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Abstract—The problem of stabilizing reference trajectories for
nonholonomic mobile robots, also referred to as the trajectory
tracking problem, is revisited. Theoretical difficulties and im-
possibilities which set inevitable limits to what is achievable
with feedback control are surveyed, and properties of kinematic
control models are recalled, with a focus on controllable driftless
systems which are invariant on a Lie group. This geometric
framework allows to take advantage of ubiquitous symmetry
properties involved in the motion of mechanical bodies. The
Transverse Function approach, a control design method devel-
oped by the authors for the past few years, is reviewed. One of
its most salient features, which singles it out of the abundant
literature devoted to the subject, is that it yields feedback
laws which unconditionally achieve the practical stabilization of
arbitrary reference trajectories, including fixed points and non-
admissible trajectories. This property is complemented with novel
results showing how the more common property of asymptotic
stabilization of a large class of admissible trajectories can also be
granted with this type of control. Application of these results to
unicycle-type and car-like vehicles are presented and illustrated
via simulations. Complementary issues (transient maneuvers
monitoring, extensions of the approach to systems which are not
invariant on a Lie group, ...) are also addressed with the concern
of practicality.

Index Terms—wheeled robot, nonholonomic system, unicycle,
car, stabilization, trajectory tracking, Lie group, transverse
function.

I. INTRODUCTION

Nonholonomic systems, ranging from unicycle and car-like
vehicles, possibly equipped with trailers, to more original
systems like rolling spheres [3], [11], [15], snake-like robots
[12], [13], snakeboards and roller-racers [16], [18], etc.,
abound in Robotics. All these mechanical systems share
strong controllability properties, but the nonholonomic kine-
matic constraints which characterize their motion render the
associated control design problem quite challenging, as illus-
trated by Brockett’s theorem [4] proving the non-existence of
pure-state feedbacks for the asymptotic stabilization of fixed
configurations. This difficulty has had the effect of focusing
the research on the feedback control of nonholonomic systems
on two distinct sub-problems, namely i) fixed point asymp-
totic stabilization relying on highly nonlinear techniques,
and ii) asymptotic stabilization of other feasible trajectories
based on more classical linear and nonlinear techniques –see,
e.g., [27] for more details and references on the proposed
control methods. Within the stream of papers devoted to these

problems, [9] addressed the control of a unicycle-type vehicle
in a different way which attracted our attention and inspired
the development of the Transverse Function (TF) approach at
the core of the present paper. The focus on the aforementioned
sub-problems has produced solutions which apply to many
practical situations. However, it also matters to realize that
this research activity, undertaken during more than a decade,
has not exhausted the subject. First, concerning the asymptotic
stabilization of fixed configurations, all attempts to achieve
fast convergence and robust stability have failed (to our
knowledge). Then, it has been shown that the more general
problem of asymptotic stabilization of feasible trajectories in
its full generality is essentially unsolvable. More precisely,
an important result by Lizàrraga [20] basically proves that
the search for a causal feedback control scheme capable of
stabilizing “any” feasible reference trajectory for this type of
system is vain. Whatever the chosen control strategy, there
always exists a feasible trajectory that this control is unable
to stabilize asymptotically, eventhough any feasible trajectory
taken separately can be asymptotically stabilized. This lim-
itation has no equivalence in Linear Control Theory and is
an ever lasting source of frustration that control designers
and roboticists have to live with. Finally, the problem of
feedback stabilization of non-feasible trajectories has seldom
been addressed.

