objective of minimizing 
communication cost of top-k query processing in distributed 
systems. They could as well use our algorithms to increase 
performance. To do so, all they need to do is to manage the best 
positions at list owners as in BPA2, and then use BPA2's stopping 
mechanism. This would significantly reduce the accesses to the 
lists and yield significant performance gains. 

The Three Phase Uniform Threshold (TPUT) �[8] is an efficient 
algorithm to answer top-k queries in distributed systems. The 
algorithm reduces communication cost by pruning away ineligible 
data items and restricting the number of round-trip messages 
between the query originator and the other nodes. The simulation 
results show that TPUT can reduce communication cost by one to 
two orders of magnitude compared with an algorithm which is a 
direct adaptation of TA for distributed systems �[8]. However, 
there are many databases over which TPUT is not instance 
optimal �[8]. For example, if one of the lists has n data items with a 
fixed value that is just over the threshold of TPUT, then all data 
items must be retrieved by the query originator, while a more 
adaptive algorithm might avoid retrieving all n data items. 
Instead, our algorithms are instance optimal over all databases and 
can reduce the cost (m-1) orders of magnitude compared to TA. 

8. CONCLUSION 
The most efficient algorithm proposed so far for answering top-k 
queries over sorted lists is the Threshold Algorithm (TA). 
However, TA may still incur a lot of useless accesses to the lists. 
In this paper, we proposed two algorithms which stop much 
sooner and thus are more efficient than TA. 

First, we proposed the BPA algorithm whose stopping mechanism 
takes into account the seen positions in the lists. For any database 
instance (i.e. set of sorted lists), we proved that BPA stops at least 
as early as TA. We showed that the number of sorted/random 
accesses done by BPA is always less than or equal to that of TA, 
and thus its execution cost is never higher than TA. We also 
showed that the number of sorted/random accesses done by BPA 
can be (m-1) times lower than that of TA. Thus, its execution cost 
can be (m-1) times lower than that of TA. We showed that BPA is 
instance optimal over all databases, and its optimality ratio is 
better than or equal to that of TA. 

Second, based on BPA, we proposed the BPA2 algorithm which 
is much more efficient than BPA. In addition to its efficient 
stopping mechanism, BPA2 avoids re-accessing data items via 
sorted and random access, without having to keep data at the 
query originator. We showed that the number of accesses to the 
lists done by BPA2 can be about (m-1) times lower than that of 
BPA. 



To validate our contributions, we implemented our algorithms as 
well as TA as baseline. We evaluated the performance of the 
algorithms over both independent and correlated databases wrt 
three representative metrics (execution cost, number of accesses 
and response time). The performance evaluations show that, over 
all test databases and wrt all the metrics, our algorithms always 
outperform TA significantly. For example, wrt execution cost, 
BPA and BPA2 outperform TA by a factor of approximately 
(m+6)/8 and (m+1)/2 respectively (for m>2).  e.g. for m=10, the 
factor is 2 and 5.5, respectively. Thus, as m increases, the 
performance gains of our algorithms versus TA increase 
significantly. Note that in some applications, the number of lists, 
i.e. m, is very large, e.g. it may range from a few tens to a few 
thousands �[8]. For example, consider a network monitoring 
application that monitors the activities of the users of some 
specified IP locations. The specified locations may be numerous. 
For each location, the application maintains a list of the accessed 
URLs ranked by their frequency of access. In this application, an 
interesting query for the network administrator is “what are the 
top-k popular URLs?”. 

As future work, we plan to develop BPA-style algorithms for P2P 
systems, in particular for the popular DHTs where top-k query 
support is challenging �[3]. We also plan to adapt our BPA2 
algorithm for replicated DHTs providing currency guarantees �[2]. 
This could be useful to perform top-k queries that involve results 
ranked by currency. 
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