
Best Position Algorithms for Top-k Queries1

Reza Akbarinia2 Esther Pacitti Patrick Valduriez
Atlas team, LINA and INRIA

University of Nantes, France

{FirstName.LastName@univ-nantes.fr, Patrick.Valduriez@inria.fr}

ABSTRACT
The general problem of answering top-k queries can be modeled
using lists of data items sorted by their local scores. The most
efficient algorithm proposed so far for answering top-k queries
over sorted lists is the Threshold Algorithm (TA). However, TA
may still incur a lot of useless accesses to the lists. In this paper,
we propose two new algorithms which stop much sooner. First,
we propose the best position algorithm (BPA) which executes
top-k queries more efficiently than TA. For any database instance
(i.e. set of sorted lists), we prove that BPA stops as early as TA,
and that its execution cost is never higher than TA. We show that
the position at which BPA stops can be (m-1) times lower than
that of TA, where m is the number of lists. We also show that the
execution cost of our algorithm can be (m-1) times lower than that
of TA. Second, we propose the BPA2 algorithm which is much
more efficient than BPA. We show that the number of accesses to
the lists done by BPA2 can be about (m-1) times lower than that
of BPA. Our performance evaluation shows that over our test
databases, BPA and BPA2 achieve significant performance gains
in comparison with TA.

1. INTRODUCTION
Top-k queries have attracted much interest in many different areas
such as network and system monitoring �[4]�[8]�[19], information
retrieval �[5]�[18]�[20]�[26], sensor networks �[27]�[28], multimedia
databases �[10]�[16]�[25], spatial data analysis �[11]�[17], P2P
systems �[1]�[3]�[5], data stream management systems �[22]�[24], etc.
The main reason for such interest is that they avoid overwhelming
the user with large numbers of uninteresting answers which are
resource-consuming.

The problem of answering top-k queries can be modeled as
follows �[13]�[15]. Suppose we have m lists of n data items such
that each data item has a local score in each list and the lists are
sorted according to the local scores of their data items. And each
data item has an overall score which is computed based on its
local scores in all lists using a given scoring function. Then the
problem is to find the k data items whose overall scores are the
highest. This problem model is simple and general. Let us

illustrate with the following examples. Suppose we want to find
the top-k tuples in a relational table according to some scoring
function over its attributes. To answer this query, it is sufficient to
have a sorted (indexed) list of the values of each attribute
involved in the scoring function, and return the k tuples whose
overall scores in the lists are the highest. As another example,
suppose we want to find the top-k documents whose aggregate
rank is the highest wrt. some given keywords. To answer this
query, the solution is to have for each keyword a ranked list of
documents, and return the k documents whose aggregate rank in
all lists are the highest.

There has been much work on efficient top-k query processing
over sorted lists. A naïve algorithm is to scan all lists from
beginning to end and, maintain the local scores of each data item,
compute the overall scores, and return the k highest scored data
items. However, this algorithm is executed in O(m∗n) and thus it
is inefficient for very large lists.

The most efficient algorithm for answering top-k queries over
sorted lists is the Threshold Algorithm (TA) �[14]�[16]�[25]. TA is
applicable for queries where the scoring function is monotonic. It
is simple and elegant. Based on TA, many algorithms have been
proposed for top-k query processing in centralized and distributed
applications, e.g. �[6]�[7]�[9]�[12]�[21]�[23]. The main difference
between TA and previously designed algorithms, e.g. Fagin’s
algorithm (FA) �[13], is its stopping mechanism that enables TA to
stop scanning the lists very soon. However, there are many
database instances over which TA keeps scanning the lists
although it has seen all top-k answers (see Example 2 in Section
�3.2). And it is possible to stop much sooner.

In this paper, we propose two new algorithms for processing top-k
queries over sorted lists. First, we propose the best position
algorithm (BPA) which executes top-k queries much more
efficiently than TA. The key idea of BPA is that its stopping
mechanism takes into account special seen positions in the lists,
the best positions. For any database instance (i.e. set of sorted
lists), we prove that BPA stops as early as TA, and that its
execution cost (called middleware cost in �[15]) is never higher
than TA. We prove that the position at which BPA stops can be
(m-1) times lower than that of TA, where m is the number of lists.
We also prove that the execution cost of our algorithm can be (m-
1) times lower than that of TA. Second, based on BPA, we
propose the BPA2 algorithm which is much more efficient than
BPA. We show that the number of accesses to the lists done by
BPA2 can be about (m-1) times lower than that of BPA. To
validate our contributions, we implemented our algorithms (and
TA). The performance evaluation shows that over our test
databases, BPA and BPA2 outperform TA by a factor of about

1 Work partially funded by ARA “Massive Data” of the French ministry of
research and the European Strep Grid4All project.
2 Partially supported by a fellowship from Shahid Bahonar University of
Kerman, Iran.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

(m+6)/8 and (m+1)/2 respectively, e.g. for m=10, the factor is
about 2 and 5.5, respectively.

The rest of this paper is organized as follows. In Section 2, we
define the problem which we address in this paper. Section 3
presents some background on FA and TA. In Sections 4 and 5, we
present the BPA and BPA2 algorithms, respectively, with a cost
analysis. Section 6 gives a performance evaluation of our
algorithms. In Section 7, we discuss related work. Section 8
concludes.

2. PROBLEM DEFINITION
Let D be a set of n data items, and L1, L2, …, Lm be m lists such
that each list Li contains n pairs of the form (d, si(d)) where d∈D
and si(d) is a non-negative real number that denotes the local
score of d in Li. Any data item d∈D appears once and only once
in each list. Each list Li is sorted in descending order of its local
scores, hence called “sorted list”. Let j be the number of data
items which are before a data item d in a list Li, then the position
of d in Li is equal to (j + 1).

The set of m sorted lists is called a database. In a distributed
system, sorted lists may be maintained at different nodes. A node
that maintains a list is called a list owner. In centralized systems,
the owner of all lists is only one node.

The overall score of each data item d is computed as f(s1(d), s2(d),
…, sm(d)) where f is a given scoring function. In other words, the
overall score is the output of f where the input is the local scores
of d in all lists. In this paper, we assume that the scoring function
is monotonic. A function f is monotonic if f(x1, …, xm) ≤ f(x'1, …,
x'm) whenever xi ≤ x'i for every i. Many of the popular aggregation
functions, e.g. Min, Max, Average, are monotonic. The k data
items whose overall scores are the highest among all data items,
are called the top-k data items.

As defined in �[15], we consider two modes of access to a sorted
list. The first mode is sorted (or sequential) access by which we
access the next data item in the sorted list. Sorted access begins
by accessing the first data item of the list. The second mode of
access is random access by which we lookup a given data item in
the list. Let cs be the cost of a sorted access, and cr be the cost of a
random access. Then, if an algorithm does as sorted accesses and
ar random accesses for finding the top-k data items, then its
execution cost is computed as as∗cs + ar∗cr. The execution cost
(called middleware cost in �[15]) is a main metric to evaluate the
performance of a top-k query processing algorithm over sorted
lists �[15].

Let us now state the problem we address. Let L1, L2, …, Lm be m
sorted lists, and D be the set of data items involved in the lists.
Given a top-k query which involves a number k≤n and a
monotonic scoring function f, our goal is to find a set D'⊆D such
that �D'�= k, and ∀d1∈D' and∀d2∈(D-D') the overall score of d1
is at least the overall score of d2, while minimizing the execution
cost.