These theoretical obstructions and shortcomings have com-
forted us with the idea that the control problem for this
class of systems should primarily focus on an objective
less demanding, and thus more open, than the asymptotic
stabilization of the origin of some error-system. Such an
objective may consist, for instance, in the asymptotic sta-
bilization of a small set containing the origin of the error
system, thus leaving the asymptotic stabilization of the origin
itself as a complementary possibility rather than a systematic
requirement. This type of objective (small bounded error)
is also more in accordance with what can be achieved in
practice with a physical system. For this reason it is common
to use the generic denomination of practical stabilization
when referring to it. The TF approach is a control design
method that yields practical stabilizers for nonholonomic
systems. It does not (cannot) overcome the aforementioned
obstructions, but it goes further than other control methods
because it more fully exploits the local controllability property
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of the systems by providing feedback controllers theoretically
capable of stabilizing in a practical manner any trajectory,
even non-feasible, with arbitrary tracking precision. The ben-
efits that can be gained from these controllers are numerous
for robotics applications, due in particular to the possibility
of using the same controller for all reference trajectories,
including non-feasible ones. Let us comment some more on
this.

First, it follows from Lizàrraga’s result that no switching
strategy between a finite set of (complementary) feedback
controllers, however sophisticated it is, can yield a solution to
the problem of stabilizing “any” feasible reference trajectory
asymptotically. This is a critical issue when the vehicle
must operate in fully autonomous mode and no a priori
information on the reference motion is available. In this
respect, the guarantee of uniformly bounded tracking errors
and the possibility of tuning the ultimate tracking precision
independently of the reference motion is a strong asset of the
TF approach.

Second, eventhough non feasible trajectories cannot, by
definition, be asymptotically stabilized (the tracking error
cannot converge to zero), the property of local controllability
of nonholonomic systems implies that any non-feasible tra-
jectory can be approximated with arbitrary good precision
by feasible ones. Several algorithms generating open-loop
control inputs have been proposed to solve this approximation
problem [19], [37]. On the other hand, the same problem
has seldom been addressed with a feedback control point
of view, in spite of the importance of this issue for various
robotic applications. For instance, the path planning problem
in a cluttered environment can be significantly simplified by
the removal of the constraint of feasibility of the planned
trajectory. Considering a platooning scenario, the problem of
“following” a leading vehicle engaged in maneuvers consti-
tutes another example of the usefulness of the possibility of
stabilizing non-feasible trajectories (see e.g. [1], [2]). Finally,
the control of nonholonomic mobile manipulators (i.e. a
robotic arm mounted on a nonholonomic mobile platform)
is much simplified when the platform can track non-feasible
trajectories, since the problem is essentially reduced to that
of controlling a holonomic mobile manipulator [10].

Now, it is also important to realize that the property of
practical stabilization, which is at the core of the TF approach,
is not opposed to the achievement of stronger properties. For
instance, one of the objectives of the present study is to show
that a proper tuning allows for the asymptotic stabilization
of feasible trajectories, thus making these controllers also
competitive with classical control laws within their own
domain of operation. The theoretical foundations of the TF
approach have been published in [23], [24]. Complementary
results, some theoretical, others more application-oriented,
have also been published in control journals or conferences.
Although an exhaustive presentation of these results is not
possible here, the idea is to provide the reader with enough
background material and explanations so that he can suc-

cessfully implement the approach for robotic applications
involving classical systems like unicycle and car-like robots,
and also develop new control strategies for other systems.
Note that the solution here developed for car-like vehicles
has not been published before.

The paper is organized as follows. In Section II some
properties of kinematic control models of nonholonomic
systems are recalled, with a focus on systems which are
invariant under a certain Lie group operation. This class
of systems contains several examples of interest (unicycles,
chained systems, rolling spheres, etc.) and its rich and generic
structure allows for the derivation of results applicable to
many other systems. In particular, the TF approach is best
exposed in this framework although it also applies to systems
which are not invariant on a Lie group. This geometric
framework has also been used in various robot control studies
[5], [17], [32]. Section III is devoted to the TF approach.
After recalling the basics of the approach –as developed
in [24]– new results about the asymptotic stabilization of
feasible reference trajectories are presented and illustrated on
three and four dimensional chained systems. Sections IV and
V are devoted to the application of the approach to unicycle-
type and car-like vehicles, by transposing the results obtained
for these chained systems. In both cases, simulation results
illustrate various aspects of the controller’s performance and
complementary practical issues are addressed.

