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Time-Varying Exponential Stabilization of a Section IIl, general properties and stabilization results associated with
Rigid Spacecraft with Two Control Torques homogeneous systems, which are useful to establishing our main
result, are recalled. The aforementioned cascaded high-gain control

P. Morin and C. Samson result, for systems which are homogeneous of degree zero, is derived

in Section IV. A set of continuous time-varying control laws which
locally asymptotically and exponentially stabilizes the desired attitude
Abstract—Rigid body models with two controls cannot be locally is proposed in Section V, with the corresponding proof of stability.
asymptotically stabilized by continuous feedbacks which are functions Finally, simulation results are given in Section VI.

of the state only. This impossibility no longer holds when the feedback . i . . -
is also a function of time, and time-varying asymptotically stabilizing The main stabilization results described in this note have been

feedbacks have already been proposed. However, due to the smoothnessp_“:-'s'e"‘t_ed at thedth IEEE CDC10]. They are he“? _complemgnted by
of the feedbacks, the convergence rate is only polynomial. In the present simulation results and by a proposition (Proposition 4) which can be

note, exponential convergence is obtained by considering time-varying ysed to derive an explicit Lyapunov function for the controlled system
feedbacks which are only continuous. and control gain values for which asymptotic stability is ensured.
Index Terms—Altitude stabilization, continuous feedback, homoge-  Throughout the paper, we use the following notations.
neous system, time-varying control. + (-,-) denotes the Euclidean inner product gnd denotes the
associated norm.
| INTRODUCTION « I denotes the identity matrix ifR>.
e A function f: IR" — IR? is of classC” (respectively,C*) if
it has continuous partial derivatives up to orgefrespectively,
at any order).

Following an idea which may be traced back to a work by
Sontag and Sussmann [17] in 1980, an article by Samson [16]
in 1990 has revealed that continuous time-varying feedbacks, i.e.,
feedbacks which depend not only on the system’s state vector but
also on time, can be of interest in stabilizing many systems which Il. EQUATIONS OF THE RIGID BoDY
cannot be stabilized by continuous pure-state feedbacks. This habket us consider a framéy attached to the spacecraft and whose
been confirmed by Coron’s results [3], which establish that moakes correspond to the principal inertia axes of the body, and a fixed
STLC (small-time locally controllable) systems can be stabilized Hyame F, whose attitude is the desired one fy. Let us also denote
continuous time-varying feedback. w the angular velocity vector of the framB, with respect to the

It is known that a given attitude for a rigid spacecraft witlframe F,, expressed in the basis &%, .J the diagonal matrix of the
only two controls cannot be asymptotically stabilized by means gfincipal moments of inertid.J = Diag(ji, jo,j3)), and S(w) the
continuous-state feedbacks, as pointed out for example in [1], singatrix representation of the cross product
Brockett's necessary condition [2] for smooth feedback stabilizability

is not satisfied in this case. Nevertheless, the existence of stabilizing 0 w3 Tw2
continuous time-varying feedbacks for this problem follows from [3] Sw)=1-ws 0 Wi} @)
and [8], with the latter reference establishing that the system is STLC. W2 o W 0

In [11], explicit smooth time-varying feedbacks have been derivegl r s the rotation matrix representing the attitude Bf with

by using center manifold theory, time-averaging, and LyapunQ¥spect toF, (and whose columns vectors are the basis vectors of
techniques. Similar results have independently been announcedfl?yexpressed iF,), we get the well-known equations
Walshet al. in [18]. However, due to the smoothness of the control /

laws, the asymptotical rate of convergence to zero of the closed- R =S(w)R

loop system’s solutions is only polynomial in the worst case. In the Ji =S(w)Jw+ B(r1,72.0)" @)

present paper, we derive time-varying continuous feedbacks which

locally exponentiallyasymptotically stabilize the attitude of a rigidwhere ther; are the torques applied to the rigid body a@depresents

spacecraft. Our construction relies on the properties of homogenedus directions in which these torques are applied.

