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Practical Stabilization of Driftless Systems on Lie
Groups: The Transverse Function Approach

Pascal Morin and Claude Samson

Abstract—A general control design approach for the sta- by a controllable homogeneous driftless system which can be
bilization of controllable driftless nonlinear systems on finite |ifted, via a suitable dynamic extension, to a system invariant

dimensional Lie groups is presented. The approach is based on o 4 | je group. This will be explained in more details further
the concept of bounded transverse functions, the existence of.

which is equivalent to the system’s controllability. Its outcome is in the paper. After having recalled the generality of systems on

the practical stabilization of any trajectory, i.e., not necessarily a Lie groups, our next and final argument is that the Lie group
solution of the control system, in the state—space. The possibility framework is particularly well adapted to the development and

of applying the approach to an arbitrary controllable smooth  exposition of theransverse functioft.f.) control approach pre-
ﬂ”mess system follows in turn from the fact that any controllable o0 here, The extensive use of the specific properties associ-
omogeneous approximation of this system can be lifted (via . . . .
a dynamic extension) to a system on a Lie group. lllustrative ated with systems on Lie groups in the proofs of the main results
examples are given. reported in the present paper is, by itself, a good illustration of
Index Terms—Feedback law, Lie groups, nonlinear systems, this. . i .
stabilization. Let us now focus on control issues and put the practical stabi-
lization objective in perspective with the research effort devoted
to driftless controllable systems. While controllability proper-
|. INTRODUCTION ties of these systems have been known for a long time—as a
ET consequence of the classical Chow theorem [9]—algorithms to
L compute open-loop controls in order to steer the system from
one point to another have been proposed more recently with
various approaches: use of highly oscillatory control inputs
[23], [35], [44], explicit calculation of steering trajectories in
denote a control system on a finite-dimensional connected It case of nilpotent systems [20] and differentially flat systems
groupG, with X1, ..., X,, left-invariant smooth vector fields [13], [27], particularization of these methods to systems on Lie
(v.f.) which satisfy the Lie algebra rank condition (LARC) saroups [21], possibly with a drift v.f. [6]. This papeioes not
that the system is controllable whdh = 0. The drift term focus on issues related to open-loop control techniques, such as
P(g,t) is viewed here as a known or measured perturbation @ath planning, or the characterization/construction of optimal
longing to G,—the tangent space @ at g. We assume only paths between two points, or the determination of algorithms
the continuity of the functior?. Obviously, the main case of which compute “feasible” approximations of a finite-length
interest is whespan{ X (¢),..., X,.(e)} # G.—whenm < arbitrary curve. Although the proposed control approach may
dim(@), for instance. The problem addressed in this paperh¢ useful to address some of these problems in a novel way
thepractical stabilizatiorof the identity element € G viathe (the path approximation problem, to cite one of them), its
asymptotic stabilization of a compact set contained in an aripiimary application is feedback stabilization. The problem of
trary small neighborhood af. asymptotic stabilization—via state feedback control— of an
Prior to commenting upon this particular control objective, fauilibrium point of (1), when” = 0, has also attracted much
may be useful to explain why the Lie group framework is choséitention during the last decade. Many of the studies on the
here. A common motivation is that various physical systerséiPiect have found a challenge and a motivation in Brockett's
are naturally modeled as systems invariant on Lie groups. Ridfgorem [5] according to which, ify < dim() and the control
bodies in space and cart-like vehicles are well-known exampldd: €valuated at are linearly independent, no smooth or even
Invariance on a Lie group is a strong geometrical and structufgntinuous pure state feedback can make this equilibrium
property which is understandably useful for control design pup@int asymptotically stable. Different types of feedback laws
poses. A second motivation is related to the possibility of I612v€ been considered to circumvent the difficulty—although

cally approximatingany smooth controllable driftless systemnOt all of them guarantee Lyapounov_stability. Discontinuous
feedbacks [1], [3], [8], [22] and hybrid feedbacks [2], [30],

[41] are two possibilities. Another one, more related to the
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The abundance of literature on the subject may convey tBeultimate boundedness of the tracking errors by a prespecified
feeling that the problems are, by now, well understood and hateeshold,uniformly w.r.t. the reference trajectory, is guaran-
received satisfactory solutions. We believe on the contrary thaed; and 3) the control frequencies may tend to zero, even when
some important issues have been left in the shade. One of thisereference trajectory is not a solution of the control system, so
issues concerns the compromise between speed of convergehatoscillations are not systematic—this will be illustrated by
and robustness of the stability property against modeling errasgmulations results at the end of this paper. Let us also mention
For a few driftless systems, this type of robustness can be &mat the idea of frequency adaptation which underlies the feed-
sured by using a Lipschitz continuous time-varying feedbadlack control solutions proposed here can be traced back, in the
law [26], but this implies slow—not exponential—convergenceontext of mobile robots, to [12], a work itself adapted from con-
to the origin for most of the system’s trajectories. On the oth&ol techniques used for induction motors [11]. Concerning the
hand, to our knowledge and understanding, no robust exponeancept of transversality used throughout this paper, the basic
tial stabilizer has been proposed until now. It is in fact possibitesult of equivalence between the existence of a bounded func-
that such a feedback does not exist for systems which do tioh whose partial derivatives are transversal to a set of smooth
satisfy Brockett’s condition. A result in this direction has beenf. and the satisfaction by these v.f. of the LARC was first
proved in [25]. Efforts to circumvent the difficulty, by consid-proved, to our knowledge, in [34]. However, the way of using
ering hybrid continuous/discrete time feedback laws [2], [30fhis result for control purposes is little developed in that refer-
have only brought partial results. For instance, such feedbaekse, and the importance of the Lie group framework in order
can be made robust to unmodeled dynamics, but stability of tteeproperly develop the t.f. control approach was not identified
desired equilibrium is not robust against discretization unceat that time. For the sake of clarity and precision, a discussion
tainties. Another issue is related to the trajectory stabilizati@bout the contribution of the present paper with respect to [34]
problem. This problem is usually easier than point stabilizés postponed to Remark 5 in Section VI, after the exposition of
tion—in particular, the linearized approximation of the assodihe main results.
ated error system may be controllable—and various feedbackl' he paper is organized as follows. The t.f. control approach is
solutions have been proposed for specific classes of nonlinéestillustrated on a simple example in Section Il. In the next sec-
driftless systems, especially in the robotics literature [17], [40jon, notations used thereafter are specified and a few definitions
[7]. Asymptotic stabilization is usually obtained under somabout invariant systems on Lie groups are recalled. The main
conditions upon the reference trajectory. Typically, it shoulgchnical result about the existence and construction of trans-
not converge to a fixed point. One could have hoped for thverse functions is stated in Theorem 1 in Section IV. Then, in
existence of a feedback law which would have uniformly guaection V, the concept of transverse function is used to solve the
anteed asymptotic stability independently of the considered tgactical stabilization problem evoked at the beginning of this
jectory—just as for linear controllable systems—but negativetroduction. In Section VI, we show how the approach applies
results concerning this existence issue have been proven [2d]systems with homogeneous v.f., after precising in a propo-
This has clear consequences in mobile robotics, when the ceition how any homogeneous system can be lifted to a system
trol objective is the tracking of a reference vehicle whose trajeicwariant on a Lie group. Theorem 1 combined with this propo-
tory is not known in advance. sition contains the main result in [34] according to which con-

