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Abstract— This paper describes a new image-based approach
to tracking the 6dof trajectory of a stereo camera pair using a
corresponding reference image pairs instead of explicit 3D fea-
ture reconstruction of the scene. A dense minimisation approach
is employed which directly uses all grey-scale information
available within the stereo pair (or stereo region) leading to very
robust and precise results. Metric 3D structure constraints are
imposed by consistently warping corresponding stereo images
to generate novel viewpoints at each stereo acquisition. An
iterative non-linear trajectory estimation approach is formu-
lated based on a quadrifocal relationship between the image
intensities within adjacent views of the stereo pair. A robust
M-estimation technique is used to reject outliers corresponding
to moving objects within the scene or other outliers such as
occlusions and illumination changes. The technique is applied
to recovering the trajectory of a moving vehicle in long and
difficult sequences of images.

I. INTRODUCTION

This study is part the MOBIVIP project aimed at au-
tonomous vehicle navigation in urban environments. Here
the core issue is 3D visual odometry is considered in the
context of rapidly moving vehicles, real sequences, large
scale distances, with traffic and other types of occluding
information. Indeed, tracking in urban canyons is a non-
trivial problem [17], [12]. It is clear that pose estimation
and visual tracking are also important in many applications
including robotics, augmented reality, medical imaging, etc...

Model-based techniques have shown that 3D CAD models
are essential for robust, accurate and efficient 3D motion
estimation [6], however, they have the major drawback of
requiring an a-priori model which is not always available
or extremely difficult to obtain as in the case of shapeless
objects or large-scale urban environments.

Alternative techniques propose to perform 3D structure
and motion estimation online. Among this class, visual si-
multaneous localisation and mapping approaches [7], [4] are
based on an implementation of the Extended Kalman Filter
and have limited computational efficiency (manipulation and
inversion of large feature co-variance matrices) and limited
inter-frame movements (due to approximate non-iterative
estimation). In [13] stereo and monocular visual odometry
approaches are proposed based on a combination of feature
extraction, matching, tracking, triangulation, RANSAC pose
estimation and iterative refinement. In [12], a similar monoc-
ular technique is proposed but drift is minimised using a local
bundle adjustment technique.

Feature based methods (eg. [7], [4], [13], [12]) all rely
on an intermediary estimation processes based on detection
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thresholds. This feature extraction process is often badly
conditioned, noisy and not robust therefore relying on higher
level robust estimation techniques. Since the global estima-
tion loop is never closed on the image measurements (inten-
sities) these multi-step techniques systematically propagate
feature extraction error and accumulate drift. To eliminate
drift these approaches resort to techniques such as local
bundle adjustment or SLAM.

Appearance and optical flow based techniques, on the
other hand, are image-based and minimise an error directly
based on the image measurements. Unfortunately, they are
often only monocular and make heavy assumptions about the
nature of the structure within the scene or the camera model.
For example in [8] an affine camera model is assumed and
in [2] and [3] planar homography models are assumed. In
this way the perspective effects or the effects of non-planar
3D objects are not considered and tracking fails easily under
large movements. Of course many papers avoid the problems
of monocular algorithms (i.e. scale factor, initialisation,
observability, etc.) by using multi-view constraints and a
multitude of work exist on multiview-geometry (see [9] and
references therein). However, to our knowledge no work has
been done on deriving an efficient region-based tracker as
in [3] using stereo warping and novel view synthesis as in [1].

Another very important issue is the registration problem.
Purely geometric, or numerical and iterative approaches
may be considered. Linear approaches use a least-squares
method to estimate the pose and are considered to be suitable
for initialization procedures. Full-scale non-linear optimisa-
tion techniques (e.g., [8], [2], [6]) consist of minimizing
an objective function using numerical iterative algorithms
such as Newton-Raphson or Levenberg-Marquardt. The main
advantage of these approaches are their computational effi-
ciency and accuracy, however, they may be subject to local
minima and, worse, divergence. In this paper an efficient
second-order approach [11], [3] is employed which improves
efficiency and helps to avoid any local minima.

