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Time-Varying Exponential Stabilization of a
Rigid Spacecraft with Two Control Torques

P. Morin and C. Samson

Abstract—Rigid body models with two controls cannot be locally
asymptotically stabilized by continuous feedbacks which are functions
of the state only. This impossibility no longer holds when the feedback
is also a function of time, and time-varying asymptotically stabilizing
feedbacks have already been proposed. However, due to the smoothness
of the feedbacks, the convergence rate is only polynomial. In the present
note, exponential convergence is obtained by considering time-varying
feedbacks which are only continuous.

Index Terms—Altitude stabilization, continuous feedback, homoge-
neous system, time-varying control.

I. INTRODUCTION

Following an idea which may be traced back to a work by
Sontag and Sussmann [17] in 1980, an article by Samson [16]
in 1990 has revealed that continuous time-varying feedbacks, i.e.,
feedbacks which depend not only on the system’s state vector but
also on time, can be of interest in stabilizing many systems which
cannot be stabilized by continuous pure-state feedbacks. This has
been confirmed by Coron’s results [3], which establish that most
STLC (small-time locally controllable) systems can be stabilized by
continuous time-varying feedback.

It is known that a given attitude for a rigid spacecraft with
only two controls cannot be asymptotically stabilized by means of
continuous-state feedbacks, as pointed out for example in [1], since
Brockett’s necessary condition [2] for smooth feedback stabilizability
is not satisfied in this case. Nevertheless, the existence of stabilizing
continuous time-varying feedbacks for this problem follows from [3]
and [8], with the latter reference establishing that the system is STLC.

In [11], explicit smooth time-varying feedbacks have been derived
by using center manifold theory, time-averaging, and Lyapunov
techniques. Similar results have independently been announced by
Walsh et al. in [18]. However, due to the smoothness of the control
laws, the asymptotical rate of convergence to zero of the closed-
loop system’s solutions is only polynomial in the worst case. In the
present paper, we derive time-varying continuous feedbacks which
locally exponentiallyasymptotically stabilize the attitude of a rigid
spacecraft. Our construction relies on the properties of homogeneous
systems, combined with averaging and Lyapunov techniques. It also
uses a specificcascaded high-gain controlresult established here for
systems homogeneous of degree zero involving controls which are
not necessarily differentiable everywhere.

Another solution, also yielding exponential stabilization, has re-
cently been proposed by Coron and Kerai in [4]. A particularity of
this solution is that it consists of switching periodically between two
control laws, one of which depends on time. The resulting feedback
control is continuous and time-periodic. By contrast, the solution
proposed here consists of a single and simpler control expression.

The paper is organized as follows. In Section II, the equations of
a rigid body, when using a set of Rodrigues parameters to represent
attitude errors, are recalled, and the control objective is stated. In
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Cédex, France.
Publisher Item Identifier S 0018-9286(97)02809-2.

Section III, general properties and stabilization results associated with
homogeneous systems, which are useful to establishing our main
result, are recalled. The aforementioned cascaded high-gain control
result, for systems which are homogeneous of degree zero, is derived
in Section IV. A set of continuous time-varying control laws which
locally asymptotically and exponentially stabilizes the desired attitude
is proposed in Section V, with the corresponding proof of stability.
Finally, simulation results are given in Section VI.

The main stabilization results described in this note have been
presented at the34th IEEE CDC[10]. They are here complemented by
simulation results and by a proposition (Proposition 4) which can be
used to derive an explicit Lyapunov function for the controlled system
and control gain values for which asymptotic stability is ensured.

Throughout the paper, we use the following notations.

• h�; �i denotes the Euclidean inner product andj � j denotes the
associated norm.

• I3 denotes the identity matrix inIR3:

• A function f : IRn 7! IR
p is of classCp (respectively,C1) if

it has continuous partial derivatives up to orderp (respectively,
at any order).

