
Noname manuscript No.
(will be inserted by the editor)

A Survey of Data-Intensive Scientific Workflow Management

Ji Liu · Esther Pacitti · Patrick Valduriez ·
Marta Mattoso

Received: 15 July 2014 / Accepted: 15 July 2014

Abstract Nowadays, more and more computer-based scientific experiments need to handle
massive amounts of data. Their data processing consists of multiple computational steps and
dependencies within them. A data-intensive scientific workflow is useful for modeling such pro-
cess. Since the sequential execution of data-intensive scientific workflows may take much time,
Scientific Workflow Management Systems (SWfMSs) should enable the parallel execution of
data-intensive scientific workflows and exploit the resources distributed in different infrastruc-
tures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow
management in SWfMSs and their parallelization techniques. Based on a SWfMS functional ar-
chitecture, we give a comparative analysis of the existing solutions. Finally, we identify research
issues for improving the execution of data-intensive scientific workflows in a multisite cloud.

Keywords scientific workflow · scientific workflow management system · grid · cloud · multisite
cloud · distributed and parallel data management · scheduling · parallelization

1 Introduction

Many large-scale scientific experiments take advantage of scientific workflows to model data
operations such as loading input data, data processing, data analysis, and aggregating output
data. Scientific workflows allow scientists to easily model and express the entire data processing
steps and their dependencies, typically as a directed graph or Directed Acyclic Graph (DAG).
As more and more data is consumed and produced in modern scientific experiments, scientific

Work partially funded by CNPq, CAPES, FAPERJ, INRIA (Hoscar and Music projects) and Microsoft (Zcloud-
Flow project), and performed within the Institut de Biologie Computationnelle (www.ibc-montpellier.fr).

J. Liu
MSR-INRIA Joint Centre, Inria and LIRMM, University of Montpellier
E-mail: Ji.Liu@inria.fr

E. Pacitti
University of Montpellier, Inria and LIRMM E-mail: Esther.Pacitti@lirmm.fr

P. Valduriez
Inria and LIRMM E-mail: Patrick.Valduriez@inria.fr

M. Mattoso
COPPE/Federal University of Rio de Janeiro E-mail: marta@cos.ufrj.br

Manuscript
Click here to download Manuscript: PSWC_J.pdf 
Click here to view linked References

http://www.editorialmanager.com/grid/download.aspx?id=33373&guid=0098dff9-8364-40ed-8054-ea6a39224451&scheme=1
http://www.editorialmanager.com/grid/viewRCResults.aspx?pdf=1&docID=1393&rev=1&fileID=33373&msid={805DDC62-BBFB-46CC-B941-B525AC68218B}


2 Ji Liu et al.

workflows become data-intensive. In order to process large-scale data within reasonable time,
they need to be executed with parallel processing techniques in the grid or the cloud.

A Scientific Workflow Management System (SWfMS ) is an efficient tool to execute work-
flows and manage data sets in various computing environments. A SWfMS gateway framework
is a system for SWfMS users to execute scientific workflows with different SWfMSs. Several
SWfMSs, e.g. Pegasus [41,42], Swift [144], Kepler [10], Taverna [104], Galaxy [60], Chiron [102]
and SWfMS gateway frameworks such as WS-PGRADE/gUSE [78] are now used intensively
by various research communities, e.g. astronomy, biology, computational engineering. Although
many SWfMSs exist, the architecture of SWfMSs have common features, in particular, the ca-
pability to produce a Workflow Execution Plan (WEP) from a high-level workflow specification.
Most SWfMSs are composed of five layers, e.g. presentation layer, user services layer, WEP gen-
eration layer, WEP execution layer and infrastructure layer. These five layers enable SWfMSs
users to design, execute and analyze data-intensive scientific workflows throughout the workflow
lifecyle.

Since the sequential execution of data-intensive scientific workflows may take much time,
SWfMSs should enable the parallel execution of data-intensive scientific workflows and exploit
large amounts of distributed resources. Executable tasks can be generated based on diverse types
of parallelism and submitted to the execution environment according to different scheduling
approaches.

The ability to exploit large amounts of computing and storage resources for scientific workflow
execution is provided by cluster, grid and cloud computing. Grid computing enables access to
distributed, heterogeneous resources using web services. These resources can be data sources
(files, databases, web sites, etc.), computing resources (multiprocessors, supercomputers, clusters)
and application resources (scientific applications, information management services, etc.). These
resources are owned and managed by the institutions involved in a virtual organization.

Cloud computing is the latest trend in distributed computing and has been the subject of
much hype. The vision encompasses on demand, reliable services provided over the Internet
(typically represented as a cloud) with easy access to virtually infinite computing, storage and
networking resources. Through very simple web interfaces and at small incremental cost, users can
outsource complex tasks, such as data storage, system administration, or application deployment,
to very large data centers operated by cloud providers. Since the resources are accessed through
services, everything gets delivered as a service. Thus, as in the services industry, this enables cloud
providers to propose a pay-as-you-go pricing model, whereby users only pay for the resources
they consume. A cloud is typically made of several sites (or data centers), each with its own
resources and data. Thus, in order to use more resources than available at a single site or to
access data at different sites, scientific workflows could also be executed in a distributed manner
at different sites.

There have been a few surveys of techniques for SWfMSs. Bux and Leser [19] provide an
overview of parallelization techniques for SWfMSs, including their implementation in real sys-
tems, and discuss major improvements to the landscape of SWfMS. Yu and Buyya [139] examine
the existing SWfMSs designed for grid computing, and propose taxonomies for different aspects
of SWfMSs, including workflow design, information retrieval, workflow scheduling, fault tolerance
and data movement.

In this paper, we provide a survey of data-intensive scientific workflow management in
SWfMSs and their parallelization techniques. The main contributions of this paper are:

1. A five-layer SWfMS functional architecture, which is useful to discuss the techniques for data-
intensive scientific workflows. This architecture can also be a baseline for other work and help
with the assessment and comparison of SWfMSs.



A Survey of Data-Intensive Scientific Workflow Management 3

2. A taxonomy of workflow parallelization techniques and scientific workflow scheduling algo-
rithms, and give a comparative analysis of the existing solutions.

3. A discussion of research issues for improving the execution of data-intensive scientific work-
flows in a multisite cloud.

This paper is organized as follows. Section 2 gives an overview of scientific workflow manage-
ment, including system architectures and basic functionality. Section 3 focuses on the techniques
used for parallel execution of scientific workflows. Section 4 presents the recent frameworks for
parallelization, eight SWfMSs and a science gateway to execute scientific workflows. Section 5
summarizes the main findings of this study and discusses the open issues raised for executing
data-intensive scientific workflows in a multisite cloud.

2 Scientific Workflow Management

This section introduces scientific workflow management, including scientific workflows and sys-
tems. First, we define scientific workflows and SWfMSs. Then, we detail the functional archi-
tecture and the corresponding functionality of SWfMSs. Finally, we discuss the features and
techniques for data-intensive workflows used in SWfMSs.

2.1 Basic Concepts

A SWfMS manages a scientific workflow all along its life cycle. This section introduces the
concepts of scientific workflow, scientific workflow life cycle, SWfMS and illustrates with workflow
examples.

2.1.1 Scientific Workflows

A workflow is the automation of a process, during which data is processed by different logical
data processing activities according to a set of rules. Workflows can be divided into business
workflows and scientific workflows. Business workflows are widely used for business data process-
ing. According to the workflow management coalition, a business workflow is the automation of
a business process, in whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules [27]. A business
process is a set of one or more linked procedures or activities that collectively realize a busi-
ness objective or policy goal, normally within the context of an organizational structure defining
functional roles and relationships [27]. Business workflows make business processes more efficient
and more reliable.

Different from business workflows, scientific workflows are typically used for modeling and
running scientific experiments. Scientific workflows can assemble scientific data processing activ-
ities and automate the execution of these activities to reduce the makespan, which represents the
entire workflow execution time. A scientific workflow is the assembly of complex sets of scientific
data processing activities with data dependencies between them [38]. A scientific workflow may
contain one or several sub-workflows. A sub-workflow is composed of a subset of activities and
data dependencies in the scientific workflow while representing a step to process data. Scientific
workflows can be represented in different ways. The most general representation is a directed
graph, in which nodes correspond to data processing activities and edges represent the data de-
pendencies. But most often, a scientific workflow is represented as a DAG or even as a sequence
(pipeline) of activities which is sufficient for many applications. Directed Cyclic Graphs (DCG)



4 Ji Liu et al.

are harder to support since iteration is needed to represent repeated activities, e.g. with a whiledo
construct [139].

Although business workflows and scientific workflows have some similarities, they are quite
different. The first difference is the abstraction level. Business workflows take advantage of tra-
ditional programming languages while scientific workflows exploit higher abstraction level tools
to prove a scientific hypothesis [13]. The second difference is the interaction with participants.
In business workflows, data can be processed by different participants, which can be data pro-
cessing machines or humans. In scientific workflows, data is processed only by machines while
the scientists just need to monitor the workflow execution or control execution when necessary.
The interaction of humans during the execution of scientific workflows is much less than that of
business workflows. The third difference lies in the data flows and control flows [138]. Business
workflows focus on procedural rules that generally represent the control flows while scientific
workflows highlight data flows that are depicted by data dependencies [13]. This is reasonable
since scientific experiments may need to deal with big experimental data. A data-intensive scien-
tific workflow is a scientific workflow that processes, manages or produces huge amounts of data
during execution. In addition, scientific workflows must be fully reproducible [13], which is not
necessary for business workflows.

An activity is a description of a piece of work that forms a logical step within a scientific
workflow representation. In a scientific workflow, an activity defines the associated data formats
and data processing methods but requires associated data and computing resources to carry out
execution. The associated data in an activity consists of input data and configurable parameters.
When the configurable parameters are fixed and the input data is provided, the execution of a
workflow activity is represented by several tasks. A task is the representation of an activity within
a one-time execution of this activity, which processes a data chunk. An activity can correspond
to a set of tasks for different parts of input data. Sometimes, “jobs” are used to represent the
meaning of tasks [19] or activities [22,42].

2.1.2 Scientific Workflow Life Cycle

The life cycle of a scientific workflow is a description of the state transitions of a scientific work-
flow from creation to completion [38,63]. A scientific workflow life cycle generally contains four
phases. Görlach et al. [63] propose that a scientific workflow life cycle contains modeling phase,
deployment phase, execution and monitoring phase, and analysis phase. Deelman et al. [38] ar-
gue that a scientific workflow life cycle consists of composition phase, mapping phase, execution
phase and provenance phase. Provenance data represents information regarding workflow exe-
cution [53]. We present provenance in more details in the next section. In [94], a provenance
database is proposed to represent and relate data from several phases of the workflow life cy-
cle. In this paper, we adopt a combination of workflow life cycle views [38,63,94] with a few
variations, condensed in four phases:

1. The composition phase [38,94] is for the creation of an abstract scientific workflow. An ab-
stract scientific workflow is defined by the functionality of each activity (or sub-workflow)
and data dependencies between activities (or sub-workflows) [64,126]. Workflow composition
can be done through a textual or Graphical User Interface (GUI). SWfMS users can reuse
the existing scientific workflows with or without modification [69].

2. The deployment phase [63] is for constructing a concrete scientific workflow, which consists
of concrete methods (and associated codes) for each functional activity (or sub-workflow)
defined in the workflow composition phase, so that the workflow can be executed.

3. The execution phase [38,94] is for the execution of scientific workflows with associated data,
during which input data is processed and output data is produced.



A Survey of Data-Intensive Scientific Workflow Management 5

4. The analysis phase [63,94] is to apply the output data to scientific experiments, to analyze
workflow provenance data and to share the workflow information.

2.1.3 Scientific Workflow Management Systems

A Workflow Management System (WfMS) is a system that defines, creates, and manages the
execution of workflows. A WfMS is able to interpret the workflow process definition typically in
the context of business applications. A SWfMS is a WfMS that handles and manages scientific
workflow execution. It is powerful tool to execute workflows in a scientific workflow engine, which
is a software service that provides the runtime environment for workflow execution [12]. In order
to execute a scientific workflow in a given environment, a SWfMS typically generates a Workflow
Execution Plan (WEP), which is a program that captures optimization decisions and execution
directives, typically the result of compiling and optimizing a workflow, before execution.

To support scientific workflow analysis, SWfMS should support additional functionality such
as workflow provenance. Workflow provenance may be as (or more) important as the scientific ex-
periment itself [53]. Provenance is the metadata that captures the derivation history of a dataset,
including the original data sources, intermediate datasets, and the workflow computational steps
that were applied to produce this dataset [30,33,62,70]. Provenance data is used for workflow
analysis and workflow reproducibility.

2.1.4 Scientific Workflow Examples

Scientific workflows have been used in various scientific domains. In the astronomy domain,
Montage1 is a computing and data-intensive application that can be modeled as a scientific
workflow initially defined for the Pegasus SWfMS. This application is the result of a national
virtual observatory project that stitches tiles of images of the sky from diverse sky surveys into
a photorealistic single image [40]. Montage is able to handle a wide range of astronomical image
data including the Two Micron All Sky Survey, (2MASS2), the Digitized Palomar Observatory
Sky Survey, (DPOSS3), and the Sloan Digital Sky Survey (SDSS4) [74]. Each survey possesses
huge amounts of data and covers a corresponding part of sky in visible wavelengths or near-
infrared wavelengths. 2MASS has roughly 10 terabytes, DPOSS has roughly 3 terabytes and
SDSS contains roughly 7.4 terabytes. All the data can be downloaded from a corresponding
server at the aforementioned links and then staged into the execution environment, such as a
shared-disk file system or a database, in order to be processed.

The structure of a small montage workflow is shown in Figure 1. The number within a node
represents the name of an activity in the workflow. The activities (1−6) have no parent activities.
Each of them exploits an mProject program to project a single image to the scale defined in a
pseudo-FITS header template file. Though they invoke the same program, they have different
output data dependencies and thus, they cannot be viewed as one activity. Activities (7 − 14)
utilize an mDiffFit program to create a table of image-to-image difference parameters. Activity
15 takes advantage of an mFitplane program to fit the images generated by former activities
(7− 14) to an image. Activity 16 uses an mBgModel program to interactively determine a set of
corrections to apply to each image to achieve a “best” global fit according to the image-to-image
difference parameter table. The activities (17 − 22) remove a background from a single image
through an mBackground program. Activity 23 employs an mImgtbl program to extract the

1 Montage project: http://montage.ipac.caltech.edu/
2 2MASS: http://www.ipac.caltech.edu/2mass/
3 DPOSS: http://www.astro.caltech.edu/˜george/dposs/
4 SDSS: http://www.sdss.org/



6 Ji Liu et al.

Fig. 1: The structure of a small Montage workflow [122].

FITS header information (information about one or more scientific coordinate systems that are
overlaid on the image itself) from a set of files and to create an ASCII image metadata table.
Finally, Activity 24 pieces together the projected images using the uniform FITS header template
and the information from the same metadata table generated by Activity 23. This activity applies
an mAdd program.

In the bioinformatics domain, SciEvol [100] is a workflow for molecular evolution reconstruc-
tion that aims at inferring evolutionary relationships on genomic data. To be executed in the
Chiron SWfMS, SciEvol consists of 12 activities as shown in Figure 2. The first activity (pre-
processing FASTA file) is a Python script to format the multi-fasta input file. FASTA file is a
textual presenting format for nucleotide or peptide sequences. The second activity (MSA con-
struction) constructs a Multiple Sequence Alignment (MSA) using a MAFFT program (or other
MSA programs). A MAFFT program is generally for generating the alignment of three or more
biological sequences (protein or nucleic acids) of similar length. The third activity (MSA con-
version) executes ReadSeq to convert the MSA in FASTA format to that in PHYLIP format,
which is used in the phylogenetic tree construction activity. The fourth activity (pre-processing
PHYLIP file) formats the input file (referenced as “phylip-file-one”) according to the format
definition and generates a second file (referenced as “phylip-file-two”). The fifth activity (tree
construction) receives the “phylip-file-one” as input and produces a phylogenetic tree [51] as
output. The sixth activities (evolutionary analysis from 6.1 to 6.6) analyze the phylogenetic tree
with corresponding parameters and generate a set of files containing evolutionary information as
output. Each of the activities (evolutionary phases) is related to one of six codon substitution
models, which are used to verify if the groups of genes are under positive Darwinian selection.
These activities exploit the same program using different parameters. The last activity (data
analysis) automatically processes the output files obtained from the previous activities.

