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Abstract. A control approach for the practical and asymptotic stabilization of nonlinear driftless
systems subjected to additive perturbations is proposed. Such perturbations arise naturally, for
instance, in the modeling of trajectory stabilization problems for controllable driftless systems on
Lie groups. The objective of the approach is to provide practical stability of an arbitrary given point
in the state space, whatever the perturbations, and asymptotic stability (resp., convergence to the
point) when the perturbations are absent (resp., tend to zero). A general framework is presented in
this paper, and a control solution is proposed for the class of the chained systems.
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1. Introduction. The development of the transverse function (t.f.) approach
[18] finds its original motivation in the problem of practical stabilization of the origin
of a control system in the form

S : ẋ =

m∑
i=1

uiXi(x) + P (x, t),(1)

with x ∈ R
n, n > m, {X1, . . . , Xm} a set of smooth vector fields (v.f.) that satisfy

the Lie algebra rank condition (LARC) on an open ball centered at x = 0, and P an
additive perturbation, continuous in x and t but otherwise arbitrary. Note that such a
perturbation may well forbid the existence of any equilibrium point for the controlled
system. The t.f. approach provides a general solution to this problem. Up to now,
and to our knowledge, this solution is unique in its class, even though several other
methods and many control laws have been devised during the last decade to address
the stabilization problem when P ≡ 0. These studies were motivated in the first place
by Brockett’s theorem [5] according to which, if m < n and the control v.f. evaluated
at x = 0 are linearly independent, no smooth or even continuous pure state feedback
can make the origin of the system asymptotically stable. Different types of feedback
laws have been considered to circumvent this difficulty, although not all of them guar-
antee Lyapunov stability. Discontinuous feedback [1, 3, 6, 11] and hybrid feedback
[2, 15, 23] are two possibilities. Another one, more related to the present approach,
consists of using continuous time-varying feedback [21, 7, 20, 27, 22, 13, 19, 16, 14].
An early survey on the control of nonholonomic systems, whose kinematic models are
nonlinear driftless systems, can also be found in [4]. The importance of considering
the perturbed case in association with the objective of practical stabilization is well
illustrated when S is a system on a Lie group and the control objective consists of
tracking a trajectory. Indeed, it is shown in [18] that the error system associated with
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this problem is in the same form as the original system, except for the presence of a
perturbation P . Moreover, when the trajectory is not a solution of the control system,
asymptotic stabilization is not possible. Other reasons for considering practical stabi-
lization as a reasonable control objective, in the case of nonlinear driftless systems, are
also pointed out in [18]: lack of robustness of exponential (continuous/time-varying
or discontinuous) stabilizers, nonexistence of feedback controllers capable of stabi-
lizing asymptotically every feasible trajectory [12], and incapacity of most existing
asymptotic stabilizers to ensure ε-ultimate boundedness of the closed-loop trajecto-
ries when a destabilizing perturbation P is present. However, it is important to realize
that practical stabilization is by no means opposed to asymptotic stabilization. It is
merely a weaker requirement, whose interest resides precisely in the fact that it is
weaker and thus applicable to more numerous situations. Once practical stabilization
is granted, it may still be possible, and desirable in some cases, to achieve asymptotic
stabilization, or at least convergence to zero—when, for instance, P vanishes after
some time. For the same reasons, feedback controllers derived with the t.f. approach
should not be considered as antagonistic to other controllers proposed for nonlinear
driftless systems—asymptotic stabilizers, in particular. A more pertinent issue is the
possibility of deriving a practical stabilizer which also ensures asymptotic stabilization
when the perturbation P allows for it. For instance, can the t.f. approach be used for
this purpose?

This question is addressed in the present paper, and a partial positive answer is
obtained. More precisely, an extension of the approach in [18] is proposed in order
to achieve asymptotic stabilization of the origin of S when P ≡ 0, and asymptotic
convergence to the origin when P tends to zero as time tends to infinity. The main
ingredient of this extension is the concept of a generalized t.f. introduced in section
2. The principles of the t.f. approach and design of stabilizers are also laid out in
this section. A solution to the problem of practical and asymptotic stabilization for
the popular class of the chained systems is proposed in section 3, and illustrated by
simulation results in section 4. The practical relevance of this case comes from the
widespread use of chained systems to model the kinematic equations of various me-
chanical systems subjected to nonholonomic constraints (unicycle and car-like mobile
robots, for instance) and also the possibility of using them as homogeneous approxima-
tions of dynamics involved in several other physical systems (ships, induction motors,
etc.). Finding a more general solution, which applies to a broader class of systems,
remains an open subject of research. In order to facilitate the reading of the paper,
we have distributed the proofs of our results into two sections: the cores are given in
section 5, whereas intermediate technical results of lesser conceptual significance are
regrouped in the appendix.

Since the t.f. approach finds its most natural exposition in the context of systems
which are invariant on Lie groups, we have chosen to recast the systems and control
problems evoked above in this framework. Let us recall the prominent role played by
Lie groups in control theory [26, 10]. In particular, controllable driftless systems can
always be approximated by controllable driftless homogeneous systems which are,
after a possible dynamic extension, systems on Lie groups. The chained systems,
which are more specifically addressed here, are systems on Lie groups.

The following notation is used throughout the paper. The tangent space of a
manifold M at a point p is denoted as TpM . The differential of a smooth mapping f
between manifolds, at a point p, is denoted as df(p). The torus of dimension p ∈ N

is T
p with T

∆
= R/2πZ. An element θ ∈ T is identified with the real number in

(−π,+π] which belongs to the class of equivalence of θ. Addition of angles makes T
p
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a Lie group. The ith component of σ ∈ T
p is denoted as σi, i.e., σ = (σ1, . . . , σp).

The canonical basis of R
p is the set of unitary vectors {ei}i=1,...,p. Since this set is

also the natural basis of the Lie algebra of T
p, a vector field v on T

p is identified
with its vector of coordinates in this basis, i.e., v = (v1, . . . , vp)

′ if v =
∑p

i=1 viei. If
σ(.) is a smooth curve on T

p, this identification allows us to view σ̇(t) as a vector
in R

p. Consider a differentiable mapping f from T
p to a manifold M . By a slight

abuse of notation, and for the sake of simplifying the writing of several forthcoming
equations, we write the Lie derivative of f along ei at σ as ∂f

∂σi
(σ), or ∂f

∂σ (σ)ei, instead
of df(σ)(ei) (or Leif(σ)), even though the normal use of the partial derivative symbol
refers to a system of coordinates on M . Accordingly, along an arbitrary v.f. v on

T
p, we write ∂f

∂σ (σ)v
∆
= df(σ)(v). We also use standard notation for Lie groups—see,

e.g., [8] for more details on this topic. G denotes a Lie group of dimension n, with
Lie algebra (of left-invariant v.f.) g. For simplicity, we assume that G is connected
so that there exists a globally defined left-invariant distance dG on G. The identity
element of G is denoted by e. Left and right translations are denoted by l and r,
respectively, i.e., lσ(τ) = rτ (σ) = στ . As usual, if X ∈ g, then exp tX is the solution
at time t of ġ = X(g) with initial condition g(0) = e. The adjoint representation of G
is Ad; i.e., for σ ∈ G, Ad(σ) = dIσ(e) with Iσ : G −→ G defined by Iσ(g) = σgσ−1.
By extension we define the v.f. Ad(σ)X on G by Ad(σ)X(g) = dlg(e)(Ad(σ)X(e)).
The differential of Ad is ad, and (adX,Y ) = [X,Y ], the Lie bracket of X and Y .

2. Control of perturbed driftless systems by the t.f. approach. Consider
a control system

S(g) : ġ =
m∑
i=1

uiXi(g) + P (g, t)(2)

on a Lie group G, with X1, . . . , Xm independent left-invariant smooth v.f. that satisfy
the LARC. We assume that the drift term P (g, t) is a continuous function of g and t,
and that1

∀(g, t) ∈ G× R, P (g, t) ∈ span{X1(g), . . . , Xm(g)}⊥,(3)

where orthogonality refers to an arbitrary Riemannian metric on G. The definition of
a transverse function, as originally given in [17] for v.f. on an arbitrary manifold—i.e.,
not necessarily on a Lie group—is now recalled.

Definition 1. Let X1, . . . , Xm denote smooth v.f. on a manifold M . A function
f ∈ C∞(Tp;M) is called a transverse function (for the v.f. X1, . . . , Xm) if

∀σ ∈ T
p, span{X1(f(σ)), . . . , Xm(f(σ))} + df(σ)(TσT

p) = Tf(σ)M.(4)

Another way of writing the above relation (with the notation explained before) is

∀σ ∈ T
p, span

{
X1(f(σ)), . . . , Xm(f(σ)),

∂f

∂σ1
(σ), . . . ,

∂f

∂σp
(σ)

}
= Tf(σ)M.(5)

Note that, by this definition, the image set Im(f) = f(Tp) is compact. The main
contribution of [17] was to show that if a set of v.f. X1, . . . , Xm satisfies the LARC
at some point q ∈ M , then for any neighborhood U of q there exists a transverse
function with values in U .