The aforementionned difficulties suggest to us that, for notrollability is equivalent to the existence of transverse functions.
linear driftless systems, the classical objective of asymptotic stanally, the approach is illustrated by examples in Section VII.
bilization, which underlies a large part of feedback stabilization
theory, is at the same tinteo restrictive and too constraining Il. SIMPLE EXAMPLE
The guideline followed in this paper is thatactical stabiliza- . . . .
tion can be a more realistic control objective to pursue, and alsoConsm_Ier the perturbed three-dlmen5|one;l Ch%med system
a touchstone principle for the definition of new approaches f§f1" W0 inputs and state vectgr= (91,92, 95)" € R
the stabilization of driftless systems. Being less constraining .
than the one of asymptotic stabilization, it encompasses many 9 =wX1(g) +uaXo + P(g,)
control solutions previously proposed in the literature and leaves Xi(g9) = (1,0,92)", Xy =(0,1,0)". (2)
the door open to other solutions.

The approach here considered for practical stabilization !fds known, and simple to verify, that the unperturbed chained
based on the existence of bounded functions whichrares- System (withP = 0) is controllable. Consider the following
verseto a set of v.f. [34]. Intuitively, one can make a comparisofunction f which associates an elemdruf the torusl 2 R/7Z
between this approach and the general open-loop control desigth a point inR?
algorithm developed in [23], [44]. In those papers, the idea was
to add virtual control inputs involving sinusoids with fixed and . e2 | T
high enough frequencies in order to ensure uniform bounded- 4 (#) = (5 sin f, e cosd, - sin 29) ’
ness of tracking errors by a prespecified threshold. Here, the
threshold is directly related to the size of periodic transver3éne Euclidean norm off(6) is clearly uniformly bounded
functions whose associated frequencies are the new inputsbyna number commensurable with and it uniformly tends
comparison with the approach developed in [23] and [44], e zero whene tends to zero. This function is of partic-
would like to stress that: 1) our approach yields feedback lawsar interest to us becauséet H(f) = —c2/2(V6) with

e>0. (3)
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H(0) 2 (X1(f(0)) X2 (0f/00)(9)), so that, whenever may equally be written as 2 g f(#)~1, with x denoting the

e # 0, the vectorsX, (f(#)), Xo, and(0f/00)(#) form a basis group operation oR?* with respect to which the chained system
of R, for everyf € T. In other words, the gradient ¢f(§) is invariant, andf(6)~! the inverse off (6) with respect to this
is transversalto the directions given by; et X when these operation.

v.f. are evaluated &g = f(f). Note that what is remarkable

is not so much 'Fhe property of transversa]ity by it_s_elf—the . RECALLS AND NOTATION

unbounded function € R — (0,0,#)T € R? also trivially

satisfies this property—but the combination of transversality Let us introduce some notation used hereafter.

and boundedeness of the functigh In order to explain the ¢ |-|is the Euclidean norm if®"™.

usefulness of such a function for the control of (2), we introduce ¢ Letwv denote a function of the variablesandy, we write

the following vector: v = o(|z|F) (resp.,v = O(|z|*)) if (v(z,y)/|z|F) —
0 as|z| — 0 (resp. if (v(z,y)/|z|F) < K < oo in
A g1 = f1(0) some neighborhood af = 0) uniformly with respect tg
z= 92 = f2(0) : (4) belonging to compact sets.
g3 = f3(0) = f1(0)(92 — f2(F)) » The tangent space of a manifadld at a pointp is denoted
One easily verifies that, along the solutions of (2) asM,.
» The Lie algebra generated by vX,, ..., X,, is denoted
2=0C(z,f(0))(H(8)u+ D(z)P(g,t)) 5) asLie(Xy,...,Xn).
_ » The differential of a smooth mappinf at a pointp is
with denoted aglf (p).
1 0 0 1 0 0  T* is the torus of dimensioh, with T = R/27Z.
Ciz,f)=1| 0 1 0 D(z) = 0 1 0 We shall also use standard notation relative to Lie groups; see,
zo —f1 1 —z2 0 1 e.g., [15] for more details on this topic. Recall that a Lie group

. is a differentiable manifold endowed with a smooth group
andu = (ug,us,—6)T. Using the fact that both matricespperation.

C(z, f(0)) and H(#) are invertible for every: € R*® and
6 € T, and viewingf as an extra control input variable, the
preliminary feedback

» (¢ denotes a finite-dimensional connected Lie group, with
Lie algebra—of left-invariant v.f.—g. As usual, for the
sake of lightening the notation, and unless specifically in-

7= H(8)" Y (C(z f(8)) v — D(2)P(g,1)) (6) dicated otherwise, the group product of two elements
’ ’ andr of G will be denoted by 7.
with v denoting a free vector i3, transforms (5) into the ¢ The identity element of+ is denoted bye, i.e., V7 €

simple decoupled linear system G:1e = er = 1.
. * The inverse ofr € G is denoted byr !, i.e., 7771 =
z=. @) e ———

« Left and right translations are denoted bgndr respec-
tively, i.e.,l, (1) = r-(0) = oT.
o If X € g,exptX is the solution at time of g = X (g)

Asymptotic stabilization of the origin of the previous system
obviously poses no difficulty. One can take, for example;
I—kz_ Wlthfk4> (;hto enSLtJreI e>.<p|3nent|al stakta_llllzatlon of= 0. f with initial condition g(0) = e.

9 7(6)| 0 2ero and. futhermors, asymptotio saization of * The_adioint representation ofs s Ad, Le., for
g—. ! ! A = dI i : -
F(T) for (2) if, for insatncef (0) = arg ming |g(0) — £(0)]. Itis o € GAdlo) = dl,(e) with I;G — G de
in this sense that the practical stabilizatioryct 0 is achieved
for this system.

fined by I,(g9) = ogo~'. By extension, we define
Ad(0)X (g) £ dl,(e)Ad(o) X (e).