There are many other data-intensive workflows in bioinformatics. For instance, SciPhylomics
[106] is designed for producing phylogenomic trees based on an input set of protein sequences of
genomes to infer evolutionary relationships among living organisms. SciPPGx [44] is a computing
and data-intensive pharmacophylogenomic analysis workflow for providing thorough inferring



A Survey of Data-Intensive Scientific Workflow Management 7

Fig. 2: SciEvol workflow [100].

support for pharmacophylogenomic hypotheses. SciPhy [99] is used to construct phylogenetic
trees from a set of drug target enzymes found in protozoan genomes. All these bioinformatics
workflows have been executed using SciCumulus SWfMS [34].

The components of scientific workflows can be classified by their functionality, motifs, or
structure patterns. The functionality can be data processing, activity scheduling, activity exe-
cution, and resource management [10]. The motifs may be data-oriented and workflow-oriented.
Data-oriented motifs consist of recurring activities such as data storage [12], data analysis, data
cleaning, data moving [12] and data visualization. Workflow-oriented motifs may correspond to
remote invocations, repetitive activities, parameter sweep workflows and meta-workflows [12,57].
A parameter sweep workflow is a workflow with multiple input parameter sets, which needs to
be executed for each input parameter set [25,64]. A meta-workflow is a workflow composed of
sub-workflows. Workflow structure patterns can be patterns for parallelization, e.g. representing
scientific workflows as algebraic expressions [102], or component structure patterns, e.g. single ac-
tivity with one or more input/output dependencies, sequential control and sequential/concurrent
data, synchronization of sequential data, data duplication [138]. Moreover, similar structure pat-
terns of scientific workflows can be found based on a similarity model of nodes and edges in the
workflow DAG [15]. Identifying scientific workflows or workflow components of the same type
enables workflow information sharing and reuse (see Section 2.2.2) among workflow designers
[138].

2.2 Functional Architecture of SWfMSs

The functional architecture of a SWfMS can be layered as follows [41,144,10,102]: presentation,
user services, WEP generation, WEP execution and infrastructure. Figure 3 shows this architec-
ture. The higher layers take advantage of the lower layers to realize more concrete functionality.
A user interacts with a SWfMS through presentation and realizes the desired functions at user
services layer. A scientific workflow is processed at WEP generation layer to produce a WEP,



8 Ji Liu et al.

Fig. 3: Functional architecture of a SWfMS.

which is executed at the WEP execution layer. The SWfMS accesses the physical resources
through the infrastructure layer for scientific workflow execution. The combination of WEP gen-
eration layer, WEP execution layer and infrastructure layer corresponds to a scientific workflow
execution engine.

2.2.1 Presentation Layer

The presentation layer serves as a User Interface (UI) for the interaction between users and
SWfMSs at all stages of the scientific workflow life cycle. The UI can be textual or graphical.
This interface is responsible for designing a workflow by assembling data processing activities
linked by dependencies. This layer also supports the functionality of showing execution status,
expressing workflow steering and information sharing commands.

The language for the textual interface is largely used for designing scientific workflows in
SWfMSs. Different from batch scripts, the textual language supports parallel computations on
distributed computing and storage resources. The configuration or administration becomes com-
plicated in this environment while the language defined by a SWfMS should be easy to use.
Most SWfMS languages support the specification of a workflow in a DAG structure while some
SWfMS languages also support iteration for DCG.

Wilde et al. [135] propose a distributed parallel scripting language called Swift. Swift supports
workflow specifications in both DAG and DCG. It is a C-like syntax that describes data, data
flows and applications by focusing on concurrent execution, composition and coordination of
independent computational activities. Variables are used in Swift to name the local variables,
arguments, and returns of a function. The variables in Swift have three types: primitive, mapped,
and collection. Primitive variables have the basic data structures such as integer, float, string,
boolean and array. Mapped variables refer to files external to the Swift script. Collection variables
are in the structures that contain a set of variables, such as arrays. Swift operations have three
categories: built-in functions, application interface functions and compound functions. Built-in
functions are implemented by the Swift runtime system to perform various utility functions such
as numeric conversion, string manipulation, etc. An application interface function provides the
information to the Swift runtime system to invoke a program. A compound function is a function
that invokes other functions.



A Survey of Data-Intensive Scientific Workflow Management 9

Pegasus uses Wings to create scientific workflows [59]. The workflows are created through
three stages in Pegasus/Wings: the first stage specifies the abstract structure of the workflow
and creates a workflow template; the second stage specifies what data to be used in the workflow
and creates a workflow instance; the third stage specifies the data replicas and their locations
to form an executable workflow. The later stage is done by Pegasus while the first two are
realized by Wings. In Wings, workflow and its activities are represented as semantic objects.
The programs are represented as workflow components to process data, which is represented
as individual files or file collections. An activity is represented as a node that contains a set of
computations, which may contain one computation component or a collection of computations.
The data dependencies are represented as links to carry data from or to a workflow node. After
the presentation of programs, activities and data dependencies, a workflow template is created.
With the binding of input data sets, a workflow instance is generated as a DAG in XML format.
Then, Pegasus automatically maps the workflow instance to distributed computing nodes to form
an executable workflow and manages workflow execution.

Chiron [102] also represents the scientific workflow activities and dependencies as a DAG
in XML textual format. Ogasawara et al. [101] propose an algebraic language implemented in
Chiron to encapsulate the workflow activities in six operators: Map, SplitMap, Reduce, Filter,
SRQuery and JoinQuery. The Map operator consumes and produces a basic data chunk, which
represents the data chunk that has a smallest amount of data while it contains all the necessary
data to be processed in an activity. The SplitMap operator consumes a basic data chunk while
it produces several basic data chunks. The Reduce operator reduces several basic data chunks
to one basic data chunk. The Filter operator removes useless data chunks. SRQuery and MR-
Query are traditional relational algebra expressions. Each activity corresponds to an operator.
During workflow execution, these operators are able to parallelize the workflow execution onto
the distributed computation resources.

Taverna utilizes a simple conceptual unified flow language (Scufl) to represent the workflow
[104]. Scufl is an XML-based language, which consists of three main entities: processors, data
links, and coordination constraints. Processors represent a computational activity in a scientific
workflow. Data links and coordination constraints separately represent the data dependencies
and control dependencies between two activities.

SWfMSs such as Galaxy [60], Taverna [104] and Kepler [10] offer a GUI for workflow design.
The GUI simplifies the designing process of a scientific workflow for the SWfMS users to assem-
ble the workflow components described as icons through drag-and-drop functionality. Graphical
SWfMSs combine the efficiency of scientific workflow design and the ease of scientific workflow
representation. Desktop-based graphical SWfMSs are typically installed either in a local com-
puter or in a remote server that is accessible through network connection. The local computer or
remote server can be connected to large computing and storage resources for large-scale scientific
workflow execution. Some graphical SWfMSs such as Galaxy are web-portal-based, which makes
it easy to share workflow information among the SWfMS users. With these SWfMSs, a scien-
tific workflow is generally designed in a browser on the client side but executed in a private or
public web server. Some of the graphical SWfMSs take textual languages as inner representation
of a scientific workflow. For instance, Taverna utilizes Scufl within the SWfMS while Galaxy
represents workflows in JSON format [5].

2.2.2 User Services Layer

The user services layer is responsible for supporting user functionality, i.e. workflow monitoring
and steering, workflow information sharing and providing workflow provenance data.



10 Ji Liu et al.

Scientific workflow monitoring makes it possible to get real-time execution status for SWfMS
users. Since scientific workflow execution may take a long time, dynamic monitoring and steering
of the execution are important to control workflow execution [38]. Workflow monitoring tracks the
execution status and displays this information to users during workflow execution [27]. Through
workflow monitoring, a scientist can verify if the result is already enough to prove her hypothesis
[30]. Workflow monitoring remains an open challenge as it is hard to fully support. However,
it can be achieved based on log data (in log files) or more general provenance data, typically
in a database [93]. Gunter et al. [66] and Samak et al. [118] propose the Stampede monitoring
infrastructure for real-time workflow monitoring and troubleshooting. This infrastructure takes
a common data model to represent scientific workflow execution and utilizes a high-performance
loader to normalize the log data. It offers a query interface for extracting data from the normalized
data. It has been initially integrated with Pegasus SWfMS and then adapted in Triana SWfMS
[130]. Horta et al. [70] propose a provenance interface to describe the production and consumption
relationships between data artifacts such as output data files and computational activities at
runtime for workflow monitoring. This interface can be used to select the desired output data
to monitor the workflow execution for SWfMS users through browsers or a high-resolution tiled
display. This interface is based on on-line provenance query supported by algebraic approach. The
on-line provenance query is different from the provenance collected at runtime, but made available
only after the execution, where monitoring is no longer possible. This interface is available for
Chiron [102] or SciCumulus [34] that store all the provenance data in a relational database.
SciCumulus is an extension of Chiron for cloud environments.

Workflow steering is the interaction between a SWfMS and a user to control the workflow
execution progress or configuration parameters [93]. Thus, through workflow steering, a scientist
can control workflow execution dynamically so that she does not need to continue unnecessary
execution or execute a scientific workflow again when an error occurs [30,62]. Scientific workflow
steering, which still remains an open issue, saves much time for SWfMS users.

Information sharing functionality enables workflow information sharing for workflow reusing.
Through workflow information sharing, SWfMS users of the same SWfMS environments or differ-
ent SWfMS environments can share workflow information including workflow design, the input
data or the output data. Since designing a scientific workflow is challenging work, workflow infor-
mation sharing is useful to reduce repetitive work between different scientist groups. A SWfMS
can directly integrate workflow repositories to support workflow information sharing. A workflow
repository is a workflow information pool, where workflow data (input data and output data),
workflow designs (structures) and available programs (to be used in activities of workflows) are
stored. The workflow repository can contain shared workflows for the same SWfMS environments,
e.g. “ the myExperiment” social network [136] for Taverna, the web-based sharing functional-
ity of Galaxy [60], the workflow hosting environment for Askalon [68], or for different SWfMS
environments, e.g. SHIWA Repository [126]. The workflow repositories should support workflow
uploading, publishing, download or searching. The workflows for different SWfMS environments
can be adapted to an intermediate representation [113] to compose a meta-workflow, which can
be executed by execution platforms such as SHIWA [127], with corresponding SWfMS engines for
the sub-workflows. Except for SHIWA, the information sharing indicates workflow information
sharing among the users of the same SWfMS environment.

Provenance data in scientific workflows is important to support reproducibility, result in-
terpretation and problem diagnosis. Provenance data management concerns the efficiency and
effectiveness of collecting, storing, representing and querying provenance data. Different methods
have been proposed for different SWfMSs. Gadelha et al. [55] develop MTCProv, a provenance
component for the Swift SWfMS. Swift optionally produces provenance information in its log
files while this data is exported to relational databases by MTCProv. MTCProv supports a data



A Survey of Data-Intensive Scientific Workflow Management 11

model for representing provenance and provides a provenance query interface for the visualization
of provenance graphs and querying of provenance information. Kim et al. [81] present a semantic-
based approach to generate provenance information in the Wings/Pegasus framework. Wings is
a middleware that supports the creation of workflow templates and instances, which are then
submitted to Pegasus. This approach produces activity-level provenance through the semantic
representations used in Wings, and execution provenance through Pegasus’ task scheduling and
execution process. SPARQL (SPARQL Protocol and RDF Query Language), a semantic query
language, is used for querying provenance data. Costa et al. [30] propose PROV-Wf, a prac-
tical approach for capturing and querying provenance data for workflows. PROV-Wf gathers
provenance data in different granularities based on PROV recommendation [14]. The PROV-Wf
contains three main parts: the structure of the experiment, execution of the experiment and
environment configuration. PROV-Wf supports prospective and retrospective provenance data
allowing for on-line provenance queries through SQL. The provenance database of this approach
acts as a statistics catalog from DBMS. Altintas et al. [8] present a provenance information
collection framework for Kepler. This framework can collect provenance information thanks to
its implementation of event listener interfaces. Moreover, Crawl et al. [31] introduce a prove-
nance system that manages provenance data from Kepler. This system records both data and
dependencies of tasks executing on the same computing node. The provenance data is stored in
a MySQL database. The Kepler Query API is used to retrieve provenance information and to
display provenance graphs of workflow execution.

2.2.3 WEP Generation Layer

The WEP generation layer is responsible for generating a WEP according to a scientific work-
flow design as shown in Figure 4. This layer contains three processes, i.e. workflow refactoring,
workflow parallelization and optimization.

The workflow refactoring module refines the workflow structure for WEP generation. For
instance, Ogasawara et al. [101,102] take advantage of a workflow algebra to generate equiva-
lent expressions, which are transformed into WEPs to be optimized. When a scientific workflow
representation is given, it is generally not adapted for an execution environment or a SWfMS.
Through workflow refactoring, a SWfMS can transform the workflow into a simpler one, e.g. by
removing redundant or useless activities, and partition it into several pieces, called fragments (by
analogy with program fragments), to be executed separately by different nodes or sites. A SWfMS
can schedule fragments to reduce scheduling complexity [22]. Thus, workflow partitioning is the
process of decomposing a workflow into (connected) workflow fragments to yield distributed [89]
or parallel processing. A workflow fragment (or fragment for short) can be defined as a subset
of activities and data dependencies of the original workflow (see [101] for a formal definition).
Note that the term workflow fragment is different from the term sub-workflow, although they
are sometimes confused. However, the term sub-workflow is used to refer to the relative posi-
tion of a workflow in a workflow composition hierarchy [129]. Workflow partitioning is addressed
in [22] for multiple execution sites (computer clusters explained in Section 2.2.5) with storage
constraints. A method is proposed to partition a big workflow into small fragments, which can
be executed in an execution site with moderate storage resources. In addition, Deelman et al.
[41] propose an approach to remove workflow activities for workflow refactoring. This approach
reduces redundant computational activities based on the availability of the intermediate data
produced by previous execution. Tanaka and Tatebe [124] use a Multi-Constraint Graph Parti-
tioning (MCGP) algorithm [80] to partition a workflow into fragments, which has equal weight
value in each dimension while the weight of the edges crossing between fragments is minimized.
In this method, each activity is defined as a vector of multiple values and each dependency be-



12 Ji Liu et al.

Fig. 4: WEP generation.

tween different activities has a value. This method balances the activities in each fragment while
minimizing associated edges between different fragments. Moreover, workflow refactoring can
also reduce workflow structure complexity. Cohen-Boulakia et al. [28] present a method to auto-
matically detect over-complicated structures and replace them with easier equivalent structures
to reduce workflow structure complexity.

Workflow parallelization exploits different types of parallelism to generate concrete executable
tasks for the WEP. The parallelization can be performed at sub-workflow level and activity, task
level. The parallelization at sub-workflow level is realized by executing different sub-workflows
in corresponding scientific workflow execution engines in parallel. The parallelization at activity
or task level encapsulates the related data, i.e. input, instruction and parameter data, into a
task; Then, an activity may correspond to several tasks that can be executed in parallel. Swift
[144], Pegasus [41], Chiron [102] and some other SWfMSs can achieve workflow parallelization
using Message Passing Interface (MPI) [123] (or an MPI-like language) or a middleware within
their execution engine. Since they have full control over the parallel workflow execution, these
SWfMSs can leverage parallelism at different levels and yield the maximum level of performance.
Some other SWfMSs outsource parallelization and workflow scheduling (see Section 2.2.4) to
external execution tools, e.g. web services or Hadoop MapReduce systems. These SWfMSs can
achieve activity parallelism but data parallelism (see Section 3.1.1) is generally realized in the
external execution tools. The SWfMSs that outsource parallelization to a Hadoop MapReduce
system adapt a data analysis process to a MapReduce workflow, composed of Map and Reduce
activities. These SWfMSs generate corresponding MapReduce tasks and submit the tasks to the
MapReduce system. Wang et al. [132] propose an architecture that combines the Kepler workflow
engine with the Hadoop MapReduce framework to support the execution of MapReduce work-
flows. Delegating parallelization and parallel execution to an external engine makes it easy for the
SWfMS to deal with very large data-intensive tasks. However, this approach is not as efficient as
direct support of parallelism in the SWfMS. In particular, it makes the SWfMS loose control over
the entire workflow execution, so that important optimizations, e.g. careful placement of interme-
diate data exchanged between tasks, cannot be realized. Furthermore, provenance management
becomes almost impossible as the external tools typically do not support provenance.