II. EQUATIONS OF THE RIGID BODY

Let us consider a frameF0 attached to the spacecraft and whose
axes correspond to the principal inertia axes of the body, and a fixed
frameF1 whose attitude is the desired one forF0: Let us also denote
! the angular velocity vector of the frameF0 with respect to the
frameF1; expressed in the basis ofF0; J the diagonal matrix of the
principal moments of inertia(J = Diag(j1; j2; j3)); andS(!) the
matrix representation of the cross product

S(!) =

0 !3 �!2
�!3 0 !1
!2 �!1 0

: (1)

If R is the rotation matrix representing the attitude ofF1 with
respect toF0 (and whose columns vectors are the basis vectors of
F1 expressed inF0); we get the well-known equations

_R =S(!)R

J _! =S(!)J! +B(�1; �2; 0)
T (2)

where the�i are the torques applied to the rigid body andB represents
the directions in which these torques are applied.

We make the assumption thatB = I3 (i.e., that the torques are
applied in the direction of principal inertia axes). However, our result
can be easily extended to any location of the actuators for which
the spacecraft is controllable, after an adequate change of state and
control variables similar to the one proposed in [4].

System (2) is a control system with two scalar inputs�1 and �2
and state spaceSO(3) � IR

3: Our objective is to find a control
(�1(t; R; !); �2(t; R; !)) periodic with respect to time, which locally
exponentially stabilizes the point(I3; 0) of SO(3)� IR

3:

In order to control the body rotations, a preliminary step tradition-
ally consists of defining a minimal set of local coordinates for the
parameterization ofSO(3) aroundI3: As in [11], we choose a set of
coordinates, sometimes called Rodrigues parameters. To any rotation
R of angle� 2]��; �[ and axis, the direction of which is defined
by the unit vector~u, we associate the following three-dimensional
vector: X = (x1; x2; x3)

T
= �tan(�=2)u; with u denoting the

coordinates of the vector~u in the frame ofF0: It is shown in [11]
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that (2) can be written in the coordinates(X;!)

_X =
1

2
(!+ S(!)X + h!;XiX)

_!1 = c1!2!3 + u1

_!2 = c2!1!3 + u2

_!3 = c3!1!2 (3)

with

c1 =
j2 � j3

j1
; c2 =

j3 � j1

j2
; c3 =

j1 � j2

j3

u1 =
�1

j1
; and u2 =

�2

j2
:

It is of course assumed thatc3 6= 0; since otherwise the system
would not be controllable or stabilizable. Moreover, we may also
assume thatc3> 0; due to the fact that the change of variables

(x1; x2; x3; !1; !2; !3; u1; u2)

7! (x2; x1;�x3; !2; !1;�!3; u2; u1)

leaves (3) unchanged, except for the parametersc1; c2; andc3 which
are changed into�c2;�c2; and�c3:

Our objective is to find a continuous feedback control law which
exponentially asymptotically stabilizes the origin of (3).

III. H OMOGENEITY AND EXPONENTIAL STABILIZATION

Let us first recall some results and definitions about homogeneous
systems. For a more complete exposition, the reader is referred to
[7] or [6].

For any�> 0 and any set of real parametersri> 0 (i = 1; � � � ; n);

one defines the following “dilation” operator�r�: IR
n 7! IR

n by

�
r
�(x1; � � � ; xn) = (�

r
x1; � � � ; �

r
xn):

A homogeneousnorm associated with this dilation operator is

�
r
p(x) =

n

j=1

jxj j
p=r

1=p

with p> 0:

A continuous functionf : IRn 7! IR is homogeneous of degree
� � 0 with respect to the dilation�r� if

8�> 0; f(�
r
�(x)) = �

�
f(x):

A differential system_x = f(x) (or a vector fieldf ), with f : IRn 7!

IR
n continuous, is homogeneous of degree� � 0 with respect to

the dilation �r� if

8�> 0; fi(�
r
�(x)) = �

�+r
fi(x) (i = 1; � � � ; n):

The above definitions can be extended to time-dependent functions
and systems. Such an extension has already been considered in [12]
and simply follows by considering the extended dilation operator:

�
r
�(x1; � � � ; xn; t) = (�

r
x1; � � � ; �

r
xn; t):

The definitions remain unchanged.
The following result, which is a particular case of a proposition

by Pomet and Samson, establishes the existence of homogeneous
Lyapunov functions for time-varying asymptotically stable systems
which are homogeneous of degree zero with respect to some dilation.
This proposition extends a theorem by Rosier [14] on autonomous
systems.