Sincez is “almost” equal tog whene is small, a possible ' T_he differential of Ad is ad, anthd X, Y) = [X, Y], the
interpretation of the above control solution is that it “nearly” Lie bracket ofX' andY'.
globally linearizes the initial nonlinear system with two contrdrecall that
inputs into the trivial linear system = v (quoted words are » a v.f. X on a Lie groupG is left-invariantiff V(o,7) €
important here). Following this interpretation, the time deriva- ~ G?: dl,(7)X (1) = X (o7);
tive of # provides the extra control input which allows instanta- * a control systeny = >, u; X;(g) on G is said to be

neous steering in any direction of the state—space. Sitcan left-invariant if the control v.f.’sX;(1 < i < m) are

element of the torus, its time derivative may also be viewed as left-invariant;

a frequency variable. * if g1(-) andgo(-) are two solutions of a left-invariant
At this point, the specific expression (4) of the dynamics system obtained by applying the same conixo) (¢ > 0),

of which can be globally linearized and decoupled—contrary to  thenVt > 0: go(t) = 7g1(¢) with 7 = g2(0)g1(0)~*.

the apparently simpler choiee2 g— f(0)—, may seem alittle For a proper general exposition of the t.f. control approach, the
mysterious. In this respect, the generalization of the approddiowing definition of agraded basi®f g is also needed.

will reveal the central role played by the Lie group invariance Definition 1: Let X;,...,X,, € g denote independent
property of the chained system. For instance, we will see that (4). such thatLie(Xy,...,X,,) = g. Define inductively
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uk = yk=1 4 [u,u’“—l] with u = span(Xy,...,X,,), and let The authors know from their experience in robotics that this
K = min{k: u* = g}. A graded basiof g associated with extra degree of freedom is useful in practice. Another possi-
X4,...,X,, isan ordered basrsXh .., X, } of g associated bility, also important in practice because it can significantly re-
with two mappings\, p: {m + 1,...,n} — {1,...,n} such duce the calculation complexity, consists in using, in either (10)
that the following hold. or (12), v.f. X\(;) and X ;) associated with a suitable homo-

1) For anyk € {1,...,K},u¥ = span{X, X,,..., Qeneous approximation of the control system. This is illustrated

X dim uk }- by the example of a unicycle in Section VII.
2) Fork > 2 anddimufF~! < i < dimuk X; = The choice of the parameters, 11, . . ., €, is further speci-
€ u,X,i € ub, and fied in Lemma 3 used in the proof of the theorem.

[X)\( )s p( )] with X}\( )
a+b=k.

With any graded basis af, one can associateveeight vector

(r1,...,rs) defined by

ri=ke X; € uk\uk_1 o dimuF ' +1<i<dimu®

It follows from Definition 1 thatl =7y = -+ =7, < Tpg1 <
<< rp = Kand,Vi > m,r; = gy + o)

IV. TRANSVERSEFUNCTIONS

Proof of Theorem 1:For the proof of (Property

2 = Property 1), we refer the reader to [34]. This is a
direct consequence of the Frobenius Theorem. To prove that
Property 1 implies Property 2, we only have to show that (8)
is satisfied with the functiorf defined by (9)-(10), for some
values of the parametets, 1, ..., . We indicate later the
main steps of the proof in the form of three lemmas.

By standard calculations, we first prove the following.

Lemma 1:There exist analytic functionsv; ;(i €

The main result about the existence and construction of trans-

verse functions is the following.

Theorem 1:Let G denote a Lie group of dimensionwith
Lie algebrag. Let X4, ...
Then, the following properties are equivalent.

1) Lie(X1,...,Xm) = 8.

2) For any neighborhodd of e in G, there exists a function

f e c=(T™» ™ Y) such that, forany € T"—™

Gy f(6) = span{X1(f(9)),..., Xm(f(8))} & df (6) (‘l]"g.—’rn,) )
(8)

Furthermore, witH X1, ..., X,,} denoting a graded basis gf
a possible choice fof is given by

V0 = (B, ... 0n) € TV
f(g) = fn(en)fn—l(gn—l) s .fm-l—l(gm—i-l) (9)
with f;: T — G defined by
fJ(9 ) = exp( ) gin 6 X/\( N + E ) cos HJXp(j)) (10)

for some positive real numbets, 11,...,en.

As in [34], functions which satisfy (8) are called “transverse”

to the v.f. X1, ..., X, Or justtransverse functionsshen no
ambiguity is possmle
Theorem 1 is coordinate-free. When providing with a

system of coordinates IR", relation (8) means that the squar

matrix

H(p) = <X1(f(9)) X (0 ST

a9m+1

L 9f
90,

)

(11)

is invertible for eveny.

, X:m € g denote independent v.f.

{1,...,n},7 € {m+1,...,n}) such that
0
fj Zvu (6,)) (13)
with
O(le;|™) Vi
vij = O](|€ ) ifi<j and r;= Tj (14)

+olle|) ifi=j
From this lemma, we then prove the following.
Lemma 2:There exist analytic functionsa; ;(i €

{1,...,n},7 € {m+1,...,n}) such that

oL 6) =3 ass(O)XiF9) (15)
i=1
with
Olg;*) Vi
Ykar, Ol MO(E 1" ~*) + o(lg;]™)
aij = 1fL<_j and 7 =7
%+ Lier, Oi1*)O(IEj-1]7%) + o(|2;])
ife=3
(16)
wheres;, £ (Em+1s--- ek)ifk=m+1,...,n,ande,, 20.

Note that, if all O and o terms in the previous expressions
were equal to zero, then Theorem 1 would follow directly from
?15) (16) and from the fact thdtX,, ..., X, } is a basis 0f.
Although this is not the case, it is not very difficult to show
that these terms can be neglected provided that tlseare ad-
equately chosen, as stated in the following lemma.

Lemma 3: There exist numbers,, 1, ..., Gn, andeg > 0,
such that choosinge,41,...,6n) = e(Bm+1s---,0n) With
0 < € < &g, yields

There are many ways to derive transverse functions; see, for

instance, [33] for an alternative expression of such a function.

Also, in (10), one can introduce two parametefs ande; o,
instead of the single parametsy. This yields

£i(8;) = exp(e; )7 sin ;X j) + £;%” cos 0, X)) (12)

V0T det(ai;(6))jmmtt,.m # 0.

In view of (15), (17) is equivalent to (8), so that the proof of
the theorem follows. The proofs of the previous lemmas are re-
ported in Appendix A. Q.E.D.