systems, combined with averaging and Lyapunov techniques. It alsaoVe make the assumption th& = I5 (i.e., that the torques are

uses a specificascaded high-gain controksult established here for applied in the direction of principal inertia axes). However, our result

systems homogeneous of degree zero involving controls which a#n be easily extended to any location of the actuators for which

not necessarily differentiable everywhere. the spacecraft is controllable, after an adequate change of state and
Another solution, also yielding exponential stabilization, has reontrol variables similar to the one proposed in [4].

cently been proposed by Coron and Kerai in [4]. A particularity of System (2) is a control system with two scalar inpatsand T

this solution is that it consists of switching periodically between twand state spac&0(3) x IR*. Our objective is to find a control

control laws, one of which depends on time. The resulting feedbagk (¢, R, w), = (¢, R, w)) periodic with respect to time, which locally

control is continuous and time-periodic. By contrast, the solutioasxponentially stabilizes the poirifs, 0) of SO(3) x R>.

proposed here consists of a single and simpler control expression. In order to control the body rotations, a preliminary step tradition-
The paper is organized as follows. In Section Il, the equations afly consists of defining a minimal set of local coordinates for the

a rigid body, when using a set of Rodrigues parameters to represgatameterization a§O(3) aroundl;. As in [11], we choose a set of

attitude errors, are recalled, and the control objective is stated. doordinates, sometimes called Rodrigues parameters. To any rotation
Manuscript received November 2, 1995; revised July 1, 1996. It of anglge E]_T‘JW[ and axi_s, the directioh of which -is defi_ned
The authors are with INRIA Sobhia-Ahtipolis, 069027Sophia Antipolié)y the uplt vectori, we ?ssomate the fOHOWI,ng three-dlmensmnal

Cédex, France. vector: X = (x1,x9,23)" = —tan(f/2)u, with « denoting the
Publisher Item Identifier S 0018-9286(97)02809-2. coordinates of the vectar in the frame ofFy. It is shown in [11]
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that (2) can be written in the coordinateX’, w) Proposition 1 (Pomet, Samson [12])et f(z,#): IR xR — IR"
_— o a T-periodic continuous functioff(z,t + T') = f(x,t)). Assume
X =3w+S5WX + (v, X)X) that the system: = f(z,t) is homogeneous of degree zero with
W = Crwsaws + U respect to a dilatior} (x,¢) and thatz = 0 is an asymptotically

stable equilibrium of this system.

W2 = cawiws + Uz . .
Then, for anya >0 andp < o/ max{r;}, there exists a function

s = Cawiwz ®) V(2. ):R" x R — R such that
with « V is of classC?” on IR" x IR and of classC* on (R" —
. . . . . . {0}) x R;
L= Jz;h c2 = h;jl cg = ]l;ﬁ e Vis T-periodic (V(z,t + T) = V(x,t));
g J2 J3 « V is homogeneous of degree with respect to the dilation
=1t and wy =2, 85 V(85 (1)) = AV (a,1);
) 2 « V(e t)>0if = £ 0,V(0,1) = 0;

It is of course assumed that # 0, since otherwise the system * V(z,?) is “proper” with respect ta: V: V(z,t) = +oo when
would not be controllable or stabilizable. Moreover, we may also || = +oo;
assume that; > 0, due to the fact that the change of variables ¢ 3M >0,3a>0: (9V/ot)(x,t) + (OV/Ox)(x,t)f(w,t) <

—M(pp())".
(w1, @, 3, w1, w2, w3, w1, u2) The following properties can be viewed as a consequence of the above
> (22, @1, —23, Wa, W1, —Ws, Uz, Uy ) proposition. The first property has been stated by Kawski in [7], in

) the case of autonomous systems. The second has been shown by
leaves (3) unchanged, except for the parameters;, andcs which  Hermes, also for autonomous systems in which case no assumption
are changed inte-c2, —c2, and —cs. on the homogeneity degree of the vector field is needed (see [6]).