Proposition 1 (Pomet, Samson [12]):Let f(x; t): IRn�IR 7! IR
n

a T -periodic continuous function(f(x; t + T ) = f(x; t)): Assume
that the system_x = f(x; t) is homogeneous of degree zero with
respect to a dilation�r�(x; t) and thatx = 0 is an asymptotically
stable equilibrium of this system.

Then, for any�> 0 andp<�=maxfrjg; there exists a function
V (x; t): IRn � IR 7! IR such that:

• V is of classCp on IR
n � IR and of classC1 on (IR

n �

f0g) � IR;

• V is T -periodic (V (x; t + T ) = V (x; t));

• V is homogeneous of degree� with respect to the dilation
�r�: V (�r�(x; t)) = ��V (x; t);

• V (x; t)> 0 if x 6= 0; V (0; t) = 0;

• V (x; t) is “proper” with respect tox: 8t: V (x; t) 7! +1 when
jxj 7! +1;

• 9M > 0;9�> 0: (@V=@t)(x; t) + (@V=@x)(x; t)f(x; t) �

�M(�rp(x))
�:

The following properties can be viewed as a consequence of the above
proposition. The first property has been stated by Kawski in [7], in
the case of autonomous systems. The second has been shown by
Hermes, also for autonomous systems in which case no assumption
on the homogeneity degree of the vector field is needed (see [6]).

Proposition 2 (Exponential Stabilization):Consider the system

_x = f(x; t) (4)

with f(x; t): IR
n � IR 7! IR

n a T -periodic continuous function
(f(x; t + T ) = f(x; t)); and f(0; t) = 0: Assume that (4) is
homogeneous of degree zero with respect to a dilation�r�(x; t)

and that the equilibrium pointx = 0 of this system is locally
asymptotically stable.

Then:

1) x = 0 is globally exponentially stablein the sensethat there
exist two strictly positive constantsK and  such that along
any solution of (4)

�
r
p(x(t)) � Ke

�t
�
r
p(x(0))

with �rp(x) denoting a homogeneous norm associated with the
dilation �r�(x; t);

2) the solutionx = 0 of the “perturbed” system_x = f(x; t) +

g(x; t) is locally exponentially stable wheng(x; t): IR
n �

IR 7! IR
n is a continuousT -periodic function such that the

corresponding vector fieldg is a sum of homogeneous vector
fields of degree strictly positive with respect to�r�:

For the proof of Part 1), we refer to the proof of [12, Prop. 1].
The proof of Part 2) follows from Proposition 1 and from the proof
of [14, Th. 3].

The next Proposition is a corollary of a result by M’Closkey and
Murray.

Proposition 3 (M’Closkey, Murray [9]): Consider the system

_x = f(x; t=�) (5)

with f(x; t): IR
n � IR 7! IR

n a continuousT -periodic function
(f(x; t+ T ) = f(x; t)): Assume that (5) is homogeneous of degree
zero with respect to a dilation�r�(x; t) and that the originy = 0 of
the “averaged system”_y = f(y) (with f(y) = 1=T sT0 f(y; t) dt)
is asymptotically stable.

Then, there exists�0> 0 such that for any� 2 (0; �0); the origin
x = 0 of (5) is exponentially stable.

The following proposition complements the previous one for a
specific class of systems, in the sense that it provides us with a value
of �0:
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Proposition 4: Consider the system

_x = f0(x) +

p

i=1

gi(t=�)fi(x) (6)

wherefi (i = 0; � � � ; p): IRn 7! IR
n are continuous functions which

define homogeneous vector fields of degree zero with respect to
a dilation �

r

�(x); fi (i = 1; � � � ; p); are functions of classC1 on
IR

n � 0; andgi (i = 1; � � � ; p): IR 7! IR are continuousT -periodic
functions such thatsT

0
gi(�) d� = 0:

Assume that the originx = 0 of the “averaged system”_x =

f0(x) is asymptotically stable and that an associated Lyapunov
function V (x) of classC2

; homogeneous of degree� with respect
to �

r

�(x); such thatV (x) � K1(�
r

p(x))
� and (@V=@x)(x)f0(x) �

�K2(�
r

p(x))
�
; is known. Define also

Ci = sup
t2IR

jgi(t)j; Ii = sup
t2IR

t

0

gi(�) d�

�i = sup

� (x)=1

@V

@x
(x)fi(x)

i;j = sup

� (x)=1

@

@x

@V

@x
(x)fi(x) fj(x)

and

�0 =Max
K1

p

i=1

Ii�i

;
K2

p

i=1

Ii i;0 +

p

j=1

Cji;j

:

Then for any� 2 (0; �0) the origin x = 0 of (6) is exponentially
stable.