II. THE GEOMETRY OF KINEMATIC CONTROL MODELS

A. Recalls on kinematic models

For completeness, and also to introduce the notation used
thereafter, basic properties of kinematic models of nonholo-
nomic systems (see e.g. [6], [14]) are first recalled. Kinematic
equations of nonholonomic mechanical systems are encom-
passed by driftless control systems of the form

ġ =
m
∑

i=1

Xi(g)ui (1)

with g belonging to a n-dimensional manifold G,
X1, . . . , Xm the system’s control vector fields (v.f.) repre-
senting feasible directions compatible with the nonholonomic
constraints, and u = (u1, . . . , um)′ the control vector, with
z′ denoting the transpose of a vector z. The system’s non-
holonomy is characterized by the fact that m < n = dim(g).
The kinematic model of a mechanical system is not unique.
It depends on the choice of the state g used to represent the
system’s configuration and the way ġ is decomposed along
m independent directions. For example, a standard model for
unicycle-type vehicles is







ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

(2)

but it is well known that the 3D chained system can also be
used as a local model. Recall that the equations of the nD
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chained system with two control inputs are


























ẋ1 = u1
ẋ2 = u2
ẋ3 = u1x2

...
ẋn = u1xn−1

(3)

Similarly, car-like vehicles can be modeled either by the
equations















ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u1(tanϕ)/L
ϕ̇ = u2

(4)

with ϕ ∈ (−π/2, π/2) denoting the steering angle and L the
distance between the rear and front wheels’ axles, or by the
4D chained system.

Systems (2), (3), and (4) are particular cases of the general
system (1), with m = 2. In addition, they are controllable
at any point, i.e. the set of points reachable from any point
during an arbitrary (non-zero) amount of time by using
bounded controls contains a neighborhood of this point. For a
driftless system (1) with smooth v.f., local controllability at g
is granted by1 the satisfaction at g of the so-called Lie Algebra
Rank Condition (LARC) involving iterated Lie brackets of the
system v.f. [7], [33]. This condition requires that one can find
n independent vectors in the set

{Xi(g), [Xi, Xj ](g), [Xi, [Xj , Xk]](g), . . .}

with i, j, k, . . . ∈ {1, . . . ,m}, and the Lie bracket [X,Y ] of
two v.f. X and Y defined (in coordinates x) by [X,Y ](x) =
∂Y
∂x

(x)X(x)− ∂X
∂x

(x)Y (x). For instance, for the 3D chained
system, the vectors X1(x) = (1, 0, x2)

′, X2(x) = (0, 1, 0)′,
and X3(x) = [X1, X2](x) = (0, 0,−1)′ form a basis of R

3

for any x. To avoid non-essential technicalities, the following
assumptions are made throughout the paper. They are satisfied
by Systems (2), (3), and (4).

Assumption 1: For System (1),
1) The state space G is a connected manifold,
2) The control v.f. X1, . . . , Xm are independent over R,

i.e. (
∑m

i=1 λiXi(g) = 0 ∀g) =⇒ λ1 = · · · = λm = 0,
with the λi’s denoting constant scalars.

3) The LARC is satisfied at any g.

B. Systems on Lie groups

1) Definition and examples: An important structural prop-
erty of Systems (2) and (3) is that their v.f. are left-invariant
with respect to a Lie group operation. Recall (see e.g. [39])
that a Lie group G is a smooth manifold endowed with a
“smooth” group law (g1, g2) 7→ g1g2, i.e. i) the mapping is
associative, ii) there exists an element e (the unit element)
such that ge = eg = g for all g, iii) for any g, there exists an
element g−1 (the inverse of g) such that gg−1 = g−1g = e,

