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Abstract—This paper presents a first part, Part-I of
two, of a complete exploration and navigation method-
ology that enables a robot to safely navigate in an un-
known environment. Reactive sensor-based navigation
tasks and control laws are derived from the interaction
between the robot and its workspace. The perception is
performed by a 2-D laser range finder mounted on the
robot. Reactive navigation tasks are defined based on
the task function framework [18] in a such a way that
the robot can explore an unknown indoor environment
without any reference trajectory computation. Obsta-
cle avoidance is ensured as a straight property implicit
to the definition of the navigation tasks. The stability
and robustness of the derived control laws with respect
to the model errors are analyzed. The experimental
results validate the proposed methodology.

I. Introduction

The navigation of an autonomous mobile robot in an
unknown environment requires some essential capabil-
ities such as the perception of its environment and the
capability of moving in a safe way, that is avoiding
eventual obstacles. Some classes of solutions to this
safe navigation problem are proposed in the literature
distributed between path planning and motion control.

Classically, path planning methods address the ex-
istence and the generation of feasible collision-free tra-
jectories between the initial and the goal positions in
the robot workspace. A known map of the environ-
ment is required a priori [1], [11], [8]. The execution
of such feasible collision-free trajectories considering
the uncertainties concerns the motion control issues.
In [10] the aspects of trajectory planning and motion
control are treated in a common framework. A motion
planner is presented in [7] where sensor-based actions
are developed based on a task-potential field approach.

Feedback controllers have been designed in order to
track the planned trajectory (or stabilizing on it) and
a great amount of control methodologies has been pro-
posed to improve results in terms of stability and ro-
bustness and to take into account nonholonomy [19],
[20], [3], [23], [22] and references therein. A general-
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ized path tracking algorithm for nonholonomic mobile
robots using transverse periodic functions is presented
in [13]. In [6] feedback controller are derived to per-
form the trajectory tracking in a bounded error frame-
work. At this level, there is no interaction with the en-
vironment during the robot motion and the feedback
is performed using the proprioceptive (mainly, odom-
etry) data.

In more realistic approaches, the perception of the
environment by the robot’s sensors is used at the mo-
tion control level, in order to control the interaction
between the robot and its local environment. In such
a way the robot motion is improved toward a safe nav-
igation [9], [17], [4], [14]. In [21] the robot motion
control is realized by combining visual servoing based
tasks and repulsive potential fields associated to the
obstacles in the environment.

In this context, we propose a new method lying on
a robust sensor-based control approach which allows
a complete exploration and mapping of an unknown
indoor corridor-like environment. The setup is a mo-
bile robot equipped with a laser scanning device which
provides a planar cross section of the environment at a
rate of 80ms per revolution. Our exploration method
is purely reactive (i.e. does not require a trajectory
planning stage ) and guarantees a safe navigation in
the free space of the environment. Moreover, as a
straight property of the closed loop sensor-based con-
trol, we can guarantee that the robot moves during
the exploration task with a bounded error which does
not depend on the covered distance. The presenta-
tion of this methodology is structured in two comple-
mentary parts, Part-I and Part-II. In the Part-I, we
introduce the navigation model and the sensor-based
control framework lying on the range data provided
by the laser scanning device. Three reactive naviga-
tion tasks and control laws are designed so that the
robot is constrained to move on the Voronöı diagram
of the environment without constructing it explicitly.
It is known that a safe navigation requires a precise lo-
calization of the robot with respect to its environment
and a well-adapted representation of the environment,
these issues will be addressed in a second paper (Part-
II - Exploration, self-localization and map building). In
this last part, we show the improvements obtained by
embedding the problem of Simultaneous Localization



and Mapping (SLAM) in the proposed sensor-based
navigation framework. We also detail the modeling
aspects of the environment based on an hybrid repre-
sentation: metric and topological, which are simulta-
neously and incrementally constructed during the ex-
ploration of the environment. The robot is precisely
localized in a set of metric maps associated to local
well-defined places in the environment. A topological
description of the environment allows a coarse local-
ization when the robot navigates between two places.

The present paper addresses the Part-I of our sensor-
based navigation methodology, and it is organized as
follows. In the section II, we propose a model of the
indoor environment well-adapted to support safe nav-
igation tasks. This model, based on the Voronöı di-
agram, captures both the complete topology of the
environment and the free space where the robot can
navigate. From this model, we define three elementary
navigation tasks : reach the nearest Voronöı branch,
move along a branch and stop on a bifurcation point
1.

The section III deals with sensor-based control
framework applied to our laser range finder sensor.
After some general recalls on the sensor-based control
framework, we derive a closed analytical form of the
Jacobian of the sensor signal so-called Interaction Ma-
trix which relates the variation of the laser readings to
the motion of the sensor. Finally, thanks to the task
functions approach introduced by Samson et al [18],
we show, in the section IV, it is possible to express
the navigation tasks in terms of regulating to zero an
output function only depending on the laser readings.
A closed loop control scheme allows us to perform the
navigation tasks robustly. We present in section V a
stability analysis of the derived control laws as well
as the robustness with regard to modeling errors and
noisy measurement.

The experimental results of the control methodology
applied to the robot navigation in indoor environment
are presented in section VI. In section VII, we discuss
some perspectives for future issues.

II. Navigation-based Modeling of an Indoor

Environment

We are interested in controlling the motion of the
robot during its navigation in an indoor environment,
so that the obstacles are avoided and the robot can ac-
cess the whole free space during its exploration task.
Already used by different authors [12], [15], [2], the
Voronöı diagram is particularly well adapted to sup-
port navigation tasks.

The Voronöı diagram (VD), figure (1), (often called
median axis or skeleton) is defined as the center of

1Some authors use the terms “meeting point” or “meet point”

Fig. 1. An example of a simplified Voronöı diagram of an
indoor environment. It is constituted by branches connected by
bifurcation points.

the minimal balls (circles in 2D space) tangent to the
obstacles. It defines a set of trajectories described by a
graph where the branches are the locus of the centers
of the minimal circles with two tangency points to the
obstacles and the bifurcation points corresponds to the
center of the minimal circles with more than two points
of tangency. The VD satisfies the following properties:

• to be locally defined for each current location,
• to belong to the free space,
• to allow a complete exploration of the environment,
• to capture topology and accessibility of the map for
a robot with a given size.