Our objective is to find a continuous feedback control law which proposition 2 (Exponential Stabilization)Consider the system
exponentially asymptotically stabilizes the origin of (3).
&= f(x,t) 4)

with f(x,t): R™ x R — IR"™ a T-periodic continuous function
Let us first recall some results and definitions about homogenedy§z,t + T) = f(x,t)), and f(0,¢#) = 0. Assume that (4) is
systems. For a more complete exposition, the reader is referrechttmogeneous of degree zero with respect to a dilatibfr, t)

Ill. HOMOGENEITY AND EXPONENTIAL STABILIZATION

[7] or [6]. and that the equilibrium point: = 0 of this system is locally
For anyX > 0 and any set of real parameters>0 (i = 1,---,n), asymptotically stable.
one defines the following “dilation” operatdi : IR" — IR" by Then:

1) « = 0 is globally exponentially stablen the sensehat there
exist two strictly positive constant®” and~ such that along
any solution of (4)

6/’\(‘1117 ‘ '7"Cn) = (krlxl‘/ " '7Arn‘T’”)'

A homogeneousorm associated with this dilation operator is

. 1/ pp(a(t)) < Ke ' pp(x(0))
Ty L P/
pp(x) = <721 |, ) with p7,(2) denoting a homogeneous norm associated with the
' dilation 6% (x,t);
with p > 0. 2) the solutionz = 0 of the “perturbed” systeni = f(x,¢) +
A continuous functionf: IR" — IR is homogeneous of degree g(x,t) is locally exponentially stable whep(x,#): IR™ x
7 > 0 with respect to the dilation}, if R — IR" is a continuousl-periodic function such that the
. . corresponding vector field is a sum of homogeneous vector
VA>0,  f(ér(x) = AT f(a). fields of degree strictly positive with respect 4§.

For the proof of Part 1), we refer to the proof of [12, Prop. 1].

A differential systemi = f(x) (or a vector fieldf), with f:IR" — "
The proof of Part 2) follows from Proposition 1 and from the proof

R" continuous, is homogeneous of degree> 0 with respect to

the dilation &% if of [14, Th. 3.
The next Proposition is a corollary of a result by M’Closkey and
YAS0.  fi(dx(x) = AT fi(e)  (i=1.---.m). Murray.

Proposition 3 (M'Closkey, Murray [9]): Consider the system
The above definitions can be extended to time-dependent functions ) )
and systems. Such an extension has already been considered in [12] &= f(x,t/e) (5)

and simply follows by considering the extended dilation operator: . , . - .
with f(z,t): R x R — IR" a continuousT-periodic function

Sh(wry v, t) = (A ray, - A ", 1), (f(z,t+T) = f(x,t)). Assume that (5) is homogeneous of degree
zero with respect to a dilatiof}, (=, ) and that the origiry = 0 of
The definitions remain unchanged. the “averaged systemyj = f(y) (with f(y) = 1/T [T f(y.t) dt)

The following result, which is a particular case of a propositiois asymptotically stable.
by Pomet and Samson, establishes the existence of homogeneod#hen, there exists, > 0 such that for any € (0,¢y), the origin
Lyapunov functions for time-varying asymptotically stable systems = 0 of (5) is exponentially stable.
which are homogeneous of degree zero with respect to some dilationThe following proposition complements the previous one for a
This proposition extends a theorem by Rosier [14] on autonomosigecific class of systems, in the sense that it provides us with a value
systems. of eo.
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Proposition 4: Consider the system IV. CAscADED HIGH-GAIN CONTROL
» FOR A CLASS OF HOMOENEOUS SYSTEMS
&= folx)+ Zgi(t/f)fi(:t) (6) The next proposition concerns the classical problem of “adding
i=1 integrators.” For autonomous systems, the existence of asymptotically

wheref; (i = 0,---,p): R* — IR" are continuous functions which ;tablllzmg _homogeneous feedba_cks, for_ a homogeneous asymptot-

) ) . ically stabilizable system to which an integrator has been added
define homogeneous vector fields of degree zero with respectaothe input level, has been proved in [5]. Some (nonsystematic)
a dilation 65 (x). fi (i = 1,---,p), are functions of clas€" on P ' P : Y

R" —0,andg; (i =1,---,p): R — R are continuoud-periodic constr_uctlve method_s have glso been qlevelopgd in [13] and [15]. The
. o following result provides a simple solution to this problem for a class
functions such thaf, ¢:(7) dr = 0.