3. BACKGROUND
The background for this paper is the TA algorithm which is itself
based on Fagin's Algorithm (FA). FA and TA are designed for
processing top-k queries over sorted lists. In this section, we
briefly describe and illustrate FA and TA.

3.1 FA
The basic idea of FA is to scan the lists until having at least k data
items which have been seen in all lists, then there is no need to
continue scanning the rest of the lists �[13]. FA works as follows:

1. Do sorted access in parallel to each of the m sorted lists, and
maintain each seen data item in a set S. If there are at least k
data items in S such that each of them has been seen in each
of the m lists, then stop doing sorted access to the lists.

2. For each data item d involved in S, do random access as

needed to each of the lists Li to find the local score of d in Li,
compute the overall score of d, and maintain it in a set Y if its
score is one of the k highest scores computed so far.

3. Return Y.

The correctness proof of FA can be found in �[13]. Let us illustrate
FA with the following example.

Example 1. Consider the database (i.e. three sorted lists) shown
in Figure 1.a. Assume a top-3 query Q, i.e. k=3, and suppose the
scoring function computes the sum of the local scores of the data
item in all lists. In this example, before position 7, there is no data
item which can be seen in all lists, so FA cannot stop before this
position. After doing the sorted access at position 7, FA sees d5
and d8 which are seen in all lists, but this is not sufficient for
stopping sorted access. At position 8, the number of data items
which are seen in all lists is 5, i.e. d1, d3, d5, d6 and d8. Thus, at
position 8, there are at least k data items which are seen by FA in
all lists, thus FA stops doing sorted access to the lists. Then, for
the data items which are seen only in some of the lists, e.g. d2, FA
does random access and finds their local scores in all lists, e.g. d2
is not seen in L1 so FA needs a random access to L1 to find the
local score of d2 in this list. It computes the overall score of all
seen data items, and returns to the user the k highest scored ones.

3.2 TA
The main difference between TA and FA is their stopping
mechanism which decides when to stop doing sorted access to the
lists. The stopping mechanism of TA uses a threshold which is
computed using the last local scores seen under sorted access in
the lists. Thanks to its stopping mechanism, over any database,
TA stops at a position (under sorted access) which is less than or
equal to the position at which FA stops �[15]. TA works as
follows:

1. Do sorted access in parallel to each of the m sorted lists. As a
data item d is seen under sorted access in some list, do
random access to the other lists to find the local score of d in
every list, and compute the overall score of d. Maintain in a
set Y the k seen data items whose overall scores are the
highest among all data items seen so far.

2. For each list Li, let si be the last local score seen under sorted

access in Li. Define the threshold to be δ = f(s1, s2, …, sm). If
Y involves k data items whose overall scores are higher than
or equal to δ, then stop doing sorted access to the lists.
Otherwise, go to 1.

3. Return Y.

The correctness proof of TA can be found in �[15]. Let us illustrate
TA with the following example.

Example 2. Consider the three sorted lists shown in Figure 1.a
and the query Q of Example 1, i.e. k=3 and the scoring function
computes the sum of the local scores. The thresholds of the
positions and the overall score of data items are shown in Figure
1.b and 1.c, respectively. TA first looks at the data items which
are at position 1 in all lists, i.e. d1, d2, and d3. It looks up the local
score of these data item in other lists using random access and
computes their overall scores. But, the overall score of none of
them is as high as the threshold of position 1. Thus, at position 1,
TA does not stop. At this position, we have Y={d1, d2, d3}, i.e. the
k highest scored data items seen so far. At positions 2 and 3, Y
involves {d3, d4, d5} and {d3, d5, d8} respectively. Before position
6, none of the data items involved in Y has an overall score higher
than or equal to the threshold value. At position 6, the threshold
value gets 63, which is less than the overall score of the three data
items involved in Y, i.e. Y={d3, d5, d8}. Thus, there are k data
items in Y whose overall scores are higher than or equal to the
threshold value, so TA stops at position 6. The contents of Y at
position 6 are exactly equal to its contents at position 3. In other
words, at position 3, Y already contains all top-k answers. But TA
cannot detect this and continues until position 6. In this example,
TA does three useless sorted accesses in each list, thus a total of 9
useless sorted accesses and 9∗2 useless random accesses.

In the next section, we propose an algorithm that always stops as
early as TA, so it is as fast as TA. Over some databases, our
algorithm can stop at a position which is (m-1) times lower than
the stopping position of TA.

4. BEST POSITION ALGORITHM
In this section, we first propose our Best Position Algorithm
(BPA), which is an efficient algorithm for the problem of
answering top-k queries over sorted lists. Then, we analyze its
execution cost and discuss its instance optimality.

4.1 Algorithm
BPA works as follows:

1. Do sorted access in parallel to each of the m sorted lists. As a
data item d is seen under sorted access in some list, do
random access to the other lists to find the local score and
the position of d in every list. Maintain the seen positions
and their corresponding local scores. Compute the overall
score of d. Maintain in a set Y the k seen data items whose
overall scores are the highest among all data items seen so
far.

2. For each list Li, let Pi be the set of positions which are seen

under sorted or random access in Li. Let bpi, called best
position1 in Li, be the greatest position in Pi such that any
position of Li between 1 and bpi is also in Pi. Let si(bpi) be
the local score of the data item which is at position bpi in list
Li .

3. Let best positions overall score be λ = f(s1(bp1), s2(bp2), …,

sm(bpm)). If Y involves k data items whose overall scores are
higher than or equal to λ, then stop doing sorted access to the
lists. Otherwise, go to 1.

1 bpi is called best because we are sure that all positions of Li

between 1 and bpi have been seen under sorted or random
access.

 List 1 List 2 List 3 f = s1 + s2 + s3

Position Data
item

Local
score

s1

 Data
item

Local
score

s2

 Data
item

Local
score

s3

 TA
Threshold

 Data
item

Overall
Score

1 d1 30 d2 28 d3 30 88 d1 65

2 d4 28 d6 27 d5 29 84 d2 63

3 d9 27 d7 25 d8 28 80 d3 70

4 d3 26 d5 24 d4 25 75 d4 66

5 d7 25 d9 23 d2 24 72 d5 70

6 d8 23 d1 21 d6 19 63 d6 60

7 d5 17 d8 20 d13 15 52 d7 61

8 d6 14 d3 14 d1 14 42 d8 71

9 d2 11 d4 13 d9 12 36 d9 62

10 d11 10 d14 12 d7 11 33 … …

… … … … … … … … … …

(a)

 (b) (c)

Figure 1. Example database. a) 3 sorted lists. b) TA threshold at positions 1 to 10. c) The overall score of each data item.