The technique proposed in this paper provides a generic
3D visual odometry technique which is able to accurately
handle large scale scenes efficiently whilst avoiding error
prone feature extraction. This is achieved by defining a
quadrifocal warping function which closes a non-linear it-
erative estimation loop directly with the image. A set of key
reference image-pairs are used to initialize tracking locally
around the reference positions. These reference pairs provide
a calibrated set of highly redundant dense correspondences
to perform tracking and pose estimation. As will be shown,
this leads to very impressive results in real-scenes with
occlusions, large inter-frame displacements, and very little
drift over very long sequences of images.
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II. TRAJECTORY ESTIMATION

A framework is described for estimating the trajectory of a
stereo-camera rig along a sequence from a designated region
within the image. The tracking problem will essentially be
considered as a pose estimation problem which will be
related directly to the grey-level brightness measurements
within the stereo pair via a non-linear model which accounts
for the 3D geometric configuration of the scene.

Since our final objective is to control a robot within
Euclidean space, a calibrated camera pair is considered.
Consider a stereo camera pair with two brightness func-
tions I(p, t) and I′(p′, t) for the left and right cameras
respectively, where p = (u, v) and p′ = (u′, v′) are pixel
locations within the two images acquired at time t. It is
convenient to consider the set of image measurements in
vector form such that I = (I, I′)� ∈ R

2n is a vector of
intensities of the left image stacked on top of the right.
Similarly P∗ = {p,p′} are stereo image correspondences
from the reference template pair.

I will be called the current view pair and I∗ as
the reference view pair. A superscript ∗ will be used
throughout to designate the reference view variables. Any
set of corresponding pixels from the reference image-
pair are considered as a reference template, denoted by
R∗ = {{p∗,p∗′}1, {p∗,p∗′}2, . . . , {p∗,p∗′}n} where n is
the number of corresponding point pairs in the stereo images.

The motion of the camera pair or objects within the scene
induces a deformation of the reference template. The 3D
geometric deformation of a stereo rig can be fully defined
by a motion model w(P∗,T′,K,K′;T(t)). The motion
model w considered in this paper is the quadrifocal warping
function which will be detailed further in section III. K and
K′ contain the intrinsic calibration parameters for the left
and right cameras respectively. T′ = (R′, t′) ∈ SE(3) is the
homogeneous matrix of the extrinsic camera pose of the right
camera w.r.t. the left and T = (R̄, t̄) ∈ SE(3) is the current
pose of the stereo rig relative to the reference position.
Throughout, R is a rotation matrix and t the translation
vector. Since both the intrinsic and extrinsic calibration
parameters do not vary with time they will be assumed
implicit.

It follows that the reference image is obtained by warping
the current image as:

I∗(P∗) = I(
w

(P∗;T
)
, t

)
, ∀P∗ ∈ R∗. (1)

where T is the true pose.
Suppose that at the current image an estimate of the pose

T̂ fully represents the pose of the stereo pair with respect
to a pair of reference images. The tracking problem then
becomes one of estimating the incremental pose T(x), where
it is supposed that ∃x̃ : T(x̃)T̂ = T. The estimate is updated
by a homogeneous transformation T̂← T(x)T̂.

The unknown parameters x ∈ R
6 are defined as:

x =
∫ 1

0

(ω,υ)dt ∈ se(3), (2)

which is the integral of a constant velocity twist which
produces a pose T. The pose and the twist are related via
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Fig. 1. The quadrifocal geometry of a stereo pair at two subsequent time
instants. Two points p and p′ are initialised only once at the beginning of the
tracking process to be in correspondence. The central pose T is estimated
via a non-linear warping function which warps all points in the reference
stereo pair to the current image points p′′ and p′′′. The quadrifocal
warping function is defined by choosing two lines l and l′ passing through
corresponding points in the first image. The extrinsic parameters T′ are
assumed known a-priori.

the exponential map as T = e[x]∧ with the operator [.]∧ as:

[x]∧ =
[

[ω]× υ
0 0

]
,

where [.]× represents the skew symmetric matrix operator.
Thus the pose and the trajectory of the camera pair can

be estimated by minimising a non-linear least squares cost
function:

C(x) =
∑

P∗∈R∗

(
I

(
w(P∗;T(x)T̂

)
− I∗ (P∗)

)2

. (3)

This function is minimised using the robust, efficient
and precise second order minimisation procedure detailed
in Section IV.