Proof: The proof relies on the construction of a Lyapunov
function for (6).

Since the functionsgi and(s t
0
gi(�)d�) areT -periodic continuous

functions, the valuesCi andIi (i = 1; � � � ; p) are well defined. Let
us consider the following continuous periodic function, homogeneous
of degree� with respect to�r�:

W (x; t) =V (x)� �

p

i=1

t=�

0

gi(�) d�
@V

@x
(x)fi(x):

(7)

Then for � smaller than�0; and using the fact that

@V

@x
(x)fi(x) � �i(�

r

p(x))
�

it is simple to verify thatW is a positive function. Moreover, this
function is of classC1 on (IRn� 0)� IR: The time derivative ofW
along any trajectory of the (6) which does not pass throughx = 0

is then given by

_W =
@V

@x
f0(x)� �

p

i=1

t=�

0

gi(�) d�

�
@

@x

@V

@x
(x)fi(x) � (f0(x)

+

p

j=1

gj(t=�)fj(x)): (8)

For � � �0; it is simple to verify that _W � �K(�
r

p(x))
�
; with

K> 0:

IV. CASCADED HIGH-GAIN CONTROL

FOR A CLASS OF HOMOENEOUS SYSTEMS

The next proposition concerns the classical problem of “adding
integrators.” For autonomous systems, the existence of asymptotically
stabilizing homogeneous feedbacks, for a homogeneous asymptot-
ically stabilizable system to which an integrator has been added
at the input level, has been proved in [5]. Some (nonsystematic)
constructive methods have also been developed in [13] and [15]. The
following result provides a simple solution to this problem for a class
of homogeneous time-periodic systems.

Proposition 5: Consider the following system:

_x = f(x; v(x
1
; t); t) (9)

with f(x; y; t): IR
n � IR � IR 7! IR

n a continuousT -periodic
function,x1 = (x1; � � � ; xm);m � n; andv(x1; t): IRm � IR 7! IR

a continuousT -periodic function, differentiable with respect tot;
of classC1 on (IR

m � f0g) � IR; homogeneous of degreeq with
respect to a dilation�r�(x; t):

Assume further that (9) is homogeneous of degree zero with respect
to the dilation�r�(x; t) and that the originx = 0 of this system is
asymptotically stable.

Then, fork positive and large enough, the origin(x = 0; y = 0)

of the system

_x = f(x; y; t)

_y =�k(y � v(x
1
; t)) (10)

is asymptotically stable.
Proof: Let �(x; t) = (�

r
x1; � � � ; �

r
xn; t) denote the dilation

with respect to which (9) is homogeneous of degree zero, and�(x)

an associated homogeneous norm.
Let us also denote�e(x; y; t) = (�

r
x1; � � � ; �

r
xn; �

q
y; t) the

dilation with respect to which (10) is homogeneous of degree zero.
Since the functionv(x1; t) is, by assumption, of classC1 on

(IR
m � f0g) � IR and homogeneous of degreeq with respect to

the dilation �(x; t); the functionvr(x1; t) is also of classC1 on
(IR

m�f0g)�IR; and it is homogeneous of degreerq for any positive
integer r: Consequently, the function@vr=@xi is homogeneous of
degreerq � ri; for i = 1; � � � ;m: The integerr is here chosen such
that r > maxfri=q; 1 � i � mg: In this case each partial derivative
of vr is homogeneous of strictly positive degree with respect to the
dilation �(x; t) and thus tends to zero asjx1j tends to zero. Therefore,
v
r is at least of classC1 on IR

m � IR: In what follows, it is further
assumed thatr is odd.