4. Return Y.

Example 3. To illustrate our algorithm, consider again the three
sorted lists shown in Figure 1.a and the query Q in Example 1. At
position 1, BPA sees the data items d1, d2, and d3. For each seen
data item, it does random access and obtains its local score and
position in all lists. Therefore, at this step, the positions which are
seen in list L1 are the positions 1, 4, and 9 which are respectively
the positions of d1, d3 and d2. Thus, we have P1={1, 4, 9} and the
best position in L1 is bp1 = 1 (since the next position in P1 is 4
meaning that positions 2 and 3 have not been seen). For L2 and L3
we have P2={1, 6, 8} and P3={1, 5, 8}, so bp2 = 1 and bp3 = 1.
Therefore, the best positions overall score is λ = f(s1(1), s2(1),
s3(1)) = 30 + 28 +30 = 88. At position 1, the set of three highest
scored data items is Y={d1, d2, d3}, and since the overall score of
these data items is less than λ, BPA cannot stop. At position 2,
BPA sees d4, d5, and d6. Thus, we have P1={1, 2, 4, 7, 8, 9},
P2={1, 2, 4, 6, 8, 9} and P3={1, 2, 4, 5, 6, 8}. Therefore, we have
bp1=2, bp2=2 and bp3=2, so λ = f(s1(2), s2(2), s3(2)) = 28 + 27 +
29 = 84. The overall score of the data items involved in Y={d3, d4,
d5} is less than 84, so BPA does not stop. At position 3, BPA sees
d7, d8, and d9. Thus, we have P1 = P2 ={1, 2, 3, 4, 5, 6, 7, 8, 9},
and P3 ={1, 2, 3, 4, 5, 6, 8, 9, 10}. Thus, we have bp1=9, bp2=9
and bp3=6. The best positions overall score is λ = f(s1(9), s2(9),
s3(6)) = 11 + 13 + 19 = 43. At this position, we have Y={d3, d5,
d8}. Since the score of all data items involved in Y is higher than
λ, our algorithm stops. Thus, BPA stops at position 3, i.e. exactly
at the first position where BPA has all top-k answers. Remember
that over this database, TA and FA stop at positions 6 and 8
respectively.

The following theorem provides the correctness of our algorithm.

Theorem 1. If the scoring function f is monotonic, then BPA
correctly finds the top-k answers.

Proof. For each list Li, let bpi be the best position in Li at the
moment when BPA stops. Let Y be the set of the k data items
found by BPA, and d be the lowest scored data item in Y. Let s be
the overall score of d, then we show that each data item, which is
not involved in Y, has an overall score less than or equal to s. We
do the proof by contradiction. Assume there is a data item d'∉Y
with an overall score s' such that s' >s. Since d' is not involved in
Y and its overall score is higher than s, we can imply that d' has
not been seen by BPA under sorted or random access. Thus, its
position in any list Li is greater than the best position in Li, i.e. bpi.
Therefore, the local score of d' in any list Li is less than the local
score which is at bpi, and since the scoring function is monotonic,
the overall score of d' is less than or equal to the best positions
overall score, i.e. s'≤λ. Since the score of all data items involved
in Y is higher than or equal to λ,, we have s≥λ. By comparing the
two latter inequalities, we have s≥ s', which yields to a
contradiction. �

4.2 Cost Analysis
In this section, we compare the execution cost of BPA and TA.
Since TA and BPA are designed for monotonic scoring functions,
we implicitly assume that the scoring function is monotonic.

The two following lemmas compare the number of sorted/random
accesses done by BPA and TA.

Lemma 1. The number of sorted accesses done by BPA is always
less than or equal to that of TA. In other words, BPA stops always
as early as TA.

Proof. Let Y be the set of answers found by TA, and δ be the
value of TA's threshold at the time it stops. We know that the
overall score of any data item involved in Y is less than or equal
to δ. For each list Li, let pi be the position of the last data item
seen by TA under sorted access. Since any position less than or
equal to pi has been seen under sorted access, the best position in
Li, i.e. bpi, is greater than or equal to pi. Thus, the local score
which is at pi is higher than or equal to the local score at bpi.
Therefore, considering the monotonicity of the scoring function,
the TA's threshold, i.e. δ, is higher than or equal to the best
positions overall score which is used by BPA, i.e. λ,. Thus, the
overall scores of the data items involved in Y get higher than or
equal to λ when the position of BPA under sorted access is less
than or equal to pi. Therefore, BPA stops with a number of sorted
accesses less than or equal to TA. �

Lemma 2. The number of random accesses done by BPA is
always less than or equal to that of TA.

Proof. The number of random accesses done by both BPA and
TA is equal to the number of sorted accesses multiplied by (m-1)
where m is the number of lists. Thus, the proof is implied by
Lemma 1. �

Using the two above lemmas, the following theorem compares the
execution cost of BPA and TA.

Theorem 2. The execution cost of BPA is always less than or
equal to that of TA.

Proof. Considering the definition of execution cost, the proof is
implied using Lemma 1 and Lemma 2. �

Lemmas 1 and 2 show that BPA always stops as early as TA. But
how much faster than TA can it be? In the following, we answer
this question. Assume that when BPA stops, its position in all lists
is u. Then, during its execution, BPA has seen u∗m positions in
each list, i.e. u positions under sorted access and u∗(m-1) under
random access. If these are the positions from 1 to u∗m, then the
best position in each list is the (u∗m)th position. In other words,
the best position can be m times greater than the position under
sorted access. Based on this observation, we may conclude that
BPA can stop at a position which is m times lower than TA.
However, we did not find any case where this happens. Instead,
we can prove that there are cases where BPA stops at a position
which is (m-1) times smaller than TA. In other words, the number
of sorted accesses done by BPA can be (m-1) times lower than
TA. This is shown by the following lemma.

Lemma 3. Let m be the number of lists, then the number of sorted
accesses done by BPA can be (m-1) times lower than that of TA.

Proof. To prove this lemma, it is sufficient to show that there are
databases over which the number of sorted accesses done by BPA
is (m-1) times lower than that of TA. In other words, under sorted
access, BPA stops at a position which is (m-1) times lower than
the position at which TA stops. Let δ be the value of TA's
threshold at the moment when it stops. For each list Li, let pi be
the position (under sorted access) at which TA stops. Without loss
of generality, we assume p1=p2=…=pm=j, i.e. when TA stops its

position in all lists is j. For simplicity assume that j=(m-1)∗u
where u is an integer. Consider all cases where the two following
conditions hold:

1) Each of the top-k answers have a local score at a position
which is less than or equal to j/(m-1), i.e. each of the top-k
answers are seen under sorted access at a position which is less
than or equal to j/(m-1).

2) If a data item is at a position in interval [1 .. (j/(m-1))] in any
list Li, then m-2 of its corresponding local scores in other lists are
at positions which are in interval [((j/(m-1) + 1) .. j], and one2 of
its corresponding local scores is in a position higher than j.

In all cases where the two above conditions hold, we can argue as
follows. After doing its sorted access and random access at
position j/(m-1), BPA has seen all positions in interval [1 .. (j/(m-
1))], i.e. under sorted access, and for each seen data item it has
seen m-2 positions in interval [((j/(m-1) + 1) .. j], i.e. under
random access. Let ns be the total number of seen positions in
interval [1..j], then we have:

ns = (number of seen positions in [1..(j/(m-1))]) + (number of seen
positions in [((j/(m-1) + 1) .. j])

After replacing the number of seen positions, we have:

ns = ((j/(m-1)∗m) + (((j/(m-1) ∗m) ∗ (m-2))

After simplifying the right side of the equation, we have ns=m∗j.
Thus, when BPA is at position j/(m-1), it has seen all positions in
interval [1 .. j] in all lists. Therefore, the best position in each list
is at least j. Hence, the best positions overall score, i.e. λ, is
higher than or equal to the value of TA's threshold at position j,
i.e. δ. In other words, we have λ≥δ. Since at position j/(m-1), all
top-k answers are in the set Y (see the first condition above) and
their scores are less than or equal to δ (i.e. this is enforced by
TA's stopping mechanism), the score of all data items involved in
Y is less than or equal to λ. Thus, BPA stops at j/(m-1), i.e. at a
position which is (m-1) times lower than the position of TA. �

Lemma 4. Let m be the number of lists, then the number of
random accesses done by BPA can be (m-1) times lower than that
of TA.