1and equivalent to, when the control v.f. are real-analytic,

iv) the mapping (g1, g2) 7→ g1g
−1
2 is smooth. A v.f. X

defined on a Lie group G is “left-invariant” if

∀g1, g2 ∈ G, dLg1(g2).X(g2) = X(g1g2)

with Lg1 the “left translation” by g1, defined by Lg1(g2) =
g1g2, and df(p) the differential of a mapping f at a point
p. The set of left-invariant v.f., often denoted as g, is called
the Lie algebra of the group. It is a vector space of the same
dimension (over R) as the group. Then, we say that (1) is a
system on a Lie group if the associated state space G is a Lie
group and each control v.f. Xi is left-invariant. An equivalent
definition in term of trajectories, probably more intuitive, is
that given any control input u(t) (t ∈ [0, T ]), any solution to
the system can be deduced from another solution via a left
translation by a constant element. More precisely, if g1(t) and
g2(t) denote two solutions to (1), then ∀t ∈ [0, T ], g2(t) =
g2(0)g1(0)

−1g1(t). This geometric property is shared (at the
kinematics level) by all rigid bodies with the associated Lie
group SE(3) or one of its sub-groups SE(2), SO(3), etc
(see e.g. [32] for a detailed exposition). For example, (2) is
a system on the Lie group SE(2), the group operation of
which is

g1g2 =





(

x1
y1

)

+R(θ1)

(

x2
y2

)

θ1 + θ2



 (5)

with gi = (xi, yi, θi) and R(θ) the matrix of rotation in the
plane of angle θ. The unit element is e = (0, 0, 0) and the
inverse of g = (x, y, θ) is

g−1 =





−R(−θ)

(

x
y

)

−θ



 (6)

System (3) is also a system on a Lie group, with the group
product xy of two elements x, y ∈ R

n defined by

(xy)i =

{

xi + yi if i = 1, 2

xi + yi +
∑i−1

j=2

y
i−j
1

(i−j)!
xj otherwise

(7)

with (xy)i the i-th component of xy. Let us recall that this
system can be used as a kinematic model of many wheeled
robots, like unicycles or cars with trailers [36]. Another well
known example in robotics of a system on a Lie group is
the rolling sphere, also referred to as the ball-plate system
[8], [31], [34]. The associated Lie group is SO(3)×R

2 with
the group law inherited from the group law of SO(3) and
the vector addition in R

2 (see e.g. [28] for more details).
On the other hand, the car model (4) is not a system on
a Lie group. This follows from the fact that, contrary to the
previously mentionned examples, the dimension over R of the
system’s Lie algebra is not equal to the dimension n of the
state space. Nevertheless, the 4D chained system is a system
on a Lie group and it is also used as a kinematic model for
car-like vehicles. This contradiction is only apparent because
the transformation of System (4) into the 4D chained system
involves a change of control variables on top of a change
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of state coordinates. Whereas the property of left-invariance
is conserved by changes of coordinates, a complementary
change of control variables is always needed to transform
a non-invariant system into an invariant one. The reader
interested in these issues is referred to [29, Sec. 2.2.1] for
more details.

Since the Lie algebra g of a Lie group G is a n-dimensional
vector space, one can find n v.f. that define a basis of g.
Given a (left-invariant) System (1) on G, one deduces from
Assumption 1 that one can always define a basis X =
{X1, X2, . . . , Xn} of g by choosing X1, . . . , Xm as the
control v.f. of System (1) and Xm+1, . . . , Xn as independent
iterated Lie brackets of X1, . . . , Xm. For example, in the case
of the group SE(2) associated with the unicycle, a possible
basis of g is

X = {X1, X2, [X1, X2]} (8)

In the case of the group associated with the chained system
(3), a possible basis is

X = {X1, X2, (adX1)(X2), . . . , (adn−2X1)(X2)} (9)

with (adpX)(Y ) defined recursively by the relations
(ad1X)(Y ) = (adX)(Y ) = [X,Y ] and (adpX)(Y ) =
[X, (adp−1X)(Y )] for p ≥ 2.