Workflow optimization captures the results of workflow refactoring and workflow paralleliza-
tion and inserts additional instructions for workflow scheduling to generate a WEP. The ad-
ditional instructions describe multiple objectives for workflow execution, such as minimizing
execution time, meeting security restrictions and reducing resource cost. The multiple objectives
are mainly attained by adjusting workflow scheduling at the WEP execution layer. Having an
algebra and dataflow-oriented execution engine opens up interesting opportunities for optimiza-
tion [45,25]. For example, it allows for user interference on the execution plan, even during the
execution.

2.2.4 WEP Execution Layer

The WEP execution is managed at the WEP execution layer. This layer handles workflow schedul-
ing, task execution and fault-tolerance.



A Survey of Data-Intensive Scientific Workflow Management 13

Through workflow scheduling, a SWfMS produces a Scheduling Plan (SP), which aims at
making good use of computing resources and preventing execution stalling [17]. A SWfMS can
schedule workflow fragments, bags of tasks or individual tasks into an execution site (computer
clusters explained in Section 2.2.5) or a computing node according to different task scheduling
methods. The scheduling methods are presented in Section 3.2. Some SWfMSs outsource work-
flow scheduling to external tools (see Section 2.2.3). Even though these SWfMSs can achieve
parallelism at the task level, they cannot optimize SPs in external tools, which are generally not
data-flow aware, according to the entire structure of the workflow [45].

During task execution, the input data is transferred to the computing nodes and the output
data is produced. Generally, the provenance data is also generated at this time. SWfMSs can
execute tasks either directly in their execution engine (e.g. Kepler, Galaxy, Pegasus, Chiron) or
using an external tool (e.g. web service, MapReduce system). To enable parallel task execution,
SWfMSs may exploit MPI (or an MPI-like language), SSH commands, web services, Hadoop
or other middlewares. MPI and SSH allow the SWfMS to have full control of task execution.
However, MPI requires using a shared file system while SSH does not. Using web services, Hadoop
or other middlewares, parallel task execution moves outside the direct control of SWfMS.

The workflow fault tolerance mechanism deals with failures or errors of task execution and
guarantees the availability and reliability of workflow execution. According to Ganga and Karthik
[56], fault-tolerance techniques can be classified into proactive and reactive. Proactive fault tol-
erance avoids faults and errors by predicting the failure and proactively replacing the suspected
components from other working components. Reactive fault-tolerance reduces the effect of fail-
ures after perceiving failures, using check pointing/restart, replication and task resubmission
techniques. Ganga and Karthik [56] propose a task replication technique based on the idea that
a replication of size r can tolerate r-1 failed tasks while keeping the impact on the execution time
minimal. Costa et al. [29] introduce heuristics based on real-time provenance data for detecting
task execution failure and re-executing failed tasks. This heuristic re-executes failed tasks during
workflow execution using extra computing resources in the cloud to reduce bad influences on the
workflow execution from the task failures.

2.2.5 Infrastructure Layer

The limitations of computing and storage resources of one computer force SWfMS users to use
multiple computers in a cluster, grid or cloud infrastructure for workflow execution. This layer
provides the interface between the SWfMS and the infrastructure.

Cluster computing provides a paradigm of parallel computing for high performance and avail-
ability. A computer cluster, or cluster for short, consists of a set of interconnected computing
nodes [26]. A cluster is typically composed of homogeneous physical computers interconnected by
a high speed network, e.g. Fast Ethernet or Infiniband. A cluster can consist of computer nodes
in the grid or supercomputers [32]. In addition, the cluster can also consist of virtual machines
in the cloud. In the cloud, a virtual machine (VM ) is a virtualized machine (computer), i.e. a
software implementation of a computer that executes programs (like a real computer) while ab-
stracting away the details of physical hardware [143]. Cluster users can rely on message passing
protocols, such as MPI for parallel execution.

According to Foster and Kesselman [52], a grid is a hardware and software infrastructure that
manages distributed computers to provide good quality of service through standard protocols
and interfaces with a decentralized control mechanism. A grid federates geographical distributed
sites that are composed of diverse clusters belonging to different organizations through complex
coordinating mechanisms to serve as a global system. Furthermore, it has rules to define who
can use what resources for what destination [52]. In addition, a particular grid, i.e. desktop grid,



14 Ji Liu et al.

exists for scientific workflow execution [117]. Compared to cluster computing, grid computing
gathers heterogeneous computer resources to provide more flexible services to diverse users by
inner resource allocation mechanisms.

Cloud computing provides computing, storage and network resources through infrastructure,
platform and software services, with the illusion that resources are unlimited. Although some-
times confused, there are five main differences between cloud computing and grid computing.
The first one is that the cloud uses virtualization techniques to provide scalable services that are
independent of the physical infrastructure. The second one is that it not only provides infrastruc-
ture services such as computing resources or storage resources but also platform and software
services. In the cloud, we can configure and use a cluster composed of VMs. Moreover, database
management systems can be offered as platform in the cloud. The third difference is the possibil-
ity of dynamic provisioning. In a grid environment, a list of resources is generally fixed during the
entire execution of the workflow. Thus, it is very unusual to use dynamic provisioning in the grid
as it does not provide any benefit. In contrast, in cloud environments, we have a list of resource
types from which we can provision a potentially unlimited number of resource instances. Such
dynamic provisioning can provide much more benefits, in particular better performance, and
reduced financial cost. The fourth difference is in the use of service-level agreement (SLA), which
defines the quality of service provided to users by service providers [134]. Cloud SLA includes rel-
atively full performance metrics for on-demand services [18] while grid SLA is relatively informal.
The fifth difference is that the cloud provides support for pricing and accounting services, which
is not necessary in the grid. Some grids evolve towards the cloud. For instance, Grid’5000[2] is a
grid in France which provides virtualized resources and services for big data (e.g. Hadoop).

The operational layer is also in charge of provisioning, which can be static or dynamic. Static
provisioning can provide unchangeable resources for SWfMSs during workflow execution while
dynamic provisioning can add or remove resources for SWfMSs at runtime. Based on the types
of resources, provisioning can be classified into computing provisioning and storage provisioning.
Computing provisioning means offering computing nodes to SWfMSs while storage provisioning
means providing storage resources for data caching or data persistence. However, most SWfMSs
are just adapted to static computing and storage provisioning.

The data storage module generally exploit database management systems and file systems to
manage all the data during workflow execution. Some SWfMSs such as Taverna put intermediate
data and output data in a database. As proposed in [145], some SWfMSs such as Pegasus and
Chiron utilize a shared-disk file system, i.e. a system that stores the data in additional (relative
to the computing nodes) separated storage resources. Some SWfMSs such as Kepler [132] can
exploit distributed file systems, i.e. a system stores data directly in the file system constructed by
gathering storage space in each computing node in a shared-nothing architecture. Some SWfMSs
such as Pegasus can directly take advantage of the local file systems in each computing node.
Generally, the file systems and the database management systems take advantage of computing
nodes and storage resources provided by the provisioning module. In a multisite environment,
SWfMSs can cluster the data and place each data set at a single site, distribute the newly
generated data to multiple sites at runtime and adjust data among multiple sites [141]. SWfMSs
can also put some data in the disk cache of one computing node to accelerate data access during
workflow execution [121]. However, existing SWfMSs just use few types of storage resources,
some other types of storage resources, e.g. cache for a single site, cache in one computing node
etc., can be also exploited.



A Survey of Data-Intensive Scientific Workflow Management 15

2.3 Techniques for Data-intensive Scientific Workflows

Because they deal with big data, data-intensive scientific workflows have some features that
make them more complicated to handle, compared with traditional scientific workflows. From
the existing solutions, we can observe three main features, which we briefly discuss.

The first feature is the diversity of data sources and data formats in data-intensive scientific
workflows. The data can consist of the input data stored in a shared-disk file system and the
intermediate data stored in a database. The data of various data sources differ in data transfer
rate, data processing efficiency and data transfer time. These differences have a strong influence
on workflow design and execution. However, the workflow representation method composed of
activities and dependencies for general workflows can only depict different computational compo-
nents and the data dependencies among them. Thus, the data-intensive workflow representation
should be adapted to be able to depict the diverse types of data.

The second feature is that moving some program code (i.e. instruction data) to where the
input data is can be more efficient than moving the data to the code. This is true when the input
data sets are very big while the corresponding instruction data is small. The decision of moving
code to where the data is should be done during the deployment phase in the workflow life cycle
(see Section 2.1.2), in order to optimize workflow execution according to the characteristics of
the input data. However, moving program codes across computing nodes is not always possible,
for instance, because of proprietary rights or runtime compatibility.

The third feature is that not all the data needs to be kept all along the workflow execution [42].
In particular, given fixed constraints on storage capacity allocated to the workflow execution, the
intermediate data may be too big to be kept. Thus, it is important to discover and keep only the
necessary data, to remove redundant data and to compress the data that is not used frequently.

There have been several studies that propose techniques for data-intensive workflow repre-
sentation, data processing and redundant data removing, which we discuss below.

Albrecht et al. [7] propose a makeflow method for representing and running a data-intensive
workflow. In their system, the input data of each activity should be explicitly specified for
workflow representation or the workflow description will be regarded as incorrect. An example
is shown in Figure 5 with a BLAST workflow (from bioinformatics) that has four types of
activities. The first activity takes input data and splits the data into several files. The second
type of (BLAST) activities searches for similarities between a short query sequence and a set of
DNA or amino acid sequences [85]. The third type of activities (cat) regroups the output and
errors of BLAST activities into two files. The last activity (finish) generates the final results. In
Figure 5, the input data and the intermediate data are represented explicitly for further workflow
textual description and execution.

Deng et al. [43] propose a task duplication approach in SWfMS for scheduling tasks onto
multiple data centers. They schedule the tasks by comparing the task computational time and
output data transmission time. For instance, let us consider two data centers as depicted in
Figure 6. Tasks t1 and t3 and the corresponding input data d 1, d 3 are located at data center dc1.
Task t2 at data center dc2 needs to take the output of task t3 as input data d 2. We note as T 1

the time to transfer the data d 2 from data center dc1 to data center dc2. We note as T 2, the sum
of the time to transfer the input data d 3 from data center dc1 to data center dc2 and the time
to execute task t3. If time T 1 is longer than time T 2, the SWfMS will duplicate task t3 from
data center dc1 to data center dc2 to reduce execution time as shown in Figure 6 (b). If not, the
SWfMS executes the tasks as they are and transfers the output of task t3 to data center dc2 as
shown in Figure 6 (a). Furthermore, Raicu et al. [115] propose a data-aware scheduling method
for data-intensive application scheduling. This approach schedules the tasks according to data
location and available execution computing resources.



16 Ji Liu et al.

Fig. 5: BLAST workflow [7].

Fig. 6: Task duplication [43].

Yuan et al. [141] build an Intermediate data Dependency Graph (IDG) from data provenance
of workflow execution. Based on IDG, a novel intermediate data storage strategy is developed to
store the most appropriate intermediate datasets instead of all the intermediate data to reduce
the storage cost during execution. Ramakrishnan et al. [116] propose an approach for scheduling
data-intensive workflows onto storage-constrained distributed resources. This approach minimizes



A Survey of Data-Intensive Scientific Workflow Management 17

the amount of data by removing needless data and scheduling workflow tasks according to the
storage capacity on individual resources.

There are some other techniques for data-intensive workflows, in particular, algebraic opti-
mization and data transfer optimization. Dias et al. [45] discuss several performance advantages of
having an algebra and dataflow-oriented execution engine for data-intensive applications. They
argue that current main approach that statically generates a WEP or an execution plan for
Hadoop leaves no room for dynamic runtime changes. They propose that dataflow-based data-
intensive workflows can be executed by algebraic SWfMS, such as Chiron and Scicumulus, with
efficient algebraic optimizations. Moreover, we can take advantage of the former data transfer or-
ders or current data location to control data transfer for reducing the makespan of data-intensive
workflow execution. Chervenak et al. [24] describe a policy service that provides advice on data
transfer orders and parameters based on ongoing and recent data transfers and current allocation
of resources for data staging.

3 Parallel Execution in SWfMSs

Since data-intensive scientific workflows handle large input or intermediate datasets in large scale
experiments, SWfMSs rely on the parallel techniques on multiple computers to accelerate the
execution. Workflow parallelization is the process of transforming and optimizing a (sequential)
workflow into a parallel WEP. WEP allows the SWfMS to execute the workflow in parallel in
a number of computing nodes, e.g. in a cluster. It is similar to the concept of Query Execution
Plan (QEP) in distributed database systems [110].

This section introduces the basic techniques for the parallel execution of workflows in SWfMSs:
workflow parallelization techniques; scientific workflow scheduling algorithms; and parallelization
in the cloud. The section ends with concluding remarks.

3.1 Workflow Parallelism

Workflow parallelization identifies the tasks that can be executed in parallel in the WEP. Similar
to parallel query processing [110], whereby a QEP can be parallelized based on data and oper-
ator dependencies. There are two parallelism levels: coarse-grained parallelism and fine-grained
parallelism. Coarse-grained parallelism can achieve parallelism by executing sub-workflows in
parallel. Fine-grained parallelism realizes parallelism by executing different activities in parallel.
If a workflow is composed of sub-workflows, it can be executed in parallel at coarse-grained level
to parallelize the execution of sub-workflows and then, executed in parallel at fine-grained level
to parallelize the execution of activities within sub-workflows. If a workflow is directly composed
of activities, it can just be executed at fine-grained parallelism level to parallelize the execution
of activities.

According to the dependencies defined in a scientific workflow, different parallelization tech-
niques can result in various execution plans. Some parameters can be used to evaluate the effi-
ciency of each technique. An important parameter of parallelization is the degree of parallelism,
which is defined as the number of concurrently running computing nodes or threads at any given
time and that can vary for a given workflow depending on the type of parallelism [19].

3.1.1 Coarse-Grained Parallelism

Coarse-grained parallelism is performed at workflow level, which is critical to the execution of
meta-workflows or parameter sweep workflows. To execute a meta-workflow, the independent



18 Ji Liu et al.

sub-workflows are identified as workflow fragments to be submitted to corresponding execution
workflow execution engine [126]. The execution of a parameter sweep workflow corresponds to
the execution of the workflow with different sets of input parameter values. The combination of
workflow and each set of input parameter values is viewed as independent sub-workflows, which
can be run in parallel [77]. The coarse-grained parallelism for parallel execution of sub-workflows
resembles to the independent activity parallelism presented in the next section.

3.1.2 Fine-Grained Parallelism

The fine-grained parallelism is realized within a workflow or a sub-workflow (for meta-workflows).
Three types of parallelism exist at this level: data parallelism, independent parallelism and
pipeline parallelism. Data parallelism deals with the parallelism within an activity while inde-
pendent parallelism and pipeline parallelism handle the parallelism between different activities.

Data Parallelism

Data parallelism, similar to intra-operator parallelism in [110], is obtained by having multiple
tasks performing the same activity, each on a different data chunk. As shown in Figure 7(b),
data parallelism happens when the input data of an activity can be partitioned into different
chunks and each chunk is processed independently by a task in a different computing node or
processor. As the input data needs be partitioned, e.g. by a partitioning task, the activity result
is also partitioned. Thus, the partitioned output data can be the base for data parallelism for
the next activities. However, to combine the different results to produce a single result, e.g. the
final result to be delivered to the user, requires special processing, e.g. by having all the tasks
writing to a shared disk or sending their results to a task that produces the single result.

Data parallelism can be static, dynamic or adaptive [112]. If the number of data chunks is
indicated before execution and fixed during execution, the data parallelism is static. If the number
of data chunks is determined at run-time, the data parallelism is dynamic. In addition, if the
number is automatically adapted to the execution environment, the data parallelism is adaptive.
The adaptive data parallelism can determine the best number of data chunks to balance the
workflow execution, to increase parallelism degree while maintaining a reasonable overhead.

Independent Parallelism

Different activities of a workflow can be executed in parallel over several computing nodes.
Two activities can be either independent, i.e. the execution of any activity does not depend
on the output data of the other one, or dependent, i.e. there is a data dependency between
them. Independent parallelism exploits independent activities while pipeline parallelism (see
next subsection) deals with dependent activities.

Independent parallelism is achieved by having tasks of different independent activities exe-
cuted simultaneously. As shown in Figure 7(c), independent parallelism occurs when a scientific
workflow has more than one independent part in the workflow graph and the activities in each
part have no data dependencies with those in another part. To achieve independent parallelism,
a SWfMS should identify activities that can be executed in parallel. SWfMSs can partition the
workflow into independent parts (or workflow fragments) of activities to achieve independent
parallelism.