Proof. Since the number of random accesses done by both BPA
and TA is proportional to the number of sorted accesses, the proof
is implied by Lemma 3. �

The following theorem shows that the execution cost of BPA can
be (m-1) times lower than that of TA.

Theorem 3. Let m be the number of lists, then the execution cost
of BPA can be (m-1) times lower than that of TA.

Proof. The proof is implied by Lemma 3 and Lemma 4. �

Example 3 (i.e. the database shown in Figure 1) is one of the
cases where the execution cost of BPA is (m-1) times lower than

2 Choosing one of the corresponding local scores at a position

greater than j allows us to adjust the local scores of top-k
answers such that their overall scores do not get higher than
TA's threshold at a position smaller than j, i.e. TA does not stop
before j.

TA. In that example, m=3 and TA stops at position 6, whereas
BPA stops at position 3, i.e. (m-1) times lower than TA. For TA,
the total number of sorted accesses is 6∗3=18 and the number of
random accesses is 18∗2=36, i.e. for each sorted access (m-1)
random accesses. With BPA, the number of sorted accesses and
random accesses is 3∗3=9 and 9∗2=18, respectively.

4.3 Instance Optimality
Instance optimality corresponds to optimality in every instance, as
opposed to just the worst case or the average case. It is defined as
follows �[15]. Let A be a class of algorithms, D be a class of
databases, and cost(a, d) be the execution cost incurred by
running algorithm a over database d. An algorithm a∈A is
instance optimal over A and D if for every b∈A and every d∈D
we have:

cost(a, d) = O(cost(b, d))

 The above equation says that there are two constants c1 and c2
such that cost(a, d) ≤ c1∗cost(b, d) + c2 for every choice of b∈A
and d∈D. The constant c1 is called the optimality ratio of a.

Let D be the class of all databases, and A be the class of
deterministic top-k query processing algorithms, i.e. those that do
not make lucky guesses. Assume the scoring function is
monotonic. Then, in �[15] it is proved that TA is instance optimal
over D and A. Since the execution cost of BPA over every
database is less than or equal to TA (see Theorem 2), we have the
following theorem on the instance optimality of BPA.

Theorem 4. Assume the scoring function is monotonic. Let D be
the class of all databases, and A be the class of the top-k query
processing algorithms that do not make lucky guesses. Then BPA
is instance optimal over D and A, and its optimality ratio is better
than or equal to that of TA.

Proof. Implied by the above discussion and using Theorem 2. �

5. OPTIMIZATION
Although BPA is quite efficient, it still does redundant work. One
of the redundancies with BPA (and also TA) is that it may access
some data items several times under sorted access in different
lists. For example, a data item, which is accessed at a position in a
list through sorted access and thus accessed in other lists via
random access, may be accessed again in the other lists by sorted
access at the next positions. In addition to this redundancy, in a
distributed system, BPA needs to retrieve the position of each
accessed data item and keep the seen positions at the query
originator, i.e. the node at which the query is issued (executed).
This requires transferring the seen positions from the list owners
to the query originator, thus incurring communication cost. In this
section, based on BPA, we propose BPA2, an algorithm which is
much more efficient than BPA. It avoids re-accessing data items
via sorted or random access. In addition, it does not transfer the
seen positions from list owners to the query originator. Thus, the
query originator does not need to maintain the seen positions and
their local scores.

In the rest of this section, we present BPA2, with its properties,
and compare it with BPA. To describe BPA2, we assume that the
best positions are managed by the list owners. Finally, we propose

solutions for the efficient management of the best positions by list
owners.

5.1 BPA2 Algorithm
Let direct access be a mode of access that reads the data item
which is at a given position in a list. Recall from the previous
section that the best position bp in a list is the greatest seen
position of the list such that any position between 1 and bp is also
seen. Then, BPA2 works as follows:

1. For each list Li, let bpi be the best position in Li. Initially set
bpi=0.

2. For each list Li and in parallel, do direct access to position

(bpi + 1) in list Li. As a data item d is seen under direct
access in some list, do random access to the other lists to find
d's local score in every list. Compute the overall score of d.
Maintain in a set Y the k seen data items whose overall
scores are the highest among all data items seen so far.

3. If a direct access or random access to a list Li changes the

best position of Li, then along with the local score of the
accessed data item, return also the local score of the data
item which is at the best position. Let si(bpi) be the local
score of the data item which is at the best position in list Li .

4. Let best positions overall score be λ = f(s1(bp1), s2(bp2), …,

s3(bpm)). If Y involves k data items whose overall scores are
higher than or equal to λ, then stop doing sorted access to the
lists. Otherwise, go to 1.

5. Return Y.

At each time, BPA2 does direct access to the position which is
just after the best position. This position, i.e. bpi + 1, is always
the smallest unseen position in the list.

BPA2 has the same stopping mechanism as BPA. Thus, they both
stop at the same (best) position. In addition, they see the same set
of data items, i.e. those that have at least one local score before
the best position in some list. Thus, they see the same set of
positions in the lists.

However, there are two main differences between BPA2 and
BPA. The first difference is that BPA2 does not return the seen
positions to the query originator, so the query originator does not
need to maintain the seen positions. With BPA2 the only data that
the query originator must maintain is the set Y (which contains at
most k data items) and the local scores of the m best positions.
The second difference is that with BPA some seen positions of a
list may be accessed several times, i.e. up to m times, but with
BPA2 each seen position of a list is accessed only once because
BPA2 does direct access to the position which is just after the best
position and this position is always an unseen position in the list,
i.e. it is the smallest unseen position.

Theorem 5. No position in a list is accessed by BPA2 more than
once.

Proof. Implied by the fact that BPA2 always does direct access to
an unseen position, i.e. bpi + 1, so no seen position is accessed via
direct access, and thus by random access. �

The following theorem provides the correctness of BPA2.

Theorem 6. If the scoring function is monotonic, then BPA2
correctly finds the top-k answers.

Proof. Since BPA2 has the same stopping mechanism as BPA,
the proof is similar to that of Theorem 1 which proves the
correctness of BPA. �

In many systems, in particular distributed systems, the total
number of accesses to the lists (composed of sorted/direct and
random accesses) is a main metric for measuring the cost of a top-
k query processing algorithm. Below, using two theorems we
compare BPA and BPA2 from the point of the view of this metric.

Theorem 7. The number of accesses to the lists done by BPA2 is
always less than or equal to that of BPA.

Proof. BPA and BPA2 access the same set of positions in the
lists. However, BPA2 accesses each of these positions only once,
but BPA may access some of the positions more than once.
Therefore, the number of accesses to the lists by BPA is less than
or equal to BPA. �

Theorem 8. Let m be the number of lists, then the number of
accesses to the lists done by BPA2 can be about (m-1) times lower
than that of BPA.