In terms of navigation tasks, moving on a Voronöı
branch can be viewed as a natural way to join two
different places in an indoor environment. So, a com-
plete exploration of an indoor environment can be per-
formed by forcing the robot to move on the VD using
the three following navigation tasks :

• e1, reach the nearest Voronöı branch from any point
of the free space and align the robot longitudinal axis
on it,
• e2, move ahead along a Voronöı branch,
• e3, stop the robot on a Voronöı bifurcation point.

In the next section, we propose to implement such
navigation tasks using a sensor-based control ap-
proach. We show that it is possible to perfectly achieve
these tasks without building the VD explicitly. The
problem of constructing a consistent model of the en-
vironment well-adapted to the execution of navigation
tasks is addressed in Part-II of this work (submitted
to publication), where a topological graph is gener-
ated by connecting the Voronöı bifurcation points of
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Fig. 2. The navigation tasks. e1, e2 and e3 are respectively
the tasks of stabilization on a branch, stabilization and motion
along the branch and stabilization on a bifurcation point.

the environment found during the exploration task.

III. The sensor-based control framework

Here, we just present a brief overview of the gen-
eral sensor-based control framework developed at In-
ria during the 90’s. This framework can be applied for
a large class of exteroceptive sensors including vision,
force and range sensors. More details can be found in
[18], [5], [16].

Let us consider a sensor S rigidly mounted on the
robot that delivers a signal s. This signal is assumed
only dependent of the relative pose r̄ (position + atti-
tude) between the sensor’s frame and a reference frame
attached to the environment (s: C → R , where C is
the configuration space for the frame linked to the sen-
sor). This means that if the sensor is motionless with
respect to the environment, then the signal remains
constant. This assumption is valid in practice for a
large class of sensors such as force, vision (geometric
features) or range sensors. For an indoor mobile robot
moving on flat floors, the configuration space C can be
assimilated to the Special Euclidean group SE2 which
is the group isomorphic to the group of homogeneous
3X3 matrices. r̄ is an element of SE2 which can be
parameterized by (x, y, θ). This hypothesis defines a
local diffeomorphism between the configuration space
SE2 and the output space of the sensor S.

Moreover, se2, the Lie Algebra of SE2 (which is its
tangent space at the identity), can be assimilated to
the space of screws. The differential of s is a linear
mapping from se2 to R, it can be represented as a
screw product :

ṡ =
∂s

∂r̄
˙̄r =

∂s

∂r̄
TSE = H • TSE (1)

where TSE is the velocity screw between the sensor and

the environment frames. • denotes the screw product.
The matrix representation, called Interaction Ma-

trix, is the bilinear form associated to H, given by the
relation :

ṡ = LT .TSE with LT = H.

(

0 I3
I3 0

)

(2)
In a rough manner, LT can be viewed as a Jacobian

relating the variation of the elementary sensor output
s to the relative displacement between the sensor and
the environment.
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Fig. 3. Cross section of the environment represented in the
laser frame. Top: Polar representation, Bottom: Cartesian
representation

Let us now consider the application of this formal-
ism to the case of a range sensor. The interaction with



the environment is performed by a 2-D laser scanning
device which provides a planar cross section of the en-
vironment, shown in figure (3), considering the polar
representation (figure 3-top), the scan is represented
by a set of distances and angles,

S = {δ(θ0), . . . , δ(θi), . . . , δ(θ2π)} (3)

were δi = δ(θi) is the distance from the origin of the
controlled frame (C), figure (4), to the nearest object
Oi at the angular position θi, so we can choose as an
elementary sensor signal si = δi.
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Fig. 4. The mobile robot R carries a 2-D laser that measures
the distances from the origin of the frame C to the environ-
ment. The position of the frame C in the reference frame W is
controlled by navigation control laws and then it is called “con-
trolled frame”. It’s shown in the figure the distances δ(θi), δ(θj)
from the controlled frame C to the objects Oi and Oj , the robot’s
orientation in the world frame W is α and the orientation of
the controlled frame C in W is β + α.

For simplicity, we suppose, in a first analysis, that
the laser and the controlled frames are identical. Let
us consider that the controlled frame C is moving with
a velocity screw ~τC = ( ~VC , ~ΩC) where ~VC and ~ΩC are
respectively the translational and rotational velocities
expressed in the frame C. Then, the variation of the
sensor signal can be expressed, after some simple kine-
matic computation (see [16] for details on the deriva-
tion of this equation) :

δ̇i = −
1

< ~nO · ~nθi >
[< ~nO. ~VC > +

δi < ( ~nO × ~nθi) · ΩC >] (4)

where < ., . > is the usual scalar product, ~nθi is the
unit vector in the direction of measurement and ~nO is
the unit vector normal to the surface of the object at
the impact point of the laser beam. The equation (4)
can be computed for all the points of impact in S and
constitutes the model of the interaction between the
controlled frame C and the environment.

Now, let us consider the peculiar point of impact
(δi, θi) such that δi is orthogonal to the surface of the
object Oi (figure (4)) so that,

~nO = − ~nθi = [− cos(θi) − sin(θi)] (5)

¿From the interaction model in equation (4), the vari-
ation δ̇i can be evaluated as:

δ̇i =
[

− cos θi − sin θi 0
]





Vx
Vy
Ω



 (6)

where −π < θi ≤ π.

The navigation functions

Since the interaction screw defines a local mapping
between the configuration space and the sensor output
space, it becomes possible to relate the specification of
a task in the configuration space to its specification in
the sensor output space. Often, at the end-user level, a
natural way to specify a local sensor-based task will be
to define it in terms of geometrical constraints between
the controlled sensor frame and a reference frame at-
tached to a particular part of the environment. Using
such specification rules, the navigation task e1, e2 and
e3 previously defined, can be expressed as constraints
between the controlled sensor frame and a frame lo-
cally linked to the Voronöı diagram :

• e1, reach the nearest Voronöı branch from any point
of the free space is equivalent to constrain the ori-
gin of the controlled frame to converge to the near-
est Voronöı branch and to align the x-axis with the
Voronöı branch.
• e2, move ahead along a Voronöı branch is equivalent
to constrain the x-axis of the controlled frame to slide
on the Voronöı branch.
• e3, stop the robot on a Voronöı bifurcation point
is equivalent to constrain the origin of the controlled
frame to be stabilized on a Voronöı bifurcation point.