Assume that the originc = 0 of the “averaged system? = of Q&mggiﬁgﬁo;_Sct:)mn;-g:rn?hd;cf;}/;:;?S's stem:
fo(x) is asymptotically stable and that an associated Lyapunov P ’ g sy '

function V' (z) of classC?, homogeneous of degre® with respect &= flz,u(z t).t) 9)

to &5 (x), such thatV (x) > Ki(ph(x))” and (aV/dx)(x) fo(x) < ’ n

—Ks(py(x))”, is known. Define also with f(z,y.t): R" x R x R — IR"™ a continuousZ-periodic
function,z' = (21, -+, 2m),m < n, andv(z',#): R™ x R — R

a continuousT -periodic function, differentiable with respect to
of classC* on (R™ — {0}) x IR, homogeneous of degregwith

Ci

/: gi(r) dr

sup |gi(t)|, Ii =sup
teR et

5= sup ov () i(*”)r respect to a dilatiord} (v, t).
pn(2)=1 Oz Assume further that (9) is homogeneous of degree zero with respect
9 /ovV to the dilationé}(x, ¢) and that the originc = 0 of this system is
Vg = sup o <8r (;v)fl'(;v))f,'(;v) asymptotically stable.
pple)=t 17 ’ Then, fork positive and large enough, the origin = 0,y = 0)
and of the system
&= f(x,y,1)
g=—k(y—v(z"t 10
| K, K, ] (y—v(x.1) (10)
€0 =Max{ — - > . ) totically stabl
) is asymptotically stable.
2 Lidi Z 1; <’7"30 + C’J"”J') Proof: Let§(x,t) = (A" ay,---, \x,,t) denote the dilation
= i=1 j=1

with respect to which (9) is homogeneous of degree zero,s@nd

Then for anye € (0,¢) the originz = 0 of (6) is exponentially an associated homogeneous norm.

stable. Let us also denoté.(xz,y,t) = (A"tw1,---, A" x,, Ay, t) the
Proof: The proof relies on the construction of a Lyapunowilation with respect to which (10) is homogeneous of degree zero.

function for (6). Since the functionv(z',t) is, by assumption, of clas€ on

Since the functiong; and(J! ¢:(r)dr) areT-periodic continuous (IR™ — {0}) X IR and homogeneous of degrgewith respect to

functions, the values’; andI; (i = 1,---.p) are well defined. Let the dilationé(x,?), the function v'(x,1) is also of classC" on
us consider the following continuous periodic function, homogeneo(& " — {0}) TR, and it is homogeneous of degregfor any positive
of degrees with respect tod}: integerr. Consequently, the fUﬂCtIOﬂ.Ur/a;m is homogeneous of
degreerq — r;, fori = 1,---,m. The integer is here chosen such
. - e v thatr > max{r;/¢,1 <i < m}. In this case each partial derivative
W(z,t) =V(z) - e Z </ g:(7) dT) D (@) fi(x)- of " is homogeneous of strictly positive degree with respect to the
1=1

dilation 4(x, t) and thus tends to zero fs | tends to zero. Therefore,
v is at least of clas€' onTR"™ x IR. In what follows, it is further
assumed that is odd.

We denote as’(«x,t) a T-periodic Lyapunov function for (9),
< éi(p;(w))ﬂ homogeneous of degrleé =(r+1)q v_vith re_spect to the_ dilgtion

8(x,t), and of classC". Such a function exists by application of

Proposition 1. Following the “desingularization method” proposed in
[13], we consider the following function:

7
Then fore smaller thaney, and using the fact that

av
‘87 (J')fi(l’)

it is simple to verify thatW¥ is a positive function. Moreover, this
function is of clasC" on (IR" — 0) x IR.. The time derivative oV’
along any trajectory of the (6) which does not pass through 0
is then given by