Proof. To do the proof, we show that there are databases over
which the number of accesses done by BPA is about (m-1) times
higher that of BPA2. For each list Li, let bpi be the best position at
which BPA stops. Without loss of generality, we assume
bp1=bp2=…=bpm=j, i.e. when BPA stops, the best position in all
lists is j. For simplicity, assume that j-1=(m-1)∗u where u is an
integer. We know that BPA2 stops at the same best position as
BPA, so it also stops at j. Consider all databases at which the
following condition holds:

1) If a data item is at a position in interval [1 .. j] in any list Li,
then m-2 of its corresponding local scores in other lists are at
positions which are in interval [1 .. (j-1)], and one3 of its
corresponding local scores is in a position higher than j.

The above condition assures that BPA does not see the data items
which are at position j by a random access. Thus, it continues
doing sorted access until the position j. In all databases that hold
the above condition, we can argue as follows. Let nd be the
number of distinct data items which are in interval [1 .. (j-1)].
Since the total number of positions in interval [1 .. (j-1)] is m∗ (j-
1), i.e. j-1 times the number of lists, and each distinct data item
occupies (m-1) positions in interval [1 .. (j-1)] (see the above
condition), we have nd= m∗ (j-1)/(m-1). In other words, we have
nd = m∗u. BPA2 sees each distinct data item by doing one direct
access. It also does m direct accesses at position j, i.e. one per list.
Thus, BPA2 does a total of (u+1)∗m direct accesses. After each
direct access, BPA2 does (m-1) random accesses, thus a total of
(u+1)∗m∗(m-1) random accesses. Therefore, the total number of
accesses done by BPA2 is nbpa2 = (u+1)∗m2. BPA sees all
positions in interval [1 .. j] by sorted access, thus a total of (j∗m)
sorted accesses. After each sorted access, it does (m-1) random

3 This allows us to adjust the local scores of top-k answers such

that BPA does not stop at a position smaller than j.

accesses, thus a total of j∗m∗(m-1) random accesses. Therefore,
the total number of accesses done by BPA is nbpa = (j)∗m2. By
comparing nbpa2 and nbpa, we have nbpa = nbpa2 ∗ (j / (u+1)) ≈ nbpa2
∗ (m-1). �

As an example, consider the database (i.e. the three sorted lists)
shown in Figure 2, and suppose k=3 and the scoring function
computes the sum of the local scores. If we apply BPA on this
example, it stops at position 7, so it does 7∗3 sorted accesses and
7∗3∗2 random accesses. Thus, the total number of accesses done
by BPA is nbpa = 63. If we apply BPA2, it does direct access to
positions 1, 2, 3 and 7 in all lists, so a total of 4∗3 direct accesses
and 4∗3∗2 random accesses. Thus, the total number of accesses
done by BPA2 is nbpa2 = 36. Therefore, we have nbpa ≈ 2∗ nbpa2.

5.2 Managing Best Positions
After each sorted/direct/random access to a list, the owner of the
list needs to determine the best position. A simple method for
managing the best positions is to maintain the seen positions in a
set. Then finding the best position is done by scanning the set and
for each position p, verifying if all positions which are less than p
belong to the set. This method is not efficient because finding the
best position is done in O(u2) where u is the number of seen
positions. Note that in the worst case, u can be equal to n, i.e. the
number of data items in the list. In this section, we propose two
efficient techniques for managing best positions: Bit array, and
B+tree.

5.2.1 Bit Array
In this approach, to know the positions which are seen, each list
owner uses an array of n bits where n is the size of the sorted list.
Initially all bits of the array are set to 0. There is a variable bp
which points to the best position. Initially bp is set to 1. Let Bi be
the bit array which is used by the owner of list Li. After doing an
access to a data item that is at position j in Li, the following

instructions are done by the list owner for determining the new
best position:

Bi[j] := 1;

While ((bp < n) and (Bi[bp + 1] = 1)) do

 bp := bp + 1;

The total time needed for determining the best positions during
the execution of the top-k query is O(n), i.e. bp can be
incremented up to n. Let u be the total number of accesses to Li
during the execution of the query, then the average time for
determining the best position after each access is O(n/u). The
space needed for this approach is an array of n bits plus a
variable, which is typically very small.

5.2.2 B+tree
In this approach, each list owner uses a B+tree for maintaining the
seen positions. B+tree is a balanced tree, which is widely used for
efficient data storage and retrieval in databases. In a B+tree, all
data is saved in the leaves, and the leaf nodes are at the same
level, so any operation of insert/delete/lookup is logarithmic in
the number of data items. The leaf nodes are also linked together
as a linked list. Let c be a cell of the linked list, i.e. a leaf of the
B+tree, then there is a pointer c.next that points to the next cell of
the linked list. Let c.element be a variable that maintains the data
in c.

Let BTi be the B+tree which the owner of list Li uses for
maintaining the seen positions of Li. The list owner also uses a
pointer bp that points to the cell, i.e. leaf of BTi, which maintains
the seen position which is the best position. After an access to a
position p in Li, the list owner adds p to BTi. Then, it performs the
following instructions to determine the new best position:

While ((bp.next ≠ null) and (bp.next.element
= bp.element + 1)) do bp := bp.next;

 List 1 List 2 List 3 f = s1 + s2 + s3

Position Data
item

Local
score

 Data
item

Local
score

 Data
item

Local
score

 Sum of
local
scores

 Data
item

Overall
Score

1 d1 30 d2 28 d3 30 88 d1 65

2 d4 28 d6 27 d5 29 84 d2 65

3 d9 27 d7 25 d8 28 80 d3 70

4 d3 26 d5 24 d4 27 77 d4 68

5 d7 25 d9 23 d2 26 74 d5 63

6 d8 24 d1 22 d6 25 71 d6 66

7 d11 17 d14 20 d13 15 52 d7 61

8 d6 14 d3 14 d1 13 41 d8 64

9 d2 11 d4 13 d9 12 36 d9 62

10 d5 10 d8 12 d7 11 33 … …

… … … … … … … … … …

Figure 2. Example database over which the number of accesses to the lists done by BPA2 is about 1/(m-1) that of BPA.

The above instructions assure that the pointer bp points always to
the cell which maintains the best position. Let u be the total
number of accesses to the list Li during the execution of the query,
then the total time for determining the best positions is O(u), i.e.
in the worst case bp moves from the head to the end of the linked
list. Thus, the average time per access is O(1). The time needed
for adding a seen position to the B+tree is O(log u). Therefore,
with the B+tree approach, the average time for storing a seen
position and determining the best position is O(log u). For the Bit
array approach, this time is O(n/u) where n is the size of the
sorted list. If n is much greater than u, i.e. n≥ c∗ (u ∗ log u) where
c is a constant that depends on the B+tree implementation, then
the B+tree approach is more efficient than the Bit array approach.
The space needed for the B+tree approach is O(u) but is not
usually as compact as Bit array.

6. PERFORMANCE EVALUATION
In the previous sections, we analytically compared our algorithms
with TA, i.e. BPA directly and BPA2 indirectly. In this section,
we compare these three algorithms through experimentation over
randomly generated databases. The rest of this section is
organized as follows. We first describe our experimental setup.
Then, we compare the performance of our algorithms with TA by
varying experimental parameters such as the number of lists, i.e.
m, the number of top data items requested, i.e. k, and the number
of data items of each list, i.e. n. Finally, we summarize the
performance results.