A Survey of Data-Intensive Scientific Workflow Management 19

(a) Sequential execution in one computing node. Activity B starts execution after the execu-
tion of activity A and activity C starts execution after the execution of activity B. All the execution
is realized in one computing node.

(b) Data parallelism. The execution of activities A, B, C is performed in two computing nodes
simultaneously. Each computing node processes a data chunk.

(c) Independent parallelism. The execution of activities A and B is performed in two computing
nodes simultaneously. Activity C begins execution after the execution of activities A and B.

(d) Pipeline parallelism. Activity C starts execution once a data chunk is ready. When activities
A and B are processing the second part of data (i2, i4), activity C can process the output data of
the first part (a1, b1) at the same time.

(e) Hybrid parallelism. Activity A is executed through data parallelism at nodes 1 and 2. Activity
B is executed through data parallelism at nodes 4 and 5. Activities A and B are also executed through
independent parallelism. Activities A and C, respectively B and C, are executed through pipeline
parallelism between nodes (1, 2) and 3, respectively nodes (4, 5) and 3.

Fig. 7: Different types of parallelism. Circles represent activities. There are three activities:
A, B and C. C processes the output data produced by A and B. Rectangles represent data chunks.
“i1” stands for the first part of input data. “a1” stands for the output data corresponding to the
first part of input data after being processed by activity A.



20 Ji Liu et al.

Pipeline Parallelism

With pipeline parallelism (see Figure 7(d)), several dependent activities with a producer-consumer
relationship are executed in parallel by different tasks. One output data chunk of one activity
is consumed directly by the next dependent activities in a pipeline fashion. The advantage of
pipeline execution is that the result of the producer activity does not need to be entirely mate-
rialized. Instead, data chunks can be consumed as soon as they are ready, thus saving memory
and disk accesses.

Hybrid Parallelism

As shown in Figure 7(e), the three basic types of parallelism can be combined to achieve higher
degrees of parallelism. A SWfMS can first perform data parallelism within each activity. Then,
it can partition the workflow into independent parts or workflow fragments for independent
activities, e.g. with each part or fragment for execution in a different computing node. Finally,
pipeline parallelism can be applied for executing dependent activities in parallel. In addition,
the parallelism strategies may also be changed at runtime, according to the parallel computing
environment behavior [33]. For the activities that process output data produced by more than
one activity, the data is generally merged for the follow-up activity. This merging operation can
also be found in the shuffle phase of the MapReduce program execution. By combining these
mechanisms, the degree of parallelism can be maximized at different execution layers.

We illustrate different types of parallelism, including their combination in hybrid parallelism,
with the example shown in Figure 7. In this figure, one task consists of one activity and the
related input data. Figure 7(a) presents the sequential execution of Activity A, B, C and two
parts of input data, i.e. i1 and i2. Since there is no parallelization, the corresponding tasks, i.e.
Activity A and Data i1, Activity A and Data i2, Activity B and Data i3, Activity B and Data
i4, Activity C and Data a1, b1, Activity C and Data a2 , b2, are executed one after another.
Figure 7(b) describes the execution with data parallelism. The processing of each part of input
data is done in different computing nodes in parallel, i.e. the processing of input data i1, i3 and
that of input data i2, i4 are done at the same time. Figure 7(c) shows independent parallelism.
Activity A and B are executed at different computing nodes at the same time. Figure 7(d) shows
pipeline parallelism, i.e. the parallel execution of Activity A (or B) and Activity C. Activity A
(or B) can be done at the same time as Activity C while processing the different parts of input
data. While Activity C is processing Data a1 and b1 at Node 2, which corresponds to the input
data i1 and i3, Activity A (or B) can process the input data i2 (or i4). Figure 7(e) shows hybrid
parallelism. Thus, the tasks, i.e. Activity A and Data i1, Activity A and Data i2, Activity B
and Data i3, Activity B and Data i4 can be executed in parallel in different computing nodes.
Activity C can begin execution once both Data a1 and b1 (or both Data a2 and b2) are ready.
This parallelism combines data parallelism, independent parallelism and pipeline parallelism.

3.2 Workflow Scheduling

Workflow scheduling is a process of allocating concrete tasks to computing resources (i.e. comput-
ing nodes) to be executed during workflow execution [19]. The goal is to get an efficient Scheduling
Plan (SP) that minimizes a function based on resource utilization, workflow execution cost and
makespan. Since a SWfMS can schedule bags of tasks, there may be a task clustering phase to
generate task bags. Moreover, scheduling methods can be static, dynamic or hybrid.

The SWfMSs that schedule workflow tasks without external tools choose computing nodes
to execute tasks without constraints. The SWfMSs that outsource workflow parallelization or



A Survey of Data-Intensive Scientific Workflow Management 21

workflow scheduling may relay on external tools to schedule tasks. The following scheduling
methods focus on the SWfMSs that manage workflow scheduling by themselves.

3.2.1 Task Clustering

A SWfMS can schedule bags of tasks to a computing nodes or multiple computing nodes to reduce
the scheduling overhead so that the execution time can be reduced. A bag of tasks contains several
tasks to be executed in the same computer. Note that bags of tasks are different from workflow
fragments. Workflow fragments are generated by analyzing activities while bags of tasks are
produced by grouping executable tasks. Several studies have been done for generating bags of
tasks. Deng et al. [43] present a clustering method for efficient scientific workflow execution.
They use a k-means clustering method to group the tasks into several task bags according to
different dependencies: data-data dependency, task-task dependency, and task-data dependency.
These three types of dependencies are used to measure the correlations between datasets and
tasks in a workflow. W. Chen et al. [23] present a balanced task clustering approach for scientific
workflow execution. They cluster the tasks by balancing total execution of each bag of task.

3.2.2 Static Scheduling

Static scheduling generates a SP that allocates all the executable tasks to computing nodes before
execution and the SWfMS strictly abides the SP during the whole scientific workflow execution
[19]. Because it is before execution, static scheduling yields little overhead at runtime. It is efficient
if the SWfMS can predict the execution load of each task accurately, when the execution environ-
ment varies little during the workflow execution, and when the SWfMS has enough information
about the computing and storage capabilities of the corresponding computers. However, when
the execution environment experiences dynamical changes, it is very difficult to achieve load bal-
ance. The static task scheduling algorithms have two kinds of processor selection methods [128]:
heuristic-based and guided random search based. The heuristic-based method schedules tasks
according to a predefined rule while the random search based method schedules tasks randomly.
Static task scheduling algorithms can also be classified between task-based and workflow-based
[16]. The task-based method directly schedules tasks into computing nodes while the workflow-
based method schedules a workflow fragment into computing nodes. Since the workflow-based
method transfers the data with less overhead compared to the task-based method, it is better
for data-intensive applications.

Topcuouglu et al. [128] propose two static scheduling algorithms: Heterogeneous Earliest-
Finish-Time (HEFT) and Critical-Path-on-a-Processor (CPOP). Both algorithms contain a task
prioritizing phase and a processor selection phase. The task prioritizing phase is for ranking tasks
while the processor selection phase is for scheduling a selected task on a “best” computing node,
which minimizes the total execution time. We note the average computation cost of a task as
CPC and the average communication cost of the current task to another task as CMC. The rank u

is the rank that is based on CPC and CMC that represents the communication from the current
task to a succeed task. The rank d indicates the rank based on CPC and CMC consisting of the
communication from a preceding task to the current task. In the task prioritizing phase, HEFT
ranks tasks based on rank u. In the processor selection phase, HEFT selects a computing node,
which finishes its current task firsts. HEFT can also insert a task in a computing node when
there is idle time between the execution of two consecutive tasks. The CPOP algorithm uses
a rank c that combines both rank u and rank d in the task prioritizing phase. It utilizes a critical
path in the processor selection phase. A critical path is a pipeline of tasks, in which a task has
no more than one input dependency and no more than one output dependency. Each task in the



22 Ji Liu et al.

critical path has the highest priority value (in rank c) in all the tasks that have the input data
dependencies from the same parent task. CPOP chooses a computing node as a critical-path
processor and schedules the tasks in the critical path to the critical-path processor. It schedules
the other tasks to the other computing nodes with the same mechanism as HEFT.

3.2.3 Dynamic Scheduling

Dynamic scheduling produces SPs that distribute and allocate executable tasks to computing
nodes during workflow execution [19]. This kind of scheduling is appropriate for scientific work-
flows, in which the workload of tasks is difficult to estimate, or for environments where the
capabilities of the computers varies a lot during execution. Dynamic scheduling can achieve load
balancing while it takes time to dynamically generate SPs during execution. The scheduling
algorithms can be based on the queue techniques in a publish/subscribe model with different
strategies such as First In First Out (FIFO), adaptive and so on. SWfMSs such as Swift [135],
Chiron [102], and Galaxy [79] exploit dynamic scheduling algorithms.

Dynamic SPs may be generated by adapting a static scheduling method to dynamic environ-
ment. Yu and Shi [140] introduce an HEFT-based dynamic scheduling algorithm. This algorithm
is suited to the situation where a scientific workflow has been executed partially before schedul-
ing. It schedules the tasks by applying an HEFT-based algorithm according to a dynamically
generated rank of tasks.

There are some original approaches to generate dynamic SPs. Maheswaran et al. [91] present
a min-min algorithm that is designed as a batch mode scheduling of two steps. First, a list of tasks
ready to be executed is created. This phase is called “task prioritizing” phase. Then, the tasks in
the list are scheduled to computing nodes based on a heuristic. The heuristic maps the task T to
the computing node M such that T is the task that has minimum expected execution time in the
non-mapped tasks and that M is the computing node that is executing a task having minimum
expected execution time in the mapped tasks. This phase is called the “resource selection” phase.

Anglano and Canonico [11] present several knowledge-free scheduling algorithms that are able
to schedule multiple bags of tasks. A knowledge-free algorithm does not require any information
on the resources for scheduling. These algorithms implement different policies: First Come First
Served – Exclusive (FCFS-Excl), First Come First Served – Shared (FCFS-Share), Round Robin
(RR), Round Robin –No Replica First (RR-NRF) and Longest Idle. With the FCFS-Excl policy,
bags of tasks are scheduled in order of arrival. Different from FCFS-Excl, FCFS-Share can allocate
more than one bag of tasks to a computing node. The RR policy schedules bags of tasks in a fixed
circular order while all the bags have the same probability to be scheduled. With the RR-NRF
policy, a bag of tasks that does not have any task executed will be given priority. In this policy,
all the bags of tasks have at least a task running. The longest idle policy tries to reduce waiting
time by giving preference to the bag of tasks hosting the task that exhibits the largest waiting
time. The paper shows that the FCFS-based policy performs better for small task granularity
scheduling.

3.2.4 Hybrid Scheduling

Both of static and dynamic scheduling have their own advantages and they can be combined as
a hybrid scheduling method to achieve better performance than just using one or the other. For
example, a SWfMS might schedule a part of the tasks of a workflow, e.g. those tasks for which
there is enough information, using static scheduling and schedule the other part during execution
with dynamic scheduling [43].



A Survey of Data-Intensive Scientific Workflow Management 23

Oliveira et al. [33] propose a hybrid scheduling method with several algorithms: greedy
scheduling, task grouping, task performing, and load balancing. The greedy scheduling algo-
rithm produces static WEPs to choose the most suitable task to execute for a given idle VM
based on a proposed cost model. The task grouping algorithm produces new tasks by encapsu-
lating two or more tasks into a new one. The task performing algorithm sets up the granularity
factor for each VM in the system and modifies the granularity according to the average execution
time. The load balancing algorithm is a dynamic scheduling algorithm that adjusts the number
of VMs and static WEP in order to meet the deadline of execution time and the budget limit.

3.2.5 Scheduling Optimization Algorithms

Since there are many criteria to measure the scientific workflow execution, SWfMS users may have
multiple objectives for workflow execution, such as reducing execution time, minimizing execution
cost etc. Therefore, SPs should also be optimized to attain multiple objective in a given context
(cluster, grid, cloud). Unlike query optimization in database, however, this optimization phase
is often not explicit and mixed with the scheduling method. Though there are some existing
scheduling optimization algorithms [33,65,49,46], they do not consider a multisite environment
with distributed data at each site. We present [65] and [49] as examples.

Gu et al. [65] address the scheduling optimization problem of mapping distributed scientific
workflows to maximize the throughput in unstable networks where nodes and links are subject
to probabilistic failures. And they propose a mapping algorithm to maximize both throughput
and reliability for workflow scheduling. They consider a network where the failure occurrences
follow a Poisson distribution with a constant parameter. The mapping algorithm includes three
algorithms: disLDP-F, Greedy disLDP-F and decentralized Greedy disLDP-F. The disLDP-F
algorithm schedules the tasks by identifying and minimizing the global bottleneck time based on
the rank of computational requirements of tasks. Greedy disLDP-F reduces the search complexity
of disLDP-F by selecting the best node for each type of requirement of the current task and
then generates a best computing node for the current task. The decentralized Greedy disLDP-F
algorithm decentralizes the disLDP-F algorithm by storing all the parameters of each individual
node locally and selecting the node through the communication between individual nodes instead
of centralized control.

Fard et al. [49] propose a multi-objective scheduling method of SWf execution in distributed
computing infrastructures. Their approach generates a best scheduling strategy, which is a Pareto
optimality (no other strategy can achieve a result of a better component while ensuring the other
components of the result as well as this strategy), to achieve 4 objectives, i.e. execution time,
financial cost, energy consumption and reliability. Nevertheless, this approach does not consider
data distribution in a multisite environment.

3.3 Scientific Workflow Parallelization in the Cloud

Cloud services can be divided into three broad categories: Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). SaaS is the delivery of application
software as a service. PaaS is the delivery of a computing platform with development tools and
APIs as a service. IaaS is the delivery of a computing infrastructure (i.e., computing, networking
and storage resources) as a service. All of the SaaS, PaaS and IaaS can be useful to develop,
share and execute scientific workflows components as cloud services. However, in the rest of this
paper, we focus on IaaS, which allows running existing scientific workflows in the cloud.



24 Ji Liu et al.

3.3.1 Parallelization in Single Site Cloud

In a single site cloud environment, SWfMSs can be directly installed in the VMs and exploit
services deployed in the cloud [75,136]. Existing parallelization techniques, e.g. parallelism tech-
niques (see Section 3.1), scheduling techniques (see Section 3.2), existing execution execution
models in grid [39], can be used to execute a data-intensive scientific workflow in the environment.
SWfMSs can exploit some middleware to create or remove VMs and enable the communication
between VMs in order to execute data-intensive scientific workflows in the cloud [67,131,6].

Since we can create VMs dynamically in the cloud environment, some methods [92,97,76,
109,108,48,33] are proposed to make a trade-off between parallelization and other constraints,
e.g. budget limit for data-intensive scientific workflow execution. Since high parallelization degree
can lead to less execution time, SWfMSs can dynamically create new VMs in order to reduce
execution time under financial cost constraint. But if the estimated financial cost of workflow
execution with current number of VMs exceeds the financial cost constraint, SWfMSs can remove
some VMs to reduce financial cost.

3.3.2 Parallelization in Multisite Cloud

In general, a user uses a single site, which is sufficient for most applications. However, there are
important cases where scientific workflows will need to be deployed at several sites, e.g. because
the data accessed by the workflow is in different research groups’ databases in different sites
or because the workflow execution needs more resources than those at a single site. Big cloud
providers such as Microsoft and Amazon typically have multiple geographically distributed data
centers located at different sites. We can define a multisite cloud as a cloud composed of several
single sites (or data centers), each from the same or different providers and explicitly accessible
to cloud users [98]. Explicitly accessible has two meanings. The first one is that each site is
separately visible and directly accessible to cloud users. For instance, the resources are located
at different cites and the location information is transparent to cloud users. The second one is
that the cloud users can decide to deploy their data and applications at specific sites while the
cloud providers will not change the location of their data. After having been deployed at a single
site, data, applications or related VMs should remain at that site. Although the cloud providers
may change the corresponding physical machines for the VMs at the same site for data security or
fault tolerance, they should not move them to other sites, i.e. use the physical machines located
at another site for storing data or provisioning the applications.

Clouds are independent of geographical distribution of physical resources by nature. However,
it is possible to control the location of deployed services for better performance in some cloud
environments, e.g. Microsoft Azure cloud [3] and Amazon cloud [1].