1Note that (3) can always be obtained after the application of a suitable preliminary feedback.
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In the context of stabilization, transverse functions allow to use σ̇ as a new—
virtual—control input vector. This leads us to introduce the following dynamic ex-
tension of S(g), which evolves on G× T

p:

S(g, σ) :

⎧⎪⎨
⎪⎩ ġ =

m∑
i=1

uiXi(g) + P (g, t),

σ̇ = uσ,

(6)

where (u, uσ) is viewed as an extended control vector. In the following subsection,
the practical stabilization of g = e for S(g), based on the t.f. approach, is addressed.
More details on the approach, as well as several examples with explicit derivations of
t.f., can be found in [18].

2.1. Practical stabilization. The formulation of a general practical stabiliza-
tion problem which can be associated with S(g) is as follows: given an arbitrary
neighborhood UG(e) of e, determine a (smooth, or at least continuous) feedback con-
trol (which depends on g and, eventually, on other variables) which asymptotically
stabilizes some compact set DG ⊂ UG(e). The t.f. control approach provides a solution
to this problem. This solution is now recalled.

Consider the change of variables on G × T
p defined by Ψf (g, σ) = (f(σ)g−1, σ),

with f a t.f. such that f(Tp) ⊂ UG(e). From now on, in order to ease the notation,
the element f(σ)g−1 ∈ G associated with g and f(σ) will be abbreviated as z, i.e.,

z
∆
= f(σ)g−1. By differentiating both members of the equality zg = f(σ), one easily

verifies that, along any trajectory (g, σ)(.) of S(g, σ),

ż = −drg−1(f(σ))

( m∑
i=1

uiXi(f(σ)) − ∂f

∂σ
(σ)σ̇ + dlz(g)P (g, t)

)
.(7)

Therefore, S(g, σ) is equivalent to the control system

S̄(z, σ) :

⎧⎪⎨
⎪⎩ ż = −drg−1(f(σ))

( m∑
i=1

uiXi(f(σ)) − ∂f

∂σ
(σ)uσ + dlz(g)P (g, t)

)
,

σ̇ = uσ.

(8)

From the definition of Ψf , the asymptotic stability of {e}×T
p for S̄(z, σ) is equivalent

to the asymptotic stability of {(f(σ), σ) : σ ∈ T
p} for S(g, σ). It is also equivalent to

the asymptotic stability of f(Tp) for S(g), provided that, for some left-invariant dis-
tance on G, the initial value σ(0) of σ is chosen so as to minimize the distance between
z(0) = f(σ(0))g(0)−1 and e.

Now, for any v.f. Z on G, the property of transversality of f ensures that the
equation

m∑
i=1

uiXi(f(σ)) − ∂f

∂σ
(σ)uσ = −dlz(g)P (g, t) − drg(z)Z(z)(9)

admits a feedback solution (u, uσ)(g, σ, t). Applying any2 such feedback law to S̄(z, σ),
and using the fact that (drg(z))

−1 = drg−1(f), it follows from (7) that

ż = Z(z).(10)

2The only (weak) requirement is that the solutions of S(g, σ) must be well defined for t ∈ [0,∞).
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Therefore, provided that Z is chosen so as to asymptotically stabilize e for system
(10), the feedback law (u, uσ) defined by (9) makes the set {e} × T

p asymptotically
stable for S̄(z, σ).

In general, the solution (u, uσ) of (9) is not unique. It is shown in [18], however,
that one can always find3 t.f. f ∈ C∞(Tn−m;G), i.e., such that p = n −m with the
notation of Definition 1. It is clear from the transversality condition (4) that this value
of p is minimal and that the solution (u, uσ) of (9), given f , is unique in this case.
Allowing the t.f. f to depend on a larger number of variables provides complementary
control inputs which can be used to guarantee complementary control objectives. The
asymptotic stabilization of e for S(g) when P ≡ 0 will, for instance, be addressed in
this way.

2.2. A framework for asymptotic stabilization. Let us introduce, in the
framework of Lie groups, the following specific class of transverse functions.

Definition 2. Consider a function f ∈ C∞(Tn−m×T
n−m;G) and the associated

family of functions {fβ}β∈Tn−m defined by fβ(θ) = f(θ, β). The function f is called
a generalized t.f. for the v.f. X1, . . . , Xm on the Lie group G if

∀σ = (θ, β) ∈ T
n−m × T

n−m,(11)

span{X1(f(σ)), . . . , Xm(f(σ))} + dfβ(θ)(TθT
n−m) = Tf(σ)G

and

∀β ∈ T
n−m, f(0, β) = e.(12)

From now on, variables in T
n−m will be indexed starting from m + 1; i.e., if

θ ∈ T
n−m, then θ = (θm+1, . . . , θn). With the notation specified in the introduction,

another way of writing relation (11) is

∀σ = (θ, β) ∈ T
n−m × T

n−m,(13)

span

{
X1(f(σ)), . . . , Xm(f(σ)),

∂f

∂θm+1
(σ), . . . ,

∂f

∂θn
(σ)

}
= Tf(σ)G.

It is clear that any generalized t.f. is a t.f. It is also quite simple to build a generalized
t.f. f ∈ C∞(Tn−m × T

n−m;G) from a t.f. f̄ ∈ C∞(Tn−m;G). For example, define

∀(θ, β) ∈ T
n−m × T

n−m , f(θ, β) = (f̄(β))−1f̄(θ + β).

Let us now consider any generalized t.f. We let

θ̇ = v , β̇ = w,(14)

so that σ̇ = uσ = (v, w). With this notation, (9)—whose satisfaction yields ż =
Z(z)—is equivalent to

m∑
i=1

uiXi(f(σ)) − ∂f

∂θ
(σ)v =

∂f

∂β
(σ)w − dlz(g)P (g, t) − drg(z)Z(z).(15)

From (11), this equation has a unique feedback solution (u, v)(g, σ, t) for any function
w. The v.f. Z is again chosen so as to make z = e asymptotically stable. Now the

3Expressions of such functions are given in that paper—see also the next subsection.
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objective is to determine w in order to make θ tend to zero. Indeed, this latter property
implies, in view of (12), that f tends to e so that, from the fact that z = f(σ)g−1

tends to e, the asymptotic convergence of g to e follows. Note that such a convergence
cannot be obtained without the drift term P satisfying some extra conditions. For
instance, if P (e, t) is periodically different from zero, then it follows from (3) that e
cannot be an equilibrium for system (2), whatever the control u. Moreover, under
mild complementary regularity conditions upon the function P , convergence of P (g, t)
to zero when g tends to e and t tends to infinity is necessary to the convergence of
the system’s solutions to e.

The feedback law (u, v) defined by (15) ensures the convergence of z to e inde-
pendently of w. Hence, the asymptotic behavior of θ(t) and β(t), for the controlled
system, is described by the zero-dynamics obtained by setting z = e in (15), i.e.,

m∑
i=1

ui(g, σ, t)Xi(f(σ)) − ∂f

∂θ
(σ)v(g, σ, t) =

∂f

∂β
(σ)w − P (f(σ), t).(16)

From the initial assumption that the v.f. X1, . . . , Xm are independent, there exist
v.f. Xm+1, . . . , Xn such that span{X1, . . . , Xn} = g. For any such set of v.f., there
exist smooth functions ai,j and bi,j such that

∀j = m + 1, . . . , n ,
∂f

∂θj
(σ) =

n∑
i=1

ai,j(σ)Xi(f(σ)) ,
∂f

∂βj
(σ) =

n∑
i=1

bi,j(σ)Xi(f(σ)).

(17)

With di (i = m + 1, . . . , n) denoting the one-forms defined by 〈di, Xk〉 = δi,k (the

Kronecker delta), the application of di to each side of (16) yields, since θ̇ = v,

A(σ)θ̇ = −B(σ)w +

n∑
i=m+1

〈di(f(σ)), P (f(σ), t)〉ei(18)

with

A(σ)
∆
= (ai,j(σ))i,j=m+1,...,n, B(σ)

∆
= (bi,j(σ))i,j=m+1,...,n,(19)

and ei the (i−m)th unit vector in R
n−m. Note that the transversality condition (11)

is equivalent to the matrix A(σ) being invertible for any σ.
Equation (18) is important because it explicitly relates the control w (the time-

derivative of β) to the variation of θ. In particular, the simplification obtained when
P ≡ 0, i.e.,

θ̇ = −A−1(σ)B(σ)w,(20)

suggests some ways of choosing w to make |θ(t)| nonincreasing on the zero-dynamics.
However, a difficulty arising at this stage, to ensure the convergence of θ(t) to zero,
comes from the fact that B(σ) tends to the null matrix when θ tends to zero, since
f(0, β) = e ∀β ⇒ ∂f

∂β (0, β) = 0, ∀β. This difficulty is itself related to the well-
known impossibility of ensuring exponential stabilization of e by means of a smooth
feedback [13, Thm. 3]. The matter would still be easily settled if B(σ) were invertible
everywhere except at θ = 0. Unfortunately, this is not true in general, and further
inspection of this matrix, in relation to the way the structure of f combines with the
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structure of the Lie algebra g, is required. Although we do not know whether a solution
always exists, we were able to use the specific structure of the Lie algebra associated
with the chained systems and derive a solution in this case. Prior to reporting it
in the next section, we propose below a formulation of the problem which, whereas
it is restricted to the zero-dynamics (20), simplifies the search for a solution for the
complete system.