The next step will be to translate such tasks in terms
of constraints on the sensor output signals shown in
the figure 3-top. Let us consider the set of the min-
imal distances between the sensor and the obstacles
modeled as a set of polygons:

Imin = {(δ, θ)0, . . . , (δ, θ)i, . . . , (δ, θ)n} (7)

each (δ, θ)i is a local minima of each piecewise con-
tinuous curve of the polar signature shown in the fig-
ure 3-top, where δ > 0 and −π ≤ θ < π. The set
Imin can be either extracted from S by performing a
Hough transform or using a polygonal approximation
algorithm.



The navigation tasks are defined based on the fol-
lowing propositions:

Proposition 1: If the origin of the controlled frame
is on a branch, then there exists two couples
{(δ, θ)i, (δ, θ)j} ∈ Imin such that,

{

δi = δj = min(δm)
θi 6= θj

(8)

with δm > 0, m ∈ {1, . . . , n}.
Proposition 2: The x-axis of the controlled frame is

collinear to the local direction of the Voronöı branch
if, and only if, θi = −θj .

Proposition 3: If the origin of the controlled frame
is on a bifurcation point then there exists at least three
couples {(δ, θ)i, (δ, θ)j , (δ, θ)k} ∈ Imin such that,

{

δi = δj = δk = min(δm)
θi 6= θj 6= θk

(9)

with δm > 0, m ∈ {1, . . . , n}.
Based on the task function approach introduced by

Samson [18], we can define a robot task as a regu-
lation of an output function e(r̄, t) directly expressed
in the sensor output space S . We consider that the
task is perfectly achieved during the time interval [0, T ]
iff : e(r̄, t) = 0, ∀t ∈ [0, T ]. The Jacobian LT = ∂e

∂r̄

fully characterizes the local mapping between the sen-
sor space S and the configuration space C and the
rank(LT ) determines the dimension of the subspace
of C controlled by the task function.

Lying on the propositions above, we can now design
the navigation functions.

Navigation function e1: Reach a Voronöı branch

Based on the propositions 1 and 2 the navigation
function e1 is defined as:

e1(r) =

(

δ1 − δ2
θ1+θ2

2

)

(10)

where the two laser measurements (δ1, θ1) and (δ2, θ2)
are extracted from the set of minimal distances Imin

so that the distances δ1 and δ2 are smaller than all
other distances δk in Imin, k 6= 1 and k 6= 2.

The variation of e1 is obtained taking the derivative
of (10) and from the interaction model described in
the equation (6):

ė1 = LT
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Ω



 (11)

where :

LT =

[

(c(θ2)− c(θ1)) (s(θ2)− s(θ1)) 0
0 0 −1

]

(12)

with c(θi) = cos(θi) and s(θi) = sin(θi). LT is the
interaction matrix.

Let us now consider the case where the task e1 is
perfectly achieved (i.e. e1 = 0 → {δ1 = δ2, θ1 =
−θ2 = θ}), then ė1 = 0 and the equation (11) yields :

0 = LT(e1=0)





Vx
Vy
Ω



 = LT(e1=0)τ
? (13)

where:

LT(e1=0) =

[

0 2sin(θ) 0
0 0 −1

]

(14)

The dimension of the space spanned by the interaction
matrix (14) is two, Rank(LT(e1=0)) = 2 and its null

space is spanned by,

Ker(LT(e1=0)) =
[

1 0 0
]

(15)

That means that only 2 degrees of freedom are con-
strained by the execution of the task e1. There exist
then a motion of the controlled frame, τ ? 6= 0 in (13),
not constrained by the task e1, that belongs to the null
space of LT(e1=0). Equation (15) indicates that such a

motion which does not affect the realization of the task
e1, corresponds to the displacement along the x-axis
of the controlled frame. This unconstrained degree of
freedom will be used by a secondary task enabling the
displacement along the Voronöı branch.

Navigation function e2: Move ahead along the Voronöı
branch

A second task e2 is then designed that corresponds
to a motion of the controlled frame onto the null space
of LT . e2 is designed so that the robot moves with a
given constant velocity v along the Voronöı diagram.

Let us consider the following motion constraint,

F = X(t)−X0 − Vd.t = 0 (16)

that consists in a movement with a constant veloc-
ity Vd = [vcos(θc) vsin(θc)] of the controlled frame
C (figure 4) along the VD, where X = [x y]T is the
position of the controlled frame w.r.t. the reference
frame. The second task is then defined as a cost func-
tion e2 = 1

2F
TF to be minimized under the constraint

that e1 = 0. The gradient of e2, expressed in the ref-
erence frame, is given by Gs = ∂e2

∂X
= F and it is

projected into the controlled frame by,

gs = RT
WLGs (17)

where RWL is the rotation matrix between the con-
trolled frame C and the reference frame W as shown
in the figure (4).



The velocity Vd = [vdx vdy]
T is smoothed by a linear

filter such that,

V
′

d = α1(X(t)−Xd(t)) + Vd (18)

where Xd(t) is represented in the discrete version as,

Xd(k + 1) = (1− β1)Xd(k) + β1X(k) + V
′

d (k)∆t (19)

α1 > 0 and β1 > 0 are tuning parameters.

We use the formalism of the redundant tasks de-
scribed in [18] to consider the tasks e1, defined in the
equation (10), and e2 together in a global task ebranch:

ebranch = W+Ce1 + αt(I3 −W+W )gTs (20)

where:

- ebranch is an orthogonal combination of e1 and e2.
- αt is a positive weight tuning between the tasks e1
and e2; (αt ≤ 1).
- W is a (m× n) full-rank matrix, so that Ker(W ) =
Ker(LT ), m is the dimension of e1 and n the number
of degrees of freedom of the controlled frame.
- (I3 −W+W ) is the orthogonal projection operator
onto the null space of W , I3 represents the (3 × 3)
identity matrix.
- W+ pseudo-inverse of W .
- C is a combination matrix, so that with CLTW+ >

0 the regularity of e1 is guaranteed. A good choice is

C = WLT
+

, [18].
- LT is the interaction matrix described in the equa-
tion (12).
- gs is defined in the equation (17).