In a multisite cloud, SWfMSs can realize scientific workflow parallelization by workflow par-
titioning. Scientific workflow execution without workflow partitioning schedules all the tasks into
all the VMs in the multiple sites directly. This centralized method makes it hard to realize load
balancing, incurs much overhead for each task and makes scheduling very complicated. With
workflow partitioning, a workflow is divided in workflow fragments (see Section 2.2.3) and each
fragment is scheduled at a specific site and its tasks scheduled within the VMs at this site. In
addition, a meta-workflow can be directly partitioned by the types of sub-workflows, i.e. each
sub-workflow corresponding to a certain SWfMS environment can be partitioned as a workflow
fragment. Workflow partitioning can reduce the overhead of task scheduling, which is done in
parallel at multiple sites, and realize load balancing at two levels: inter-site and intra-site. Inter-
site load balancing is realized by scheduling fragments, with a global scheduler, and intra-site



A Survey of Data-Intensive Scientific Workflow Management 25

load balancing is realized by local task scheduling at one cloud site. This two-level approach
makes the scheduling operation easier.

3.3.3 Conclusion and Remarks

Data-intensive scientific workflows need to process big data, which may take a very long time
with sequential execution. Parallel execution is therefore necessary to reduce execution time on
parallel computers. Workflow parallel execution exploits a WEP that includes parallel execution
decisions, which achieves workflow parallelism. The parallel execution also schedules execution
tasks to computing nodes with optimization instructions. Moreover, data-intensive workflows can
be executed in parallel in the cloud.

Workflow parallelism consists of two lelvels, i.e. fine-grained and coarse-grained. Fine-grained
parallelism is for parallelizing the execution of sub-workflows. Coarse-grained parallelism paral-
lelizes the execution of activities in three basic types: data parallelism, independent parallelism
and pipeline parallelism. Data parallelism is fine-grained parallelism within one activity and can
yield a very high degree of parallelism on big datasets. Independent parallelism and pipeline
parallelism exploit the parallelism between different activities. These are coarse-grained and the
degree of parallelism is bound by the maximum of activities. Therefore, the highest levels of par-
allelism can be achieved by combining these three types of parallelism into hybrid parallelism.

Workflow scheduling is a process of allocating concrete tasks to computing node during work-
flow execution. Static scheduling method generates a SP prior to workflow execution and thus
the workflow execution is very fast, but it makes SWfMSs difficult to achieve load balancing
at a dynamically changing environment. Dynamic scheduling can better achieve load balancing
but takes more time to generate SPs at run-time. Hybrid scheduling can combine the best of
both static and dynamic scheduling. Workflow scheduling performs some optimization, trying to
reach multiple objectives such as minimizing the makespan of workflow execution or reducing
computing or storage expenses.

Because of virtually infinite resources, cloud appears as a good option for data-intensive
scientific workflow execution. The execution of scientific workflows at a single site cloud focuses on
the trade-off between parallelization and other constraints. The execution of scientific workflows
in multisite cloud may use workflow partitioning techniques to enable parallelization in multiple
cloud sites.

We believe that much more work is needed to improve the execution of data-intensive sci-
entific workflows in a multisite cloud. First, the communication between two sites is generally
achieved by having two nodes, each at one of the two sites, communicating directly, which is
not efficient in a multisite cloud. Second, the workflow partitioning algorithm should consider
multisite execution, considering the computing and data transfer capabilities of the sites. Fur-
thermore, the co-scheduling of tasks and data should be exploited. Most SWfMSs make use of file
systems or database systems to store data but do not care about where the data is stored during
workflow execution. Finally, SWfMSs should optimize the scheduling of workflow fragments and
tasks for the architecture of computing resources and storage in multiple cloud sites.

4 Overview of Existing Solutions

In this section, we illustrate scientific workflow parallel execution solutions in existing SWfMSs.
This section starts by a short presentation of parallel processing frameworks such as MapReduce.
Although they are not full-fledged SWfMS, they do share techniques in common and are often
used for complex scientific data analyses, or in conjunction with SWfMS to deal with big data



26 Ji Liu et al.

[132]. Then, the section introduces eight widely used SWfMSs and a science gateway platform.
Finally, the section ends with concluding remarks.

4.1 Parallel Processing Frameworks

Parallel processing frameworks enable the programming and execution of big data analysis ap-
plications in massively parallel computing infrastructures.

MapReduce [37] is a popular parallel processing framework for shared-nothing clusters, i.e.
highly-scalable clusters with no sharing of either disk or memory among computers. MapReduce
was initially developed by Google as a proprietary product to process large amounts of unstruc-
tured or semi-structured data, such as web documents and logs of web page requests, on large
shared-nothing clusters of commodity nodes and produce various kinds of data such as inverted
indices or URL access frequencies. Different implementations of MapReduce are now available
such as Amazon MapReduce (as a cloud service) or Hadoop [133].

MapReduce includes only two types of operations, map and reduce. The Map operation is
applied to each record in the input data set to compute one or more intermediate (key,value)
pairs. The Reduce operation is applied to all the values that share the same unique key in order
to compute a combined result. Since they work on independent inputs, Map and Reduce can be
automatically processed in parallel, on different data chunks using many computer nodes in a
cluster.

MapReduce execution proceeds as follows (see Figure 8). First, the users submit their jobs
composed of MapReduce functions to a scheduling system. When the user program calls the
MapReduce job, the MapReduce library in the user program splits the input data into several
chunks. A MapReduce job consists of one Map function and one Reduce function. Then, the
library makes several copies of the functions and distribute the copies into available computers.
One copy is the master while the others are workers that are assigned tasks by the master. The
master attempts to schedule a Map task, which is composed of a copy of the map function and
corresponding input data chunks, to an idle worker. The worker that is assigned a Map task
processes the (key,value) pairs of input data chunks and puts the intermediate (key,value) pairs
in memory. The intermediate data is written to local disk periodically after being partitioned into
several regions and the location information of this data is passed to the master. The combination
of a copy of Reduce function and related intermediate data chunks is a Reduce task. The worker,
which is assigned a Reduce task, reads the corresponding intermediate (key,value) data and sorts
the data by grouping the data of the same key together. Then the sorted data is passed to Reduce
tasks, which process the data and append their output data to a final output file. When all the
map tasks and reduce tasks are completed, the master wakes up the user program.

Hadoop is an open source framework that supports MapReduce in a shared-nothing cluster.
It uses Hadoop Distributed File System (HDFS) as storage layer (see Section 4.2). In Hadoop,
MapReduce programs take input data from HDFS and put the final result and execution logs
back to HDFS. Using Hadoop framework for workflow parallel execution can facilitate the im-
plementation of SWfMSs and offer good compatibility for MapReduce programs. For instance,
Wang et al. [132] propose an architecture that combines Kepler with Hadoop so that Kepler can
represent an activity as a MapReduce program and exploit the Hadoop framework to execute
tasks. While designing a scientific workflow with MapReduce activities, the input path, output
path and result for the MapReduce activities should be specified through the Kepler GUI. Inside
of the MapReduce activity, the input key, input value (input list) and output list (or output
value) for the Map function (or Reduce function) should be specifed through the GUI. During
the execution of a MapReduce activity in the Kepler/Hadoop system, Kepler first transfers all



A Survey of Data-Intensive Scientific Workflow Management 27

Fig. 8: MapReduce execution process.

the input data into HDFS. Then, it runs the Map function followed by the Reduce function in
the Hadoop system. Finally, it retrieves the output data from HDFS and stores it to the local
file system. This approach enables Kepler to outsource data parallelism of a MapReduce activity
to Hadoop, yet loosing control of activity execution.

Pig [107] is an interactive, or script-based, execution environment atop MapReduce. It sup-
ports Pig Latin, a declarative worflow language to express large dataset analysis. PigLatin re-
sembles SQL, with a more procedural style, and allows expressing sequences of activities that get
translated in MapReduce jobs. Pig Latin can be extended using user-defined functions written in
different languages like Java, Python or JavaScript. Pig programs can be run in three different
ways: with a script interpreter, with a command interpreter or embedded in a Java program. Pig
performs some logical optimization, by grouping activities into MapReduce jobs. For executing
the activities, Pig relies on Hadoop to schedule the corresponding Map and Reduce tasks. Hadoop
provides the functionality such as load-balancing and fault-tolerance. However, task scheduling
and data dispatching in Hadoop is not optimized for the entire workflow.

Dryad [72] is another parallel processing framework developed by Microsoft (which eventually
adopted Hadoop MapReduce). Similar to a scientific workflow, a Dryad job is represented as a
DAG. To compose a Dryad job, the users can extend Dryad by implementing new composition
operations based on two standard compositions: A >= B and A >> B (see Figure 9). During
job execution, Dryad refines the job graph in order to reduce network consumption. Once all
the input data of one program (vertex) is ready, the corresponding programs (vertices) are put
into a scheduling queue, which applies a greedy scheduling strategy. Then, Dryad re-executes
corresponding failed programs several times for fault tolerance.



28 Ji Liu et al.

Fig. 9: Dryad operations [72]. Circles represent programs and arrows represent data de-
pendencies. Box (a) and box (b) illustrate program cloning with the ˆ operator. We note each
program P of type x as Px. The operation AS >= BS in (c) means that each Pa has an input
data flow to each Pb. The operation AS >> BS in (d) expresses complete bipartite composition.
Box (e) shows an operation by combining the data from Pb to Pc and Pd.

4.2 SWfMS

Most SWfMSs implement the five layer architecture discussed in Section 2.2. We selected eight
typical SWfMSs and a gateway framework to illustrate their techniques: Pegasus, Swift, Ke-
pler, Taverna, Chiron, Galaxy, Triana [125], Askalon [47] and WS-PGRADE/gUSE [78]. Pegasus
and Swift have excellent support for scalability and high-performance of data-intensive scientific
workflows, with reported results using more than a hundred thousand of cores and terabytes
of data during workflow execution [42,144]. Kepler, Taverna, Triana have a GUI for desktop
computers. Chiron is widely used because of a powerful algebraic approach for workflow paral-
lelization. Galaxy integrates a GUI that can be accessed through web browsers. Triana is able to
use P2P services. Askalon implements both desktop and web GUI and has been adapted to cloud
environments. WS-PGRADE/gUSE is a widely used gateway framework, which enables scien-
tific workflow execution in Distributed Computing Infrastructures (DCI) with a web interface
for users.

Pegasus, Swift, Kepler, Taverna and WS-PGRADE/gUSE are widely used in astronomy, biol-
ogy, and so on while Galaxy can only execute bioinformatics workflows. Pegasus, Swift and Chiron
design and execute a workflow through a textual interface while Kepler, Taverna, Galaxy, Triana,
Askalon and WS-PGRADE/gUSE integrate a GUI for workflow design. All of the eight SWfMSs
and the gateway framework support workflow specification in a DAG structure while Swift, Ke-
pler, Chiron, Galaxy, Triana and Askalon also support workflows in a DCG structure [139]. Users
can share workflow information from Taverna, Galaxy, Askalon and WS-PGRADE/gUSE. All
of them support independent parallelism. All of them support dynamic scheduling and three
of them (Pegasus, Kepler and WS-PGRADE/gUSE) support static scheduling. All the eight
SWfMSs and the gateway framework support workflow execution in both grid and cloud envi-
ronments. A brief comparison of these eight SWfMSs and the gateway framework is given in
Table 1.



A Survey of Data-Intensive Scientific Workflow Management 29

Table 1: Comparison of SWfMS. A categorization of SWfMS based on supported workflow
structures, workflow information sharing, UI types, parallelism types and scheduling methods.
“activity” means that this SWfMS supports both independent parallelism and pipeline paral-
lelism. WPg represents WS-PGRADE/gUSE. WP indicates that the interface is a web-portal.

SWfMS structures workflow sharing UI type parallelism scheduling
Pegasus DAG not supported GUI & textual data & independent static & dynamic

Swift DCG not supported textual activity dynamic
Kepler DCG not supported GUI activity static & dynamic

Taverna DAG supported GUI data & activity dynamic
Chiron DCG not supported textual data & activity & hybrid dynamic
Galaxy DCG supported GUI (WP) independent dynamic
Triana DCG not supported GUI data & activity dynamic

Askalon DCG supported GUI activity dynamic & hybrid
WPg DAG supported GUI (WP) data & independent & hybrid static & dynamic

Fig. 10: Pegasus Workflow execution process [41].

4.2.1 Pegasus

Pegasus5 [42] is widely used in multiple disciplines such as astronomy, bioinformatics, climate
modeling, earthquake science, genome analysis, etc. Pegasus has interesting features: portability
on different infrastructures such as grid and cloud, optimized scheduling algorithms; good scal-
ability, support for provenance data that can be used for debugging, data transfer support for
data-intensive workflows, fault-tolerance support, detailed user guide [4] and available package
in the Debian repository.

Pegasus consists of five components, i.e. mapper, local execution engine, job scheduler, remote
execution engine and monitoring component. The mapper generates an executable workflow
based on an abstract workflow provided b the users. The local execution engine submits the
workflow fragments or sub-workflows to execution engines according to dependencies. The job
scheduler schedules the workflow fragments to available remote execution engines. The remote
execution engine manages the execution of the tasks of the workflow fragments. Finally, the
monitoring component monitors the execution of the scientific workflow.

5 Pegasus: http://pegasus.isi.edu/



30 Ji Liu et al.

The process of executing scientific workflows in Pegasus is shown in Figure 10. In the presen-
tation layer, Pegasus takes an abstract workflow represented as a DAX (DAG in an XML file).
Pegasus provides programmatic APIs in Python, Java, and Perl for DAX generation[4]. Pegasus
exploits a lightweight web dashboard to monitor and the execution of scientific workflows for a
user. In the user services layer, Pegasus supports workflow monitoring through Stampede mon-
itoring infrastructure [66,118]. Pegasus also support provenance data gathering and querying
through a Pegasus/Wings framework [81]. The provenance data or monitoring data come from
the log data gathered during workflow execution.

In the WEP generation layer, the mapper reduces the abstract workflow by checking available
intermediate data in the available computing nodes. The intermediate data can come from the
previous execution of the same workflow or the execution of other workflows that contain several
common activities. In addition, Pegasus inserts the data transfer activities, e.g. data stage-in,
in the DAG for workflow execution. The mapper component can realize workflow partitioning
through three methods [22,23,42]. As discussed in Section 2.2.3, Chen and Deelman [22] propose
a workflow partitioning method under storage constraints at each site. This workflow partitioning
method is used in a multisite environment with dynamic computing provisioning as explained in
[21]. Another method is balanced task clustering [23]. The workflow is partitioned into several
workflow fragments which have almost the same workload. This method can realize load balancing
for homogeneous computing resources. The last method is to cluster the tasks of the same label
[42]. To use this method, the tasks should be labeled by users. In the WEP execution layer,
the job scheduler may perform site execution based on standard algorithms (random, round-
robin and min-min), data location and the significance of computation and data in the workflow
execution. For example, the job scheduler moves computation to the data site where big volume
of data is located and it sends data to compute site if computation is significant. At this point,
Pegasus schedules the execution of tasks within a workflow engine such as DAGMan. In Pegasus,
DAGMan sends the concrete executable tasks to Condor-G, a client tool that can manage the
execution of a bag of related tasks on grid-accessible computation nodes in the selected sites.
Condor-G has a queue of tasks and it schedules a task in this queue to a computing node
in the selected site once this computing node is idle [54,87]. Pegasus handles task failures by
retrying the corresponding part of workflows or transfer the data again with a safer data transfer
method. Through these mechanisms, Pegasus hides the complex scheduling, optimization and
data transmission of workflows from SWfMS users.

In the infrastructure layer, Pegasus is able to use computing cluster, grid (including desktop
grids) and cloud to execute a scientific workflow. It can exploit a shared file system, local storage
resources at each computing node or cloud storage, e.g. Amazon S3, for data storage and it pro-
vides static computing and storage provisioning for workflow execution. Pegasus can be directly
executed in a virtual cluster in cloud [75] while it can also use dynamic scheduling algorithms [92,
97] for budget constraint and time limit through Wrangler [76], a dynamic provisioning system
in the cloud.

4.2.2 Swift

Similar to Pegasus, Swift [144] has been used in multiple disciplines such as biology, astronomy,
economics, neuroscience, etc. Swift grew out of the GriPhyN Virtual Data System (VDS) whose
objective is to express, execute, track the results of workflows through program optimization and
scheduling, task management, and data management. Swift has been revised and improved its
(already) large-scale performance into the Turbine system [137].