We denote asV (x; t) a T -periodic Lyapunov function for (9),
homogeneous of degree� = (r + 1)q with respect to the dilation
�(x; t); and of classC1

: Such a function exists by application of
Proposition 1. Following the “desingularization method” proposed in
[13], we consider the following function:

W (x; y; t) = V (x; t) +
1
p
k
�(y; x

1
; t) (11)

with

�(y; x
1
; t) =

y

v(x ;t)

s
r � v

r
(x

1
; t) ds: (12)

In order to prove the proposition, we show thatW is a Lyapunov
function for (10), whenk is large enough.

We first note that� is positive and equal to zero if and only if
y = v(x

1
; t): This already implies thatW is positive and vanishes

only at (x; y) = (0; 0): It is also proper with respect to(x; y) since
V (x; t) is, by assumption, proper with respect tox and�(y; x1; t);
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seen as a function ofy whenx andt are fixed, tends to infinity when
jyj tends to infinity. Now, from (12), it is simple to verify that

�(y; x
1
; t) =

yr+1

r + 1
+ r

vr+1

r + 1
� v

r
y:

Sincevr is of classC1; one deduces from the above expression that
�(y; x1; t) is also of classC1:

Let us now calculate the time derivative_W of W along any
trajectory of (10). With a slight abuse in the notations, introduced
here for the sake of legibility, we have

_W = _V +
1p
k

_�

=
@V

@x
f(x; v(x

1
; t); t) +

@V

@t

+
@V

@x
(f(x; y; t)� f(x; v(x

1
; t); t))

+
1p
k

@�

@y
_y +

@�

@x1
f
1
(x; y; t) +

@�

@t
(13)

with f1 denoting the vector-function whose components are the
m-first components off:

SinceV is a homogeneous, of degree�, Lyapunov function for
(9), there exists a strictly positive constantK1 such that

@V

@x
(x; t)f(x; v(x

1
; t); t) +

@V

@t
(x; t) � �2K1(�(x))

�
: (14)

We show next that there exists another positive constantK2 such that

@V

@x
(x; t)(f(x; y; t)� f(x; v(x

1
; t); t))

� K1(�(x))
�
+K2(y � v(x

1
; t))

r+1
: (15)

To this purpose, let us consider the following set of functions:

Gp(x; y; t) =

@V

@x
(x; t)(f(x; y; t)� f(x; v(x1; t); t))

K1(�(x))� + p(y � v(x1; t))r+1
(16)

indexed by the positive integerp: Gp is a continuousT -periodic
function, homogeneous of degree zero with respect to the dilation
�e(x; y; t); and it is well defined for(x; y) 6= (0; 0): Time-periodicity
of Gp allows one to consider that time lives on the compact set
S1 = IR=TZ instead ofIR: SinceGp is homogeneous of degree
zero,Gp reaches its maximum at some point(xp; yp; tp) in S� S1;

with S denoting the unit sphere inIRn+1: By compacity ofS � S1;

one can extract a subsequence(xp ; yp ; tp ); l 2 which converges
to some point(x; y; t) 2 S � S1: Let us distinguish the following
two cases.

1) y = v(x1; t): By continuity of f and v; the numerator
of Gp (xp ; yp ; tp ) tends to zero asl tends to +1;

and for l large enough the denominator is greater than
(K1=2)(�(x))

� > 0; using the fact thatx cannot be equal
to zero. Indeed, ifx were equal to zero, theny = v(0; t)

would also be equal to zero, contradicting the fact that(x; y)

belongs toS: As a consequence,Gp (xp ; yp ; tp ) must be
smaller than one for large enough values ofl:

2) y 6= v(x1; t): By continuity of f and v; the numerator
of Gp (xp ; yp ; tp ) is bounded independently ofl; and the
denominator tends to+1 as l tends to +1: Therefore,
Gp (xp ; yp ; tp ) tends to zero asl tends to+1:

We thus have proved the existence of an integerp for which
jGp(x; y; t)j< 1: By takingK2 equal to this integer, (15) follows.