6.1 Experimental Setup
We implemented TA, BPA and BPA2 in Java. To evaluate our
algorithms, we tested them over both independent and correlated
databases, thus covering all practical cases. The independent
databases are uniform and Gaussian databases generated using the
two main probability distributions (i.e. uniform and Gaussian).
With Uniform database, the positions of a data item in any two
lists are independent of each other. To generate this database, the
scores of the data items in each list are generated using a uniform
random generator, and then the list is sorted. This is our default
setting. With Gaussian database, the positions of a data item in
any two lists are also independent of each other. To generate this
database, the scores of the data items in each list are Gaussian
random numbers with a mean of 0 and a standard deviation of 1.

In addition to these independent databases, we also use correlated
databases, i.e. databases where the positions of a data item in the
lists are correlated. We use this type of database for taking into
account the applications where there are correlations among the
positions of a data item in different lists. In real-world
applications, there are usually such correlations �[23]. Inspired
from �[23], we use a correlation parameter α (0 �α � 1), and we
generate the correlated databases as follows. For the first list, we
randomly select the position of data items. Let p1 be the position
of a data item in the first list, then for each list Li (2 � i � m) we
generate a random number r in interval [1 .. n∗α] where n is the
number of data items, and we put the data item at a position p
whose distance from p1 is r. If p is not free, i.e. occupied
previously by another data item, we put the data item at the free
position closest to p. By controlling the value of α, we create
databases with stronger or weaker correlations. After setting the
positions of all data items in all lists, we generate the scores of the

data items in each list in such a way that they follow the Zipf law
�[29] with the Zipf parameter � = 0.7. The Zipf law states that the
score of an item in a ranked list is inversely proportional to its
rank (position) in the list. It is commonly observed in many kinds
of phenomena, e.g. the frequency of words in a corpus of natural
language utterances.

Our default settings for different experimental parameters are
shown in Table 1. In our tests, the default number of data items in
each list is 100,000. Typically, users are interested in a small
number of top answers, thus unless otherwise specified we set
k=20. Like many previous works on top-k query processing, e.g.
�[8], we use a scoring function that computes the sum of the local
scores. In most of our tests, the number of lists, i.e. m, is a varying
parameter. When m is a constant, we set it to 8 which is rather
small but quite sufficient to show significant performance gains of
our algorithms. Note that, in some important applications such as
network monitoring �[8], m can be much higher.

Table 1. Default setting of experimental parameters

Parameter Default values

Number of data items in each list, i.e. n 100,000

k 20

Number of lists 8

To evaluate the performance of the algorithms, we measure the
following metrics.

1) Execution cost. As defined in Section �2, the execution cost is
computed as c = as∗cs + ar∗cr where as is the number of sorted
accesses that an algorithm does during execution, ar is the number
of random accesses, cs is the cost of a sorted access, and cr is the
cost of a random access. For the BPA2 algorithm, we consider
each direct access equivalent to a random access. For each sorted
access we consider one unit of cost, i.e. we set cs = 1. For the cost
of each random access, we set cr = log n where n is the number of
data items, i.e. we assume that there is an index on data items
such that each entry of index points to the position of data item in
the lists. The execution time which we consider here is a good
metric for comparing the performance of the algorithms in a
centralized system. For distributed systems, we use the next
metric.

2) Number of accesses. This metric measures the total number of
accesses to the lists done by an algorithm during execution. It
involves the sorted, direct and random accesses. In distributed
systems, particularly in the cases where message size is small
(which is the case of our algorithms), the main cost factor is the
number of messages communicated between nodes. The number
of messages, which our algorithms (and TA) communicate
between the query originator and list owners in a distributed
system, is proportional to the number of accesses done to the lists.
Thus, the number of accesses is a good metric for comparing the
performance of the algorithms in distributed systems. For TA and
BPA, the number of accesses is also a good indicator of their
stopping position under sorted access, i.e. the number of accesses
is m2 multiplied by the stopping position.

3) Response time. This is the total time (in millisecond) that an
algorithm takes for finding the top-k data items. We conducted

our experiments on a machine with a 2.4 GHz Intel Pentium 4
processor and 2GB memory. In the code of BPA and BPA2, the
best positions are managed using the Bit Array approach which is
simpler than the B+-tree approach.

6.2 Performance Results
6.2.1 Effect of the number of lists
In this section, we compare the performance of our algorithms
with TA over the three database types while varying the number
of lists.

Over the uniform database, with the number of lists increasing up
to 18 and the other parameters set as in Table 1, Figures 3, 4 and 5

Execution cost
Uniform database, k=20

0

10000000

20000000

30000000

40000000

50000000

60000000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n
C

os
t

TA
BPA
BPA2

Number of accesses
Uniform database, k=20

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 4 6 8 10 12 14 16 18
m

N
um

be
r

of
 A

cc
es

se
s

TA
BPA
BPA2

Response time
Uniform database, k=20

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16 18
m

R
es

po
ns

e
T

im
e

(m
s)

TA
BPA
BPA2

 Figure 3. Execution cost vs. number of
lists over uniform database

Figure 4. Number of accesses vs. number
of lists over uniform database

Figure 5. Response time vs. number of
lists over uniform database

Execution cost
Gaussian database, k=20

0

10000000

20000000

30000000

40000000

50000000

60000000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n
C

os
t

TA
BPA
BPA2

Number of accesses
Gaussian database, k=20

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 4 6 8 10 12 14 16 18
m

N
um

be
r

of
 A

cc
es

se
s

TA
BPA
BPA2

Response time
Gaussian database, k=20

0

400

800

1200

1600

2000

2 4 6 8 10 12 14 16 18
m

R
es

po
ns

e
T

im
e

(m
s)

TA
BPA
BPA2

 Figure 6. Execution cost vs. number of
lists over Gaussian database

Figure 7. Number of accesses vs. number
of lists over Gaussian database

Figure 8. Response time vs. number of
lists over Gaussian database

Execution cost
Correlated database, alfa=0.001, k=20

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n
C

os
t

T A
BPA
BPA2

Execution cost
Correlated database, alfa=0.01, k=20

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n
C

os
t

T A
BPA
BPA2

Execution cost
Correlated database, alfa=0.1, k=20

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

2 4 6 8 10 12 14 16 18
m

E
xe

cu
tio

n
C

os
t

T A
BPA
BPA2

Figure 9. Execution cost vs. number of
lists over correlated database with α=0.001

Figure 10. Execution cost vs. number of
lists over correlated database with α=0.01

Figure 11. Execution cost vs. number of
lists over correlated database with α=0.1

show the results measuring execution cost, number of accesses,
and response time, respectively. The execution cost of BPA is
much better than that of TA; it outperforms TA by a factor of
approximately (m+6)/8 for m>2. BPA2 is the strongest
performer; it outperforms TA by a factor of approximately
(m+1)/2 for m>2. On the second metric, i.e. number of accesses,
the results are similar to those on execution cost. However, BPA2
outperforms TA by a factor which is (a little) higher than that for
execution cost, i.e. about 1/m higher. The reason is that for
measuring execution cost, we assume an expensive cost (i.e. log n
units) for direct accesses which are done by BPA2. On response
time, BPA2 (and BPA) outperforms TA by a factor which is a
little lower than that on execution cost, just because of the time
they need for managing the best positions.