2) Tracking error system: If one is interested in the sta-
bilization of a reference trajectory gr(.) for System (1), one
has to define an error between the desired (reference) state
and the actual state of the system. When the system under
consideration is invariant on a Lie group, a “natural” tracking
error is g̃(t) := gr(t)

−1g(t). The problem of stabilizing gr
can then be expressed as the problem of stabilizing the unit
element e for the error system whose state is g̃, since g̃(t) = e
is equivalent to g(t) = gr(t). Let us first assume that gr is
constant over time. Then, by the invariance property one has

˙̃g = dL
g
−1
r

(g)ġ =
m
∑

i=1

Xi(g̃)ui

This is the error system equation. The above relation indicates
that this equation is the same as the equation of the initial
system, thus justifying the adjective “natural” that we have
associated with the error g̃ = g−1

r g.
Let Rg denote the right-translation operator defined by

Rg2(g1) := g1g2 (= Lg1(g2)). When gr(t) varies with
time, the above error equation becomes (see Relation (75)
in Appendix A):

˙̃g = dL
g
−1
r

(g)ġ + dRg(g
−1
r ) d

dt
g−1
r

=
m
∑

i=1

Xi(g̃)ui + P (g̃, gr, ġr)
(10)

with
P (g̃, gr, ġr) = −dRg̃(e)dLg−1

r
(gr)ġr

Now, if X = {X1, X2, . . . , Xn} denotes a basis of the
group’s Lie algebra g, there exists a vector-valued time
function vr = (vr,1, . . . , vr,n)

′ such that (omitting the
time index) ġr =

∑n

i=1Xi(gr)vr,i. To further simplify the

notation, we will write ġr = X(gr)vr . Note that this notation
coincides, when G = R

n, with the product of the matrix
X(g) = (X1(g) X2(g) . . . Xn(g)) by the vector vr . Using
this decomposition of ġr in the expression of P , one obtains
(see Relation (76) in Appendix A):

P (g̃, gr, ġr) = −dLg̃(e)Ad(g̃−1)X(e)vr (11)

with Ad the so-called adjoint representation defined by

Ad(σ) := dJσ(e)

= dLσ(σ
−1)dRσ−1(e) = dRσ−1(σ)dLσ(e)

(12)

with Jσ(τ) = στσ−1. From what precedes, a concise way
of writing the error-system equation (10) is

˙̃g = X(g̃)(Cu− AdX(g̃−1)vr) (13)

with C = (Im | 0m×(n−m))
′, Im the (m × m) identity

matrix, and AdX the expression of the Ad operator in the
basis X , i.e. the (invertible) matrix-valued function defined
by Ad(σ)X(e)v := X(e)AdX(σ)v. This expression is a
generalization of the original system’s equation (1) which,
with the notation introduced above, writes as

ġ = X(g)Cu (14)

3) Linearized equations: Given a control system on R
n,

ξ̇ = f(ξ, u), with (ξ = 0, u = 0) an equilibrium, i.e. such
that f(0, 0) = 0, the linear approximation of this system at
this equilibrium is ξ̇ = Aξ + Bu with A = ∂f

∂ξ
(0, 0) and

B = ∂f

∂u
(0, 0). When the linear approximation is control-

lable, classical linear control design techniques provide linear
feedback control laws u = Kξ which exponentially stabilize
ξ = 0 for the closed-loop system –the problem reduces to
calculating a suitable gain matrix K such that A + BK is
Hurwitz stable. Moreover, any of these feedbacks also (lo-
cally) exponentially stabilize ξ = 0 for the original nonlinear
system. This well-known result illustrates the importance of
linear control theory associated with linear approximations
which are controllable.

As pointed out above, two issues systematically arise when
attempting to apply linear control techniques to nonlinear
systems: i) the existence of an equilibrium of interest, and ii)
the controllablity (or at least, the stabilizability) of the linear
approximation at this point. Concerning the first one, using
the fact that Ad(e) is the identity operator, Equation (13) tells
us that g̃ = e is an equilibrium of the error-system only if
vr belongs to the image of C, i.e. vr = Cur with ur ∈ R

m.
In view of (14), this just means that (gr(t), ur(t)) must be
one of the system’s solutions. It is common to say in this
case that the reference trajectory is feasible, or admissible.
We will assume at this point that the reference trajectory is
feasible so that the error-system equation can be written as