III. NOVEL VIEW SYNTHESIS AND WARPING

The geometric configuration of the stereo pair is based on
the paradigm that four views of a scene satisfy quadrifocal
constraints. Thus given a reference stereo view in correspon-
dence and the quadrifocal tensor, a third view and fourth
view can be generated by means of a warping function.
This warping function subsequently provides the required
relationship between two views of the scene and an adjacent
view-pairs in a sequence of images.

A. Quadrifocal Geometry

A point P ∈ R
3 in 3D Euclidean space projects

onto the 3D camera plane by a 3 × 4 projection matrix
M = K[R|t] ∈ P(3) where the image point is given by
p̄ = MP so that p̄ = (u, v, 1)� is the homogeneous pixel
vector (see Figure 1).

In [16] it is shown that the quadrifocal tensor can be de-
composed into two trifocal tensors. In this way the geometry
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between two stereo pairs is defined in a manner that is simple
for subsequent developments using the canonical coordinates
of two triplets of images. First of all, consider the triplet
consisting of the left reference camera, the right reference
camera and the left current camera. The left reference camera
matrix is chosen as the origin so that M = K[I|0]. The
reference projection matrix for the right camera (the extrinsic
camera pose) and the current projection matrices for the left
camera are then as : M′ = K′[R′]t′] and M′′ = K[R′′|t′′].

The second triplet is defined in a similar manner such that
the right reference camera is chosen as the origin and the
left reference camera and right current camera matrices are
defined with respect to this origin.

In order to construct the quadrifocal relation it is necessary
to combine these two triplets of images. This is done
symmetrically by defining the world origin as the geodesic
center between the two reference cameras. To do this the
extrinsic parameters must be separated into two distinct poses
with respect to the center as:

Tc = e(log(T′))/2 and Tc′ = TcT′−1
, (4)

where e and log are the matrix exponential and logarithm.
The pose from the left reference camera to the current one

is therefore composed of a central pose as:

T′′ = Tc−1T̃Tc, (5)

where T̃ is the unknown pose to be estimated.

B. Quadrifocal warping

The quadrifocal warping function w(P∗;T) from (3) can
now be considered to be composed of a trifocal tensor
for both left and right images. These functions are then
minimized simultaneously using (5) in section IV so that the
quadrifocal constraints are held. The trifocal tensor is used
to transfer (warp) corresponding points from two views to a
third view. This tensor depends only on the relative motion
of the cameras as well as the intrinsic and extrinsic camera
parameters.

The compact tensor notation of multi-focal geometry
will be used here with a covariant-contravariant summation
convention. Contravariant point vectors pi are denoted with
a superscript and their covariant counterpart representing
lines lj ∈ P

2, are denoted with a subscript. A contraction
or summation over two tensors occurs when there are re-
peated indices in both contravariant and covariant variables
(i.e. pili =

∑n
j=1 pjlj). An outer-product of two first order

tensors (vectors), aibj is a second order tensor (matrix) cj
i

which is equivalent to C = ba� in matrix notation.
The trifocal tensor T is a third order tensor represented by

a homogeneous 3× 3× 3 array of elements. The calibrated
trifocal tensor is given as:

T jk
i = k′j

mt′mk′′n
i r′′onk−1k

o − k′′k
mt′′mk′n

i r′onk−1j
,

where (r′, t′) and (r′′, t′′) are the tensor forms of the
rotation matrix and translation vector for the second and
third camera matrices respectively. k and k′ are the intrinsic
calibration components of the left and right camera matrices

respectively. Note that k′′ = k or k′′ = k′ depending on
whether one is warping to the left or right camera at the
next time instant.