Problem 1. Given a neighborhood UG(e) of e, determine a triplet (f, w, V )
consisting of

(i) a generalized t.f. f ∈ C∞(Tn−m × T
n−m;UG(e)),

(ii) a function w ∈ C1(UTn−m(0); Rn−m),
(iii) a function V ∈ C1(UTn−m(0); R) with bounded first-order partial derivatives

such that
1. ∀θ ∈ V −1([0, Vmax)), hVm

(|θ|) ≤ V (θ) ≤ hVM
(|θ|) with hVm

and hVM
two K-

functions, and Vmax > 0 a real number such that V −1([0, Vmax)) ⊂ UTn−m(0);
2. the following proposition is true:

∀β ∈ T
n−m, ∀θ ∈ V −1([0, Vmax)), LF (π∗V )(σ) ≤ −γV (θ)l, γ, l > 0,

(21)

with π and F defined by

∀σ = (θ, β), π(σ) = θ, F (σ) = −A−1(σ)B(σ)w(θ).(22)

Note that (21) clearly implies that θ = 0 is locally asymptotically stable for the
system (20). Note also that the inclusion UTn−m(0) ⊂ T

n−m has to be strict since (21)
would otherwise contradict the known nonexistence of global asymptotic stabilizers
on T

n−m. Once the above problem is solved, it is not difficult to infer a solution to
the problem of asymptotic stabilization of e for system S(g) when P ≡ 0. Such a
solution is pointed out in the following proposition.

Proposition 1. Let Z denote a smooth v.f. which asymptotically stabilizes e for
the system ż = Z(z). Assume that Problem 1 is solved by a triplet (f, w�, V ), and
consider for S(g, σ) the feedback control (u, v, w) with (u, v) defined by (15) and w
defined by

w(θ) = k

(
1

Vmax − V (θ)

)
w�(θ),(23)

with k denoting any K∞-function. Assume also that the initial condition θ(0) is
chosen in V −1([0, Vmax)). Then

1. whatever P , the above-defined feedback control asymptotically stabilizes the
set {(f(σ), σ) : σ ∈ V −1([0, Vmax)) × T

n−m} for S(g, σ);
2. if P ≡ 0, then this control asymptotically stabilizes the set {e} × {0} ×T

n−m

for S(g, σ);
3. if P (g, t) tends to zero as t −→ +∞, uniformly w.r.t. g in compact sets, then

(g, θ)(t) −→ (e, 0) as t −→ +∞.
Note that when P , Z, and k are differentiable, the stabilizing feedback control

(u, v, w) so obtained is also differentiable. When P ≡ 0 and θ(0) = 0, this con-
trol asymptotically stabilizes e for S(g). However, as in the case of a time-periodic
Lipschitz-continuous asymptotic stabilizer of S(g), the control’s differentiability rules
out the possibility of a uniform convergence rate as fast as exponential. On the
other hand, while the frequency of a time-periodic stabilizer is constant, the time-
derivatives of θ and β, which may be interpreted as self-adapting frequencies in the
case of a stabilizer derived with the t.f. approach, asymptotically tend to zero.
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2.3. A class of generalized t.f. In this section, we introduce a class of gen-
eralized t.f. which is instrumental in solving Problem 1 for the class of the chained
systems. First, we need to recall the definition of a graded basis of g (see [18]). This
definition is similar to the one of a basis adapted to the control filtration [9, 25]; a
complementary requirement is that some elements of the basis be expressed as Lie
brackets of other elements of the basis.

Definition 3. Let X1, . . . , Xm ∈ g denote independent v.f. such that Lie(X1, . . . ,
Xm) = g. Let u = span{X1, . . . , Xm}, and define inductively, for k = 2, . . . ,K,
uk = uk−1 + [u, uk−1] with K = min{k : uk = g}. A graded basis of g associated
with X1, . . . , Xm is an ordered basis {X1, . . . , Xn} of g associated with two mappings
λ, ρ : {m + 1, . . . , n} −→ {1, . . . , n} such that

1. for any k ∈ {1, . . . ,K}, uk = span{X1, X2, . . . , Xdim uk};
2. for k ≥ 2 and dim uk−1 < i ≤ dim uk, Xi = [Xλ(i), Xρ(i)] with Xλ(i) ∈ ua,

Xρ(i) ∈ ub, and a + b = k.
With any graded basis of g, one can associate a weight-vector (r1, . . . , rn) defined

by

ri = k ⇐⇒ Xi ∈ u
k \ u

k−1 ⇐⇒ dim u
k−1 < i ≤ dim u

k.

Note that 1 = r1 ≤ r2 ≤ · · · ≤ rn = K, and, from Definition 3, ∀i > m, ri =
rλ(i) + rρ(i).

With {X1, . . . , Xn} any graded basis of g, let us define f ∈ C∞(Tn−m×T
n−m;G)

by

∀σ = (θ, β) ∈ T
n−m × T

n−m, f(σ) = fn(σn) · · · fm+1(σm+1),(24)

with fj : T × T −→ G defined by

∀σj = (θj , βj), fj(σj) = exp (αj(σj)Xj) exp
(
αj,λ(σj)Xλ(j) + αj,ρ(σj)Xρ(j)

)
,(25)

where

αj,λ(σj) = ε
rλ(j)

j (sin(θj + βj) − sinβj) , αj,ρ(σj) = ε
rρ(j)

j (cos(θj + βj) − cosβj) ,

αj(σj) =
ε
rj
j

2
sin θj ,(26)

and the εj ’s are positive real numbers. This function obviously satisfies (12). As for
the transversality condition (11), we have the following result.

Proposition 2. Let X1, . . . , Xm denote independent v.f. on a Lie group G of
dimension n. Assume that Lie(X1, . . . , Xm) = g. Let f ∈ C∞(Tn−m × T

n−m;G) be
defined by (24), (25), (26), with {X1, . . . , Xn} a graded basis of g. Then there exist real
positive numbers ηm+1, . . . , ηn and ε0 such that, for (εm+1, . . . , εn) = ε(ηm+1, . . . , ηn)
with ε ∈ (0, ε0), f satisfies (11). More precisely, the ηk’s can be defined recursively
by choosing any ηm+1 > 0 and for k = m + 2, . . . , n, choosing ηk large enough w.r.t.
ηm+1, . . . , ηk−1.

3. Asymptotic stabilization of chained systems. A solution to Problem 1
is provided in the case where G = R

n, m = 2, and the control v.f. X1, X2 are defined
by

X1(x) = (1, 0, x2, . . . , xn−1)
′ , X2 = (0, 1, 0, . . . , 0)′(27)
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with g = x = (x1, . . . , xn)′ and e = 0.
The v.f. X1 and X2 defined by (27) are left-invariant w.r.t. the group operation

(xy)i =

⎧⎪⎨
⎪⎩

xi + yi if i = 1, 2,

xi + yi +

i−1∑
j=2

yi−j
1

(i− j)!
xj otherwise,

with x, y ∈ R
n (see [24], for instance). Furthermore, Lie(X1, X2) = g, so that chained

systems (with P ≡ 0) are controllable, and the v.f.

X1, X2, Xk
∆
= [X1, Xk−1] (k = 3, . . . , n)(28)

define a graded basis. The associated weight-vector r is given by

r1 = r2 = 1, rk = k − 1 (k = 3, . . . , n).(29)

Since the underlying Lie group G is R
n, a simple example of v.f. which globally

exponentially stabilizes the origin of ż = Z(z) on R
n is defined by Z(z) = Kz, with

K denoting any n× n Hurwitz-stable matrix. The main result is stated next.
Theorem 1. When m = 2 and the v.f. X1, X2 are given by (27), there exist real

positive numbers ηm+1, . . . , ηn such that a solution to Problem 1 is the triplet (f, w, V )
consisting of

1. the candidate generalized t.f. defined by (24)–(26) with (εm+1, . . . , εn) =
ε(ηm+1, . . . , ηn) and ε > 0 chosen small enough so that f ranges in URn(0),

2. the function w ∈ C1((−π, π)n−2; Rn−2) defined by

wi(θi) =
1

ηi−2
i

|θi|(i−3)θi (i = 3, . . . , n),(30)

3. the function V ∈ C1((−π, π)n−2; R) defined by

V (θ)
∆
=

n∑
i=3

η
i−3/2
i |θi|n+2−i with Vmax = min

i=3,...,n
{ηi−3/2

i πn+2−i}.

Remark 1. The proof of this theorem in section 5.3 involves a recursive proce-
dure for the determination of the numbers ηm+1, . . . , ηn, which is similar to the one
indicated in Proposition 2.