˙̃g = X(g̃)(Cũ− (AdX(g̃−1)− In)Cur) (15)

with ũ := u− ur . The pair (g̃, ũ) = (e, 0) is an equilibrium
of this system, and the control objective is to stabilize this
point.
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Let us now examine the question of controllability of
the associated linearized system at this point. First, when a
control system evolves on an n-dimensional manifold G, its
linearization at an equilibrium point makes sense only after
defining coordinates to represent the system’s state as a vector
in R

n. Local coordinates in the neighborhood of e can be
defined in several ways, but the most general methods rely
on the exponential mapping, exp : g −→ G, which defines
a local diffeomorphism from a neighborhood of the origin
of g to a neighborhood of e. Let us recall that given a v.f.
Y ∈ g, exp(Y ) denotes the value, at time t = 1, of the
solution of ġ = Y (g) with initial condition g(0) = e. For
example, so-called coordinates of the first kind, ξ, are defined
by the relation g := exp(Xξ), with X a basis of g. Let us
illustrate this possibility in the case of the 3D chained system
which is invariant on the Lie group R

3 endowed with the
group operation (7). Note that, since the state manifold is R

3,
g = x already defines a system of coordinates. Consider the
Lie algebra basis defined by (9) (with n = 3). It follows from
(3) that X3 = (0, 0,−1)′. Then the vector of coordinates ξ
of a group’s element x is related to the canonical coordinates
xi of x by computing the solution of







ẏ1 = ξ1
ẏ2 = ξ2
ẏ3 = ξ1y2 − ξ3

, y(0) = 0

at time t = 1 and by setting the result equal to x. This yields

x = exp(Xξ) =





ξ1
ξ2

ξ1ξ2
2
− ξ3



 (16)

For the Lie group R
4 endowed with the group operation (7)

(i.e. the one associated with the 4D chained system) and the
basis (9), the following expression of the exp function is
obtained:

x = exp(Xξ) =









ξ1
ξ2

ξ1ξ2
2
− ξ3

ξ2
1
ξ2
6
− ξ1ξ3

2
+ ξ4









(17)

For any system on a Lie group with R
n as the state manifold

one can use either canonical coordinates x or coordinates of
the first kind ξ. In what follows, the latter set of coordinates is
used due to the general applicability of the relations derived
with this representation.

Forthcoming relations involve the adjoint representation ad
(recall that (ad Y )(Z) = [Y, Z]). A useful relation between
ad and the group’s adjoint representation Ad is

d

dt |t=0
Ad(exp(tY ))Z(e) = (ad Y )(Z)(e) (18)

In a way similar to the definition of AdX , we denote by
adX the expression of the ad operator in the basis X , i.e.
∀v1, v2 ∈ R

n,

X(e)adX(v1)v2 = (ad Xv1)(Xv2)(e) = [Xv1, Xv2](e)

The linear approximation of (15) at the equilibrium (g̃, ũ) =
(e, 0), in the coordinates ξ, is (see e.g. [28])

˙̃
ξ = −adX(Cur)ξ̃ + Cũ (19)

To calculate the matrix adX(Cur), a useful relation is

adX(v) =
(

(cjk1)v| . . . |(c
j
kn)v

)

(20)

with (cjkp) (p = 1, . . . , n) denoting the matrix whose element
at row j and column k is cjkp, one of the structure constants
of the original nonlinear system relative to the chosen Lie
algebra basis X = {X1, . . . , Xn}. These constants are
themselves defined by the relation [Xk, Xp] =

∑n

j=1Xjc
j
kp.