Let us now consider the term(@�=@y) _y of (13). From (12) and
(10), we have

@�

@y
_y = �k(yr � v

r
(x

1
; t))(y � v(x

1
; t)): (17)

We show the existence of a strictly positive constant� such that

@�

@y
_y � �k�(y � v(x

1
; t))

r+1
: (18)

To this purpose, let us consider the following function (withr odd):
h(x) = 2r�1[(1 + x)r � xr ] � 1; the positivity of which is easily
established. By takingx = v(x1; t)=(y � v(x1; t)); one has

2r�1

(y � v(x1; t))r
(y

r � v
r
(x

1
; t))� 1 � 0: (19)

Multiplying each number of (19) by(y � v(x1; t))r+1; one obtains,
in view of (17), the desired inequality (18) with� = 21�r:

Finally, we have for some valueK3

@�

@x1
(y; x

1
; t)f

1
(x; y; t) +

@�

@t
(y; x

1
; t)

� K3((�(x))
�
+ (y � v(x

1
; t))

r+1
): (20)

This inequality comes from the fact that the function

@�

@x1
(y; x

1
; t)f

1
(x; y; t) +

@�

@t
(y; x1; t)

(�(x))� + (y � v(x1; t))r+1

is homogeneous of degree zero with respect to the dilation�e(x; y; t);

well defined outside(x; y) = (0; 0); and is thus bounded. By using
(13)–(15), (18), and (20), one obtains

_W ��2K1(�(x))
�
+K1(�(x))

�
+K2(y � v(x

1
; t))

r+1

+
K3p
k
(�(x))

�
+

K3p
k
(y � v(x

1
; t))

r+1

�
p
k�(y � v(x

1
; t))

r+1
: (21)

For anyk>Maxf1; (K3=K1)
2; ((K2 + K3)=�)

2g; _W is negative
and equal to zero if and only ifx = 0 andy = 0:

Proposition 5 can be used for a multi-input system to which an
integrator has been added at each input level. More precisely, one
easily deduces the following corollary.

Corollary 1: Consider the following system:

_x = f(x; v(x; t); t) (22)

with f(x; y; t): IRn � IRp � IR 7! IRn a continuousT -periodic
function, andv(x; t): IRn�IR 7! IRp a continuousT -periodic vector-
function whose componentsv1(x; t); � � � vp(x; t) are differentiable
with respect tot; of classC1 on (IRn�f0g)�IR; and homogeneous,
respectively, of degreeq1; � � � ; qp with respect to a dilation�r�(x; t):

Assume further that (22) is homogeneous of degree zero with
respect to the dilation�r�(x; t) and that the originx = 0 of this
system is asymptotically stable.

Then, for positive and large enough values ofk1; � � � kp; the origin
(x = 0; y = 0) of the system

_x = f(x; y; t)

_y1 =�k1(y1 � v1(x; t))

...

_yp =�kp(yp � vp(x; t)) (23)

is asymptotically stable.



532 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

Fig. 1.

V. EXPONENTIAL STABILIZATION OF THE RIGID SPACECRAFT

Our main result, which gives time-varying stabilizing feedbacks
for the spacecraft, is stated next.

Theorem 1: Consider the functions

v1(X;!3; t) =�k1x1 � �(X;!3) sin(t=�)

v2(X;!3; t) =�k2x2 +
1

�(X;!3)
(x3 + !3) sin(t=�) (24)

with �; of classC1 on IR4
� f0g; a homogeneous norm associated

with the dilation�r�(X;!3; t) = (�x1; �x2; �
2x3; �

2!3; t), and the
following time-varying continuous feedback:

u1(X;!; t) =�k3(!1 � v1(X;!3; t))

u2(X;!; t) =�k4(!2 � v2(X;!3; t)): (25)

Then, for any positive parametersk1 andk2, there exists�0> 0 such
that for any � 2 (0; �0] and large enough parametersk3> 0 and
k4> 0; the feedback (25) locally asymptotically and exponentially
stabilizes the origin of (3).

Proof: Let us consider the following dilation:�re(X;!; t) =
(�x1; �x2; �

2x3; �!1; �!2; �
2!3; t):

System (3)–(25) can be rewritten as
_X
_!