Navigation function e3: Stop on a Voronöı bifurcation
point

Based on the propositions 2 and 3, the navigation
function e3 is defined as:

e3(r) =





δ1 − δ2
δ1 − δ3
θ1+θ2

2



 (21)

where {(δ, θ)1, (δ, θ)2, (δ, θ)3} ∈ Imin so that δ1, δ2 and
δ3 are smaller than all other distances δk in Imin, k 6∈
{1, 2, 3}.

Applying the interaction model from equation (6)
yields :

ė3 = LT





Vx
Vy
Ω



 (22)

where :

LT =





(c(θ2)− c(θ1)) (s(θ2)− s(θ1)) 0
(c(θ3)− c(θ1)) (s(θ3)− s(θ1)) 0

0 0 −1



 (23)

with c(θi) = cos(θi) and s(θi) = sin(θi).

Considering the null space of the matrix LT :

Ker(LT ) = {∅} (24)

The stabilization task e3 constraints the whole set of
the robot configurations and there is no degree of free-
dom to be exploited in a secondary task. Then from
equation (20) with gTs = 0,

eBP = W+Ce3 (25)

- W is chosen W = I3, so that Ker(W ) = Ker(LT ).
- C = WL−T is the combination matrix.
and,

eBP = L−T e3 (26)

IV. The Control Laws

This section is dedicated to the design of the feed-
back control laws able to realize the navigation func-
tions described in the section III.

Let e be a generic form of a navigation task ( i.e.
ebranch in (20), or eBP in (26)). Computing the deriva-
tive of e which is r and time dependent, yields :

ė =
∂e

∂r
τC +

∂e

∂t
(27)

Assuming an exponential decay ė = −λe of the task
function with a convergence rate tuned by the gain λ,
the desired velocity screw of the controlled frame is
given by,

τC =

(

∂e

∂r

)−1

(−λe− ∂e

∂t
) (28)

Let us now apply equation (28) to the task function
ebranch. From the equation (20), we get :

∂ebranch

∂t
= W+C

∂e1

∂t
+ αt(I3 −W+W )

∂gTs
∂t

(29)

The term ∂e1
∂t

in this equation accounts an eventual
motion of the obstacle frame which, in our case, is
static, so ∂e1

∂t
= 0. We can consider ∂ebranch

∂r
= I3

for stability and simplicity purposes and the desired
velocity control input τC , is given by:

τC = −λebranch − αt(I3 −W+W )
∂gTs
∂t

(30)

W is chosen as,

W =
[

0 I2
]

(31)



Finally, the feedback control input for the navigation
task along the branch ebranch is done by:

τC = −λebranch + αt





vdxcos(θC) + vdysin(θC)
0
0



 (32)

where θC = β + α as seen in figure (4). Let us note
that the angle β must be introduced in order to con-
trol the sensor frame C when the sensor is carried out
by a two wheels-driven non holonomic mobile robot.
As a matter of fact, it is not possible to fully control
the 3-dimensions space {x, y, θC} uniquely from the
2 control inputs corresponding to a two wheels-driven
mobile robot. To over-pass this problem, a classical so-
lution consists to mount the sensor on a pan motorized
axis. In our case, rather than using an extra motorized
axis, we define the angle β which can be viewed as a
virtual degree of freedom (in fact an offset angle added
on the laser readings). It was considered as part of the
robot state to circumvent the nonholonomic constraint
that is intrinsic to the kinematic model of an unicy-
cle mobile robot. The extended robot state is then
{x, y, α, β}, figure (4).

In the case of the navigation task eBP , stabilization
on a bifurcation point, gTs = 0 and the feedback control
input is done by:

τC = −λeBP (33)

The control inputs (32) and (33) are defined into the
controlled frame C. They will be applied to the two
wheels-driven mobile robot after the transformation :

u =





v

ω

β̇



 = J−1
R τC (34)

where v = ẋcos(α) + ẏsin(α) is the heading speed of
the mobile platform, ω is the angular velocity and JR
is the Jacobian matrix between the controlled frame
C and the robot frame R, figure (4). J−1

R is given by,

J−1
R =













cos(β) − sin(β) 0

sin(β)
d

cos(β)
d

0

− sin(β)
d

− cos(β)
d

1













(35)

where d > 0 is the x-coordinate of the controlled frame
C into the robot frame R, as represented in figure 5.

V. Stability and robustness issues

We present in this section the necessary conditions
for the stability and robustness of the control laws con-
sidering modeling errors on the robot and noisy mea-
surements provided by the laser. The model of the real

(R) (C)

β

θ

δ  ’

δ

(M) θ  ’

θof

d RM
tx

RM
ty

D

Fig. 5. The configuration of the control system. The laser
measurements (θ′, δ′) are acquired in the frame M fixed at a
point (txRM tyRM ) with an orientation θof in the robot frame
R. These measurements are projected as (θ, δ) into the frame
C where the control inputs are computed. The projection from
M into C is done using an uncertain rigid transformation be-
tween M and R experimentally identified and represented by a

translation T̂RM = (t̂xRM
t̂yRM

)T and a rotation θ̂of and the
transformation between R and C characterized by the distance
d and the orientation β perfectly known.

setup is described in the figure 5, as an extension of
the figure 4, where it is shown:

- The robot frame R fixed on the robot basis.
- The point xc = [d 0]T , d > 0, fixed on the frame R.
- The controlled frame C with the origin in xc in the
frame R and with a rotation β with respect to R. The
interaction matrices and the control laws are calcu-
lated in C.
- The sensor frame M rigidly fixed on the robot where
the laser measurements are acquired. The rigid trans-
formation between M and R is given by a translation
TRM = [txRM tyRM ]T and a rotation θof as indicated
in the figure 5. These values are identified experimen-
tally from the real platform.