Swift executes data-intensive scientific workflows through five functional phases: program
specification, scheduling, execution, provenance management and provisioning. In the presenta-



A Survey of Data-Intensive Scientific Workflow Management 31

Fig. 11: Swift system architecture [144].

tion layer, Swift takes a workflow specification that can be described in two languages: XDTM
and SwfitScript. XDTM is an interface to map the logical structure of data to physical resources.
SwiftScript defines the sequential or parallel computational procedures that operate on the data
defined by XDTM. In the user services layer, provenance data is available for the users.

In the WEP generation layer, the SwiftScript is compiled to an abstract computation spec-
ification. Swift performs workflow partitioning by generating corresponding abstract WEPs for
each site [144]. In the WEP execution layer, the abstract WEPs are scheduled to execution sites.
The Karajan workflow execution engine is used by Swift to realize the functions such as data
transfer, task submission, grid services access, task instantiation, and task schedule. Swift run-
time callouts provide the information for task and data scheduling and offer status reporting,
which shows the SPs. During workflow execution, provenance data is gathered by a launcher
program (e.g. kickstart). Swift achieves fault tolerance by retrying the failed tasks and provides
a restart log when the failures are permanent.

In the infrastructure layer, the provisioning phase of Swift provides computing resources in a
computer cluster, grid, and cloud through a dynamic resource provisioner for each execution site.
In the cloud, Swift takes advantage of Coasters [67] to manage communication, task allocation
and data stage for scientific workflow execution while it is not optimized for dynamic provisioning
of VMs and storage. Figure 11 depicts the Swift system architecture.

4.2.3 Kepler

Kepler [10,9] is a SWfMS built upon the Ptolemy II system from the Kepler6 project. It allows
to plug in different execution models into workflows. Kepler is used in many projects of various
disciplines such as oceanography7, data management8, and biology9 etc. Kepler integrates a
powerful graphical workbench (shown in Figure 12). In the presentation layer, each individual

6 Kepler project: https://kepler-project.org/
7 REAP project: https://kepler-project.org/users/projects-using-kepler-1/reap-project
8 Scientific Data Management Center: https://sdm.lbl.gov/sdmcenter/
9 Clotho project: http://www.clothocad.org/



32 Ji Liu et al.

Fig. 12: Kepler workbench.

reusable workflow step is implemented as an actor that can be signal processing, statistical
operations, etc. Workflow activities are associated to different actors as shown in Figure 12.

In the user services layer, the provenance functionality in Kepler is realized by corresponding
actors such as Provenance Recorder (PR) [8]. PR records the information of workflow execution
such as context, input data, associated metadata, workflow outputs, etc.

In the WEP generation layer, the workflow is handled by a separate component named
director. Kepler supports several directors and each director corresponds to a unique model of
execution, which is a model of WEP. The director generates executable tasks to achieve activity
parallelism (pipeline parallelism and independent parallelism).

In the WEP execution layer, Kepler exploits static or dynamic scheduling according to the
director that is used during workflow execution [90,19]. The fault tolerance functionality of
Kepler can be achieved by a framework that provides three complementary mechanisms. The first
mechanism is a forward recovery mechanism that retries the failed tasks. The second mechanism
offers a check-pointing mechanism that resumes the execution in case of a failure at the last
saved state. The last one is a watchdog process that analyzes the workflow execution based on
provenance data and sends an appropriate signal and possible course of action to the workflow
engine to handle it. Kepler executes workflows in parallel through web services, grid-based actors
or Hadoop framework. Kepler can execute workflows by using external execution environments
such as SAS, Matlab, Python, Perl, C++ and R (S+) using corresponding actors.

In the infrastructure layer, Kepler can achieve data access through an OpenDBConnection
actor for data in a database and an EMLDataSource actor for ecological and biological datasets.
Kepler is compatible with the cloud through Kepler EC2 actors, which can directly create a set
of EC2 VMs and attach Elastic Block Store volumes to running VMs [131].



A Survey of Data-Intensive Scientific Workflow Management 33

4.2.4 Taverna

Taverna [96] is an open-source SWfMS from the myGrid project to support workflow-based
biological experiments. Taverna is used in multiple areas such as astronomy, bioinformatics,
chemistry etc. In the presentation layer, Taverna takes a GUI for designing workflows and showing
monitoring information while it uses a textual language to represent a workflow as a DAG [139].
The workflows can be designed in Taverna installed in the user’s computer or an online web
server. Moreover, this GUI can be installed in an Android mobile [142]

In the user services layer, Taverna uses a state machine for the activities to achieve workflow
monitoring [104]. The workflows designed through Taverna can be shared through “myExperi-
ment” social network [136]. It gathers provenance data from local execution information and the
remotely invoked web services [103].

In the WEP generation layer, Taverna automatically optimizes the workflow structure by
identifying complex parts of workflow structures and simplifies them for easier design and work-
flow parallelization [28]. Taverna links the invocation of web services and the activities and checks
the availability of the needed web services for generating a WEP. In the WEP execution layer,
Taverna relies on web and grid services for task execution.

In the infrastructure layer, Taverna is able to use the computing resources from grid or cloud.
It also stores execution data in a database.

4.2.5 Chiron

Chiron exploits a database approach [110] to manage the parallel execution of data-intensive
scientific workflows. In the presentation layer, it uses an algebraic data model to express all data
as relations and represent workflow activities as algebraic expressions in the presentation layer.
A relation contains sets of tuples composed of basic attributes such as integer, float, string, and
file references, etc. An algebraic expression consists of algebraic activities, additional operands,
operators, input relations and output relations. An algebraic activity contains a program or
an SQL expression, and input and output relation schemas. An additional operand is the side
information for the algebraic expression, which can be relations or a set of grouping attributes.
There are six operators: Map, SplitMap, Reduce, Filter, SRQuery and MRQuery (see Section
2.2.1 for the function of each operator). In the user services layer, Chiron supports workflow
monitoring, steering and gathers provenance data based on algebraic approach.

In the WEP generation layer, a scientific workflow is wholly expressed in an XML file called
conceptual model. Chiron supports all types of parallelism (data parallelism, independent par-
allelism, pipeline parallelism, hybrid parallelism) and optimizes workflow scheduling by distin-
guishing between blocking activities, i.e. activities that require all their input data to proceed,
and non blocking, i.e. that can be pipelined. Chiron generates concrete executable tasks for each
activity and schedules the tasks of the same workflow fragments to multiple computing nodes.
Chiron uses two scheduling policies, called blocking and pipeline in [45]. Let A be a task that
produces data consumed by a task B. With the blocking policy, B can start only after all the
data produced by A are ready. Hence, there is no parallelism between A and B. With the pipeline
policy, B can start as soon as some of its input data chunks are ready. Hence, there is pipeline
parallelism. This pipeline parallelism is inspired by DBMS pipeline parallelism in [110]. Moreover,
Chiron takes advantage of algebraic approach for workflow execution optimization to generate a
WEP.

In the WEP execution layer, Chiron uses an execution module file to specify the scheduling
method, database information and input data information. Chiron exploits dynamic scheduling
method for task execution. Chiron gathers execution data, light domain data and provenance data



34 Ji Liu et al.

into a database structured by following the PROV-Wf [30] provenance model. The execution of
tasks in Chiron is based on MPJ [20], an MPI-like message passing system. In the infrastructure
layer, Chiron exploits a shared-disk file system and database for data storage.

Chiron is adapted to the cloud through its extension, Scicumulus [34,35], which supports
dynamic computing provisioning [33]. The architecture of Scicumulus contains three layers and
four corresponding tiers: desktop layer for client tier, distribution layer for distribution tier,
execution layer for execution tier and data tier. The desktop layer is to compose and execute
workflows. The distribution layer is responsible for parallel execution of workflow activities in
the cloud. The execution layer manages workflow activity execution in VM instances. Finally,
the data tier manages the related data during workflow execution. Scicumulus exploits hybrid
scheduling approaches with dynamic computing provisioning support. Furthermore, Scicumulus
uses services such as SciDim [36] to determine an initial virtual cluster size through a multi-
objective cost function and provenance data under budget and time limits. Moreover, Scicumulus
can be coupled with SciMultaneous, which is used to manage fault tolerance in the cloud [29].

4.2.6 Galaxy

Galaxy is a web-based SWfMS for genomic research. In the presentation layer, Galaxy provides
a GUI for designing scientific workflows through browsers. It can be installed in a public web
server (https://usegalaxy.org/) or a private server to address specific needs.

In the user services layer, users can upload data from a user’s computer or online resources
and share workflow information including workflows, workflow description information, workflow
input data and workflow provenance data in a public web site. Moreover, users can import
workflows from “myExperiment” [136] social network [61].

In the WEP generation layer, Galaxy manages the dependencies between each activity for
workflow parallelization. In the WEP execution layer, Galaxy generates concrete tasks for each
activity, puts the tasks in a queue to be submitted, and monitors the task status (in queue,
running or completion) [79]. Through this mechanism, Galaxy exploits dynamic scheduling to
dispatch executable tasks. Galaxy uses Gridway to execute tasks in the Grid. Gridway manages a
task queue and the tasks in a queue are executed in an available computing node that is selected
according to a greedy approach, i.e. requests are sent to all the available computing nodes while
the node that has minimum response time is selected [71].

In the infrastructure layer, Galaxy can exploit Globus [88] and CloudMan [6] to achieve
dynamic computing and storage provisioning such as dynamic VM inserting and removing and
shared-disk file system construction across computing nodes. Galaxy is adapted to cloud environ-
ment by CloudMan [6] middlewear, which can create Amazon EC2 clusters based on a Bio-Linux
machine image, dynamically change cluster size and attach S3 storage to the clusters.

4.2.7 Triana

Triana [125] is a SWfMS initially developed as a data analysis tool within the GEO 600 project10.
It provides a GUI in the presentation layer. In the user services layer, it implements the Stampede
monitoring infrastructure [130] (see Section 2.2.2).

In the WEP generation layer, Triana exploits components to realize different data process-
ing functions similar to Kepler actors. In the WEP execution layer, Triana supports the grid
Application Toolkit (GAT) API for developing grid-oriented components. Triana also uses the
Grid Application Prototype (GAP) as an interface to interact with service-oriented networks.

10 http://www.geo600.org/



A Survey of Data-Intensive Scientific Workflow Management 35

The GAP contains three bindings, i.e. implemented GAP, such as P2PS and JXTA to use P2P
network and Web services binding to invoke Web services.

In the infrastructure layer, Triana can employ computing resources in the grid or cloud.
Triana uses RabbitMQ12 11, a message broker platform, to realize the communication among
different VMS in order to run scientific workflows in the cloud environment.

4.2.8 Askalon

Askalon [47] is also a SWfMS initially designed for a grid environment. In the presentation
layer, it provides a GUI, through which a scientific workflow can be modeled using Unified
Modeling Language. It also exploits an XML-based language to model workflows. In the user
services layer, it provides on-line workflow execution monitoring functionality through workflow
execution monitoring and dynamic workflow steering to deal with exceptions in dynamic and
unpredictable execution environments [114].

In the WEP generation layer, Askalon optimizes the workflow representation with loops, i.e.
within DCG structures, to a DAG workflow structure. In the WEP execution layer, Askalon
exploits an execution engine to provide workflow fault-tolerance at the levels of workflow, ac-
tivity and control-flow. It can exploit static and hybrid scheduling, e.g. rescheduling because of
unpredictable changes in the execution environment.

In the infrastructure layer, Askalon uses a resource manager to discover and reserve available
resources and to deploy executable tasks in the grid environment. Askalon is able to execute
scientific workflow in cloud environment by dynamic creation of VMs with available cloud images
[109]. In the cloud environment, Askalon can estimate the cost of scientific workflow execution
by simulation [108] and provide dynamic resource provisioning and task scheduling under budget
constraint [48].

Moreover, Askalon can execute scientific workflows in a federated multisite cloud [109], i.e. a
multisite cloud composed of resources from different providers. Nevertheless, it schedules tasks
in computing nodes without considering the organization of computing resources, i.e. which VMs
are at the same site, for optimization. This method just takes the VMs as the grid computing
nodes without considering the features of multisite resources, e.g. the difference of data transfer
rate, resource sharing for intra-site and inter-site, etc.

4.2.9 WS-PGRADE/gUSE

WS-PGRADE/gUSE is a science gateway framework widely used in various disciplines such
as biology [58], seismology [84], astronomy [119], and neuroscience [120]. It is an open source
software [78] used for teaching [105], research [82] and commercial activities [83].

The architecture of WS-PGRADE/gUSE framework is shown in Figure 13. WS-PGRADE
portal is a web-portal interface to help the users designing scientific workflows. The grid and
cloud User Support Environment (gUSE) is a middle layer for different user services. The DCI
bridge is a web service based application that provides access to divers infrastructures such as
grid and cloud [78].

In the presentation layer, the WS-PGRADE portal [77] has a web browser based interface,
which supports the definition of different kinds of scientific workflows, including meta-workflows
and parameter sweep workflows. The meta-workflows can contain embedded workflows, which are
supported by the SHIWA repository, as sub-workflows. In the user services layer, WS-PGRADE
supports workflow information sharing between the users of WS-PGRADE/gUSE through a

11 Triana in cloud: http://www.trianacode.org/news.php

http://www.trianacode.org/news.php


36 Ji Liu et al.

Fig. 13: Architecture of WS-PGRADE/gUSE [64].

build-in workflow repository, which enables publishing, searching and downloading programs,
workflow designs and templates [12]. A workflow template is an available workflow pattern that
can be changed to other workflows by modifying corresponding parameters. In addition, it can
exploit the SHIWA repository [113] to support workflow sharing between the users of differ-
ent SWfMSs. The monitoring functionality is supported by the gUSE services. However, the
framework lacks provenance support.

In the WEP generation layer, a scientific workflow is represented in XML format. The frame-
work may use data and independent parallelism according to the structure of the workflow[12].
The DCI bridge dynamically schedules the tasks through a submit queue. The task execution is
handled by web services enabled by a web container, e.g. Tomcat or Glassfish.

Provisioning and data storage are provided by the DCI Bridge [86] and CloudBroker frame-
work. The DCI Bridge can dynamically create VMs through existing images and cloud configura-
tions. The CloudBroker is able to exploit resources distributed in multiple clouds [50], including
major cloud types , e.g. Amazon, OpenStack [73] and OpenNebula [95]. Moreover, it can take
advantage of GPUs to execute the workflows that invoke GPU programs [12].

The SHIWA simulation platform enables reusing of workflows in ten different SWfMS environ-
ments [126]. First, the users can search for workflows in the SHIWA repository, where workflow
developers can upload available programs or workflows. Then, the workflows can be downloaded
and adjusted to an Interoperable Workflow Intermediate Representation (IWIR) language to
compose a meta-workflow [113]. Then, when the meta-workflow is submitted in the platform,
each sub-workflow of the meta-workflow can be scheduled to the appropriate SWfMS execution
environment.

4.3 Concluding Remarks

We observed that some SWfMSs take advantage of parallel processing frameworks such as Hadoop
as lower-level tools to parallelize workflow execution and schedule tasks. This is a straightfor-
ward approach to extend a SWfMS with parallel processing capabilities. However, it lacks the
capability to perform parallelization according to the entire workflow structure. Our comparative
presentation of eight SWfMSs showed that most SWfMSs do not exploit hybrid parallelism (only
Chiron does) and hybrid scheduling methods (only Askalon does), which may bring the highest
degrees of parallelism and good load balancing.

Although there has been much work on data-intensive scientific workflow management, we
believe there is a lot of room for improvement. First, input data staging needs more attention.
Most SWfMSs just do this as a preprocessing step before actual workflow execution. For data-
intensive scientific workflows, this step may take a very long time, for instance, to transfer several
gigabytes to a computing node. Integrating this step as part of the WEP can help optimize it,



A Survey of Data-Intensive Scientific Workflow Management 37

based on the activities and their execution at computing nodes. Second, workflow partitioning
strategies should pay attention to the computing capabilities of the resources and data to be
transferred across computing nodes, as this is a major performance and cost factor, and not
focus only on one constraint, e.g. storage limitation. Third, the structure of SWfMSs is generally
centralized (the new version of Swift is not centralized). In this structure, a master node manages
all the optimization and scheduling processes. This master node becomes a single point of failure
and performance bottleneck. Distributed and P2P techniques [111] could be applied to address
this problem. Fourth, although most SWfMSs are capable to produce provenance data, they lack
integrated UI with provenance data which is very useful for workflow steering.

5 Conclusion

In this paper, we discussed the current state of the art of the SWfMSs, parallel execution of
data-intensive scientific workflows in different infrastructures, especially in the cloud.