Given any line l coincident with p or any line l′ coincident
with p′ then the trifocal tensor contracts so as to become
a homography h which maps points from one reference
image to the current image. i.e. a line defined in one of the
reference views defines a plane which can be used to warp a
point between the remaining reference image and the current
image. Thus the warping from the left reference image to the
left current image via a plane in the right reference image is
given by:

p′′k = pil′jT jk
i = hk

i p
i,

where pi is a point in the left reference image, lk is a line
defined in the right reference image and p′′k is the warped
point in the left current image. This equation is used similarly
for warping a point in the right reference image to a point
in the right current via a plane in the left reference image.

As opposed to transfer using the fundamental matrix, the
tensor approach is free from singularities when the 3D point
lies on the trifocal plane. The only degenerate situation that
occurs is if a 3D point lies on the baseline joining the first
and the second cameras since the rays through p and p′ are
co-linear.

The stereo warping operator is then given by:[
p′′k

p′′′n

]
=

[
pil′jT jk

i

p′llmT mn
l

]
, (6)

where the indexes of the two trifocal-tensors indicate tensors
transferring to the left and right cameras. The lines l′

and l are chosen similarly to [1] to be the diagonal line
(−1,−1, u + v) coincident with the point (u, v).

It is important for further developments to highlight that
the stereo warping operator w(P∗;T) is a group action.
Indeed, the following operations hold:

1) The identity map:

w(P∗; I) = P∗, ∀P∗ ∈ R
4, (7)

2) The composition of an action corresponds to the action
of a composition ∀T1,T2 ∈ SE(3):

w(w(P∗,T1),T2) = w(P∗,T1T2) ∀P∗ ∈ R
4.
(8)

IV. ROBUST SECOND-ORDER MINIMISATION

The aim now is to minimise the objective criterion defined
previously (3) in an accurate and robust manner. The robust
objective function therefore becomes:

O(x) =
∑

P∗∈R∗
ρ

(
I(w(P∗;T(x)T̂)− I∗(P∗)

)
, (9)

where ρ(u) is a robust function [10] that grows sub-
quadratically and is monotonically non-decreasing with in-
creasing |u| (see [5]).

Since this is a non-linear function of the unknown
pose parameters an iterative minimisation procedure is em-
ployed. The robust objective function is minimized by:
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∇xO(x)|x=x = 0, where ∇x is the gradient operator with
respect to the unknown parameters (2) and there exists a
stationary point x = x̃ which is the global minimum of the
cost function.

Since both the reference image and current image are
available it is possible to use the efficient second order
approximation (ESM) proposed in [11], [3]. In this case the
ESM approximation is given as:

I(x̃) ≈ 1
2

(
I(0) +

J(0) + J(x̃)
2

x̃
)

where J(0) is the current image Jacobian and J(x̃) is
reference image Jacobian.

The current Jacobian J(0) is quite straightforward
and can be decomposed into modular parts as:
J(0) = JIJKJPJwJTc(0)JV, where JI is the current
image-pair gradient of dimension 2n× 4n, JK is the partial
derivative of the pixel coordinates with respect to their
corresponding metric coordinates of dimension 4n × 4n,
JP is the partial derivative of each metric coordinates w.r.t
the un-normalised point coordinates of dimension 4n × 6n,
Jw the Jacobian of the un-normalized point coordinates
with respect to the elements warping function of dimension
6n × 2 ∗ (3 ∗ 3 ∗ 3) and JTc(0) is the partial derivative of
the tensor elements w.r.t the canonical pose parameters of
dimension 2 ∗ 27 × 2 ∗ 6. Note that there are two sets of
unknown parameters at this stage corresponding to the left
and right trifocal tensors respectively.

The last Jacobian JV of dimension 2 ∗ 6 × 6 is used
to center the two components of JTc(0), corresponding to
the left and right canonical coordinate systems, so that they
represent the same minimal set of unknown parameters.
By the definition given in (5) the unknown parameters are
defined to be the those which are related to the central pose of
the stereo-pair. This Jacobian therefore corresponds to a pair
of twist transformation matrices. This twist transformation
(the adjoint map), is given as:

V =
[

Rc tc×Rc

03 Rc

]
, (10)

where Tc = (Rc, tc) is the centering pose given in (4),
which maps the current left camera matrix to the stereo center
according to (4). Similarly, an adjoint map can be obtained to
transform the twist of the right current camera with respect
to the right reference camera using Tc′.