.9V, - e with
W = e fo(]:)—FZ </U gi (1) dT) »

=t oy, x' 1) = / 5" — " (x',t) ds. (12)

p(xl,t)

. . 1 1
Wix,y,t) =V(x, t)+ —=o(y, ", t 11
(z,9,1) (2.1) \/Zw(y ) (11)

5 (5 @5 (oo
» In order to prove the proposition, we show tH&t is a Lyapunov
: (). function for (10), whenk is large enough.
* ;g](t/f)f'l(r)) ®) We first note thatp is positive and equal to zero if and only if
y = v(z", t). This already implies thatV is positive and vanishes
For e < €, it is simple to verify thativ < —K(p;(m))’q, with  only at (x,y) = (0,0). It is also proper with respect tor, y) since
K>0. O V(a,t)is, by assumption, proper with respectitcand é(y, ', 1),
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seen as a function of whenz andt are fixed, tends to infinity when  We thus have proved the existence of an integefor which
|y| tends to infinity. Now, from (12), it is simple to verify that |Gy (z,y,t)| < 1. By taking K> equal to this integer, (15) follows.
Let us now consider the terfd¢/dy)y of (13). From (12) and

2 r+1 ,'7‘+1
slgat )= L _ oy (10), we have
r+1 r+1 96
9y U= —k(y" =" (et )y = o(a" 1) 17)
Sincev” is of classC', one deduces from the above expression that
é(y. ', t) is also of clasC. We show the existence of a strictly positive constarguch that
Let us now calculate the time derivativid’ of W along any 9o
: ith a sl | ions, i < —kaly — ol )" (18)
trajectory of (10). With a slight abuse in the notations, introduced 3y § < —kaly — (e,

here for the sake of legibility, we have . . . . .
gty To this purpose, let us consider the following function (witlodd):

; h(z) = 2"7'(1 + 2)" — 2"] — 1, the positivity of which is easily

W=+

Nk established. By taking = v(x',t)/(y — v(2',t)), one has
oV av 971
= r,v(x 7‘)7‘)—1— (4" =" (2t -1>0.
8.1 ( (' =) (y"=v"(a,t) =120 (19)
',» 9 g /»1
+ ﬁ (fla,y.t) = fla, U(‘L 1):1)) Multiplying each number of (19) byy — v(z',#))"™", one obtains,
1 (8¢ . 06 ., 96 in view of (17), the desired inequality (18) with = 2'~".
+ N <@ y+ oo (w.y.t) + 87.‘) (13) Finally, we have for some valu&’s
00 ot O oty + 22 ()
with f! denoting the vector-function whose components are the opt YT Y, 9t Y x!
m-first components off. NV (ol r+1
SinceV is a homogeneous, of degree Lyapunov function for < Es((p(@)” + (v = v(a.1)™). (20)
(9), there exists a strictly positive constalii such that This inequality comes from the fact that the function
; 1010) 1o10)
oV a A BT I 99 1
T () v < -2E1(p(0))". (19) gt WO @y D 5 e

dx

()7 + (5 = o)+

is homogeneous of degree zero with respect to the dilation y, t),
well defined outsidéx, y) = (0,0), and is thus bounded. By using
(13)—(15), (18), and (20), one obtains

We show next that there exists another positive condiansuch that

‘— (2, t)(f(2,y,t) — flz,o(x', t),1))

<K + Koty — ooyt @s) W ST2E@) T Kalo(o) 4 Kaly ol 0)™
K3 K yrHt
+T(P( )" -i-\/—(y—v(l 1))
To this purpose, let us consider the following set of functions:
—VEaly — v(at, ) (21)
‘; (. )(f(x,y,t) — f(wal'(évl,t),f))’ For any k > Max{1, (K3/K1)?, (K2 + K3)/a)?}, W is negative
Gp(x,y,t) = (16) and equal to zero if and only if = 0 andy = 0. |