Remark 2. The solution to Problem 1 given in Theorem 1 applies also to a
unicycle-like mobile robot without having to transform its kinematic equations into
the chain form—the only restriction is that ε must be smaller than some finite upper
bound ε0 > 0, whatever UG(e), whereas, in the case of a chained system, ε0 = +∞.
One only has to check that the proof of Theorem 1 works as well in this case with
n = 3, G = R

2 × S1, g = (x, y, α)′, and the system’s control v.f. defined by

X1(g) = (cosα, sinα, 0)′ , X2(g) = (0, 0, 1)′.(31)

These v.f. are left-invariant w.r.t. the group operation

g1g2 =

⎛
⎝

(
x1

y1

)
+ R(α1)

(
x2

y2

)
α1 + α2

⎞
⎠
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with gi = (xi, yi, αi)
′ and R(α1) the rotation matrix of angle α1. Also, Lie(X1, X2) =

g and {X1, X2, X3 = [X1, X2]} constitutes a graded basis of g with weight vector
(r1 = r2 = 1, r3 = 2).

Let us comment on the rate of convergence provided by a feedback control derived
according to Proposition 1 and Theorem 1 when P ≡ 0. This will be the starting point
of a more general discussion about what the t.f. approach can offer in comparison with
other control design methods, its limitations and assets. Assuming that the v.f. Z
used in the expression of (u, v) is chosen so as to stabilize the origin of ż = Z(z)
exponentially, the rate of convergence of g(t) to e coincides with the slower rate of
convergence of θ(t) to zero on the zero-dynamics. This latter rate is itself given by the
rate of convergence of V (θ(t)) to zero, and is thus related to the integer l in relation
(21). From (47) in the proof of Theorem 1, we have l = n+1

2 , and one deduces that

V (θ(t)) tends to zero as quickly as t−
2

n−1 . In fact, a complementary analysis would
show that V (θ(t)) cannot tend to zero faster. Now, since k1|θ|n−1 ≤ V (θ) ≤ k2|θ|2
in the neighborhood of θ = 0, this in turn implies that |θ(t)| may (and will usually)

not tend to zero faster than t
− 2

(n−1)2 . The same rate holds for the convergence of
|g(t)| towards e. This polynomial rate of convergence is similar to the one which can
be obtained by applying a smooth time-periodic stabilizer to S(g). Therefore, one
can conclude that, as far as asymptotic stabilization is concerned, no clear advantage
results from designing a stabilizer with the t.f. approach. In the authors’ opinion this
conclusion is correct, but it conveys only a partial picture of the properties granted by
the approach. Indeed, the primary feature of such a controller, which motivated the
development of the t.f. approach in the first place, is the capacity of ensuring practical
stabilization, with easily tunable arbitrary small ultimate bound of the state error,
independently of the “perturbation” P acting on the system. As shown in [18], this
allows, for example, the tracking of any trajectory in the state space (it does not
have to be a solution to the system’s equations) with arbitrarily good precision, in
the sense that tracking errors are ultimately bounded by a prespecified (nonzero,
but otherwise as small as desired) threshold. To our knowledge, no other controller
proposed so far in the literature has this capacity. Our motivation for the present
paper was to show that such a controller can also be endowed with the extra property
of ensuring asymptotic point-stabilization when such a feature is desirable. This is
achieved via the concept of a generalized t.f. depending upon two sets of variables
whose time-derivatives are used as extra control inputs. Transversality is maintained
with respect to the first set θ, while the second set β is used to enforce some type of
“phase-tuning,” which allows us to reduce the size of the t.f. when the perturbation
P vanishes.

4. Simulation results. The control law proposed in the previous section has
been tested by simulation on the four-dimensional (4d) chained system. The following
parameters for the definition of the transverse function have been used: ε = 0.2, η3 =
1, η4 = 8. The v.f. Z(z) in (15) has been chosen as Z(z) = −0.3z. Finally, the
K∞-function k in (23) has been defined by k(s) = 10Vmaxs, with Vmax as specified
in Theorem 1. The initial condition for the simulation was x(0) = (0, 0, 0, 10)′, and
σ(0) = 0. Figure 1 displays the state variables versus time. As discussed in the
previous section, the convergence rate to zero is slow. For comparison, Figure 2
displays the same variables when no attempt is made to achieve convergence to zero,
i.e., with w = 0 and β = 0 in the control law defined by (15). In this case θ(t)
exponentially converges to some θlim ∈ T

n−m, and x(t) exponentially converges to
f(θlim, 0). Note that the solution to Problem 1 given by Theorem 1 is only one of its
kind, and that much room is left for improving the proposed stabilization method.
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Fig. 1. State variables for the 4d chained system, asymptotic stabilization.
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Fig. 2. State variables for the 4d chained system, practical stabilization.

5. Proofs.

5.1. Proof of Proposition 1. Let us first recall, as shown in section 2.2, that
the control (u, v)(g, σ, t) defined by (15) yields

ż = Z(z),(32)
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with z = fg−1 and Z chosen so as to ensure the asymptotic stability of e for the
above system. Now, applying the one-forms di (i = m + 1, . . . , n) to each side of the
equality (15) yields (compare with (18))

θ̇ = −A−1(σ)B(σ)w(θ) + A−1(σ)

n∑
i=m+1

〈di(f), dlz(g)P (g, t) + drg(z)Z(z)〉ei,(33)

where we have used the same notation as in section 2.2. Using the fact that z = fg−1,
we rewrite this equation as

θ̇ = −A−1(σ)B(σ)w(θ) + A−1(σ)

n∑
i=m+1

〈di(f), dlz(z
−1f)P (z−1f, t)

+ drz−1f (z)Z(z)〉ei.
(34)

By using (23), this in turn implies that, along a solution of the controlled system,

d

dt
V (θ) = k

(
1

Vmax − V (θ)

)
LF (π∗V )(σ) + Q(g, σ, t),

with

F (σ)
∆
= −A−1(σ)B(σ)w�(θ),

Q(g, σ, t)
∆
=

∂V

∂θ
(θ)A−1(σ)

n∑
i=m+1

〈di(f), dlz(z
−1f)P (z−1f, t) + drz−1f (z)Z(z)〉ei.

Therefore, in view of (21),

d

dt
V (θ) ≤ −ξ(V (θ)) + Q(g, σ, t), ξ(V )

∆
= k

(
1

Vmax − V

)
γV l.(35)

Let us show that θ(t) cannot leave the set V −1([0, Vmax)). We first remark that, on
any time-interval [0, T ) such that θ(t) stays in this set, there exists a constant MT ,
independent of the trajectory θ(.), such that |Q(g(t), σ(t), t)| ≤ MT because (i) by
assumption, ∂V

∂θ is bounded on UTn−m(0) ⊃ V −1([0, Vmax)); (ii) z, and subsequently
z−1, are bounded due to the asymptotic stability of e for the system (32); (iii) P
is continuous. Since, by (35), ξ is a bijective increasing function from [0, Vmax) to
[0,+∞), we deduce from (35) that on any such interval [0, T )

V (θ(t)) ≤ max{ξ−1(MT ), V (θ(0))} < Vmax.

This implies that V (θ(t)) cannot tend to Vmax in finite time, so that θ(t) remains in
the set V −1([0, Vmax)). This in turn implies that the control law is well defined along
any trajectory of the closed-loop system with initial conditions (g(0), θ(0), β(0)) such
that z(0) = f(σ(0))g(0)−1 is in the stability domain of e for the system ż = Z(z) and
θ(0) ∈ V −1([0, Vmax)), and that such a trajectory is complete. Point 1 of Proposition
1 then follows directly from the asymptotic stability of z = e, as ensured by (32), and
the invariance of the set V −1([0, Vmax)) for the variable θ.

As for point 2, which assumes that P ≡ 0, it is sufficient to consider trajectories
with initial conditions (z(0), θ(0)) in a small neighborhood of the point (e, 0). From
the definition of Q, the asymptotic stability of z = e, combined with the invariance
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of the set V −1([0, Vmax)) for the variable θ and the fact that V has bounded partial
derivatives on this set, yields the existence of a K-function hz such that

∀t ≥ 0, |Q(g(t), σ(t), t)| ≤ hz(dG(z(0), e)).

Therefore, in view of (35),

∀t ≥ 0,
d

dt
V (θ(t)) ≤ −kV V (θ(t))l + hz(dG(z(0), e)),

with kV = k( 1
Vmax

)γ(> 0). This in turn implies

∀t ≥ 0, V (θ(t)) ≤
(
hz(dG(z(0), e))

kV

)1/l

+ V (θ(0)).(36)

In view of (36) and property 1 in Problem 1,

∀t ≥ 0, |θ(t)| ≤ h−1
Vm

((
hz(dG(z(0), e))

kV

)1/l

+ hVM
(|θ(0)|)

)
.

This relation, combined with the asymptotic stability of z = e, implies the stability of
the set {e}×{0}×T

n−m for S(g, σ). The convergence of the closed-loop trajectories to
this set simply results from the convergence of Q(g(t), σ(t), t) to zero when z(t) tends
to e, since Z(z(t)) then converges to zero. In view of (35), this yields the convergence
of V (θ(t)) to zero.