Over the Gaussian database, with the number of lists increasing
up to 18 and the other parameters set as in Table 1, Figures 6, 7
and 8 show the results for execution cost, number of accesses, and
response time respectively. Over the Gaussian database, the
performance of the three algorithms is a little better than their
performance over the uniform database. BPA and BPA2 do much
better than TA, and they outperform it by a factor close to that
over the uniform database.

Overall, the performance results on the three metrics are
qualitatively similar, in particular on execution cost and number
of accesses. Thus, in the rest of this paper, we only report the
results on execution cost.

Figures 9, 10 and 11 show the execution cost of the algorithms
over three correlated databases with correlation parameter α set to
0.001, 0.01 and 0.1 respectively, and the other parameters set as
in Table 1. Over these databases, the performance of the three
algorithms is much better than that over Gaussian and uniform
databases. In fact, the more correlated is the database; the lower is
the execution cost of all three algorithms. The reason is that in a
highly correlated database, the top-k data items are distributed
over low positions of the lists, so the algorithms do not need to go
much down in the lists, and they stop soon. However, due to their
efficient stopping mechanism, BPA and BPA2 stop much sooner
than TA.

6.2.2 Effect of k
In this section, we study the effect of k, i.e. the number of top data
items requested, on performance. Figure 12 shows how execution
cost increases over the uniform database, with increasing k up to
100, and the other parameters set as in Table 1. The execution
cost of all three algorithms increases with k because more data
items are needed to be returned in order to obtain the top-k data
items. However, the increase is very small. The reason is that over
the uniform database, when an algorithm (i.e. any of the three
algorithms) stops its execution for a top-k query, with a high
probability, it has seen also the (k + 1)th data item. Thus, with a
high probability, it stops at the same position for a top-(k+1)
query.

Execution cost
Uniform database, m=8

0

2000000

4000000

6000000

8000000

10000000

10 20 30 40 50 60 70 80 90 100

k

E
xe

cu
tio

n
C

os
t

T A
BPA
BPA2

Execution cos t
Correlated databas e, alfa=0.01, m=8

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

k

E
xe

cu
tio

n
C

os
t

T A
BP A
BP A2

Execution cost
Correlated database, alfa=0.001, m=8

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100

k

E
xe

cu
tio

n
C

os
t

T A
BPA
BPA2

 Figure 12. Execution cost vs. k over
uniform database

Figure 13. Execution cost vs. k over
correlated database with α=0.01

Figure 14. Execution cost vs. k over
correlated database with α=0.001

Execution cost
Uniform database, m=8

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

25K 50K 75K 100K 125K 150K 175K 200K

n

E
xe

cu
tio

n
C

os
t

TA
BPA
BPA2

Execution cost
Correlated database, alfa=0.01, m=8

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

25K 50K 75K 100K 125K 150K 175K 200K

n

E
xe

cu
tio

n
C

os
t

TA
BPA
BPA2

Execution cost,
 Correlated database, alfa=0.0001, m=8

0

5000

10000

15000

20000

25000

30000

35000

40000

25K 50K 75K 100K 125K 150K 175K 200K

n

E
xe

cu
tio

n
C

os
t TA

BPA
BPA2

 Figure 15. Execution cost vs. n over
uniform database

Figure 16. Execution cost vs. n over
correlated database with α=0.01

Figure 17. Execution cost vs. n over
correlated database with α=0.0001

Figures 13 and 14 show how execution cost increases with
increasing k over two correlated databases with correlation
parameter set to α=0.01 and α=0.001 respectively, and the other
parameters set as in Table 1. For the database with α=0.01, i.e.
the one which is less correlated, the impact of k is smaller. The
reason is that when we run one of the three algorithms over a
database with low correlation, it sees a lot of data items before
stopping its execution. Thus, when it stops at a position for a top-
k query, there is a high probability that it stops at the same
position for a top-(k + 1) query. But, for a highly correlated
database, this probability is lower because the algorithm sees a
small number of data items before stopping its execution.

6.2.3 Effect of the number of data items
In this section, we vary the number of data items in each list, i.e.
n, and investigate its effect on execution cost. Figure 15 shows
how execution cost increases over the uniform database with
increasing n up to 200,000, and with the other parameters set as in
Table 1. Increasing n has a considerable impact on the
performance of the three algorithms over a uniform database. The
reason is that when we enlarge the lists and generate uniform
random data for them, the top-k data items are distributed over
higher positions in the list.

Figures 16 and 17 show how execution cost increases with
increasing n over two correlated databases with correlation
parameter set to α=0.01 and α=0.001 respectively, and the other
parameters set as in Table 1. The results show that n has a smaller
impact on a highly correlated database rather than a database with
a low correlation.

6.2.4 Concluding remarks
The performance results show that, over all test databases and wrt
all the metrics, the performance of our algorithms is much better
than that of TA. For example, they show that wrt execution cost,
BPA and BPA2 outperform TA by a factor of approximately
(m+6)/8 and (m+1)/2 for m>2. Thus, as m increases, the
performance gains of our algorithms versus TA increase
significantly.

7. RELATED WORK
Efficient processing of top-k queries is both an important and hard
problem that is still receiving much attention. A first important
paper is �[13] which models the general problem of answering top-
k queries using lists of data items sorted by their local scores and
proposes a simple, yet efficient algorithm, Fagin’s algorithm
(FA), that works on sorted lists. The most efficient algorithm over
sorted lists is the TA algorithm which was proposed by several
groups4 �[14]�[16]�[25]. TA is simple, elegant and efficient �[15] and
provides a significant performance improvement over FA. We
already discussed much TA in this paper. However, because of its
stopping mechanism (based on the last seen scores under sorted
access), TA can still perform useless work (see Section �3). The
fundamental differences between BPA and TA are the following.
BPA takes into account the positions and scores of the seen data
whereas TA only takes into account their scores. Using

4 The second author of �[14] first defined TA and compared it with

FA at the University of Maryland in the Fall of 1997.

information about the position of the seen data, BPA develops a
more intelligent stopping mechanism that allows choosing a much
better time to stop (such choice is correct as proved in Lemma 1).
This allows BPA to gain much reduction in the number of sorted
accesses and thus much reduction in the number of random
accesses. Even if TA were keeping track of all seen data items, it
could not stop at a smaller position under sorted access, because
its threshold does not allow it.

Several TA-style algorithms, i.e. extensions of TA, have been
proposed for processing top-k queries in distributed environments,
e.g. �[6]�[7]�[9]�[12]�[23]. Overall, most of the TA-style algorithms
focus on extending TA with the objective of minimizing
communication cost of top-k query processing in distributed
systems. They could as well use our algorithms to increase
performance. To do so, all they need to do is to manage the best
positions at list owners as in BPA2, and then use BPA2's stopping
mechanism. This would significantly reduce the accesses to the
lists and yield significant performance gains.

The Three Phase Uniform Threshold (TPUT) �[8] is an efficient
algorithm to answer top-k queries in distributed systems. The
algorithm reduces communication cost by pruning away ineligible
data items and restricting the number of round-trip messages
between the query originator and the other nodes. The simulation
results show that TPUT can reduce communication cost by one to
two orders of magnitude compared with an algorithm which is a
direct adaptation of TA for distributed systems �[8]. However,
there are many databases over which TPUT is not instance
optimal �[8]. For example, if one of the lists has n data items with a
fixed value that is just over the threshold of TPUT, then all data
items must be retrieved by the query originator, while a more
adaptive algorithm might avoid retrieving all n data items.
Instead, our algorithms are instance optimal over all databases and
can reduce the cost (m-1) orders of magnitude compared to TA.