17)
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Note that Lemma 3 does not state that “any” set Remark 2: (Explicit Control Expression)The explicit cal-
(em+1,---,€n) Of small enough numbers is suitable, noculation of the feedback control defined by (19) will often re-
does it imply that these numbers have to be small. For instangaire the preliminary choice of a system of coordinates. Once
if the v.f. Xy,...,X,, are homogeneous w.r.t. some dilationthis choice is made, if one keeps the same letters to denote the
the lemma holds for any, > 0. v.f. involved in (19) and their (local) representationgtin, then

(19) is equivalent to
V. APPLICATION TO PRACTICAL STABILIZATION <

A. Point Stabilization

u

—é> = H(0) dl.-1(g) (drse)(2)Z(2) — P(g,1)) (21)

Consider (1) and assume—without loss of generality—;iip H() € R™" the invertible matrix defined by (11),
that X, ..., X,, are independent. We show in the foIIowingdlzfl(q) = (0¢/0y) (=", g), anddr;(z) = (9$/01)(z, f),
proposition _how the concept of transverse functions can pgn ¢'(l,7y) denoting the local representatiorRfi of the point
used to design control laws for System (1) that make- ¢ ;. Equation (21) is the coordinate-dependent generalization
practically stable Let us remark that no assumption is madgs (6).
on P. For instance, when the projection d?(e,#) onto  Remark 3: (Output Linearization and Associated Zero Dy-
(span{Xi(e), ..., Xim(e)})* does not tend to zero aends pamics): Since the choice of in the control expression s free,
to infinity, no control law can makg = e an equilibrium one can interpret this v.f. as a free control vector and (21) as
of 'the system, and asymptotic stabilization of this element iStaedback control which, in view of (20), “almost linearizes”
pointless. the equations of the original system. A clear advantage of this

Proposition 1: Let f: T"™™ — U denote a transversene of linearization over “exact” feedback linearization is that
function. Then along any solutiop(-) of (1), and along it s free of singularities. Another one is the decoupled form of
any trajectory6(-) in T~ the resulting linear system and, as a matter of fact, its extreme

. simplicity. This interpretation is conceptually attractive, but it is
s Y important to realize that it does not “tell” everything about the
2= dryo(9)dl=(1(0) (; uiXi(/(6)) approach. For instance, it leaves in the shade the dynamics as-
n sociated with the extra set of variablswhile these “hidden”
_ Z 0‘},%(9) +dl, 1 (g)P(g,1) (18) dynamics may have their importance in the overall evaluation
i of the control performance. For example, if the convergence of
z to zero results in large sustained value$ dien highly oscil-
latory motion ofg will take place. This may not be desirable for
a certain number of applications. On the other hand, oscillatory
motion may also correspond to a requirement of the application.
m no of Just consider the case of a car having to perform a small lateral
Z ui(0,9,t)X;(f(0)) — Z 0;(0,g, t)ﬁ(a) motion within a given time period. This can only be done via one
i=1 j=m+1 J or several maneuvers whose number and amplitude are clearly
= dl.+(g)(dry)(2)Z(2) — P(g,t)) (19) related to the frequency of the steering-wheel angular velocity.
Typically, the smaller the amplitude the larger the frequency will

j=m+1

with > 2 gf(6)~1L. Moreover, ifZ is a v.f. onG, then the dy-
namic feedback lawu, 6)(6, g, t) defined by

yields the satisfaction of the following equation: need to be. .
Remark 4: (About the Convergenc@ o Zero): Proposition
2=27(z) (20) 1 indicates how any v.fZ which asymptotically stabilizes the
identity element ofG induces a feedback law for System (1)
along any solution of the controlled system. which asymptotically stabilizes the stT"~). For instance,

Proof: The proof of (18) is easily obtained by differenti-given a system of coordinates af, exponential stability
ating the equality f = g and using the identitiegil.(f))~* = is obtained by choosing/(z) = Kz, with K any Hurwitz
dl.-1(g),(drg(z))t = drs-:(g). By applying the feedback stable matrix. Note that uniform asymptotic boundedness
law (19) to (1), one deduces (20) from (18). Q.E.D. of all control variables is automatically ensured. As already

An immediate corollary of the aforementioned proposition isientioned, a complementary analysis of the zero dynamics
that it suffices to choose fa¥ any v.f. which asymptotically associated withy = 0 is usually necessary to deduce other
stabilizese to ensure asymptotic stability of this point for theproperties of the closed-loop system. The equations of this
system (20) and, therefore, convergenceg &b f(T"~™) for zero dynamics are just obtained by setting 0 in the control
(1). Furthermore, asymptotic stability ¢f T~ ) for (1) con- expression (21). In the specific case when the perturbation
trolled by the feedback defined by (19) is also granted, providét{ g, t) is identically equal to zero, or when it does not depend
that6(0) = argming d(g(0), f(#)) with d some left-invariant upong while P(¢) tends to zero, these equations simplify to
metric onG. (u = 0, = 0) and one deduces that all control variables

Remark 1: Equations (18) and (19) are tleeordinate-free converge to zero. This implies in particular, tr(@té) tends
generalizations of (5) and (6) derived for the three-dimensiortal zero. Note that this does not necessarily mean that the state
chained system. They hold whatever the system of coordinatiself converges to some point. However, it is not difficult to
chosen to represent the elementg;odis vectors ifR™. prove that such is the case wheris identically equal to zero,
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or when P(t) tends exponentially to zero, and converges system onR™ can be approximated by a controllable system
exponentially to zero. Now, let us point out thtitmay also with homogeneous v.f. [42], [16]. While this approximation is
tend to zero when the perturbatidhdoes not vanish. In view local in general, there are also physical systems which admit an
of (19), this requires the existence of elemehts T"~"™ such homogeneous representation in a large domain. The modeling
that P(f(6),t) € span {X1(f(6)),-.., Xm(f(8))}(Vt). The by chained systems of the kinematic equations of several non-
possibility of having the extended stdig ¢) converge whe® holonomic wheeled mobile robots is a well-known example.
does not vanish will be illustrated along the unicycle example The main tool used to apply the results of the previous sec-

treated further in this paper. tions to homogeneous systems is the so-called lifting theorem
[38] which specifies how homogeneous systems can be viewed
B. Trajectory Stabilization as systems on Lie groups. This explains in part the importance