When it is assumed only that P (g, t) tends to zero when t tends to infinity—
uniformly w.r.t. g in compact sets—the term Q(g(t), σ(t), t) in (35) still converges
to zero, because the asymptotic stability of z = e implies that Z(z(t)) converges to
Z(e) = 0. Hence, the convergence of V (θ(t)) to zero is still ensured, so that θ(t) tends
to zero and f(σ(t)) tends to e (using the property (12) of a generalized t.f.). Therefore
(g, θ)(t) tends to the point (e, 0), as announced in point 3 of the proposition.

5.2. Proof of Proposition 2. The following notation is used in the forthcoming
proofs. With v denoting a smooth function of the real variables x and y—possibly
vector-valued—we write v = o(xk) (resp., v = O(xk)) if (|v(x, y)|/|x|k) −→ 0 as
|x| −→ 0 (resp., if (|v(x, y)|/|x|k) ≤ K < ∞ in some neighborhood of x = 0) uniformly
w.r.t. the y variable which takes values in a compact set. Finally, for indexed variables
xi with i = k, . . . , n, we define the set of indexed vectors {x̄p}p∈{k,...,n} by setting
x̄p = (xk, . . . , xp).

Remark 3. Various results in the paper, starting with Proposition 2, refer to
t.f. which depend on a vector of parameters ε ∈ R

n−m, used as a means to monitor
the “size” of the functions. Relations (24)–(26) define such a family of transverse
functions. A member of this family could have been denoted as fε or f(ε, .) in order
to point out the functional dependence upon ε explicitly. However, for the sake of
simplifying the (already cumbersome) notation used in the paper, we have chosen to
systematically omit the argument ε when referring to t.f. It is nonetheless important
to keep this dependence in mind when reading the forthcoming proofs. In particular,
several functions associated with an arbitrary member of the family of t.f. defined by
(24)–(26) will be introduced in Lemmas 1 and 2. Each of them is thus also a function
of ε. For the sake of keeping the notation coherent throughout the paper, the index
is again omitted when referring to such a function.
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The proof of Proposition 2 consists of three steps summarized in the form of three
lemmas, which are proved in the appendix.

Lemma 1. Assume that the assumptions of Proposition 2 are satisfied. Then, for
each j ∈ {m+1, . . . , n} and i ∈ {1, . . . , n}, there exist analytic functions vi,j and wi,j

of εj ∈ R and σj ∈ T × T such that

∂fj
∂θj

(σj) =

n∑
i=1

vi,j(σj)Xi(fj(σj)) ,
∂fj
∂βj

(σj) =

n∑
i=1

wi,j(σj)Xi(fj(σj)),(37)

with

vi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(εrij ) ∀i,
o(εrij ) if i < j and ri = rj ,

ε
rj
j

2
+ o(ε

rj
j ) if i = j,

(38)

and

wi,j =

{
O(εrij )O(θj) ∀i,

ε
rj
j (1 − cos θj) + o(ε

rj
j )o(θ2

j ) if i = j.
(39)

In the following lemma, O(ε̄m) formally appears when setting j = m + 1 in
O(ε̄j−1), although εm has not been defined previously. The lemma’s statement is
nonetheless valid, provided that O(ε̄m) is identified with the null function.

Lemma 2. Assume that the assumptions of Proposition 2 are satisfied. Then, for
each j ∈ {m+ 1, . . . , n} and i ∈ {1, . . . , n}, there exist analytic functions ai,j and bi,j
of ε̄j ∈ R

j−m and σ ∈ T
n−m × T

n−m such that

∂f

∂θj
(σ) =

n∑
i=1

ai,j(σ)Xi(f(σ)) ,
∂f

∂βj
(σ) =

n∑
i=1

bi,j(σ)Xi(f(σ)),(40)

with

ai,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(ε̄rij ) ∀i,
O(ε̄j−1)O(ε̄ri−1

j ) + o(ε̄rij ) if i < j and ri = rj ,

ε
rj
j

2
+ O(ε̄j−1)O(ε̄

rj−1
j ) + o(ε̄

rj
j ) if i = j,

(41)

and

bi,j =

{
O(ε̄rij )O(θ̄j) ∀i,

ε
rj
j (1 − cos θj) + O(ε̄j−1)O(ε̄

rj−1
j )O(θj)O(θ̄j−1) + o(ε̄

rj
j )o(θ̄2

j ) if i = j.

(42)

Note that, if all O and o terms in the above expressions were equal to zero,
then the transversality property would simply follow from (40)–(41) and the fact that
{X1, . . . , Xn} is a basis of g. Although this is not the case, one can show that these
terms can be neglected, provided that the εj ’s are adequately chosen.

Lemma 3. Assume that the assumptions of Proposition 2 are satisfied. Then
there exist n−m numbers ηm+1, . . . , ηn and ε0 > 0 such that choosing

(εm+1, . . . , εn) = ε(ηm+1, . . . , ηn)
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with ε ∈ (0, ε0) yields

∀σ ∈ T
n−m × T

n−m, DetA(σ) �= 0 with A(σ) = (ai,j(σ))i,j=m+1,...,n.(43)

5.3. Proof of Theorem 1. One easily verifies that for any positive real numbers
η3, . . . , ηn the functions w and V satisfy (ii) and (iii) of Problem 1 with UTn−m(0) =
(−π, π)n−m. It is also clear that property 1 of Problem 1 is verified. We show
below that, for an adequate choice of positive η3, . . . , ηn, properties (i) and 2 are also
satisfied. The proof relies on the following lemma, proved in the appendix, which
points out complementary properties of the functions ai,j and bi,j in Lemma 2 in the
case of the chained systems.

Lemma 4. In the case of chained systems, the functions ai,j and bi,j (i = 1, . . . , n,
j = 3, . . . , n) are homogeneous polynomials of degree ri in ε3, . . . , εj. Furthermore,

ai,j = O(θ̄
ri−rj
j ) , bi,j = O(θ̄

max(1,ri−rj+2)
j ).(44)

Let

Ap(σ)
∆
= (ai,j(σ))i,j=3,...,p , Bp(σ)

∆
= (bi,j(σ))i,j=3,...,p,(45)

and note that An = A and Bn = B, with A and B defined by (19).
Proposition 3. For any p = 3, . . . , n, there exists a set of positive numbers

{η3, . . . , ηp} such that setting (ε3, . . . , εp) = ε(η3, . . . , ηp) with ε > 0 implies that
(i) the matrix Ap(σ) is invertible for any σ, and

∀i, j = 3, . . . , p, (A−1
p (σ))i,j = O(θ̄ri−rj

p );(46)

(ii) the following is true:

Vp(θ̄p) < Vp,max =⇒ LFp
Vp(σ) ≤ −αp|θ̄p|n+1 (αp > 0)(47)

with

Vp(θ̄p)
∆
=

p∑
i=3

η
i−3/2
i |θi|n+2−i , Vp,max = min

i=3,...,p
{ηi−3/2

i πn+2−i}(48)

and

Fp(σ) = −A−1
p (σ)Bp(σ)w̄p(θ̄p).(49)

With p = n, property (i) of this proposition implies that the function f satisfies
the transversality condition (11). Since (12) is trivially verified from (24), (25), (26),
property (i) of Problem 1 follows. As for property 2 in Problem 1, it is true by (ii)
in the above proposition. Note that, to be fully precise, in (47) one should write
LFp(π

∗
pVp)(σ) instead of LFpVp(σ), with πp(σ) = θ̄p (compare with (21)). For the

sake of simplifying the notation in the forthcoming proof, we have chosen to keep this
small abuse of notation.

Proof of Proposition 3. We proceed by induction. For p = 3, it follows from (29)
and Lemma 2 that

a3,3(σ) =
ε2
3

2
+ o(ε2

3) , b3,3(σ) = ε2
3(1 − cos θ3) + o(ε2

3)o(θ3
2).(50)
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Lemma 4 implies that the o terms in the above equation are identically equal to zero,
since a3,3 and b3,3 are homogeneous polynomials of degree r3 = 2 in ε3. Therefore,
a3,3(σ) > 0 for any ε3 > 0, and the point (i) of the proposition is verified.

Take η3 = 1. From (30), (49), (50), and the fact that the o terms in (50) are
equal to zero,

F3(σ) = −a−1
3,3(σ)

(
ε2
3(1 − cos θ3)

)
θ3 = −2(1 − cos θ3)θ3.(51)

From (48), one easily checks that

LF3
V3(σ) = −2(n− 1)(1 − cos θ3)|θ3|n−1.(52)

Since V3(θ3) = |θ3|n−1 and V3,max = πn−1, we deduce from (52) that

V3(θ3) < πn−1 =⇒ LF3
V3(σ) ≤ −α3|θ3|n+1

for some α3 > 0. Point (ii) of the proposition is thus verified with η3 = 1 and
ε = ε3 > 0, and this concludes the proof of Proposition 3 for p = 3.