3 _ 1 r41
Kr(p(2)? +ply —v(a'. 1) Proposition 5 can be used for a multi-input system to which an

integrator has been added at each input level. More precisely, one
ﬁsny deduces the following corollary.
Corollary 1: Consider the following system:

indexed by the positive integer. G, is a continuousl'-periodic
function, homogeneous of degree zero with respect to the dilati6
b.(x,y,t), and it is well defined fofz, y) # (0,0). Time-periodicity
of G, allows one to consider that time lives on the compact set &= f(x,v(x,t),t) (22)
S' = R/TZ instead ofIR. Since G, is homogeneous of degree
zero,G,, reaches its maximum at some point,, y,.. £,) in § x §*,  With f(w,y,#): R" x RF x IR — IR" a continuous? -periodic
with S denoting the unit sphere ™. By compacity ofS x §*, function, andv(z.1): R" xIR — IR” a continuoud-periodic vector-
one can extract a subsequerieg,, y,,. t,, ),/ € N which converges function whose components; («,t),---vp(x,t) are differentiable
to some point(7.7.7) € S x S*. Let us distinguish the following With respect o', of classC' on (IR" — {0}) x IR, and homogeneous,
two cases. respectively, of degree, - - -, ¢, with respect to a dilatio (, ).
_ 1o . Assume further that (22) is homogeneous of degree zero with
1) ¥ = w(@.%): By continuity of f and v, the numerator respect to the dilatio’(x,) and that the origine = 0 of this

of Gp,(®p,.yp;»tp,) tends to zero asl tends to +oo, system is asymptotically stable.

and for [ Iarge enough the denominator is greater than Then, for positive and large enough valuesiof- - - k,, the origin
(K1/2)(p(@))? >0, using the fact thatz cannot be equal (

to zero. Indeed, ifr were equal to zero, thep = v(0,7) = 0.y = 0) of the system
would also be equal to zero, contradicting the fact thaty) &= f(x,y,t)
belongs toS. As a consequencey,, (xp,, Yp,. tp,) Must be i1 =—k1(y1 — v1(2.1))
smaller than one for large enough values of
2) 7 # o(z',7): By continuity of f and v, the numerator :
of Gy, (2p,,yp,.tp,) is bounded independently d¢f and the iy = —Fep(yp — vp(2,1))
denominator tends tetoc as ! tends to-+oc. Therefore,
Gp (xp,, Yp, - tp,) tends to zero ab tends to+oc. is asymptotically stable.

(23)
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Fig. 1. Fig. 2.
V. EXPONENTIAL STABILIZATION OF THE RIGID SPACECRAFT
Our main result, which gives time-varying stabilizing feedbacks 06 ' i ) i
for the spacecraft, is stated next. 04 +
Theorem 1: Consider the functions
02t
v1(X,ws,t) = k121 — p(X,ws) sin(t/e)
- 1 . 0
vo(X,ws,t) = —kowo + ————— (w3 + w3 ) sin(¢/¢) (24) N
p(X,ws) 02 ]
with p, of classC' onIR* — {0}, a homogeneous norm associated
with the dilation65 (X, ws,t) = (Ax1, Aw2, 223, A%ws, t), and the 04 4 1
following time-varying continuous feedback: 06
11,1(X,w,t):—k3(w1 _7)1(X1w31f)) 08
us (X, u},t) = —L’4(UJ2 — U2 (_X, w3s, t)) (25)
. . _1 1 1 1 I L
Then, for any positive parametefs and k-, there existg, > 0 such 0 10 20 30 40 50 60

that for anye € (0,¢] and large enough parametets >0 and
k4 >0, the feedback (25) locally asymptotically and exponentiall§i9- 3-
stabilizes the origin of (3).
Proof: Let us consider the following dilations, (X, w,t) =
(k.T,l, >\:E2, /\24173, /\qu, >\(.u27 k2’4J37 t).
System (3)—(25) can be rewritten as

With the controlsv, and ve given by (24), one verifies, by appli-
cation of Proposition 3, that the origin of the controlled system is
asymptotically stable for any positiveg andk. ande small enough.