We show how Proposition 1 directly applies to the problef@iven to L'ie groups in the formal Lie-algebraic literature [19],
of practical stabilization of a trajectory on a Lie groupl[43]. In this literature, free Lie algebras and free systems [18]
Let g,(-) denote an arbitrary smooth trajectory @. For are usually considered. They correspond to the framework for

any basisXi,...,X, of g, there exist smooth functionsthe original lifting theorem where nilpotent v.f. are lifted to a
vri(i = 1,...,n) such that free Lie group. While this is well justified from a theoretical
standpoint and the sake of generality, it can be interesting, for
] n practical purposes and computational efficiency, to lift the v.f.
gr = Z vr,iXi(gr)- associated with a specific control system under consideration to
=1 the smallest possible Lie group, i.e., the embedding Lie group
Furthermore, iV1, ..., Y., Z1, ..., Z, are left-invariant v.f. in Wwith the smallest dimension. This possibility, investigated in
g ando, 7 are solutions to the differential equations [14], will be used here.
n n A. Lifting of an Homogeneous System to a System on a Lie
o= ZviYi(a) T = ZulZL(T) Group g g y y
= = Prior to stating, in the form of a proposition, a version of the
then the following identity holds: lifting theorem adapted to our present objectives, let us recall

n " a few basic definitions and properties about homogeneity (for
i(a—lT) = Z wi Zi(o ') — Z v Ad(r'0)Yi(o™ 7).  more details, we refer thg reader to [16]).
dt ~ P Given A > 0 and aweight vectorr = (r1,...,7,)(r; >
0 Vi), adilation A} on R™ is a map fromR™ to R™ defined
by ALz 2 (A"zy,...,A™x,). Afunction f € CO(R";R) is
homogeneous of degrdewith respect to the family of dilations

One deduces the followingyror systenassociated with the tra-
jectory stabilization problem:

m n (A%)x>0, Or more conciselyA”-homogeneous of degrek if
§=Y wXi(3) = > vea()Ad(GT)Xi(3) YA'> 0, f(ALz) = ALf(x). A smooth v.f. X onR" is A”-
i=1 i=1 homogeneous of degredf, for anyi = 1, ..., n, the function

x — X;(x) is A"-homogeneous of degreet r;.

The possibility of lifting a set of homogeneous v.f. to a
Lie group, with dimension equal to the dimension of the Lie
algebra generated by the v.f., is summarized in the following

I
NE

uiXi(9) + P(g,1) (22)
1

with g = g~ 1g representing the tracking error and

proposition.
A Proposition 2: [38], [14]: Let X4,...,X,, denote smooth
P(3,t) = = v (HAd(GTH)Xi(7)- (23) v.f. on R", independent over R, A"-homogeneous of de-
i=1 gree—ry,...,—mm < 0 respectively, and which satisfy the
Since this system has the same form as (1), Propositior-ARC at the origin. Letn denote the dimension, ové¥, of
applies to it and provides control laws which ensure asymptofi¢e(X1: - - - Xm). Then, there exist

stabilization of the setf(T"—™) for the error system (22). i) alifting X; of X; onR"(1 < ¢ < m) of the following
It is in this sense that practical stabilization of the trajectory form:

g-(+) is achieved. In particular, if(-, -) denotes a left invariant B . _ Xi(z)
Riemannian distance o, then the practical stabilization of vz =(z,y) ER"  X;(7) = (Y,(lx y)> ;
g-(+) implies that, for any solution of the controlled system, o
d(g(t), g-(t)) — d(f(0(t)), e) asymptotically tends to zero. ii) a smooth mapping: R” x R® — R”;
such that
VI. CASE OF HOMOGENEOUSSYSTEMS 1) Xi,...,X,, satisfy the LARC at the origin;
In this section, we show how the results of the previous sec-2) X1;- .-, Xm are A’-homogeneous of degreery, ...,
tions apply to driftless controllable systems with homogeneous ~ —7m. fespectively, for some € R™;

v.f. The study of such systems is motivated by several reasonSyp,tis (v o, X, = 0 with a; € R,i = 1
A% i=1 i i — 2 i El - LI

R - .om) = (a; =
One of them is that any controllable smooth driftless controlvi).
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3) R", endowed with the composition laiw, ) — zxy 2 Recall that the origin oR™ is practically stabilized in the
o(,7) is a Lie group, and(1, . .., X,, are left-invariant sense that the set(T"~™) is asymptotically stable for the
v.f. for this composition law. extended system (25), after closing the loop with the feedback

For a constructive proof of this proposition, the interested readé@trol and choosing(0) adequately. This implies that the

is referred to [33]. set f,.(T"~™)—with f, _depot_ing the firstn components of
Remark 5: The combination of Theorem 1 and Proposition "€ vector-valued functiorf—is (globally) attractive for the

implies the results stated in Theorem 1 of [34] and, in particul&#0Sed-loop solutions of (24). Then, by using classical norm

the existence of transverse functions for any smooth contrlequalities one easily verifies that, in order to further ensure

lable driftless system. It also yields complementary results. Of@bility of this set, it suffices to choose the initial condition

of them is the specification of a smaller number of variables ¢f0) equal to f,(6(0))—with f, denoting the remaining

which transverse functions depend. More precisely, this numi&— 7) components of the vector-valued functign

is equal to the difference between the dimension of the Lie al-

gebra generated by the v.f. of a controllable homogeneous ap- VII. EXAMPLES

proximation of the system and the number of independent cQR- chained Systems

trol v.f. Another important complementary result is the expres- . . . .

sions (9)—(10) of such a transverse function. This expression isThfa (pe(turbed) chained system of dimensionith two in-

much more concise and explicit than the construction propos%%IS is defined by

in the proof of Theorem 1 in [34]. Finally, let us mention that

no general control expression was given in [34]. In this respect

the Lie group structure is essential. with X1(z) = (1,0,2a,...,20-1)7, X2 = (0,1,0,...,0)7,

The next section explains how to use Proposition 2 in coBng p some additive drift term. The unperturbed chained
junction with Proposition 1 to achieve practical stabilization ngstem—corresponding to the case whdte = 0—is a

T = ule(x) + U2X2 + P(.Z’,t) (26)

a controllable homogeneous driftless system. particular homogeneous system, and it is well known that
L ) o Lie(Xy, X5) is of dimensionn, and is spanned by the v.f.
B. Application to Practical Stabilization Xi,..., X, with
Consider an-dimensional controllable homogeneous drift- '
less system perturbed by an additive ¥z, t) X; 2 (ad'™2 X1, X3) = (=1)'e; (i=3,...,n) (27)
) m ande; = (0,...,0,1,0,...,0) theith canonical vector oR".
r= Z“iXi(‘”) + P(x,1). (24) According to Proposition 2X; and X, are left-invariant w.r.t.
=t a group operation oR™. One easily verifies that this group op-
The control v.f. X1,...,X,, are assumed to be independerration is given by
overR so that all assumptions in Proposition 2 are satisfied. Let Ay,
Xi,..., X be the v.f. evoked in this proposition. A dynamic wxy=g(r,y)=erty (28)

extension of system (24) is then thedimensional system . . .
y (24) y with A then xn matrix whose only nonzero entries arg 1 ; =