First, we introduced the definitions in scientific workflow management, including scientific
workflows and SWfMSs. In particular, we illustrated the representation of scientific workflows
with real examples from astronomy and biology. Then, we presented in more details a five-layer
functional architecture of SWfMSs and the corresponding functions. Special attention has been
paid to data-intensive workflows by identifying their features and presenting the corresponding
techniques.

Second, we presented the basic techniques for the parallel execution of workflows in SWfMSs:
parallelization and scheduling. We showed how different kinds of parallelism (data parallelism,
independent parallelism and pipeline parallelism) can be exploited for parallelizing scientific
workflows. The scheduling methods to allocate tasks to computing resources can be static or
dynamic, with different trade-offs, or hybrid to combine the advantages of static and dynamic
scheduling methods. Workflow scheduling may include an optimization phase to minimize a
multi-objective function, in a given context (cluster, grid, cloud). However, unlike in database
query optimization, this scheduling optimization phase is often not explicit and mixed with the
scheduling method. Finally, we discussed the basic techniques for parallel execution of scientific
workflows in the cloud, including single site cloud and multisite cloud.

Third, to illustrate the use of the techniques, we introduced the recent parallelization frame-
works such as MapReduce and gave a comparative analysis of eight popular SWfMSs (Pegasus,
Swift, Kepler, Taverna, Chiron, Galaxy, Triana and Askalon) and a science gateway framework
(WS-PGRADE/gUSE).

The current solutions for the parallel execution of SWfMSs are appropriate for static com-
puting and storage resources in a grid environment. They have been extended to deal with more
elastic resources in a cloud, but with single site only. Although some SWfMSs such as Swift and
Pegasus provide some functionality to execute scientific workflows in the multisite environment,
this is generally done by reusing techniques from grid computing or simple dynamic provisioning
and scheduling mechanisms, without exploiting new data storage and data transfer capabilities
provided by multisite clouds. Our analysis of the current techniques of scientific workflow paral-
lelization and scientific workflow execution has shown that there is a lot of room for improvement.
And we proposed directions of future research, which we summarize as follows:

1. Workflow representation: existing workflow representations can just present the activities
and data dependencies in a workflow while they cannot represent the diversity of data for-
mats or special data sources such as big data stored in a specific data center. New workflow
representations are needed for data-intensive scientific workflows.



38 Ji Liu et al.

2. Data staging: efficient data transmission between sites is critical for data-intensive workflow
execution. Existing techniques mainly focus on the mechanism that starts scientific workflow
execution after gathering all the related data in a shared-disk file system at one data center,
which is time consuming. New data staging methods, including caching, are needed to increase
efficiency of data transmission in scientific workflow execution.

3. Architecture: the structure of SWfMSs is generally centralized, with a master node managing
all the optimization and scheduling processes. This master node becomes a single point of
failure and performance bottleneck. Distributed and P2P techniques could be applied to
address this problem.

4. Task scheduling and data location: most SWfMSs do not take data location into consideration
during task scheduling period. For data-intensive scientific workflows, a uniform scheduling
method is needed to handle task and data scheduling at the same time. Furthermore, SWfMSs
should also take advantage of the organization of computing and storage resources in multiple
cloud sites to schedule workflow fragments or tasks into available computing nodes.

5. Multisite: novel task and data scheduling approaches are required for utilizing resources in a
multisite cloud. Furthermore, to partition a workflow into several parts based on resources in
each site is also a difficult optimization problem in a multisite environment.

References

1. Amazon cloud. http://aws.amazon.com/, 2015.
2. Grid’5000 project. https://www.grid5000.fr/mediawiki/index.php, 2015.
3. Microsoft Azure cloud. http://azure.microsoft.com/, 2015.
4. Pegasus 4.4.1 user guide. https://pegasus.isi.edu/wms/docs/latest/, 2015.
5. M. Abouelhoda, S. Issa, and M. Ghanem. Tavaxy: Integrating taverna and galaxy workflows with cloud

computing support. BMC Bioinformatics, 13(1):77, 2012.
6. E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J. Taylor. Galaxy cloudman: delivering

cloud compute clusters. BMC Bioinformatics, 11(Suppl 12):S4, 2010.
7. M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A portable abstraction for data intensive

computing on clusters, clouds, and grids. In 1st ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, pages 1:1–1:13, 2012.

8. I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collection support in the kepler scientific workflow
system. In Int. Conf. on Provenance and Annotation of Data, pages 118–132, 2006.

9. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an extensible system
for design and execution of scientific workflows. In 16th Int. Conf. on Scientific and Statistical Database
Management (SSDBM), pages 423–424, 2004.

10. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: Towards a Grid-Enabled
system for scientific workflows. The Workflow in Grid Systems Workshop in GGF10-The 10th Global Grid
Forum, 2004.

11. C. Anglano and M. Canonico. Scheduling algorithms for multiple bag-of-task applications on desktop grids:
A knowledge-free approach. In 22nd IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS),
pages 1–8, 2008.

12. Á. Balaskó. Workflow concept of ws-pgrade/guse. In P. Kacsuk, editor, Science Gateways for Distributed
Computing Infrastructures, pages 33–50. Springer International Publishing, 2014.

13. A. Barker and J. V. Hemert. Scientific workflow: A survey and research directions. In 7th Int. Conf. on
Parallel Processing and Applied Mathematics, pages 746–753, 2008.

14. K. Belhajjame, S. Cresswell, Y. Gil, R. Golden, P. Groth, G. Klyne, J. McCusker, S. Miles, J. My-
ers, and S. Sahoo. The prov data model and abstract syntax notation. http://www.w3.org/TR/2011/

WD-prov-dm-20111215/, 2011.
15. R. Bergmann and Y. Gil. Retrieval of semantic workflows with knowledge intensive similarity measures. In

19th Int. Conf. on Case-Based Reasoning Research and Development, pages 17–31, 2011.
16. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task scheduling strategies

for workflow-based applications in grids. In 5th IEEE Int. Symposium on Cluster Computing and the Grid
(CCGrid), pages 759–767, 2005.

17. L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez. Dynamic query scheduling in data integration systems.
In International Conference on Data Engineering (ICDE), pages 425–434, 2000.

http://aws.amazon.com/
https://www.grid5000.fr/mediawiki/index.php
http://azure.microsoft.com/
https://pegasus.isi.edu/wms/docs/latest/
http://www.w3.org/TR/2011/WD-prov-dm-20111215/
http://www.w3.org/TR/2011/WD-prov-dm-20111215/


A Survey of Data-Intensive Scientific Workflow Management 39

18. I. Brandic and S. Dustdar. Grid vs cloud - A technology comparison. it - Information Technology, 53(4):173–
179, 2011.

19. M. Bux and U. Leser. Parallelization in scientific workflow management systems. The Computing Research
Repository (CoRR), abs/1303.7195, 2013.

20. B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. Mpj: Mpi-like message passing for java. Con-
currency and Computation: Practice and Experience, 12(11):1019–1038, 2000.

21. W. Chen and E. Deelman. Integration of workflow partitioning and resource provisioning. In IEEE/ACM
Int. Symposium on Cluster Computing and the Grid (CCGRID), pages 764–768, 2012.

22. W. Chen and E. Deelman. Partitioning and scheduling workflows across multiple sites with storage con-
straints. In 9th Int. Conf. on Parallel Processing and Applied Mathematics - Volume Part II, volume 7204,
pages 11–20, 2012.

23. W. Chen, R. D. Silva, E. Deelman, and R. Sakellariou. Balanced task clustering in scientific workflows. In
IEEE 9th Int. Conf. on e-Science, pages 188–195, 2013.

24. A. L. Chervenak, D. E. Smith, W. Chen, and E. Deelman. Integrating policy with scientific workflow manage-
ment for data-intensive applications. In Supercomputing (SC) Companion: High Performance Computing,
Networking Storage and Analysis, pages 140–149, 2012.

25. F. Chirigati, V. Silva, E. Ogasawara, D. de Oliveira, J. Dias, F. Porto, P. Valduriez, and M. Mattoso.
Evaluating parameter sweep workflows in high performance computing. In 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies, pages 2:1–2:10, 2012.

26. M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing data transfers in computer clusters
with orchestra. ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 41(4):98–109, 2011.

27. W. M. Coalition. Workflow management coalition terminology and glossary, 1999.
28. S. Cohen-Boulakia, J. Chen, P. Missier, C. A. Goble, A. R. Williams, and C. Froidevaux. Distilling structure

in taverna scientific workflows: a refactoring approach. BMC Bioinformatics, 15(S-1):S12, 2014.
29. F. Costa, D. de Oliveira, K. Ocala, E. Ogasawara, J. Dias, and M. Mattoso. Handling failures in parallel

scientific workflows using clouds. In Supercomputing (SC) Companion: High Performance Computing,
Networking Storage and Analysis, pages 129–139, 2012.

30. F. Costa, V. Silva, D. de Oliveira, K. A. C. S. Ocaña, E. S. Ogasawara, J. Dias, and M. Mattoso. Capturing
and querying workflow runtime provenance with prov: a practical approach. In EDBT/ICDT Workshops,
pages 282–289, 2013.

31. D. Crawl, J. Wang, and I. Altintas. Provenance for mapreduce-based data-intensive workflows. In 6th
Workshop on Workflows in Support of Large-scale Science, pages 21–30, 2011.

32. T. Critchlow and G. C. Jr. Supercomputing and scientific workflows gaps and requirements. In World
Congress on Services, pages 208–211, 2011.

33. D. de Oliveira, K. A. C. S. Ocaña, F. Baião, and M. Mattoso. A provenance-based adaptive scheduling
heuristic for parallel scientific workflows in clouds. Journal of Grid Computing, 10(3):521–552, 2012.

34. D. de Oliveira, E. Ogasawara, F. Baião, and M. Mattoso. Scicumulus: A lightweight cloud middleware to
explore many task computing paradigm in scientific workflows. In 3rd Int. Conf. on Cloud Computing
(CLOUD), pages 378–385, 2010.

35. D. de Oliveira, E. Ogasawara, K. Ocaña, F. Baião, and M. Mattoso. An adaptive parallel execution strategy
for cloud-based scientific workflows. Concurrency and Computation: Practice & Experience, 24(13):1531–
1550, 2012.

36. D. de Oliveira, V. Viana, E. Ogasawara, K. Ocana, and M. Mattoso. Dimensioning the virtual cluster for
parallel scientific workflows in clouds. In 4th ACM Workshop on Scientific Cloud Computing, pages 5–12,
2013.

37. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In 6th Symposium on
Operating System Design and Implementation (OSDI 2004), pages 137–150, 2004.

38. E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-science: An overview of workflow system
features and capabilities. Future Generation Computer Systems, 25(5):528–540, 2009.

39. E. Deelman, G. Juve, and G. B. Berriman. Using clouds for science, is it just kicking the can down the road?
In Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services
Science, pages 127–134, 2012.

40. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on the cloud: The
montage example. In ACM/IEEE Conf. on High Performance Computing, pages 1–12, 2008.

41. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming, 13(3):219–237, 2005.

42. E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen, R. F.
d. Silva, M. Livny, and K. Wenger. Pegasus: a workflow management system for science automation. Future
Generation Computer Systems, 2014.



40 Ji Liu et al.

43. K. Deng, L. Kong, J. Song, K. Ren, and D. Yuan. A weighted k-means clustering based co-scheduling
strategy towards efficient execution of scientific workflows in collaborative cloud environments. In IEEE 9th
Int. Conf. on Dependable, Autonomic and Secure Computing (DASC), pages 547–554, 2011.

44. J. Dias, D. de Oliveira, M. Mattoso, K. A. C. S. Ocana, and E. Ogasawara. Discovering drug targets for
neglected diseases using a pharmacophylogenomic cloud workflow. In IEEE 8th Int. Conf. on E-Science
(e-Science), pages 1–8, 2012.

45. J. Dias, E. S. Ogasawara, D. de Oliveira, F. Porto, P. Valduriez, and M. Mattoso. Algebraic dataflows for
big data analysis. In IEEE Int. Conf. on Big Data, pages 150–155, 2013.

46. R. Duan, R. Prodan, and X. Li. Multi-objective game theoretic schedulingof bag-of-tasks workflows on
hybrid clouds. IEEE Transactions on Cloud Computing, 2(1):29–42, 2014.

47. T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H. Truong, A. Villazon, and M. Wieczorek. Askalon: A development and grid computing environment for
scientific workflows. In Workflows for e-Science, pages 450–471. Springer, 2007.

48. H. M. Fard, T. Fahringer, and R. Prodan. Budget-constrained resource provisioning for scientific applications
in clouds. In IEEE 5th Int. Conf. on Cloud Computing Technology and Science (CloudCom), volume 1,
pages 315–322, 2013.

49. H. M. Fard, R. Prodan, and T. Fahringer. Multi-objective list scheduling of workflow applications in dis-
tributed computing infrastructures. Journal of Parallel and Distributed Computing, 74(3):2152–2165, 2014.

50. Z. Farkas, Á. Hajnal, and P. Kacsuk. Ws-pgrade/guse and clouds. In P. Kacsuk, editor, Science Gateways
for Distributed Computing Infrastructures, pages 97–109. Springer International Publishing, 2014.

51. J. Felsenstein. Phylip - phylogeny inference package (version 3.2). Cladistics, 5:164–166, 1989.
52. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann

Publishers Inc., 2003.
53. J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computational tasks: A survey. Computing

in Science and Engineering, 10(3):11–21, 2008.
54. J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g: a computation management agent

for multi-institutional grids. In 10th IEEE Int. Symposium on High Performance Distributed Computing,
pages 55–63, 2001.

55. L. M. R. Gadelha Jr., M. Wilde, M. Mattoso, and I. Foster. Provenance traces of the swift parallel scripting
system. In EDBT/ICDT Workshops, pages 325–326, 2013.

56. K. Ganga and S. Karthik. A fault tolerent approach in scientific workflow systems based on cloud computing.
In Int. Conf. on Pattern Recognition, Informatics and Mobile Engineering (PRIME), pages 387–390, 2013.

57. D. Garijo, P. Alper, K. Belhajjame, Ó. Corcho, Y. Gil, and C. A. Goble. Common motifs in scientific
workflows: An empirical analysis. Future Generation Computer Systems, 36:338–351, 2014.

58. S. Gesing, J. Krüger, R. Grunzke, L. de la Garza, S. Herres-Pawlis, and A. Hoffmann. Molecular simu-
lation grid (mosgrid): A science gateway tailored to the molecular simulation community. In P. Kacsuk,
editor, Science Gateways for Distributed Computing Infrastructures, pages 151–165. Springer International
Publishing, 2014.

59. Y. Gil, J. Kim, V. Ratnakar, and E. Deelman. Wings for pegasus: A semantic approach to creating very
large scientific workflows. In OWLED*06 Workshop on OWL: Experiences and Directions, volume 216,
2006.

60. J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8):1–13,
2010.

61. J. Goecks, A. Nekrutenko, and J. Taylor. Lessons learned from galaxy, a web-based platform for high-
throughput genomic analyses. In IEEE Int. Conf. on E-Science, e-Science, pages 1–6, 2012.

62. J. A. R. Gonçalves, D. Oliveira, K. Ocaña, E. Ogasawara, and M. Mattoso. Using domain-specific data to
enhance scientific workflow steering queries. In Provenance and Annotation of Data and Processes, volume
7525, pages 152–167. 2012.

63. K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter. Conventional workflow technology
for scientific simulation. In Guide to e-Science, pages 323–352. 2011.

64. T. Gottdank. Introduction to the ws-pgrade/guse science gateway framework. In P. Kacsuk, editor, Science
Gateways for Distributed Computing Infrastructures, pages 19–32. Springer International Publishing, 2014.

65. Y. Gu, C. Wu, X. Liu, and D. Yu. Distributed throughput optimization for large-scale scientific workflows
under fault-tolerance constraint. Journal of Grid Computing, 11(3):361–379, 2013.

66. D. Gunter, E. Deelman, T. Samak, C. Brooks, M. Goode, G. Juve, G. Mehta, P. Moraes, F. Silva, M. Swany,
and K. Vahi. Online workflow management and performance analysis with stampede. In 7th Int. Conf. on
Network and Service Management (CNSM), pages 1–10, 2011.

67. M. Hategan, J. Wozniak, and K. Maheshwari. Coasters: Uniform resource provisioning and access for clouds
and grids. In 4th IEEE Int. Conf. on Utility and Cloud Computing, pages 114–121, 2011.