XN\ v Indeed, the vector-valued function associated with the right-hand
<W) = f(Xw )+ (X w.t) (26) side of the controlled system is continuous, singéX,w,t) and
with vy (X,w,t) are homogeneous of degree one with respect to the
L L L dilation 83 (X,ws,t), are well defined outside the origintX =
F(Xowt) = (301, gwo, 5(ws + w2 —wia), 0,w3 = 0), and thus tend to zero a$X,ws)| tends to zero.
ul(X,w,t),uz(X,w,t),cwlwg)T. (27) The corresponding vector field is also periodic and homogeneous

of degree zero with respect t§ (X, ws, t) so that the assumptions

One easily verifies thaf (X, w,t) defines a continuoug-periodic " S "
. . . __of Proposition 3 are met. Moreover, the corresponding “averaged
vector field homogeneous of degree zero with respect to the dilation

60(X,w,t) and thatg(X,w,t) is continuous and defines a sum Ofsystem s given by

homogeneous vector fields of degree strictly positive with respect to ey
Se(X,w, t). Ty =-3u

From Proposition 2, applied to (26), it is sufficient to show that ks
the origin (X = 0,w = 0) of the system Ty = -5t

C .1 1
<:X' ) = f(X,w,t) (28) T3 = ws + 3 (k1 — k2)xi 2o

. . 1 1
is locally asymptotically stable. w3 =ca(kikaxiwes — sa3 — ws) (30)

To this purpose, let us first consider the following reduced system 2 2

. . def def
obtained from (28)—(27) by taking. = w: andv, = w; as control anq the origin of this system is locally asymptotically stable, since

variables: the linear approximation of this system around the origin is obviously
a1 v stable. The asymptotic stability of the origin of the system (28)
T2 :§ U2 follows by direct application of Corollary 1, after noticing that
a3 w3 + var1 — V12 the functionsvi(X.ws,t) and ve(X,ws,t) are of classC' on

ws = c3v102. (29) (R®* xR -{0,0}) x IR. O
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Fig. 4. Fig. 7.

1 y T v J T k4 can in turn be obtained by following the proof of Proposition 5.
08 | ] As for now, we will illustrate by simulation thatdoes not have to be

-0.2

0.5

very small, norks and k4 very large. For example, the action of the
control laws (24), (25) on (3) has been simulated with the following
choice of parameters:= 1/3, k1 = k2 = 1, k3 = k4 = 5, and with
0.2 n ] the initial conditions(x(0), 2(0), #3(0), w1(0),w2(0),wz(0))" =
o it ) AAAAMAAAA% . 03, =11, =1, 1)",
V VV" A A Figs. 1-6 show the time evolution of the state variables
1 1, X2, ¥3, w1, w2, ws, and Fig. 7 shows the linear decreasing of

04 ] the log of the homogeneous norp( X, w) = (&t + 235 + 23 + wi +
06 | wi 4+ w2)"/* in order to illustrate the exponential convergence of

this

08 | It

norm to zero.
has also been verified by simulation that no choice of the

-1 1 . . . . parameters yields stability.

Fig. 5.
(1]
(2]

(3]

(4]

(5]
(6]
(7]

0.4 . . . L . (8]
0 10 20 30 40 50 60

Fig. 6. [9]

VI. SIMULATION RESULTS [10]

The feedback laws given by (24), (25) make the origin of (3)
asymptotically stable for small enough valuescaind large enough [11]
values ofks andk,. For practical purposes, it is necessary to specify
values for which the stabilization is ensured. Conservative values qan)
be determined via a complementary analysis. For instance, using the
fact thatV (X, ws) = 4x7 + 423 + 23 + w3 + 23w is a Lyapunov [13]
function for (30) whenes = k4 = k2 = 1, one can deduce from
Proposition 4 an upper bound feg. Conservative values dfs and
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In the case of nonlinear systems, Sastry and Isidori presented
results on the use of parameter adaptive control for obtaining asymp-