) mo ~ 1,fori = 2,...,n—1. More explicitly, the components afxy
&=y uXi(z)+ P(z,t) (25) are defined by
=1
" (@xy)i = miyi+ Y (il-,_l_jj)!xj» otherwise. ?9
(= T = Xi(z)
=y i(7) = Yi(z,y) Letus now proceed with the computation of transverse functions
B P(,t) for this systemX; and X, complemented with the — 2 v.f.
P(z,t) = < 0 ) . defined by (27) form a graded basislgk( X1, X>) in the sense

of Definition 1, and the associated weight-vector is given by
According to Proposition 2, the corresponding unperturbed= (1,1,2,...,n — 1). Therefore, if we use (10) to calculate
system (obtained by setting = 0) is left invariant on the Lie eachf;, we deduce from (27) that
groupR™ endowed with the group operatiandefined in the )
proposition. Therefore, Proposition 1 applies directly to system  f;(6;) = exp (gj sin ;X1 +¢77% cos Hij_l) :

(25), yielding a feedback contrdk(z, 6, ¢),6(z,0,t)) which

ensures (global) practical stabilization of the origin, i.e., therom the definition ofX,;, X», and (27), it is not difficult to
identity element, oR™ for this system. The expression of theobtain

control law depends on a transverse functfoll »~™ — R™

associated with the v.fX, ..., X,,,, and Theorem 1 provides f;(§;) = (—1)7* <(—1)j+1aj sin6;,0,...,0,e57% cos 6,

an example of such a transverse function. From there, it remains

to specify conditions under which the obtained controller is also j—18in6; cos f; o1 (sin ;)" =7+t cos b ) r

a (global) practical stabilizer for the initial system (24). & 2 A (n—j+2)!
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The expression of = f,, x- - -x f3 can then be calculated fromUsing the fact thakR? S(w)R = S(RTw), for any rotation ma-
(29). Then, for any transverse function, and any Hurwitz stalbiéx R and any vectow € R?, we deduce from (33) that
matrix K, the choiceZ(z) = Kz in the control expression (21)

yields the feedback g—g = FS(w)
< %) — H(0) (w(s, £(6), ) With @ = (Tsxs — exp(S(—fes)) exp(S(—zez)))es and
- L33 € R3*3 the identity matrix. A direct calculation yields

— Az — f(0))wi(z, f(0),1))  w = (cosfsine, —sinfsine, 1 — cose)T. Since the transver-

. ' sality condition is equivalent to the third component.abeing

with 1 () defined, as before, by (11) different from zero, the proof follows. Q.E.D.
w(z, f(A),t) = AN o= AN (x — f(8)) — P(x,t) For the determination of a control expression one can use
(19). This yields

and wy, f1, denoting the first component af and f respec- .
tively. This control is a practical stabilizer of (26). This was thé"(6)(S(e1)u1 + S(e2)us — S(w)8)
main result of [32]—up to a small difference due to inverting the = F()RT Z(RF(6)T)F ()
roles played by andz—, knowing that both choices2 ¢ f~1

andz 2 fg~! can be made. or, equivalently

N T T
B. Systems 080(3) With Two Control Inputs S(erus + eauz —w) = REZ(REF(0)7)F(0).

Recall thatSO(3) is the set of rotation matrices iR3. This control is a practical stabilizer of the identity matrix pro-
Endowed with the classical product of matrices, it is a three-diided that the v.fZ asymptotic stabilizes the identity matrix. A
mensional Lie group. Its Lie algebra consists of the set wfell known possible choice i8(R) = RS(—Fkr), with k > 0
(3 x 3) skew-symmetric real matrices and is classically denotadd » € R?® the rotation vector associated with the rotation
asso(3). Moreover, the exponential of an elementaaf(3) matrix 2, i.e., the vector with smallest Euclidean norm (corre-
coincides with the classical matrix exponential of this elemerggponding to the angle of rotation) such tiiat= exp S(r). The
Consider the following underactuated control system on th®mainD in which this v.f. is differentiable and exponentially

group: stabilizes the identity matrix iSO(3) minus the set of rotation
. matrices with angles of rotation equalto Using this expres-
R = R(u15(e1) + u2S(e2)) (30) ' sion of Z in the previous equality yields

wheree; denotes, as in the above example, tte canonical S(eru + eaus — wé)

vector inR3, andSS is the operator associated with the vector
product, i.e.S(e)z = e x z. SinceS(ey), S(e2), and

S(es) = [S(e1), S(e2)] = S(e1)S(e2) — S(e2)S(er) _ _ _ _ _
with z(#, ) € R* denoting the rotation vector associated with
form a basis ofo(3), the Lie algebra generated B5(e1) and  the matrix RF(9)7, i.e., such thaRF(6)” = exp S(z(0,7)).
RS(e2) is isomorphic toso(3). This basis is a graded basis ina practical stabilizer is thus given by
the sense of Definition 1, with = (1,1,2). We calculate a

= F(0)"S(=kz(0,1))F(0)
= S(=kF(0)T2(8,r))

transverse function by (9)—(10), i.e., eruy + eauy —wh = —kF(0)72(0,7)
F(0) = exp(esin0S(e1) + e cos6S(e2)) or, equivalently—after simple calculations—by
= exp(S(esinfe; + e cosbes)) uy 1 0 —<(p)
= exp(S(—fe3)) exp(S(ee2)) exp(S(fes)). (31) ( ug‘) =—k (0 1 _%(9)> F6)"2(0,r).
—0 o0 X

w3

Note thatF'() is the matrix of rotation with angle about the
axis with unitary vectofsin 6, cos #,0)”". A direct calculation The domain of attraction i8O(3) contains the set of rotation
yields matrices with angles of rotation smaller th@an— ¢).

cec?0 + 520 (1 —ce)chsh  sech C. Unicycle
F) = | (1 —ce)chsh c*0+ s?0ce  —sesh (32)

Kinematic equations of the unicycle are
—sech sesh ce

wheres andc denote thein andcos functions, respectively. g =u1X1(g) + u2 X (34)
Lemma 4: The functionF’ given by (32) is a transverse func-
tion for anye € (0, 2m).
Proof: From (31)

with ¢ = (2,y,@)T, X1(g9) = (cosa,sina,0)T, and X, =
(0,0,1)T. For stabilization purposes, this system is often trans-
formed, via a diffeomorphic change of coordinates and new
control variables, to the three dimensional chained system with
two inputs. The solution described in Section VII-A then ap-
+ exp(S(—fesz)) exp(S(eez)) exp(S(hes))S(es) (33) plies directly. However, the preliminary transformation into a