The reference Jacobian J(x̃) is obtained as:

J(x̃) = JI∗JKJPJwJTc(x̃)JV,

where only JI∗ and JTc(x̃) differ from the current Jacobian.
Computing JTc(x̃) usually requires knowing the solution x̃

to the estimation problem. However, due to the left invariant
structure of the Lie group it can be shown that:

JTc(x̃)JVx = JTc(0)JVx. (11)

In this way the ESM second order approximation is given
by:

J (x)|x=x̃ =
(JI + JI∗)

2
JKJPJT JT (0)JV, (12)

where only JI varies with time and needs to be computed
at each iteration.

The objective function is minimised by iteratively solv-
ing (9) by using (12) and (6) for:

x = −λ(DJ )+D(I − I∗), (13)

where (DJ )+ is the pseudo-inverse, D is a diagonal weight-
ing matrix determined from a robust function (see [6]) and
λ is the gain which ensures an exponential decrease of the
error.

A. Reference Image-pairs

As opposed to 3D model-based estimation techniques, no
pose initialisation is required and the 3D odometry estimation
simply begins at the origin (identity). Dense correspon-
dences are, however, required for each reference image-pair
(see Section V-A).

As the camera pair moves through the scene the reference
image may be no longer visible or the warped resolution
becomes so poor that it is necessary to interpolate many
pixels. In both cases this leads to miss-tracking. Therefore,
in order to perform large scale tracking it is necessary to
continually update the reference image pair I∗. An update
is detected by monitoring the error norm along with a robust
estimate of the scale of the error distribution (i.e. the Median
Absolute Deviation). As soon as they become too large
another set of dense correspondences between the stereo pair
is made so as to reinitialise the tracking. As long as the
same reference image is used then the minimisation cut-off
thresholds can be tuned for speed since the next estimation
will recover any leftover error, however, if the reference
image is changed the previous estimate is minimised with
smaller cut-off thresholds so as to minimise any drift that
may be left over.

V. IMPLEMENTATION

A. Dense Correspondences

As mentioned, the reference image pair(s) need to be
initialized with dense correspondences. The correspondence
problem has been heavily studied in the computer vision
literature and many different approaches are possible [15].
When the cameras are calibrated the correspondence problem
reduces to a 1D search along epipolar lines. This can either
be performed off-line in a learning phase or on-line at each
new acquisition depending on computational requirements
(real-time approaches are feasible [18]). In this paper the
approach given in [14] was used, however, any other type of
dense correspondence algorithm could be used. The chosen
method is particularly suited to urban canyon environments
since the notions of horizontal and vertical slant are used to
approximate first-order piecewise continuity. In this way the
geometric projection of slanted surfaces from N pixels on
one epipolar line to M pixels on another is not necessarily
one-to-one but can be many-to-one or one-to-many. See
Figure 2 for correspondence results of a typical image pair.
In this case the disparity search region was fixed in a range
of −20 to −60 pixels along the epipolar lines. Since the
baseline is relatively small it is possible to obtain a highly
redundant number of dense correspondences.
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(a) (b)

(c) (d)

Fig. 2. Dense correspondence of an urban canyon with correspondence
occlusion in black: (a) left image and (b) right image warped to the same
shape as the left, (c,d) the original images.

(a)

(b)

Fig. 3. Robust outlier rejection: Two images showing the outlier rejection
weights. The darker the points, the less influence they have on the estimation
process. In (a) it can be seen that a moving truck has been rejected. In (b) a
moving pedestrian has been rejected. It can also be noted that other outliers
are detected in the image. These points generally correspond to matching
error, noise in the image or the self occlusion of the corners of the buildings.

B. Robust Estimation

A robust M-estimation technique (as detailed in [5]) was
used to reject outliers not corresponding to the definition
of the objective function. The use of robust techniques is
very interesting in the case of a highly redundant set of
measurement as is the case of a set of dense correspondences.
The outliers generally correspond to occlusions, illumination
changes, matching error, noise in the image or the self
occlusion of the corners of the buildings.