A Systematic Approach to Adaptive Observer totically exact cancellation for the class of nonlinear systems which
Synthesis for Nonlinear Systems can be feedback linearized [4]. The full-state was assumed to be
available, however, for the controller. Papers by Maratoal. on
Young Man Cho and Rajesh Rajamani adaptive observers attempted to find a coordinate transformation so

that the estimation error dynamics would be linearized in the new

coordinates [5], [6]. They provide necessary and sufficient conditions

Abstract—Geometric techniques of controller design for nonlinear for the existence of such a coordinate transformation. Even if these
systems have enjoyed great success. A serious shortcoming, however, hagonditions are satisfied, the construction of the observer still remains

been the need for access to full-state feedback. This paper addresses they fficyt task due to the need to solve a set of simultaneous partial
issue of state estimation from limited sensor measurements in the presence

of parameter uncertainty. An adaptive nonlinear observer is suggested for d'ﬁe_rent_'f_il equatlons_to obtain the actgal transformation function.
Lipschitz nonlinear systems, and the stability of this observer is shown to An intuitively appealing and systematic treatment of the output
be related to finding solutions to a quadratic inequality involving two vari- ~ feedback and adaptive observer problem for nonlinear systems has
ables. A coordinate transformation is used to reformulate this inequality peen developed by Kokotovit al.[7]-[9]. Here the authors develop

as a linear matrix inequality. A systematic algorithm is presented, which . . . -
checks for feasibility of a solution to the quadratic inequality and yields a set of tools which the user can attempt to customize for his specific

an observer whenever the solution is feasible. The state estimation errors Problem. There has also been work by authors to propose adaptive
then are guaranteed to converge to zero asymptotically. The convergence observers for very special classes of nonlinear systems [10], [11].
of the parameters, however, is determined by a persistence-of-excitation- ~ The present work deals with a fairly general class of nonlinear
type constraint. systems, in which the nonlinearities are assumed to be Lipschitz. A
Index Terms—Adaptive observer, interior point method, linear matrix ~ systematic algorithm is provided which checks for the feasibility of
inequality, nonlinear systems. an asymptotically stable adaptive observer. If the feasibility condition
is satisfied, the algorithm provides the observer gains.

|I. INTRODUCTION

Observer design and adaptive control for nonlinear systems have Il. BACKGROUND
both been very active fields of research during the last decade. The inthijs section presents results which will be used in the construction
troduction of geometric techniques has led to great success in the gfeour proposed observer.
velopment of controllers for nonlinear systems. Many attempts have
been made to achieve results of equally wide applicability for staAe daptive Observers for a Class of Nonlinear Svstems
estimation and adaptation. The observer problem has, however, turnédA P y
out to be much more difficult than the controller problem [1], [2]. We begin with the adaptive observer proposed for a class of
An adaptive observer performs the twin tasks of state estimatifAnlinear systems in [15]. The class of systems we consider are
and parameter identification. The two tasks are performed simultat{gear in the unknown parameters and nonlinear in the states, with
ously and cannot be separated. The identification algorithm has totB@ nonlinearities assumed to be Lipschitz as described in (1) below.
defined using access to only the measured outputs and the estimafdg is a fairly general class, since most nonlinearities can be bounded
states. The state estimation algorithm has to work in the presencd’oft Lipschitz manner if the states can be assumed to be bounded.
uncertain parameters. This makes the problem very challenging. Further, many nonlinearities, like the sinusoidal terms encountered in
The design of an adaptive observer for a linear time invariafebotics, are globally Lipschitz. The success of the adaptive observer
system has been well analyzed [3]. In this case the order of the pl&#fthod as outlined below, however, depends on being able to find a
“n” is assumed to be known, nothing else about the plant need Ppresitive definite matrix” and an observer gain matrii to satisfy

known. The output of the plant is described as the output of a firég) and (6). For proof of the Theorem, refer to [15].
Theorem 11.1: Consider the class of nonlinear dynamical systems

Manuscript received April 4, 1995; revised January 29, 1996 and June gigscribed by
1996.

The authors are with the United Technologies Research Center, East .
Hartford, CT 06108 USA. T =Az+P(x,u)+bf(z,u)f

Publisher Item Identifier S 0018-9286(97)02810-9. y=Cz 1)

0018-9286/97$10.00 1997 IEEE