Let us now assume that points (i) and (ii) of the proposition hold true up to some
p < n, with ε̄p = η̄p, and show that they are also true for p + 1, with ε̄p+1 = η̄p+1.
This will in turn imply that they are true when ε̄p+1 = εη̄p+1 with ε > 0, thanks to
the homogeneity properties of the ai,j ’s and bi,j ’s—see Lemma 4. Indeed, when η̄p+1

is multiplied by ε, then Ap+1 and Bp+1 are just premultiplied by the diagonal matrix
Diag(εr3 , . . . , εrp+1), thus leaving Fp+1(σ) and the subsequent analysis unchanged.

From (45), Ap+1 and Bp+1 can be written as

Ap+1 =

(
Ap a∗,p+1

ap+1,∗ ap+1,p+1

)
, Bp+1 =

(
Bp b∗,p+1

bp+1,∗ bp+1,p+1

)
,(53)

with the star denoting the indexes from 1 to p, i.e., ap+1,∗ = (ap+1,1, . . . , ap+1,p) and
a∗,p+1 = (a1,p+1, . . . , ap,p+1)

′. Let us recall (see, e.g., [29, Chap. 2]) that if A11 and
A22 are square matrices with A11 nonsingular, the matrix

A =

(
A11 A12

A21 A22

)

is invertible if and only if the Schur complement S
∆
= A22 − A21A

−1
11 A12 of A11 in A

is invertible. Then

A−1 =

(
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
.(54)

From (53), the Schur complement of Ap in Ap+1 is S = ap+1,p+1 − ap+1,∗A
−1
p a∗,p+1,

and, in view of (29) and Lemmas 2 and 4,

S =
εpp+1

2
+ qp−1(εp+1),(55)

with qp−1(εp+1) a polynomial of degree p−1 in εp+1. (Note, from the domain definition
of the functions ai,j in Lemma 2, that the term ap+1,∗A

−1
p a∗,p+1 depends on εp+1 only

through a∗,p+1 so that, by Lemma 4, it is a polynomial of degree rp = p− 1 in εp+1.)
This implies that S, and thus Ap+1, are invertible for εp+1 large enough. In order to
prove (i), it remains to show that (46) holds true for p + 1. Since (46) is true for p,
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for any p = 3, . . . , n− 1 and ε3, . . . , εp+1 such that Ap and Ap+1 are invertible, let us
use (54) to decompose A−1

p+1 as follows:

A−1
p+1 =

(
A−1

p 0
0 S−1

)
+

(
Ξ11 Ξ12

Ξ21 0

)
∆
=

(
A−1

p 0
0 S−1

)
+ Ξ,(56)

with

Ξ11 = A−1
p a∗,p+1S

−1ap+1,∗A
−1
p ,

Ξ12 = −A−1
p a∗,p+1S

−1,
Ξ21 = −S−1ap+1,∗A

−1
p .

By Lemma 4, ai,j is a homogeneous polynomial in ε3, . . . , εj of degree ri and satisfies
(44). Therefore, there exists a constant C such that

∀σ, |ai,j(σ)| ≤ C|ε̄j |ri |θ̄j |ri−rj .(57)

Then, from Lemma 4, relations (46), (55), and (57), and using the fact that neither
Ap nor ap+1,∗ depend on εp+1, one infers that

εp+1 ≥ 1 =⇒
{

|ξi,j | ≤ Cε−1
p+1|θ̄p+1|ri−rj for i ≤ p,

|ξi,j | ≤ Cε−p
p+1|θ̄p+1|ri−rj for i = p + 1,

(58)

with Ξ = {ξi,j}i,j=3,...,p+1. The fact that (46) holds true for p+ 1, provided that it is
true up to p, directly follows from (56) and (58). Note that a relation similar to (57)
holds for bi,j , i.e.,

∀σ, |bi,j(σ)| ≤ C|ε̄j |ri |θ̄j |max(1,ri−rj+2).(59)

This relation will be used later on.
Let us now examine the case of (ii). Throughout the rest of the proof, we assume

that εp+1 ≥ 1. From (53) and (56),

A−1
p+1Bp+1w̄p+1 =

(
A−1

p Bpw̄p

S−1bp+1,p+1wp+1

)
+ D2,(60)

with

D2 = ΞBp+1w̄p+1 +

(
A−1

p b∗,p+1wp+1

S−1bp+1,∗w̄p

)
.(61)

From (42) and Lemma 4, it is not difficult to deduce that

bp+1,p+1 = εpp+1(1 − cos θp+1) + Rb,(62)

with

|Rb| ≤ Cεp−1
p+1|θ̄p+1|2(63)

for some constant C—recall that εp+1 ≥ 1. From the definition of Fp+1(σ) in Propo-
sition 3 and from relations (60) and (62),

Fp+1(σ) =

(
Fp(σ)

−S−1εpp+1(1 − cos θp+1)wp+1(θ)

)
︸ ︷︷ ︸

−
(

0
S−1Rbwp+1(θ)

)
︸ ︷︷ ︸ − D2.

D0 D1

(64)
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We claim that the Lie derivative LD0Vp+1 of Vp+1 along D0 defined by (64) satisfies

LD0Vp+1(σ) ≤ −αp|θ̄p|n+1 − α1ε
1/2
p+1|θp+1|n+1 (αp, α1 > 0).(65)

Indeed, by (48), Vp+1 = Vp + ε
p−1/2
p+1 |θp+1|n−p+1 (recall that ε̄p+1 = η̄p+1), and it

follows from (64) that

LD0
Vp+1(σ) = LFpVp(σ) − (n− p + 1)S−1ε

2p−1/2
p+1 (1 − cos θp+1)wp+1(θ)θ

{n−p}
p+1 ,

(66)

with the notation x{n} = |x|n−1x, also used in subsequent relations. From (47),

LFpVp(σ) ≤ −αp|θ̄p|n+1,(67)

and, proceeding as for a3,3, it is simple to verify, by using (30), (55), and the fact that
εp+1 = ηp+1 ≥ 1, that

−(n− p + 1)S−1ε
2p−1/2
p+1 (1 − cos θp+1)wp+1(θ)θ

{n−p}
p+1 ≤ −α1ε

1/2
p+1|θp+1|n+1.(68)

Then, (65) follows from (66), (67), and (68).
From (30), (55), (63), and (64), it is straightforward to verify—by again using

the condition εp+1 ≥ 1—that

|LD1
Vp+1(σ)| ≤ α2ε

−1/2
p+1 |θ̄p|n+1 + α2|θp+1|n+1.(69)

Finally, we claim that

|LD2
Vp+1(σ)| ≤

(αp

2
+ α3ε

−1/2
p+1

)
|θ̄p|n+1 + α4|θp+1|n+1.(70)

Indeed, from (53), (56), and (61),

D2 =

(
(Ξ11Bp + Ξ12bp+1,∗)w̄p + (Ξ11b∗,p+1 + Ξ12bp+1,p+1)wp+1 + A−1

p b∗,p+1wp+1

Ξ21Bpw̄p + Ξ21b∗,p+1wp+1 + S−1bp+1,∗w̄p

)
.

By using (29), (30), (46), (57), (58), and (59), it is tedious but not difficult to show
that {

|(D2)i| ≤ Cε−1
p+1|θ̄p+1|i + C|θ̄p+1|i−p+1|θp+1|p−1 for i = 3, . . . , p,

|(D2)p+1| ≤ Cε−p
p+1|θ̄p+1|p+1.

(71)

We infer from (48) and (71) that

|LD2
Vp(σ)| ≤ α5ε

−1
p+1|θ̄p+1|n+1 + α6|θ̄p+1|n−p+2|θp+1|p−1.(72)

By using Young’s inequality, one shows that

α6|θ̄p+1|n−p+2|θp+1|p−1 ≤ αp

2
|θ̄p+1|n+1 + α7|θp+1|n+1

≤ αp

2
|θ̄p|n+1 + α8|θp+1|n+1

(73)

for other constants α7, α8. We deduce from (72) and (73) that

|LD2
Vp(σ)| ≤

(αp

2
+ α9ε

−1
p+1

)
|θ̄p|n+1 + α10|θp+1|n+1.(74)
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We also deduce from (71) that

|LD2(Vp+1 − Vp)(σ)| ≤ α11ε
−1/2
p+1 |θ̄p+1|n+1,(75)

and (70) then follows from (74), (75), and the condition εp+1 ≥ 1.
Let us now use (65), (69), and (70) to get an upper bound for LFp+1

Vp+1. We
obtain

LFp+1
Vp+1(σ) = (LD0

Vp+1 − LD1
Vp+1 − LD2

Vp+1)(σ)

≤ −
(αp

2
− α12ε

−1/2
p+1

)
|θ̄p|n+1 −

(
α1ε

1/2
p+1 − α13

)
|θp+1|n+1.

Since, by (65), αp and α1 are strictly positive, for εp+1 large enough there exists
αp+1 > 0 such that

LFp+1
Vp+1(σ) ≤ −αp+1|θ̄p+1|n+1.

This concludes the proofs of Proposition 3 and Theorem 1.