In figure 3 (a) a moving truck has been rejected as an
outlier whilst a stationary truck in the background was used
to estimate the pose. In this way it can be seen that the pro-
posed algorithm has exploited all the useful information in
the image so as to estimate the pose. In figure 3 (b) a moving
pedestrian has been rejected and it can be seen that both the
pedestrian projected from the reference image as well as the
current position of the pedestrian have been rejected. This
type of information could be useful in an application for
determining the trajectory of moving obstacles.

C. Extended Kalman Filter

In the context of tracking the trajectory of a car, very
large inter-frame movements are observed. In the sequences
considered in the following results, typical inter-frame move-
ment was 1-2 meters per image with a car travelling between

Fig. 4. Trajectory tracking around along a road in Versailles. The trajectory
shown in white has been superimposed on a satellite image. An typical stereo
image is shown at the top.

50 and 70 km/hr. Even though tracking succeeds without
predictive filtering, in order to improve computational effi-
ciency (significantly less iterations in the minimisation) it
was necessary to implement a predictive filter. In this paper
the well known Extended Kalman filter described in [19]
was used for filtering the pose (i.e. the pose estimate was
considered to be the measurement input to the filter).

D. Trajectory Estimation

The algorithm was tested on real full-scale sequences as
can be seen in Figure 4 and 5. Radial distortion has been
removed from the images before processing. Several test
sequences from different streets in Versailles, France, were
used to validate the results. These video demonstrations plus
more are available online at the authors websites.

The sequence shown in Figure 4 is that of a relatively
straight road. The estimated path length is compared to
satelite views (precision of 2.9cm/pixel) by comparing road
markings in both the stereo images and satellite views. The
path length measured by Google earth and the tracker were
both about 440m. It is difficult to comment further on the
precision since it is not possible to register the satellite
image with the projection of the trajectory unless three cor-
responding non-collinear points are available. However, they
do have approximately the same absolute length (ignoring
tilt of the cameras and the incline of the road). Throughout
the sequence several moving vehicles pass in front of the
cameras and at one stage a car is overtaken.

The sequence shown in Figure 5, is particularly illustrative
since a full loop of the round-about was performed. In
particular this enables the drift to be measured at the crossing
point in the trajectory. In the case of this round-about the
drift at the crossing point was approximately 20cm in the
vertical direction to the road-plane. Considering that the tra-
jectory around the round-about is approximately 200m long
(measured using Google earth), this makes a drift of 0.01%
on the measurable axis. In the case of large scale scenes
such as this one it was necessary to detect and update the
reference image periodically when it was no longer visible
or too approximate. Due to the highly redundant amount
of data, the robust estimator was able to successfully reject
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(b)

(a) (c)

Fig. 5. Trajectory tracking around a round-about in Versailles : (a) The
trajectory shown in white has been superimposed on a satellite image and
it can be seen visually that the trajectory aligns with the four corners of the
round-about (4 points are required to estimate the pose). The length of the
path is approximately 392m taken in 698 images. The maximum inter-frame
displacement was 1.78m and the maximum inter-frame rotation was 2.23o

(b and c) several occlusions which occurred during the sequence and image
300 and 366 respectively (on the right side of the round-about).

pedestrians and moving cars from the estimation process. It
can be noted, however, that all static information available
was used to estimate the pose (including the parked cars)
therefore leading to a very precise result with minimal drift
over large displacements.

E. Computational requirements

A prototype has been written in Matlab to prove the
concept (there is no code or hardware optimization). Even
so, it computes on average at approximately 1.5Hz when
10% of the information is used (the strongest gradients) and
at around 10sec/image-pair when an image of 759 × 280
is used. Furthermore, there is only a small difference in
precision between the full and reduced images. With the
numbers given here there was only about 0.004% drift in
translation and 0.03deg/deg drift in rotation when measured
from a 360m long sequence. The approach is very efficient
and could be implemented to run in real-time at video-rate.
Two main options are possible:

1. Use an off-line training sequence to obtain a set of dense
corresponding reference image-pairs for use online.

2. Perform dense correspondences online (i.e. real-
time [18]).

VI. CONCLUSIONS AND FUTURE WORKS

The quadrifocal tracking methodology described in this
paper has shown to be very efficient, accurate (very small
drift) and robust over a wide range of scenarios. The ap-
proach is very interesting because trajectory estimation is
integrated into a single global sensor-based process that
does not depend of intermediate level features. Tracking
is initialised automatically at the origin within the visual
odometry approach. Furthermore, a compact image-based
stereo model of the environment may be obtained using
standard dense stereo correspondence algorithms and instead

of explicit estimation of an a-priori 3D model. The robust
efficient second order minimisation technique also allows
minimisation of a highly redundant non-linear function in a
precise manner. Indeed the algorithm rejects outliers such as
pedestrians, traffic, building occlusions and matching error.

Further work will be devoted to estimating optimal stereo
image-based models of the environment by updating the
dense correspondences in a Simultaneous Localisation and
Correspondence style approach. It would be interesting to
test loop closing procedures and devise strategies to recog-
nise previously seen places within this framework.

REFERENCES

[1] S. Avidan and A. Shashua. Threading fundamental matrices. Pattern
Analysis and Machine Intelligence, 23(1):73–7, Janvier 2001.

[2] S. Baker and I. Matthews. Equivalence and efficiency of image
alignment algorithms. In Proceedings of the 2001 IEEE Conference
on Computer Vision and Pattern Recognition, December 2001.

[3] S. Benhimane and E. Malis. Real-time image-based tracking of planes
using efficient second-order minimization. In IEEE International Con-
ference on Intelligent Robots Systems, Sendai, Japan, 28 September -
2 October 2004.

[4] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion
causally integrated over time. IEEE Trans. Pattern Anal. Mach. Intell.,
24(4):523–535, 2002.

[5] A.I. Comport, E. Marchand, and F. Chaumette. Statistically robust 2d
visual servoing. IEEE Transactions on Robotics, 22(2):415–421, April
2006.

[6] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-
time markerless tracking for augmented reality: the virtual visual ser-
voing framework. IEEE Transactions on Visualization and Computer
Graphics, 12(4):615–628, July 2006.

[7] A. J. Davison and D. W. Murray. Simultaneous localisation and map-
building using active vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, July 2002.

[8] G. Hager and P. Belhumeur. Efficient region tracking with parametric
models of geometry and illumination. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(10):1025–1039, October 1998.

[9] R. Hartley and A. Zisserman. Multiple View Geometry in computer
vision. Cambridge University Press, 2001. Book.

[10] P.-J. Huber. Robust Statistics. Wiler, New York, 1981.
[11] E. Malis. Improving vision-based control using efficient second-

order minimization techniques. In IEEE International Conference on
Robotics and Automation, ICRA’04, volume 2, pages 1843– 1848, New
Orleans, April 26-May 1 2004.

[12] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd.
Real-time localization and 3d reconstruction. In IEEE Conference of
Vision and Pattern Recognition, New-York, USA, June 2006.

[13] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pages 652–659, CVPR 2004, July 2004.

[14] A.S. Ogale and Y. Aloimonos. Shape and the stereo correspondence
problem. International Journal of Computer Vision, 65(1), October
2005.

[15] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In Proceedings
of the IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai,
HI., December 2001.

[16] A. Shashua and L. Wolf. On the structure and properties of the
quadrifocal tensor. In European Conference on Computer Vision, pages
710–724, 2000.

[17] N. Simond and P. Rives. Trajectography of an uncalibrated stereo
rig in urban environments. In IEEE RSJ/International conference on
Intelligent Robot and System, IROS, pages 3381–3386, Sendai, Japan,
28 September - 2 October 2004.

[18] W. van der Mark and D.M. Gavrila. Real-time dense stereo for
intelligent vehicles. IEEE Transactions on Intelligent Transportation
Systems, 7(1):38–50, March 2006.

[19] Z. Zhang and O. Faugeras. Three dimensional motion computation and
object segmentation in a long sequence of stereo frames. International
Journal of Computer Vision, 7(3):211–241, 1992.

WeA2.2

45

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 07:42 from IEEE Xplore.  Restrictions apply.