= f(X;!; t) + g(X;!; t) (26)

with

f(X;!; t) = ( 1
2
!1;

1

2
!2;

1

2
(!3 + !2x1 � !1x2);

u1(X;!; t); u2(X;!; t); c3!1!2)
T
: (27)

One easily verifies thatf(X;!; t) defines a continuousT -periodic
vector field homogeneous of degree zero with respect to the dilation
�re(X;!; t) and thatg(X;!; t) is continuous and defines a sum of
homogeneous vector fields of degree strictly positive with respect to
�re(X;!; t):

From Proposition 2, applied to (26), it is sufficient to show that
the origin (X = 0; ! = 0) of the system

_X
_!

= f(X;!; t) (28)

is locally asymptotically stable.
To this purpose, let us first consider the following reduced system

obtained from (28)–(27) by takingv1
def

= !1 andv2
def

= !2 as control
variables:

_x1
_x2
_x3

= 1

2

v1
v2

!3 + v2x1 � v1x2

_!3 = c3v1v2: (29)

Fig. 2.

Fig. 3.

With the controlsv1 and v2 given by (24), one verifies, by appli-
cation of Proposition 3, that the origin of the controlled system is
asymptotically stable for any positivek1 andk2 and� small enough.

Indeed, the vector-valued function associated with the right-hand
side of the controlled system is continuous, sincev1(X;!; t) and
v2(X;!; t) are homogeneous of degree one with respect to the
dilation �r�(X;!3; t); are well defined outside the origin(X =
0; !3 = 0), and thus tend to zero asj(X;!3)j tends to zero.
The corresponding vector field is also periodic and homogeneous
of degree zero with respect to�r�(X;!3; t) so that the assumptions
of Proposition 3 are met. Moreover, the corresponding “averaged”
system is given by

_x1 =�
k1

2
x1

_x2 =�
k2

2
x2

_x3 =
1

2
!3 +

1

2
(k1 � k2)x1x2

_!3 = c3(k1k2x1x2 �
1

2
x3 �

1

2
!3) (30)

and the origin of this system is locally asymptotically stable, since
the linear approximation of this system around the origin is obviously
stable. The asymptotic stability of the origin of the system (28)
follows by direct application of Corollary 1, after noticing that
the functionsv1(X;!3; t) and v2(X;!3; t) are of classC1 on
(IR3 � IR� f0; 0g)� IR:
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Fig. 4.

Fig. 5.

Fig. 6.

VI. SIMULATION RESULTS

The feedback laws given by (24), (25) make the origin of (3)
asymptotically stable for small enough values of� and large enough
values ofk3 andk4: For practical purposes, it is necessary to specify
values for which the stabilization is ensured. Conservative values can
be determined via a complementary analysis. For instance, using the
fact thatV (X; !3) = 4x41 + 4x42 + x23 + !2

3 + x3!3 is a Lyapunov
function for (30) whenc3 = k1 = k2 = 1; one can deduce from
Proposition 4 an upper bound for�0. Conservative values ofk3 and

Fig. 7.

k4 can in turn be obtained by following the proof of Proposition 5.
As for now, we will illustrate by simulation that� does not have to be
very small, nork3 andk4 very large. For example, the action of the
control laws (24), (25) on (3) has been simulated with the following
choice of parameters:� = 1=3; k1 = k2 = 1; k3 = k4 = 5; and with
the initial conditions(x1(0); x2(0); x3(0); !1(0); !2(0); !3(0))

T =
(0:5; 0:3;�1; 1;�1; 1)T :

Figs. 1–6 show the time evolution of the state variables
x1; x2; x3; !1; !2; !3, and Fig. 7 shows the linear decreasing of
the log of the homogeneous norm�(X;!) = (x41 + x42 + x23 +!4

1 +
!4

2 + !2

3)
1=4; in order to illustrate the exponential convergence of

this norm to zero.
It has also been verified by simulation that no choice of the

parameters yields stability.
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A Systematic Approach to Adaptive Observer
Synthesis for Nonlinear Systems

Young Man Cho and Rajesh Rajamani

Abstract—Geometric techniques of controller design for nonlinear
systems have enjoyed great success. A serious shortcoming, however, has
been the need for access to full-state feedback. This paper addresses the
issue of state estimation from limited sensor measurements in the presence
of parameter uncertainty. An adaptive nonlinear observer is suggested for
Lipschitz nonlinear systems, and the stability of this observer is shown to
be related to finding solutions to a quadratic inequality involving two vari-
ables. A coordinate transformation is used to reformulate this inequality
as a linear matrix inequality. A systematic algorithm is presented, which
checks for feasibility of a solution to the quadratic inequality and yields
an observer whenever the solution is feasible. The state estimation errors
then are guaranteed to converge to zero asymptotically. The convergence
of the parameters, however, is determined by a persistence-of-excitation-
type constraint.