Appendix: Proofs of Lemmas 1–4. The proofs of these lemmas rely on the
following two properties.

Claim 1. Let Y and Z denote two time-dependent left-invariant v.f. on G, and

g, h solutions of ġ = Y (g, t) and ḣ = Z(h, t), respectively. Then ν
∆
= gh is a solution

of ν̇ = Ad(h−1)Y (ν, t) + Z(ν, t).
This is simple to verify. Indeed one has

d
dt (gh) = dlg(h)ḣ + drh(g)ġ

= dlg(h)Z(h, t) + drh(g)Y (g, t)
= Z(gh, t) + drh(g)dlg(e)Y (e, t),

so that one has to show only that drh(g)dlg(e) = dlgh(e)Ad(h−1). For this purpose,
it suffices to use the definition of the Ad operator, i.e.,

Ad(h) = d(lh ◦ rh−1)(e)
= dlh(rh−1(e))drh−1(e)
= dlh(h−1)drh−1(e),

and well-known relations obtained by differentiating both members of the identities
lg ◦ rh = rh ◦ lg, lg ◦ lg−1 = id, and lgh = lg ◦ lh. The desired result is then obtained
as follows:

drh(g)dlg(e) = dlg(h)drh(e)
= dlg(h)dlh(e)dlh−1(h)drh(e)
= dlgh(e)dlh−1(h)drh(e)
= dlgh(e)Ad(h−1).

Claim 2. Let {X1, . . . , Xn} denote a graded basis of the Lie algebra g of a Lie
group G. Let λ, ρ, q ∈ {1, . . . , n}, αp ∈ R, and s ∈ N. Then, there exist analytic
functions g1, . . . , gn such that, for any αλ, αρ ∈ R,

∞∑
j=s

1

j!
(adj(αλXλ + αρXρ), Xq) =

n∑
k=1

gk(αλ, αρ)Xk.
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Furthermore, if αλ, αρ are analytic functions of x and y such that αλ = O(xrλ) and
αρ = O(xrρ), then gk(αλ, αρ) is an analytic function of x and y and gk(αλ, αρ) =
O(xmax{s min{rλ,rρ},rk−rq}).

The proof of this claim, which can be viewed as a direct adaptation of [28, sect.
2], is given in [18, App. A, Claim 2].

Proof of Lemma 1. In order to simplify the notation, let

Xλ = Xλ(j) , Xρ = Xρ(j) , αλ = αj,λ , αρ = αj,ρ.(76)

With this notation, it follows from (25) that fj(σj) = gj(σj)hj(σj), with gj(σj) =
exp(αj(σj)Xj) and hj(σj) = exp(αλ(σj)Xλ + αρ(σj)Xρ).

Let σj(.) denote an arbitrary smooth curve on T
2. By using the fact that

d
dt expX(t) = d

ds exp(X(t) + s d
dtX(t))|s=0 and that (see, e.g., [8, p. 105])

d

ds
exp(X + sY )|s=0 = (φ(adX), Y )(expX) , φ(z)

∆
=

∞∑
k=0

(−1)k

(k + 1)!
zk,

one infers that

ḣj
∆
=

d

dt
hj(σj(t))

=
d

ds
exp

(
αλXλ + αρXρ + s

d

dt
(αλXλ + αρXρ)

)
|s=0

= (φ(ad(αλXλ + αρXρ)), α̇λXλ + α̇ρXρ)(hj).

One has also ġj = α̇jXj(gj). The application of Claim 1 then yields

ḟj = (φ(ad(αλXλ + αρXρ)), α̇λXλ + α̇ρXρ)(fj) + α̇jAd(exp(−αλXλ − αρXρ))Xj(fj).

(77)

Let us now use the fact (see, e.g., [8, p. 128]) that Ad(expY )Z = (exp adY,Z). From
(77),

ḟj = (φ(ad(αλXλ + αρXρ)), α̇λXλ + α̇ρXρ)(fj)

+ α̇j(exp ad(−αλXλ − αρXρ), Xj)(fj)

= α̇λXλ(fj) + α̇ρXρ(fj) −
1

2
[αλXλ + αρXρ, α̇λXλ + α̇ρXρ](fj)

+

∞∑
k=2

(−1)k

(k + 1)!
(adk(αλXλ + αρXρ), α̇λXλ + α̇ρXρ)(fj)

+ α̇jXj(fj) + α̇j

∞∑
k=1

1

k!
(adk(−αλXλ − αρXρ), Xj)(fj).

(78)

Since Xj = [Xλ, Xρ] by Definition 3, it comes from (78) that

ḟj = α̇λXλ(fj) + α̇ρXρ(fj) +

(
α̇j −

1

2
(αλα̇ρ − αρα̇λ)

)
Xj(fj)

+ (αλα̇ρ − αρα̇λ)

∞∑
k=1

(−1)k+1

(k + 2)!
(adk(αλXλ + αρXρ), Xj)(fj)(79)

+ α̇j

∞∑
k=1

1

k!
(adk(−αλXλ − αρXρ), Xj)(fj).
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It follows from (26) that

αλ,
∂αλ

∂θj
,
∂αλ

∂βj
= O(εrλj ); αρ,

∂αρ

∂θj
,
∂αρ

∂βj
= O(ε

rρ
j ); αj ,

∂αj

∂θj
,
∂αj

∂βj
= O(ε

rj
j ).(80)

Therefore, by application of Claim 2 (with x = εj and y = θj),

∞∑
k=1

(−1)k+1

(k + 2)!
(adk(αλXλ + αρXρ), Xj)(fj) =

n∑
k=1

gk(αλ, αρ)Xk(fj)(81)

for some analytic functions g1, . . . , gn which verify

gk(αλ, αρ) = O(ε
max{1,rk−rj}
j ).(82)

Similarly, by applying Claim 2 again,

∞∑
k=1

1

k!
(adk(−αλXλ − αρXρ), Xj)(fj) =

n∑
k=1

hk(αλ, αρ)Xk,(83)

with

hk(αλ, αρ) = O(ε
max{1,rk−rj}
j ).(84)

From (79), (81), and (83), we get

ḟj = (α̇λ + (αλα̇ρ − αρα̇λ) gλ(αλ, αρ) + α̇j hλ(αλ, αρ))Xλ(fj)

+ (α̇ρ + (αλα̇ρ − αρα̇λ) gρ(αλ, αρ) + α̇j hρ(αλ, αρ))Xρ(fj)

+

(
α̇j −

1

2
(αλα̇ρ − αρα̇λ) + (αλα̇ρ − αρα̇λ) gj(αλ, αρ) + α̇j hj(αλ, αρ)

)
Xj(fj)

+
∑

k/∈{λ,ρ,j}
((αλα̇ρ − αρα̇λ) gk(αλ, αρ) + α̇j hk(αλ, αρ))Xk(fj).

(85)

Since this equality holds along any smooth curve σj(.) on T
2, it is also true when the

time-derivatives are replaced by partial derivatives w.r.t. either θj or βj .
Now, it follows from (26) that

dαj −
1

2
(αλdαρ − αρdαλ) =

ε
rj
j

2
dθj + ε

rj
j (1 − cos θj)dβj(86)

and

αλ,
∂αλ

∂βj
, αρ,

∂αρ

∂βj
, αj = O(θj);

∂αj

∂βj
= 0.(87)

Furthermore, if f is an analytic function of ε and θ such that f = O(|ε|p) and f =
O(|θ|q), then f = O(|ε|p)O(|θ|q). Therefore, by using (80), (82), (84), (86), and (87)
in (85), it is tedious but simple to recover all relations in Lemma 1. (For the last
relation of (39), note that gj in (85) is an O(θj) because it is a function of αλ and
αρ, which vanishes when αλ = αρ = 0).
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Proof of Lemma 2. From Claim 1 and relations (24) and (37),

∂f

∂θj
=

n∑
k=1

vk,jAd(f−1
m+1 · · · f−1

j−1)Xk(f) ,
∂f

∂βj
=

n∑
k=1

wk,jAd(f−1
m+1 · · · f−1

j−1)Xk(f).

(88)

From the fact that Ad(g1g2) = Ad(g1)Ad(g2) and (25),

Ad(f−1
m+1 · · · f−1

j−1) =

j−1∏
p=m+1

Ad(f−1
p )

=

j−1∏
p=m+1

Ad(exp(−αp,λXλ(p) − αp,ρXρ(p)))Ad(exp−αpXp).