Two sources of uncertainties are considered in the
stability analysis :

- The noise associated to the laser sensor and prop-
agated by the segmentation process of the lines
(θ′, δ′) = (θ′′, δ′′) + ν(θ, δ). The error ν(θ, δ) in the
real laser readings (θ′′, δ′′) is a characteristic of the
physical sensor.
- The uncertainty in the rigid transformation
(T̂RM , θ̂of ) which is identified experimentally and
provides an approximation of the real transformation
(TRM , θof ).

Let us consider as data inputs the parameters of the
segmented lines computed from the laser scan. The
line D in the figure 5 is parameterized by (θ′, δ′) in the



laser frame M and by (θ, δ) in the controlled frame C.

Considering the uncertain transformation (T̂RM , θ̂of )

then (θ′, δ′) will be represented as (θ̂, δ̂) in the frame
C.
After stating the differential equation that represents
the real behavior of the closed loop control system, the
following issues are carried out by the analysis:

- The conditions for the existence and uniqueness of
an equilibrium solution.
- The stability and robustness analysis with regard to
the bounds of the errors (T̂RM−TRM ) and (θ̂of−θof ).

We consider both the cases of stabilization on the
VD branches and the stabilization on the VD bifurca-
tion points.

A. Stability analysis for the stabilization on the VD
branches

The stabilization of the controlled frame C on a VD
branch and the laser measurements are recalled in the
figure 6. Let us consider the global task ebranch de-

VD

δ1

δ2

θ1

θ2
C

Fig. 6. The stabilization of the robot at a VD branch. Only
the controlled frame C is shown for simplicity. (θ1, δ1) and
(θ2, δ2) as indicated in the figure are the minimal distances and
orientations from the origin of C to the two objects represented
by the lines. C is stabilized at the VD from an initial position
with the regulation of the task e1 in (10).

scribed in (20) with αt = 0:

ebranch = W+WLT
+
e1 (36)

The control law τC in (32) is rewritten as:

τC = −λW+WLT
+
e1 (37)

The task e1 is given in (10) as:

e1 =

(

δ1 − δ2
θ1+θ2

2

)

(38)

where (θ1, δ1) and (θ2, δ2) are as shown in the figure 6.
The matrices LT and W are defined in section III and

recalled hereafter:

LT =

[

(c(θ2)− c(θ1)) (s(θ2)− s(θ1)) 0
0 0 −1

]

(39)

with c(θi) = cos(θi) and s(θi) = sin(θi). Recalling that
W is a matrix defined so that Ker(W ) = Ker(LT ), in
equation (20), then W = LT without loss of generality.

As the transformation (TRM , θof ) is not known ex-
actly and measurements are corrupted by noise then
the control input used into the control loop is calcu-
lated as:

τC = −λŴ+Ŵ L̂T
+
ê1 (40)

The matrices L̂T , Ŵ and the task ê1 are calculated
from the laser readings (θ̂, δ̂) in the frame C.

Considering the derivative ė1 in equation (11),
rewritten here,

ė1 = LT





Vx
Vy
Ω



 = LT τC (41)

the differential equation that represents the closed loop
response of the system is written taken the equation
(40) in (41):

ė1 = −λLT Ŵ+Ŵ L̂T
+
ê1 (42)

As it is shown in the Appendix A, the modeling errors
act as an additive bias on the task function e1, so :

ˆ̇e1 = ė1 (43)

and the equation (42) can be rewritten as,

ˆ̇e1 = −λLT Ŵ+Ŵ L̂T
+
ê1

ˆ̇e1 = −λA1ê1
(44)

where λ > 0.

The stability analysis is then done regarding to the
positivity of the matrix A1(θ, δ) which is written from
(44) as:

A1 =





cos( θ1+θ22 − θ̂1+θ̂2
2 )

sin(
θ1−θ2

2 )

sin(
θ̂1−θ̂2

2 )
0

0 1



 (45)

Then, the theorem 1 gives the necessary conditions
for the existence and uniqueness of an equilibrium
solution of (44) and the sufficient conditions on the

bounds of the errors (T̂RM −TRM ) and (θ̂of − θof ) for
the stability and convergence to such equilibrium so-
lution.



Theorem 1:

(i)(Existence and uniqueness) If the configuration is
not degenerated so that θ1 6= θ2 and the VD branch
exists, then the control system (44) has a unique equi-
librium solution ê1 = 0 if, and only if,

|θ̂of − θof | 6=
π

2
(46)

(ii) (Global stability) The system (44) converges
asymptotically from a given initial position to the equi-
librium solution if, and only if,

|θ̂of − θof | <
π

2
(47)

Proof 1:

(i) The solution ê1 = 0 of A1.ê1 = 0 exists and it
is unique if det(A1) 6= 0. The determinant of A1 is
written as

det(A1) = cos(
θ1 + θ2

2
− θ̂1 + θ̂2

2
).
sin( θ1−θ22 )

sin( θ̂1−θ̂22 )
(48)

and,
(i-1) the configuration of the system, figure 6, is not

degenerated so that θ1 6= θ2 and the VD branch exists,
then

sin(
θ1 − θ2

2
) 6= 0 (49)

(i-2) with the relations between (θ, δ) and (θ̂, δ̂)
derived in the Appendix A and rewritten below:

θ1−θ2
2 = θ̂1−θ̂2

2
θ1+θ2

2 − θ̂1+θ̂2
2 = θof − θ̂of

(50)

so,

sin(
θ1 − θ2

2
) = sin(

θ̂1 − θ̂2

2
) 6= 0 (51)

Then from (49) and (50) the condition det(A1) 6= 0 is
verified if, and only if,

|θ̂of − θof | 6=
π

2
(52)

(ii) It is well known that the convergence of the sys-
tem (44) is asymptotic if A1 is positive definite, A1 > 0
(A1 > 0 in the sense that xTA1x > 0 ∀x 6= 0). A1

is positive-defined if all of its eigenvalues are positives.
The eigenvalues of A1 are ζ1 and ζ2:

ζ1 = 1

ζ2 = cos( θ1+θ22 − θ̂1+θ̂2
2 ).

sin(
θ1−θ2

2 )

sin(
θ̂1−θ̂2

2 )

(53)

Then with the relations (50) and (51) the condition
ζ2 > 0 is verified if, and only if,

|θ̂of − θof | <
π

2
(54)

Remark 1: The stability of the closed loop control
system (44) is not dependent on the modeling errors
on the rigid translation between the sensor frame M

and the robot basis frame R given by (T̂RM − TRM ).