%—Z = exp(S(—fes))S(—es) exp(S(eeq)) exp(S(fes))
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chained system is not necessary, and the control design can| *
performed easily by using natural system coordinates. This i

possible because, as this is well known, the above equatior k
define a left-invariant control system on the Lie grd@fx S*. 1ol
The group operation is given by

T T i
9192=<<yi>+R(a1)<y§>) (35) =l el o

a1 + a2

————

<— Reference vehicle
with R(«) the rotation matrix inR? of angle a. The v.f.
X1, X5, and [ X1, X5], form a graded basis diie(X;, X»), ok
with » = (1,1, 2). A transverse functiorf can be obtained by
using (9)—(10), or the more general expression (9)—(12), i.e., of

<————— Unicycle

f(8) = exp(e1sin X7 + e3 cos 0X5). -2 , : , : .
-5 0 5 10 15 20
After simple calculations, using (35) and the expressions of the X
v.f. X7 and X, Fig. 1. Unicycle’s and reference vehicld’s, y) trajectories.
e sin 0 sin(ez cos §)
1. =2 (6353090) We next report simulation results about the tracking of a
FO) =1 ey sin 0 — s |- (36)  reference vehicle by the unicycle. The posture of the reference
gzco80 vehicle is given byg, = (2,4, a,)T and the control is

. HA _ ~r—1 H
The transversality condition is equivalent to the fact that yfigtermined so as to stabilize= gf~" to zero, with

matrix o <R(—ar)<x:x”>>
H(9)2<X1(f(6)) X, %(e)) 9=9,"9 a_zr Y

representing the tracking error. Such a control is given by (21)
with, of course,g replaced byg. The chosen transverse func-
tion is given by (37) withe; = 1 andes; = 0.5. The chosen
1 — cos(ez cos b)) stabilizing v.f.Z is defined byZ(z) = —1/2(z1, 22, 23)T. The

(g2 cosh)? expression ofP(g,¢) can be obtained either by application of
(23), or by direct computation af. By setting

is invertible for anyf. Using the expressions of;, X,, and
(36), one obtains

det H(H) = €1€2

so that the transversality condition is satisfied for ény e2) €
(RT — {0})2. Another transverse function is thai.ned by using g = 5 X1(gr) + ubXo + uh[Xa, X1](gr)
the control v.f. of the homogeneous approximation of system
(34) which, in the present case, is the chained system of dimeme obtains
sion three (up to a reordering of the state variables). Application

. 1 —Jo 0
of (9)—(12) then yields - - I .
(9)-(12) y P(g,t)=—ui | 0| —uy | G —uz |1
in2 T 0 1 0
f(o) = (61 sinf,e1e9 sin 26 ,E2 COS 0) . (37)
All terms in the feedback expression (21) are now defined. For

One can verify that the transversality condition is satisfied wit€ Simulation, the controlinputg, u3, andus for the reference
this function fore; # 0 ande, € (0,7/2). From (35) vehicle, on the time intervd0, 40]s, are given by

N (a:)_R(a_fg)(fl) t€0,10:uf =0 uhb=0 uj=1
z=gf "= y f2 t€[10,20):u; =1 uhb=0 uy=0
a=Js t€[20,30):ul =7w/2 uh=—-w/20 uh=0
R 0
dlgl(.92)2< (31) 1) t€[30,40]:u§:—g ugz% ul = 2ub.

and Note that fort € [0,10) andt € [30,40], the reference trajec-

dry,(g1) = (Iz R(a) ( y2> ) . tory is not feasible by the unicycle (sina§ # 0). Fig. 1 shows
; 0 1 the trajectories of the unicycle and the reference vehicle in the
plane, with the dashed arrows indicating the orientation of the
A practical stabilizer ofg = 0 is then given by (21) after reference vehicle. Fig. 2 shows the time evolution of the compo-
choosing a v.fZ which asymptotically stabilizes the origin ofnents of the tracking vectgrand the unicycle’s control inputs
2 = Z(z). One can take, for examplg(z) 2 Kz, with K any wu; andus. We remark that the unicycle does not oscillate when
Hurwitz stable matrix, in order to achieve exponential stabilityhe reference vehicle follows portions of “feasible” trajectories,
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Then, there exist analytic functiops, . . . , g,, such that, for any
ax, o, € R

n

— 1
Z J—(ad](aAX)\ +a,X,),X,) = ng(a)\, a,)Xk.
Jj=s k=1

Furthermore, ifay: (6,6) € R x T +—— ax(e, ) and
a,: (6,0) € Rx T + e, §) denote analytic func-
tions such thatey = O(le]™) anda, = O(le|™), then
gr(aa, ) is an analytic function andgi(ax,e,) =
O(|E|max{s min{ry,r,}, rkfrq})

Proof: Let ck denote the structural constants associated
with X4,..., Xn,|e

[XZ/X]] = ZCiJXk
k

From Definition 1, one deduces that > r; +r; = cf,j = 0.
3 E From this fact, one obtains by induction gn

2 } uj 1 (ad?(aa Xy + 2, X,), X,)

J

I
. I
| i AN i e § : i—n § n
i ARG :{ : a ajyijk.j
!

i ! :l |
1 O S R = G
.'|,||||".I'i'/ Uo iff .
: |j|]I!E’>\; if with

bR | -

_2‘; ! L i | a?,kj < (2Mn)’  and M 2 max |cl ]| (38)

ab | Therefore

=1
“o 5 0 5 20 2 % % 40 Z _—'(adj(aAX,\ + apo)7 Xq)
t =
Fig. 2. Tracking errors and unicycle’s control inputs. > 1 J .
=Y g2 e > Xy

_ . . j=s " n=0 Ty Snra+(F—m)rotrg
as in the case of a straight line, wher [10, 20), and an arc n in
of circle, whent € [20,30). The simulation further shows that, -y 3 3 o X
as mentioned in Section I, oscillations are not systematic when k=1 j>5 0<n<jmrs+ () > 10—, bt
the reference trajectory is not feasible. This is illustrated by the n
portion of trajectory corresponding to€ [30, 40]. Sustained = ng(O% a,) Xk
oscillations only occur during the first phase corresponding to 1
t € [0,10), when practical tracking of the reference vehicle with
the “precision” specified byeq, e2) requires them. with

alad—n
gi(axsap) =3 > S
APPENDIX A 728 0<n<gnra+(G—m)r,2rr—rg J:
PROOFS OFLEMMAS 1-3 (39)

The following technical claims are used in the proofs dt follows from (38) that eacly;, is an analytic function ofv