8. CONCLUSION
The most efficient algorithm proposed so far for answering top-k
queries over sorted lists is the Threshold Algorithm (TA).
However, TA may still incur a lot of useless accesses to the lists.
In this paper, we proposed two algorithms which stop much
sooner and thus are more efficient than TA.

First, we proposed the BPA algorithm whose stopping mechanism
takes into account the seen positions in the lists. For any database
instance (i.e. set of sorted lists), we proved that BPA stops at least
as early as TA. We showed that the number of sorted/random
accesses done by BPA is always less than or equal to that of TA,
and thus its execution cost is never higher than TA. We also
showed that the number of sorted/random accesses done by BPA
can be (m-1) times lower than that of TA. Thus, its execution cost
can be (m-1) times lower than that of TA. We showed that BPA is
instance optimal over all databases, and its optimality ratio is
better than or equal to that of TA.

Second, based on BPA, we proposed the BPA2 algorithm which
is much more efficient than BPA. In addition to its efficient
stopping mechanism, BPA2 avoids re-accessing data items via
sorted and random access, without having to keep data at the
query originator. We showed that the number of accesses to the
lists done by BPA2 can be about (m-1) times lower than that of
BPA.

To validate our contributions, we implemented our algorithms as
well as TA as baseline. We evaluated the performance of the
algorithms over both independent and correlated databases wrt
three representative metrics (execution cost, number of accesses
and response time). The performance evaluations show that, over
all test databases and wrt all the metrics, our algorithms always
outperform TA significantly. For example, wrt execution cost,
BPA and BPA2 outperform TA by a factor of approximately
(m+6)/8 and (m+1)/2 respectively (for m>2). e.g. for m=10, the
factor is 2 and 5.5, respectively. Thus, as m increases, the
performance gains of our algorithms versus TA increase
significantly. Note that in some applications, the number of lists,
i.e. m, is very large, e.g. it may range from a few tens to a few
thousands �[8]. For example, consider a network monitoring
application that monitors the activities of the users of some
specified IP locations. The specified locations may be numerous.
For each location, the application maintains a list of the accessed
URLs ranked by their frequency of access. In this application, an
interesting query for the network administrator is “what are the
top-k popular URLs?”.

As future work, we plan to develop BPA-style algorithms for P2P
systems, in particular for the popular DHTs where top-k query
support is challenging �[3]. We also plan to adapt our BPA2
algorithm for replicated DHTs providing currency guarantees �[2].
This could be useful to perform top-k queries that involve results
ranked by currency.

REFERENCES
[1] R. Akbarinia, E. Pacitti and P. Valduriez. Reducing network

traffic in unstructured P2P systems using Top-k queries.
Distributed and Parallel Databases 19(2), 2006.

[2] R. Akbarinia, E. Pacitti and P. Valduriez. Data currency in
replicated DHTs. SIGMOD Conf., 2007.

[3] R. Akbarinia, E. Pacitti, and P. Valduriez. Processing top-k
queries in distributed hash tables. Euro-Par Conf., 2007.

[4] B. Babcock and C. Olston. Distributed top-k monitoring.
SIGMOD Conf., 2003.

[5] W.-T. Balke, W. Nejdl, W. Siberski and U. Thaden.
Progressive distributed top-k retrieval in peer-to-peer
networks. ICDE Conf., 2005.

[6] H. Bast, D. Majumdar, R. Schenkel, M. Theobald and G.
Weikum. IO-Top-k: index-access optimized top-k query
processing. VLDB Conf., 2006.

[7] N. Bruno, L. Gravano and A. Marian. Evaluating top-k
queries over web-accessible databases. ICDE Conf., 2002.

[8] P. Cao and Z. Wang. Efficient top-k query calculation in
distributed networks. PODC Conf., 2004.

[9] K.C.-C. Chang and S.-W. Hwang. Minimal probing:
supporting expensive predicates for top-k queries. SIGMOD
Conf., 2002.

[10] S. Chaudhuri, L. Gravano and A. Marian. Optimizing top-k
selection queries over multimedia repositories. IEEE Trans.
on Knowledge and Data Engineering 16(8), 2004.

[11] P. Ciaccia and M. Patella. Searching in metric spaces with
user-defined and approximate distances. ACM Transactions
on Database Systems (TODS) 27(4), 2002.

[12] G. Das, D. Gunopulos, N. Koudas and D. Tsirogiannis.
Answering top-k queries using views. VLDB Conf., 2006.

[13] R. Fagin. Combining fuzzy information from multiple
systems. J. Comput. System Sci., 58 (1), 1999.

[14] R. Fagin, A. Lotem and M. Naor. Optimal aggregation
algorithms for middleware. PODS Conf., 2001.

[15] R. Fagin, J. Lotem and M. Naor. Optimal aggregation
algorithms for middleware. J. of Computer and System
Sciences 66(4), 2003.

[16] U. Güntzer, W. Kießling and W.-T. Balke. Towards efficient
multi-feature queries in heterogeneous environments. IEEE
Int. Conf. on Information Technology, Coding and
Computing (ITCC), 2001.

[17] G.R. Hjaltason and H. Samet. Index-driven similarity search
in metric spaces. ACM Transactions on Database Systems
(TODS), 28(4), 2003.

[18] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k
answers in keyword proximity search. PODS Conf., 2006.

[19] N. Koudas, B.C. Ooi, K.L. Tan and R. Zhang. Approximate
NN queries on streams with guaranteed error/performance
bounds. VLDB Conf., 2004.

[20] X. Long and T. Suel. Optimized query execution in large
search engines with global page ordering. VLDB Conf., 2003.

[21] A. Marian, L. Gravano and N. Bruno. Evaluating top-k
queries over web-accessible Databases. ACM Transactions
on Database Systems (TODS) 29(2), 2004.

[22] A. Metwally, D. Agrawal, A. El Abbadi. An integrated
efficient solution for computing frequent and top-k elements
in data streams. J. ACM Transactions on Database Systems
(TODS) 31(3), 2006.

[23] S. Michel, P. Triantafillou and G. Weikum. KLEE: A
framework for distributed top-k query algorithms. VLDB
Conf., 2005.

[24] K. Mouratidis, S. Bakiras and D. Papadias. Continuous
monitoring of top-k queries over sliding windows. SIGMOD
Conf., 2006.

[25] S. Nepal and M.V. Ramakrishna. Query processing issues in
image (multimedia) databases. ICDE Conf., 1999.

[26] M. Persin, J. Zobel and R. Sacks-Davis. Filtered document
retrieval with frequency-sorted indexes. J. of the American
Society for Information Science 47(10), 1996.

[27] A. Silberstein, R. Braynard, C.S. Ellis, K. Munagala and J.
Yang. A sampling-based approach to optimizing top-k
queries in sensor networks. ICDE Conf., 2006.

[28] M. Wu, J. Xu, X. Tang and W-C Lee. Monitoring top-k
query in wireless sensor networks. ICDE Conf., 2006.

[29] G.K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley Press, 1949.