68. F. Hernández and T. Fahringer. Towards workflow sharing and reusein the askalon grid environment. In
Proceedings of Cracow Grid Workshops (CGW), page 111–119, 2008.



A Survey of Data-Intensive Scientific Workflow Management 41

69. S. Holl, O. Zimmermann, and M. Hofmann-Apitius. A new optimization phase for scientific workflow
management systems. In 8th IEEE Int. Conf. on E-Science, pages 1–8, 2012.

70. F. Horta, J. Dias, K. Ocana, D. de Oliveira, E. Ogasawara, and M. Mattoso. Abstract: Using provenance
to visualize data from large-scale experiments. In Supercomputing (SC): High Performance Computing,
Networking Storage and Analysis, pages 1418–1419, 2012.

71. E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execution in grids. Software -
Practice and Experience (SPE), 34(7):631–651, 2004.

72. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel programs from
sequential building blocks. In 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems, pages
59–72, 2007.

73. K. Jackson. OpenStack Cloud Computing Cookbook. Packt Publishing, 2012.
74. J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity, E. Deelman, C. Kesselman, G. Singh,

M.-H. Su, T. A. Prince, and R. Williams. Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. Int. Journal of Computational Science and Engineering, 4(2):73–87, 2009.

75. G. Juve and E. Deelman. Scientific workflows in the cloud. In Grids, Clouds and Virtualization, pages
71–91. Springer, 2011.

76. G. Juve and E. Deelman. Wrangler: Virtual cluster provisioning for the cloud. In 20th Int. Symposium on
High Performance Distributed Computing, pages 277–278, 2011.

77. P. Kacsuk. P-grade portal family for grid infrastructures. Concurrency and Computation: Practice and
Experience, 23(3):235–245, 2011.

78. P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K. Karoczkai, and I. Marton. Ws-pgrade/guse
generic dci gateway framework for a large variety of user communities. Journal of Grid Computing,
10(4):601–630, 2012.

79. K. Karuna, N. Mangala, C. Janaki, S. Shashi, and C. Subrata. Galaxy workflow integration on garuda grid.
In IEEE Int. Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
pages 194–196, 2012.

80. G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In ACM/IEEE
Conf. on Supercomputing, pages 1–13, 1998.

81. J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar. Provenance trails in the wings-pegasus system.
Concurrency and Computation: Practice and Experience, 20:587–597, 2008.

82. T. Kiss, P. Kacsuk, R. Lovas, Á. Balaskó, A. Spinuso, M. Atkinson, D. D’Agostino, E. Danovaro, and
M. Schiffers. Ws-pgrade/guse in european projects. In P. Kacsuk, editor, Science Gateways for Distributed
Computing Infrastructures, pages 235–254. Springer International Publishing, 2014.

83. T. Kiss, P. Kacsuk, E. Takács, Á. Szabó, P. Tihanyi, and S. Taylor. Commercial use of ws-pgrade/guse.
In P. Kacsuk, editor, Science Gateways for Distributed Computing Infrastructures, pages 271–286. Springer
International Publishing, 2014.

84. Ç. Kocair, C. Şener, and A. Akkaya. Statistical seismology science gateway. In P. Kacsuk, editor, Sci-
ence Gateways for Distributed Computing Infrastructures, pages 167–180. Springer International Publishing,
2014.

85. I. Korf, M. Yandell, and J. A. Bedell. BLAST - an essential guide to the basic local alignment search tool.
O’Reilly, 2003.

86. M. Kozlovszky, K. Karóczkai, I. Márton, P. Kacsuk, and T. Gottdank. Dci bridge: Executing ws-pgrade
workflows in distributed computing infrastructures. In P. Kacsuk, editor, Science Gateways for Distributed
Computing Infrastructures, pages 51–67. Springer International Publishing, 2014.

87. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor-a hunter of idle workstations. In 8th Int. Conf. on
Distributed Computing Systems, pages 104–111, 1988.

88. B. Liu, B. Sotomayor, R. Madduri, K. Chard, and I. Foster. Deploying bioinformatics workflows on clouds
with galaxy and globus provision. In Supercomputing (SC) Companion: High Performance Computing,
Networking, Storage and Analysis (SCC), pages 1087–1095, 2012.

89. J. Liu, V. Silva, E. Pacitti, P. Valduriez, and M. Mattoso. Scientific workflow partitioning in multisite cloud.
In Parallel Processing Workshops - Euro-Par 2014 Int. Workshops, pages 105–116, 2014.

90. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the kepler system. Concurrency and Computation: Practice and Ex-
perience, 18(10):1039–1065, 2006.

91. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic matching and scheduling
of a class of independent tasks onto heterogeneous computing systems. In 8th Heterogeneous Computing
Workshop, pages 30–, 1999.

92. M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Cost- and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. In Supercomputing (SC) Conf. on High Performance Computing
Networking, Storage and Analysis, pages 1–11, 2012.

93. M. Mattoso, J. Dias, K. A. Ocaña, E. Ogasawara, F. Costa, F. Horta, V. Silva, and D. de Oliveira. Dynamic
steering of HPC scientific workflows: A survey. Future Generation Computer Systems, (0), 2014.



42 Ji Liu et al.

94. M. Mattoso, C. Werner, G. Travassos, V. Braganholo, E. Ogasawara, D. Oliveira, S. Cruz, W. Martinho,
and L. Murta. Towards supporting the life cycle of large scale scientific experiments. In Int. J. Business
Process Integration and Management, volume 5, pages 79–82. 2010.

95. D. S. Milojicic, I. M. Llorente, and R. S. Montero. Opennebula: A cloud management tool. IEEE Internet
Computing, 15(2):11–14, 2011.

96. P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and C. Goble.
Taverna, reloaded. In Int. Conf. on Scientific and Statistical Database Management, pages 471–481, 2010.

97. A. Nagavaram, G. Agrawal, M. A. Freitas, K. H. Telu, G. Mehta, R. G. Mayani, and E. Deelman. A
cloud-based dynamic workflow for mass spectrometry data analysis. In IEEE 7th Int. Conf. on E-Science
(e-Science), pages 47–54, 2011.

98. D. Nguyen and N. Thoai. Ebc: Application-level migration on multi-site cloud. In Int. Conf. on Systems
and Informatics (ICSAI), pages 876–880, 2012.

99. K. A. Ocaña, D. Oliveira, E. Ogasawara, A. M. Dávila, A. A. Lima, and M. Mattoso. Sciphy: A cloud-based
workflow for phylogenetic analysis of drug targets in protozoan genomes. In Advances in Bioinformatics
and Computational Biology, volume 6832, pages 66–70. 2011.

100. K. A. C. S. Ocaña, D. Oliveira, F. Horta, J. Dias, E. Ogasawara, and M. Mattoso. Exploring molecular
evolution reconstruction using a parallel cloud based scientific workflow. In Advances in Bioinformatics and
Computational Biology, volume 7409, pages 179–191. 2012.

101. E. S. Ogasawara, D. de Oliveira, P. Valduriez, J. Dias, F. Porto, and M. Mattoso. An algebraic approach for
data-centric scientific workflows. Proceedings of the VLDB Endowment (PVLDB), 4(12):1328–1339, 2011.

102. E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. de Oliveira, F. Porto, P. Valduriez, and M. Mattoso.
Chiron: a parallel engine for algebraic scientific workflows. Concurrency and Computation: Practice and
Experience, 25(16):2327–2341, 2013.

103. T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M. Greenwood, D. Hull, R. Stevens, D. Turi, and J. Zhao.
Taverna/mygrid: Aligning a workflow system with the life sciences community. In Workflows for e-Science,
pages 300–319. 2007.

104. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver, K. Glover, M. R.
Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

105. S. Olabarriaga, A. Benabdelkader, M. Caan, M. Jaghoori, J. Krüger, L. de la Garza, C. Mohr, B. Schu-
bert, A. Danezi, and T. Kiss. Ws-pgrade/guse-based science gateways in teaching. In P. Kacsuk, editor,
Science Gateways for Distributed Computing Infrastructures, pages 223–234. Springer International Pub-
lishing, 2014.

106. D. D. Oliveira, K. A. C. S. Ocaña, E. Ogasawara, J. Dias, J. Gonçalves, F. Baião, and M. Mattoso. Per-
formance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows. Future
Generation Computer Systems, 29(7):1816–1825, 2013.

107. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pages 1099–1110, 2008.

108. S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer. Groudsim: An event-based simulation frame-
work for computational grids and clouds. In European Conf. on Parallel Processing (Euro-Par) Workshops,
pages 305–313, 2011.

109. S. Ostermann, R. Prodan, and T. Fahringer. Extending grids with cloud resource management for scientific
computing. In 10th IEEE/ACM Int. Conf. on Grid Computing, pages 42–49, 2009.

110. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Springer, 2011.
111. E. Pacitti, R. Akbarinia, and M. E. Dick. P2P Techniques for Decentralized Applications. Morgan &

Claypool Publishers, 2012.
112. C. Pautasso and G. Alonso. Parallel computing patterns for grid workflows. In Workshop on Workflows in

Support of Large-Scale Science, pages 1–10, 2006.
113. K. Plankensteiner, R. Prodan, M. Janetschek, T. Fahringer, J. Montagnat, D. Rogers, I. Harvey, I. Taylor,

Á. Balaskó, and P. Kacsuk. Fine-grain interoperability of scientific workflows in distributed computing
infrastructures. Journal of Grid Computing, 11(3):429–455, 2013.

114. R. Prodan. Online analysis and runtime steering of dynamic workflows in the askalon grid environment. In
7th IEEE Int. Symposium on Cluster Computing and the Grid (CCGRID), pages 389–400, 2007.

115. I. Raicu, Y. Zhao, I. T. Foster, and A. S. Szalay. Data diffusion: Dynamic resource provision and data-aware
scheduling for data intensive applications. The Computing Research Repository (CoRR), abs/0808.3535,
2008.

116. A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi. Scheduling data-intensiveworkflows onto storage-constrained distributed resources. In 7th IEEE
Int. Symposium on Cluster Computing and the Grid (CCGRID), pages 401–409, 2007.

117. C. J. Reynolds, S. C. Winter, G. Terstyánszky, T. Kiss, P. Greenwell, S. Acs, and P. Kacsuk. Scientific
workflow makespan reduction through cloud augmented desktop grids. In IEEE 3rd International Conference
on Cloud Computing Technology and Science, pages 18–23, 2011.



A Survey of Data-Intensive Scientific Workflow Management 43

118. T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, G. Mehta, F. Silva, and K. Vahi. Online fault
and anomaly detection for large-scale scientific workflows. In 13th IEEE Int. Conf. on High Performance
Computing and Communications (HPCC), pages 373–381, 2011.

119. E. Sciacca, F. Vitello, U. Becciani, A. Costa, and P. Massimino. Visivo gateway and visivo mobile for the
astrophysics community. In P. Kacsuk, editor, Science Gateways for Distributed Computing Infrastructures,
pages 181–194. Springer International Publishing, 2014.

120. S. Shahand, M. Jaghoori, A. Benabdelkader, J. Font-Calvo, J. Huguet, M. Caan, A. van Kampen, and
S. Olabarriaga. Computational neuroscience gateway: A science gateway based on the ws-pgrade/guse. In
P. Kacsuk, editor, Science Gateways for Distributed Computing Infrastructures, pages 139–149. Springer
International Publishing, 2014.

121. S. Shankar and D. J. DeWitt. Data driven workflow planning in cluster management systems. In 16th
International Symposium on High-Performance Distributed Computing (HPDC-16), pages 127–136, 2007.

122. G. Singh, M.-H. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S. Katz, and G. Mehta. Workflow task
clustering for best effort systems with pegasus. In 15th ACM Mardi Gras Conf.: From Lightweight Mash-
ups to Lambda Grids: Understanding the Spectrum of Distributed Computing Requirements, Applications,
Tools, Infrastructures, Interoperability, and the Incremental Adoption of Key Capabilities, pages 9:1–9:8,
2008.

123. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete Reference, Volume
1: The MPI Core. MIT Press, 1998.

124. M. Tanaka and O. Tatebe. Workflow scheduling to minimize data movement using multi-constraint graph
partitioning. In 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pages
65–72, 2012.

125. I. Taylor, M. Shields, I. Wang, and A. Harrison. The triana workflow environment: Architecture and appli-
cations. In Workflows for e-Science, pages 320–339. Springer, 2007.

126. G. Terstyánszky, T. Kukla, T. Kiss, P. Kacsuk, Á. Balaskó, and Z. Farkas. Enabling scientific workflow
sharing through coarse-grained interoperability. Future Generation Computer Systems, 37:46–59, 2014.

127. G. Terstyánszky, E. Michniak, T. Kiss, and Á. Balaskó. Sharing science gateway artefacts through reposi-
tories. In P. Kacsuk, editor, Science Gateways for Distributed Computing Infrastructures, pages 123–135.
Springer International Publishing, 2014.

128. H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-complexity task scheduling for hetero-
geneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, 2002.

129. W. M. P. v. d. Aalst, M. Weske, and G. Wirtz. Advanced topics in workflow management: Issues, require-
ments, and solutions. Transactions of the SDPS, 7(3):49–77, 2003.

130. K. Vahi, I. Harvey, T. Samak, D. Gunter, K. Evans, D. Rogers, I. Taylor, M. Goode, F. Silva, E. Al-
Shakarchi, G. Mehta, A. Jones, and E. Deelman. A general approach to real-time workflow monitoring. In
Supercomputing (SC) Companion: High Performance Computing, Networking, Storage and Analysis (SCC),
pages 108–118, 2012.

131. J. Wang and I. Altintas. Early cloud experiences with the kepler scientific workflow system. In Int. Conf.
on Computational Science (ICCS), volume 9, pages 1630–1634, 2012.

132. J. Wang, D. Crawl, and I. Altintas. Kepler + hadoop: A general architecture facilitating data-intensive
applications in scientific workflow systems. In 4th Workshop on Workflows in Support of Large-Scale Science,
pages 12:1–12:8, 2009.

133. T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
134. P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour. Service Level Agreements for Cloud Computing.

Springer, 2011.
135. M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster. Swift: A language for distributed

parallel scripting. Parallel Computing, 37(9):633–652, 2011.
136. K. Wolstencroft, R. Haines, D. Fellows, A. R. Williams, D. Withers, S. Owen, S. Soiland-Reyes, I. Dunlop,

A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. N. de la Hidalga, M. P. B.
Vargas, S. Sufi, and C. A. Goble. The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud. Nucleic Acids Research, 41(Webserver-Issue):557–561, 2013.

137. J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster.
Turbine: A distributed-memory dataflow engine for extreme-scale many-task applications. In 1st ACM
SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pages 5:1–5:12, 2012.

138. U. Yildiz, A. Guabtni, and A. H. H. Ngu. Business versus scientific workflows: A comparative study. In
IEEE Congress on Services, Part I, Services I, pages 340–343, 2009.

139. J. Yu and R. Buyya. A taxonomy of workflow management systems for grid computing. Journal of Grid
Computing, 3:171–200, 2005.

140. Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow applications. In IEEE Int. Parallel
and Distributed Processing Symposium (IPDPS), pages 1–8, 2007.

141. D. Yuan, Y. Yang, X. Liu, and J. Chen. A cost-effective strategy for intermediate data storage in scientific
cloud workflow systems. In IEEE Int. Symposium on Parallel Distributed Processing (IPDPS), pages 1–12,
2010.



44 Ji Liu et al.

142. H. Zhang, S. Soiland-Reyes, and C. A. Goble. Taverna mobile: Taverna workflows on android. The Computing
Research Repository (CoRR), abs/1309.2787, 2013.

143. Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research challenges. Journal
of Internet Services and Applications, 1:7–18, 2010.

144. Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and
M. Wilde. Swift: Fast, reliable, loosely coupled parallel computation. In IEEE Int. Conf. on Services
Computing - Workshops (SCW), pages 199–206, 2007.

145. Y. Zhao, I. Raicu, and I. T. Foster. Scientific workflow systems for 21st century, new bottle or new wine?
In IEEE Congress on Services, Part I, Services I, pages 467–471, 2008.


	GRID-D-14-00067_Part2
	GRID-D-14-00067_Part3
	GRID-D-14-00067_Part4
	GRID-D-14-00067_Part5
	GRID-D-14-00067_Part6
	GRID-D-14-00067_Part7
	GRID-D-14-00067_Part8
	GRID-D-14-00067_Part9