(89)

By application of Claim 2, for any p, q, k = 1, . . . , n and (αp, αq) ∈ R
2,

Ad(exp−αpXp − αqXq)Xk = Xk +

n∑
i=1

hi
p,q(αp, αq)Xi

for some analytic functions hi
p,q. Moreover, if αp = O(εrp) and αq = O(εrq ) are

analytic functions, then hi
p,q(αp, αq) = O(εmax(1,ri−rk)). This is used to infer from

(80) and (89) that

Ad(f−1
m+1 · · · f−1

j−1)Xk = Xk +
∑
i

gij,kXi with gij,k = O(ε̄
max(1,ri−rk)
j−1 ).(90)

From (90),

n∑
k=1

vk,jAd(f−1
m+1 · · · f−1

j−1)Xk(f) =

n∑
i=1

(
vi,j +

n∑
k=1

vk,jg
i
j,k

)
Xi(f),

and a similar expression holds when replacing v by w. Therefore, in view of (88),
equation (40) holds with

(91) ai,j
∆
= vi,j +

n∑
k=1

vk,j g
i
j,k = A + B + C ,

A =
∑
rk≤ri

vk,j g
i
j,k , B = vi,j , C =

∑
rk>ri

vk,j g
i
j,k,

and

(92) bi,j
∆
= wi,j +

n∑
k=1

wk,j g
i
j,k = D + E + F ,

D =
∑
rk≤ri

wk,j g
i
j,k , E = wi,j , F =

∑
rk>ri

wk,j g
i
j,k.

Lemma 2 follows from this decomposition. Let us first show how (41) is obtained.
From (38) and (90), A, B, and C in (91) are O(ε̄rij ). This gives the first relation of
(41).
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For i < j and ri = rj , A vanishes at ε̄j−1 = 0 because of (90), and in view of
(38), B = o(ε̄rij ) and C = o(ε̄rij ). This gives the second relation of (41).

For i = j, the only difference with the previous case comes from the B term,
which, in view of (38), is equal to ε

rj
j /2+o(ε

rj
j ). This gives the third relation of (41).

Let us now show how (42) is obtained. From (90),

gij,k = O(θ̄j−1)(93)

because, by (25) and (26),

θ̄j−1 = 0 =⇒ fm+1 = · · · = fj−1 = e =⇒ Ad(f−1
m+1 · · · f−1

j−1)Xk = Xk.

The first relation of (42) is then simply obtained from (39), (90), (92), and (93).
For i = j, E in (92) accounts for the term ε

rj
j (1 − cos θj)—up to higher order

terms—in the second relation of (42), whereas D and F account for the remaining
term by inspection of (39), (90), and (93).

Proof of Lemma 3. The lemma is a direct consequence of the following property,
which can be proved by induction exactly as in the proof of [18, Lem. 3]:

∀k = m + 1, . . . , n, ∃η̄k ∈ R
k−m, ∃αk > 0 :

ε̄k = εkη̄k ⇒ Dk ≥ αkε
r̄k
k + o(|εk|r̄k),

(94)

with r̄k = rm+1 + · · · + rk and Dk the function defined by

Dk(σ)
∆
= Det(ai,j(σ))i,j=m+1,...,k.

The first step consists of showing that (94) holds for k = m + 1. From relation
(41) in Lemma 2, am+1,m+1 = 1

2ε
rm+1

m+1 + o(ε
rm+1

m+1 ). Since Dm+1 = am+1,m+1 and
r̄m+1 = rm+1, (94) is verified with ηm+1 = 1 and αm+1 = 1

2 . For the subsequent steps
of the proof, the reader is referred to [18].

Proof of Lemma 4. Let us first show how Lemma 4—relation (44), in particular—
is obtained from the following two claims.

Claim 3. For any i, j,{
vi,j = εrij ṽi,j with ṽi,j = O(θ

ri−rj
j ),

wi,j = εrij w̃i,j with w̃i,j = O(θ
max(1,ri−rj+2)
j ),

(95)

where the functions ṽi,j and w̃i,j do not depend on the εk’s.
Claim 4. Each function gij,k in (90) is a polynomial in ε3, . . . , εj−1 homogeneous

of degree ri − rk. Furthermore,

gij,k =

{
O(θ̄ri−rk

j−1 ) if rj ≤ rk < ri,

O(θ̄
ri−rj+1
j−1 ) if rk < rj < ri.

(96)

From these claims, and from (91) and (92), it is straightforward to show that ai,j
and bi,j are polynomials homogeneous of degree ri in ε3, . . . , εj . Then, by (95), E and

F in (92) are O(θ̄
max(1,ri−rj+2)
j ). As for the term D, it can be decomposed as

D =
∑
rk<ri

wk,j g
i
j,k +

∑
rk=ri

wk,j g
i
j,k.(97)
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From (95) and (96), the first sum in (97) is an O(θ
max(1,rk−rj+2)
j )O(θ̄ri−rk

j−1 ) if rj ≤
rk < ri, and an O(θj)O(θ̄

ri−rj+1
j−1 ) if rk < rj < ri. Therefore, in both cases, it is an

O(θ̄
max(1,ri−rj+2)
j ). As for the second sum in (97), it follows from (95) that it is an

O(θ̄
max(1,ri−rj+2)
j ). This proves (44) for the term bi,j . The proof for ai,j is similar.
It remains to prove Claims 3 and 4. In the case of a chained system, each element

Xj of the graded basis, for j = 3, . . . , n, is equal to [Xλ(j), Xρ(j)] with λ(j) = 1 and
ρ(j) = j − 1. It is also a constant v.f. With the notation used in the proof of Lemma
1, these two facts imply that

(ad(αλXλ + αρXρ), Xj) =

{
αλXj+1 if j < n,
0 if j = n.

Relation (79) in Lemma 1 then becomes

ḟj = α̇λXλ(fj) + α̇ρXρ(fj) +

(
α̇j −

1

2
(αλα̇ρ − αρα̇λ)

)
Xj(fj)

+ (αλα̇ρ − αρα̇λ)

n−j∑
k=1

(−1)k+1

(k + 2)!
αk
λXj+k(fj) + α̇j

n−j∑
k=1

(−αλ)k

k!
Xj+k(fj).

Claim 3 is easily obtained by identifying this equality with (37), and by using (26)
and (29).

Let us now prove Claim 4 by showing how relation (96) is obtained. The first
step involves the evaluation of Ad(f−1

p )Xk, for p ∈ {3, . . . , n− 1} and k ∈ {1, . . . , n}.
We distinguish two cases.

Case 1. k �= 1. From the definition (28) of X1, . . . , Xn and from (25),

Ad(f−1
p )Xk = Ad(exp(−αp,λX1 − αp,ρXp−1))Ad(exp−αpXp)Xk

= Ad(exp(−αp,λX1 − αp,ρXp−1))Xk

= Xk +

n−k∑
j=1

(−αp,λ)j

j!
Xk+j

= Xk +

n−k∑
j=1

εjp h
k+j
p,k Xk+j with hk+j

p,k = O(θjp),

(98)

where the last equality comes from (26) and (29), and hk+j
p,k is a function which does

not depend on εp. From (29), rk+j = rk + j for k > 1 and 0 ≤ j ≤ n− k. Therefore,
from (26) and (98),

Ad(f−1
p )Xk = Xk +

∑
i>k

εri−rk
p hi

p,kXi with hi
p,k = O(θri−rk

p ).(99)

By applying (99) recursively, it follows that, for any k �= 1,

Ad(f−1
3 · · · f−1

j−1)Xk = Xk +
∑
i>k

gij,kXi with gij,k = O(θ̄ri−rk
j−1 ),(100)

where each gij,k is a polynomial homogeneous of degree ri − rk in ε3, . . . , εj−1. This
yields (96) for rj ≤ rk ≤ ri, and also for rk < rj < ri (and k �= 1) after noticing that,
in this case, ri − rk ≥ ri − rj + 1.
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Case 2. k = 1. We have

Ad(f−1
p )X1 = Ad(exp(−αp,λX1 − αp,ρXp−1))Ad(exp−αpXp)X1

= Ad(exp(−αp,λX1 − αp,ρXp−1))(X1 + αpXp+1)

= X1 + αpXp+1 + [−αp,λX1 − αp,ρXp−1, X1 + αpXp+1]

+

∞∑
k=2

1

k!

(
adk−1(−αp,λX1 − αp,ρXp−1),

[−αp,λX1 − αp,ρXp−1, X1 + αpXp+1]

)
= X1 + αpXp+1 − αp,λαpXp+2 + αp,ρXp

+

∞∑
k=2

1

k!
(adk−1(−αp,λX1 − αp,ρXp−1),−αp,λαpXp+2 + αp,ρXp)

= X1 + αpXp+1 − αp,λαpXp+2 + αp,ρXp

− αp,λαp

∞∑
k=2

(−αp,λ)k−1

k!
Xp+2+k−1 + αp,ρ

∞∑
k=2

(−αp,λ)k−1

k!
Xp+k−1.

(101)

It follows from (26) and (101) that

Ad(f−1
p )X1 = X1 +

∑
i>1

εri−r1
p hi

pXi with hi
p = O(θri−rp

p ),(102)

and hi
p does not depend on εp. By applying (102) recursively and by using (100), it

follows that

Ad(f−1
3 · · · f−1

j−1)X1 = X1 +
∑
i>1

gij,1Xi with gij,1 = O(θ̄
ri−rj−1

j−1 ) = O(θ̄
ri−rj+1
j−1 ),

where each gij,1 is polynomial homogeneous of degree ri − r1 in ε3, . . . , εj−1. This
concludes the proof of Claim 4.
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