Only the error (θ̂of − θof ) affects the stability of the
system.

Remark 2: The noise on the measurements (θ′, δ′),
ν(θ, δ), is not considered in the stability analysis above.
In practice, the errors due to the noisy measurements
will be negligible with regard to the errors on the ge-
ometric model. So, the large domain of convergence
resulting from the Theorem 1 credits the hypothesis
that the noise on the measurements does not affect
the stability of the system.

Remark 3: It is shown in the Appendix A that when
the measured task ê1 in the system (44) is regulated to
the origin, ê1 → 0, then the real task e1 is stabilized to
an offset value which is a function of the model errors
(θ̂of − θof ) and (T̂RM − TRM ), e1 → bias(θ̂of , T̂RM ).

B. Stability analysis on the stabilization to a bifurca-
tion point

The stabilization task at the neighborhood of a bi-
furcation point given in (26) is rewritten below:

eBP = L−T e3 (55)

where e3 is given in (21) as:

e3 =





δ1 − δ2
δ1 − δ3
θ1+θ2

2



 (56)

and the interaction matrix LT in (23)

LT =





(c(θ2)− c(θ1)) (s(θ2)− s(θ1)) 0
(c(θ3)− c(θ1)) (s(θ3)− s(θ1)) 0

0 0 −1



 (57)

with c(θi) = cos(θi) and s(θi) = sin(θi). The con-
trol law used in the stabilization is done in (33) and
rewritten as:

τC = −λL−T e3 (58)

As described in section V-A the control input used
in the closed control loop calculated from corrupted
measurements is written as:

τC = −λL̂−T ê3 (59)



where L̂ and ê3 are calculated from measures (θ̂, δ̂).

Considering the derivative of the task e3, presented
in (22):

ė3 = LT





Vx
Vy
Ω



 = LT τC (60)

then the differential equation that represents the re-
sponse of the closed loop system is given by:

ė3 = −λLT L̂−T ê3 (61)

The relation between ê3 and e3 is established in the
same way as the relation between ê1 and e1 presented
in the Appendix A, so that,

ˆ̇e3 = ė3 (62)

and (61) is rewritten as,

ˆ̇e3 = −λLT L̂−T ê3
ˆ̇e3 = −λA3ê3

(63)

where λ > 0.

The existence and uniqueness of an equilibrium so-
lution of the closed loop system (63) is directly related
to the existence of a bifurcation point associated to
the environment. Then the system (63) has a unique
equilibrium solution ê3 = 0 if there exists a bifurcation
point, that is θi 6= θj ∀i 6= j; i, j ∈ {1, 2, 3}. The sta-
bility and robustness at the convergence with respect
to the errors on the model are given with the results
of the Theorem 2.

Theorem 2: If there exists a bifurcation point and
the control law (59) is applied then the convergence
to the equilibrium solution ê3 = 0 of the closed loop
control system (63) is global asymptotically stable if,
and only if,

|θ̂of − θof | 6=
π

2
(64)

The proof of the Theorem 2 is given in the Appendix
B.

The results of the Theorems 1 and 2 show that even
with a large range on the modeling errors |θ̂of −θof | 6=
π
2 the control systems (44) and (63) are global asymp-
totically stable. This fact shows the robustness of the
control laws (37) and (59) designed in section IV.

The important result of the stability analysis is the
following : assuming the existence of a Voronöı Dia-
gram characteristic of the real physical environment,
the sensor-based control laws using only local per-
ception data ensure the robot convergence onto the
Voronöı Diagram with a bounded error depending on
the control gains λ exclusively.

VI. Experimental results

In this section, we present results validating the ap-
plication of the control methodology derived for the
safe navigation of a robot.

Fig. 7. The robot ANIS.

The test-bed is constituted with the mobile robot
ANIS, figure 7, developed in our laboratory2. This
robot is equipped with a 2D-Laser range-finder with a
scanning device that delivers 2000 points of measure-
ments distributed in a 360 degrees scan at 80ms rate.

The figure 8(top) shows an example of robot tra-
jectory obtained using the sensor-based control laws
designed in the section IV, in an indoor structured
but unknown environment. The robot starts from a
position marked s in the figure, it reaches the Voronöı
branch at the position marked V D and moves along
the branch using the control law defined in (32). The
stabilization and the dispacement on the branch are
performed using as feedback the minimal distances be-
tween the robot and objects O1 and O2. These mini-
mums, (δ1 , θ1) and (δ2 , θ2) , are extracted from the
laser scans and tracked during the robot motion. In
figure 9, it is illustrated the evolution of the distances
(and orientations) between the instants k (solid lines)
and (k+1) (dashed lines) during the navigation on the
branch. The signals at time (k + 1) are extracted in
windows predicted from the signals at the instant k.

As the robot is moving toward the object O3, a third
distance δ3 falls under a given threshold, illustrated as
D3rd in the figure 9. Then a third window is initialized
and associated to (δ3 , θ3) which is equally tracked.
The controller switches on the control (33) and the
robot is then stabilized to the correspondent bifurca-
tion point BP1.

For leaving the point BP1, the robot calculates the
possible exiting branches associated to this BP that
are still unexplored based on the incoming branch and

2http://www-sop.inria.fr/icare/icare-fra.html
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Fig. 8. (top) The application of the control laws (32) and
(33). (bottom) The evolution of the signals in the stabilization
at the branch, movement along the branch and stabilization at
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on the occultations of the laser cross section acquired
in this region. In the experimental results shown in
the figure 8(top), the navigation strategy selects, from
BP1, the branch formed by (δ1 , θ1) and (δ3 , θ3)
to pursue the exploration. Considering the example
shown in figure 9, the window in (δ2 , θ2) is discarded
and the signals are tracked in the windows associated
to (δ1 , θ1) and (δ3 , θ3).