Lemmas 1 and 2. anda,. Furthermore, itvy = O(|e[™) anda, = O(Je|™) are
Claim 1: LetY andZ denote two time-dependent left-in-analytic functions ot andé, theng,(a., «,) is analytic and it
variant v.f. onG, and o, 7 solutions of¢ = Y(o,t) and follows, by considering the term of lowest order in (39), that
7 = Z(r,t) respectively. Therv 2 o7 is a solution of )
U= Ad(T_l)Y(l/, t) + Z(l/, t). gk(ax,ap) -0 (|€|maX{s mm{m,rp},rk—rq}) .
The proof follows by classical calculus on Lie groups.
Claim2: Let{Xy,...,X,} denote agraded basis of the LieNote that the equality is uniform w.rd.becausey(ax, a,) is

algebrag of a Lie groqu LetA, p,q € {1,...,n}ands € N. periodic w.r.tf. Q.E.D.
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Proof of Lemma 1:In order to lighten the notation, we Proof of Lemma 2:From Claim 1, and relations (9) and
denote byf; the derivative off; w.r.t ;. We will also useX,  (13), one deduces that
for Xy, X, for X,;), andX for X, and denote by, and

o, the functions defined by % = ka,jAd (f;l}rl . fj—jl) Xi(f). (45)
J _
oo‘(gj, 9]') = Etk(j) sin 9]' r=t
e From the fact thatd(g;g2) = Ad(g1)Ad(g2) and (10)
ay(ej,0;) = ;" cosb;. (40)

Ad(fr - ft
With this notation,f; = exp(axXx+,X,). In order to calcu- ( +1 i-1)
late 7 we will use the following classical result ( [15, p. 105], _ H Ad (f‘l

for example): gt

d i—1
25 “PX + 5V )m0 = ($ad X), V) (exp X) - (41) = I Ad(exp (—arpXam) — 4 Xpm)) (46)

. . p=m+1
with ¢ the operator defined by

J=0

wherea,(,y anda,,(,,) are defined according to (40). By appli-
< 1- e—z> cation of Claim 2, forany, p,g =1,...,n

z

. Ad(exp(—arxXy —a,X,)) X, = X + Z h"qu
Since (d/df) exp X(0) = (d/ds)exp(X(0) + sX'(6))}s=0» i=1
one obtains, by application of (41) for some analytic functionsh} , . Moreover, if ax =
= Gladon Xy + 0, X)) b X+l X,)(s)  OFln) anday = O(fef) are analytic funcions then,
= o\ Xa(f;) + X, (F;) Apaln @) = O(fe| )- By applying this prop-
) r erty recursively, one deduces from (46) that
_5[04)\X>\+apXmal>\X>\+a;Xp]<fj) ) L L
Ad(fly - 7)) Xe=Xe+ > gl Xs  (47)

= (~1) ;
+Z (E+ i) (ad’(an X + o, X,), i=1
for some analytic functiong;'.’k which depend orz,, 41 .. .,
OlAXA +a, X,)(f5) €j-1,0mi1,...,0,_1, and are such that
(ana, — a,a) .
— a’)\X)\(f].> + a/po(fj) _ pfp)‘ g;',k -0 (|gj_1|max{1,mfrk}) (48)
X [Xx, X, ](£) . (recall the notatio), = (€11, - - -,€x)). From (47)
+ (aze, — af\)i U -
P - _ _
P pot (i 4 2)! vaAd (fm.l|-1"'fj—11)Xk(f)
x (ad* (o X + 0, X,), X, X)) (). = . .
In view of (40), and sincéf = [X,,, X,] (by Definition 1), the = (w,j +3 vk;jgﬁ-,k> Xi(f)
aforementioned equality yields =1 =

so that, by (45), (15) is satisfied with
f = QAXA(f]) +a Xp(f])

ETJ i i Z+1 aq,j é Vi, ka,jg;',k =A+B+C (49)
€ — (i + 2)! k=1
x (ad'(ax Xa + 0, X,), X)(fy).  (42) Where
By application of Claim 2 A= ; UG5 B =i
TELST:
L+1 i
Z (ad’(ax X + a,X,), X) C= ) vhib (50)
i—1 L + 2 TE>T;
n Lemma 2 follows from this decomposition. Indeed, from
=> grlan, )Xk (43) Lemma 1 and (48)4, B, andC in (50) areO(|;|™). This
k=1 proves the first relation of (16).
for some analytic functiong, (k = 1,...,n) such that Concerning the case whefe< j andr; = r;, A vanishes
ate;_; = 0 because of (48). This accounts for the sum in
gr(ar, a,) = (|6 |masx{r;+min{ro,ra}, m}> (44) the right-hand side of equality (16) (up to higher-order terms).
Now, because of (14)3 = o(|e;|™) = o(|&;|") andC =
Lemma 1 follows by using (43)—(44) in (42). Q.ED. O(le;|™) = o(le;|™) = o(]&;|™) too.




MORIN AND SAMSON: PRACTICAL STABILIZATION OF DRIFTLESS SYSTEMS ON LIE GROUPS 1507

For the last case; = j, A accounts for the sum in the Therefore, from (55), (58), and (59)
right-hand side of equality (16) an@ = o(|&;|™), as in ) 1 )
tl;lne previous case. From Lemma B, accounts for the term Dy4q > am;jrl (5 + 0(|7k+1|)) 5’]3:11
e/ /2. Q.ED.

Proof of Lemma 3:The notationr;, = Tl + o+ Tk
is used in this proof. The lemma is a direct consequence of thieen, (51) fork+ 1 follows by choosingy,; > 0 small enough
following property which will be proved by induction: SO as to ensure that

+o(lexsa ).

VEk =

Ek

Iy € RF—™ Jag > 0:

Al 4 o (1
I i gyl = ZOZWZ’_‘H < vty (5 + O(|7k+1|)>
exM = Dy > OzkE;;k + O(|€k|r’°)

(51)

is different from zero. Thus, we have proved by induction the
existence ofn — m numbersy,,+1,..., v, (With 7,41 = 1)
such that choosing [see (52)]

with D;, the function defined by

Dy (8) = det(a; j(8))ijmm-t1,...-

Let us first prove (51) fork = m + 1. From Lemma
2, Am+1,m+1 = (1/2)5:,1:11 + O(|Em+1 Terl). Since
Dit1 = @mtim+1 aNA7Tpi1 = 7Ty, (51) follows with
NMm4+1 = 1 andOém+1 = 1/2

Let us now prove that if (51) is satisfied fér(with m + 1 <
k < n), thenitis also satisfied fot + 1. Let

H Yiy s Yn—1Yns Vn, 1
1=m-+2

En — E&Ep

yieldsVé,D,,(0) # 0, provided that,, is itself chosen small
enough. This is precisely the result of Lemma 3. Q.E.D.
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