Index Terms—Adaptive observer, interior point method, linear matrix
inequality, nonlinear systems.

I. INTRODUCTION

Observer design and adaptive control for nonlinear systems have
both been very active fields of research during the last decade. The in-
troduction of geometric techniques has led to great success in the de-
velopment of controllers for nonlinear systems. Many attempts have
been made to achieve results of equally wide applicability for state
estimation and adaptation. The observer problem has, however, turned
out to be much more difficult than the controller problem [1], [2].

An adaptive observer performs the twin tasks of state estimation
and parameter identification. The two tasks are performed simultane-
ously and cannot be separated. The identification algorithm has to be
defined using access to only the measured outputs and the estimated
states. The state estimation algorithm has to work in the presence of
uncertain parameters. This makes the problem very challenging.

The design of an adaptive observer for a linear time invariant
system has been well analyzed [3]. In this case the order of the plant
“n” is assumed to be known, nothing else about the plant need be
known. The output of the plant is described as the output of a first-
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order differential equation whose input is a linear combination of
“2n” signals. The coefficients of these signals represent the unknown
parameters of the plant. The adaptive observer is also described by
a similar first-order equation using the input and output of the plant,
with its parameters being adjustable. An adaptation/estimation law
is derived, and its uniform stability about the origin for the state
estimation error can be shown without any further assumptions on the
plant. If the plant is stable, the convergence of the state estimation
error to zero can also be concluded. The parameters of the observer
are adjusted using stable adaptation laws so that the error between the
plant and observer outputs converges to zero. The convergence of the
parameters to the desired values, however, depends on the persistent
excitation of the input signals.

In the case of nonlinear systems, Sastry and Isidori presented
results on the use of parameter adaptive control for obtaining asymp-
totically exact cancellation for the class of nonlinear systems which
can be feedback linearized [4]. The full-state was assumed to be
available, however, for the controller. Papers by Marinoet al. on
adaptive observers attempted to find a coordinate transformation so
that the estimation error dynamics would be linearized in the new
coordinates [5], [6]. They provide necessary and sufficient conditions
for the existence of such a coordinate transformation. Even if these
conditions are satisfied, the construction of the observer still remains
a difficult task due to the need to solve a set of simultaneous partial
differential equations to obtain the actual transformation function.
An intuitively appealing and systematic treatment of the output
feedback and adaptive observer problem for nonlinear systems has
been developed by Kokotovicet al. [7]–[9]. Here the authors develop
a set of tools which the user can attempt to customize for his specific
problem. There has also been work by authors to propose adaptive
observers for very special classes of nonlinear systems [10], [11].

The present work deals with a fairly general class of nonlinear
systems, in which the nonlinearities are assumed to be Lipschitz. A
systematic algorithm is provided which checks for the feasibility of
an asymptotically stable adaptive observer. If the feasibility condition
is satisfied, the algorithm provides the observer gains.

II. BACKGROUND

This section presents results which will be used in the construction
of our proposed observer.

A. Adaptive Observers for a Class of Nonlinear Systems

We begin with the adaptive observer proposed for a class of
nonlinear systems in [15]. The class of systems we consider are
linear in the unknown parameters and nonlinear in the states, with
the nonlinearities assumed to be Lipschitz as described in (1) below.
This is a fairly general class, since most nonlinearities can be bounded
in a Lipschitz manner if the states can be assumed to be bounded.
Further, many nonlinearities, like the sinusoidal terms encountered in
robotics, are globally Lipschitz. The success of the adaptive observer
method as outlined below, however, depends on being able to find a
positive definite matrixPPP and an observer gain matrixLLL to satisfy
(2) and (6). For proof of the Theorem, refer to [15].

Theorem II.1: Consider the class of nonlinear dynamical systems
described by

_xxx =AAAxxx+���(xxx;uuu) + bbbfff(xxx; uuu)���

yyy =CCCxxx (1)
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