The plot (figure 8(bottom)) illustrates the evolution
of the distances to the objects used as feedback signals
in the control loop. There are two distances in the
stabilization from S to V D and during the navigation
along the branch. When the object O3 start being
tracked then the control laws are switched and a third
signal is considered in the feedback and the robot is
stabilized to the corresponding bifurcation point. It is
noted that the control laws are stable and robust with
regard to the measurement errors as we can observe in
the figure.

The figure 10 shows a complete navigation in an
indoor structured but unknown environment validat-
ing the proposed control methodology. As previously,

Fig. 10. The application of the control methodology in the robot
navigation, localization and map building.

the robot starts from the point O, follows the Voronöı
branch until it stops at a bifurcation point. Then,
it navigates through the successive bifurcation points,
marked bp, turning in the clockwise sense around the
central object. The robot moves without any reference
trajectory or off line navigation planning. The trajec-
tories plotted in the figure were calculated and shown



just for vizualisation purpose.

VII. Conclusions and comments

In this paper, we proposed sensor-based navigation
functions that enable the robot to safely navigate in
an unknown environment, based on the telemetric per-
ception provided by a range finder scanning device
mounted on the robot. Feedback control laws were
derived from the framework of the task function ap-
proach in such a way that the robot is constrained
to move on the Voronöı diagram during the explo-
ration of its free workspace. It was shown that this
approach does not require any explicit computation
of the Voronöı diagram of the environment. A sta-
bility analysis of the closed loop control laws with re-
gard to the uncertainties on the perception model was
performed and the boundness related to the modeling
errors was proved.

The proposed control methodology was experimen-
tally validated in our mobile robot. The stability and
robustness of the feedback control laws were verified.

The control methodology presented in this paper is
the Part-I of a global navigation methodology we have
developed. The construction and the structure of this
representation is the subject of another submitted pa-
per (Part-II - Exploration, self-localization and map
building) . In the Part-II, we revisit the concurrent
localization and mapping (CLM) problem. It is pro-
posed there an hybrid modeling methodology of the en-
vironment merging in a unique representation metric
and topological descriptions. The environment model
is structured into several different places, each place
having its own metric representation where the robot
can be precisely localized. These different places are
connected by a global topological graph that shows
the accessibility to the BPs of the environment. We
will show that embedding the localization and the map
building processes in a sensor-based control approach
improves the performance in terms of accuracy and
robustness. This model will be used for future naviga-
tion tasks, where a desired position is given as a goal
to the robot. In these cases a trajectory planning step
will be required to generate the final trajectory allow-
ing the robot to join a goal which is not located on the
Voronöı diagram.

Appendices

I. The relation between ê1 and e1

A relation between the real e1 and the measured ê1
values is derived based on the figure 5. The physical
location of the laser frame on the robot platform is in-
dicated in the figure at the point (M) with coordinates
(txRM tyRM ) on the frame R. The frame M is rotated
of θof with respect to the frame R. The rigid transfor-

mation given by the translation TRM = (txRM
tyRM

)T

and the rotation θof is identified experimentally and

given by T̂RM and θ̂of . The quantities |T̂RM − TRM |
and |θ̂of − θof | represent the errors on the parameters
of the transformation.

Let us consider T̂CM be the translation between M

and C and the orientation of M with respect to C

be θ̂of − β, where C as shown in the figure 5 is the
frame where the control inputs are calculated. From
the figure 5 it follows,

T̂CM = RT
β

(

t̂xRM
− d

t̂yRM

)

=

(

t̂x
t̂y

)

(A.1)

where,

Rβ =

(

cos(β) −sin(β)
sin(β) cos(β)

)

The measurements (θ′, δ′) in the figure 5, called here
(θ′i, δ′i), are projected into the frame C considering
perfect parameters in the transformation M → C by,

{

δi − δ′i = txcos(θi) + tysin(θi)
θi − θ′i = θof − β

(A.2)

and using the measured parameters T̂CM and θ̂of ,

{

δ̂i − δ′i = t̂xcos(θ̂i) + t̂ysin(θ̂i)

θ̂i − θ′i = θ̂of − β
(A.3)

Some relations used in the development below are ob-
tained from equations (A.2) and (A.3) with i, j ∈
{1, 2}:

θi−θj
2 =

θ̂i−θ̂j
2

θi+θj
2 − θ̂i+θ̂j

2 = θof − θ̂of
(A.4)

Let us consider additive bounded errors {εx, εy, εof}
in the measured parameters so that,

T̂CM =

(

t̂x + εx
t̂y + εy

)

(A.5)

θ̂of = θof + εof (A.6)

Replacing (A.5) and (A.6) in (A.3) and taking θi as in
(A.2) yields:

θ̂i = θi + εof (A.7)

and

δ̂i − δ′i = (tx + εx)cos(θi + εof )+

+(ty + εy)sin(θi + εof ) (A.8)

Expanding (A.8) and considering the following
trigonometric approximations,

εof → 0 ⇒
{

cos(θi + εof ) = cos(θi)− εofsin(θi)
sin(θi + εof ) = sin(θi) + εofcos(θi)



(A.8) can be rewritten as,

δ̂i − δ′i = txcos(θi) + tysin(θi)+

+
[

t̂xεof − εy t̂yεof + εx
]

(

−sin(θi)
cos(θi)

)

and with (A.2) it results,

δ̂i = δi + [t̂xεof − εy t̂yεof + εx]

(

−sin(θi)
cos(θi)

)

(A.9)

Finally a relation between the tasks ê1 and e1 is ob-
tained considering the expressions of the navigation
task e1 defined in (10) and with the relations (A.7)
and (A.9) as it follows.

The task function e1, in (10), defined in the con-
trolled frame C is written as:

e1 =

(

δ1 − δ2
θ1+θ2

2

)

=

(

e1(1)
e1(2)

)

(A.10)

and the measured task ê1 is given as,

ê1 =

(

δ̂1 − δ̂2
θ̂1+θ̂2

2

)

=

(

ê1(1)
ê1(2)

)

(A.11)

Taking (A.7) and (A.9) in (A.11),

ê1 = e1 + F̂ (t̂x, t̂y, θ̂1, θ̂2) (A.12)

where the vector F is defined as,

F =





−2sin( θ1−θ22 )T̂ε

(

cos( θ1+θ22 )

sin( θ1+θ22 )

)

εof





with the relations (A.4) it comes,

F̂ =







−2sin( θ̂1−θ̂22 )T̂ε

(

cos(
θ̂1+θ̂2+εof

2 )

sin(
θ̂1+θ̂2+εof

2 )

)

εof






(A.13)

and the vector T̂ε as,

T̂ε =
[

t̂xεof − εy t̂yεof + εx
]

The vector F represents the configuration of the envi-
ronment and it depends on the measured variables, so
that from (A.12) it results,

{εx, εy, εof} → {0} ⇒ ê1 = e1

and,

˙̂e1 = ė1

It is shown in the following that the additive term F

in (A.12) represents a bias in the regulation of the real

task e1, so that when the measured task ê1 is regulated
to zero in the task configuration space then, the real
task e1 is stabilized at a point e?1 into a region around
the origin.

Let us note from (A.11) that when the measured
task ê1 is regulated to zero then,

ê1 → 0 ⇒
{

θ̂1 = −θ̂2
θ̂1−θ̂2

2 = θ̂

and with relations (A.4),

θ1+θ2
2 = −εof
θ1−θ2

2 = θ̂
(A.14)

Replacing (A.14) in the expression of F̂ in (A.12) it
follows that when ê1 → 0 so,

0 = e?1 +





−2sin(θ̂)T̂ε
(

1
0

)

εof





e?1 =

(

2sin(θ̂)(t̂xεof − εy)
−εof

)

e?1 = bias(t̂x, t̂y, εof ) (A.15)

Then it is noted from (A.15) that the stabiliza-
tion point e?1 is a function of the parameters errors
{εx, εy, εof} of the rigid transformation between the
sensor frame M and the controlled frame C. The ori-
gin of the controlled frame is stabilized to a region
bias(t̂x, t̂y, εof ) around the Voronöı branch of the en-
vironment.

The measurements performed in the laser frame
(θ′i, δ′i) are considered perfect. It is shown in section V,
Theorems 1 and 2, that the control systems are stable
with a large bound on the errors of the transformation
TRM , then the noise on the laser measurements does
not affect the stability of the control systems.

II. The proof of the Theorem 2

The matrix A3 in the system (63) is written as:

A3 =











sin(
θ1−θ2

2 )sin(
θ1+θ2

2 −
θ̂1+θ̂3

2 )

sin(
θ̂1−θ̂2

2 )sin(
θ̂2−θ̂3

2 )

sin(
θ1−θ3

2 )sin(
θ1+θ3

2 −
θ̂1+θ̂3

2 )

sin(
θ̂1−θ̂2

2 )sin(
θ̂2−θ̂3

2 )

0

− sin(
θ1−θ2

2 )sin(
θ1+θ2

2 −
θ̂1+θ̂2

2 )

sin(
θ̂1−θ̂3

2 )sin(
θ̂2−θ̂3

2 )
0

− sin(
θ1−θ3

2 )sin(
θ1+θ3

2 −
θ̂1+θ̂2

2 )

sin(
θ̂1−θ̂3

2 )sin(
θ̂2−θ̂3

2 )
0

0 1











(B.1)

It is well known that the convergence of the system
(63) to the unique equilibrium solution ê3 = 0 is global



asymptotic if A3 is positive definite, A3 > 0 (A3(3×3)
>

0 in the sense that xTA3x > 0 ∀x(3×1) 6= 0), if all its
eigenvalues are positive (or have positive complex real
part).

Defining,

M = sin( θ1+θ32 − θ̂1+θ̂2
2 )

N = sin( θ1+θ22 − θ̂1+θ̂3
2 )

eof = θ̂of − θof

(B.2)

the eigenvalues of A3 are done as:

ζ1 = 1
ζ2 = − 1

2sin(
θ̂2−θ̂3

2 )
(M −N

+
√

(M +N)2 − 4sin2(eof )
)

ζ3 = 1

2sin(
θ̂2−θ̂3

2 )
(−M +N

+
√

(M +N)2 − 4sin2(eof )
)

(B.3)

Considering the geometry in the figure 5 the following
relations can be written, with l ∈ {1, 2, 3}:

θl = θ′l + θof − β

θ̂l = θ′l + θ̂of − β

and ∀l, k ∈ {1, 2, 3},

eof = θ̂l+θ̂k
2 − θl−θk

2
θ1+θ3

2 − θ̂1+θ̂2
2 = −eof + θ̂1+θ̂3

2 − θ̂1+θ̂2
2

= −eof − θ̂2−θ̂3
2

θ1+θ2
2 − θ̂1+θ̂3

2 = −eof + θ̂1+θ̂2
2 − θ̂1+θ̂3

2

= −eof − θ̂2−θ̂3
2

(B.4)

then with equations (B.4) and (B.2),

M −N = −2sin( θ̂2−θ̂32 )cos(eof )

M +N = −2sin(eof )cos( θ̂2−θ̂32 )
√

(M +N)2 − 4sin2(eof ) = 2sin(eof )sin(
θ̂2−θ̂3

2 )i

(B.5)

where i =
√
−1.

The real part of the complex ζ2 and ζ3 are written
below taking (B.5) in (B.3),

R(ζ2) = − 1

2sin( θ̂2−θ̂32 )

(

−2sin( θ̂2 − θ̂3

2
)cos(eof )

)

= cos(eof ) = cos(θ̂of − θof )

R(ζ3) =
1

2sin( θ̂2−θ̂32 )
2sin(

θ̂2 − θ̂3

2
)cos(eof )

= cos(eof ) = cos(θ̂of − θof )

Then R(ζ2) > 0 and R(ζ3) > 0 if, and only if,

|θ̂of − θof | 6=
π

2
(B.6)
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