In the case of the n-dimensional chained system, using the
fact that Xi+1 = [X1, Xi] and that [Xj , Xk] = 0 when
neither j nor k is equal to 1, one has

crpq =







1 if p = 1, q 6= 1, r = q + 1
−1 if q = 1, p 6= 1, r = p+ 1
0 otherwise

and, from (20),

adX(Cur) =



















0 0 . . . . . . . . . 0
0 0 0 . . . . . . 0

−ur,2 ur,1 0 0 . . . 0
0 0 ur,1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 0 ur,1 0



















(21)
Let us mention two important properties of Eq. (19). First,

this equation is completely general for systems on a Lie
group. Then, the associated state and control matrix can be
computed without determining the coordinates ξ explicitly.
This is exploited in [28] to provide a necessary condition for
the controllability of System (19) in the case of a constant
reference input ur , by inspection of the control Lie algebra
structure only.

From (19), when ur is constant, the linearized error system
is stabilizable iff the pair (adX(Cur), C) is stabilizable.
In the case of chained systems, and in view of (21), this
condition is equivalent to (ur,1, ur,2) 6= (0, 0) when n = 3,
and ur,1 6= 0 when n > 3. These conditions upon ur may
be interpreted as persistence conditions which, if they are
satisfied, ensure the stabilizability of the linearized error sys-
tem and, subsequently, the existence of exponential stabilizers
whose expression can be obtained either by applying classical
linear control design techniques or via slightly more advanced
nonlinear control techniques yielding a larger domain of
stability under slightly weaker persistence conditions (for
instance, ∀t :

∫ t+T

t
ur,1(s)

2ds > ε for some T, ε > 0).
However, a shortcoming of these “classical” linear and nonlin-
ear feedback laws is that they fail to asymptotically stabilize
fixed points (for which ur = 0). Nor do they usually give
good results when the reference trajectory is not feasible. For
instance, the boundedness of the tracking errors may not be
ensured.
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III. THE TRANSVERSE FUNCTION CONTROL APPROACH

Unless specified otherwise, we assume from now on that
the system to be controlled is of the form (1) and is on a Lie
group so that all relations derived for these systems apply.

The Transverse Function (TF) control approach [24] pro-
vides feedback controls which ensure uniform practical sta-
bilization of any reference trajectory, whether this trajectory
is feasible or not, whether it is persistent or reduced to a
fixed point. Moreover, we will see that this type of feedback
can also yield asymptotic stabilization in cases when classical
control techniques allow for this type of stabilization, i.e.
when the reference trajectory is persistent. The remainder
of the paper is devoted to this approach and its applica-
tion/particularization to unicycle-type and car-like vehicles.

A. Basics of the Transverse Function approach

Let:

• G denote the Lie group on which the system’s state
evolves,

• X = {X1, X2}, with X1 = {X1, . . . , Xm} and X2 =
{Xm+1, . . . , Xn}, denote a basis of the associated Lie
algebra g,

• dist(., .) denote a left-invariant distance on G, i.e. such
that ∀g1,2,3 ∈ G : dist(g1g2, g1g3) = dist(g2, g3),

• f denote a differentiable function from T
n−m, the torus

of dimension (n−m), to a neighborhood U ∈ G of the
group’s unit element e,

• α(t) = (αm+1(t), . . . , αn(t))
′ denote a smooth curve

on T
n−m.

The decomposition of ḟ on the basis X yields the existence
of a matrix-valued function A such that, ∀(α, α̇)

ḟ(α) = X(f(α))A(α)α̇
= X1(f(α))A1(α)α̇+X2(f(α))A2(α)α̇

(22)

with A1(α), A2(α) matrices corresponding to a row decom-
position of A(α), i.e.,

A(α) =

(

A1(α)
A2(α)

)

Define the “modified” tracking error

z := g̃f(α)−1 (23)

and note that if f(α) is uniformly close to e, then z is
uniformly close to g̃, since dist(g̃, z) = dist(z−1g̃, z−1z) =
dist(f(α), e). Note also that z = e implies that g̃ = f(α).
Thus, it suffices to have z converge to e in order to have
g̃ come close to e. Monitoring the tracking error g̃ via the
control of z is the central idea of the Transverse Function
approach whose name comes from the specific properties of
the function f which make the asymptotic stabilization of
z = e a simple control problem. More precisely, by using
(13) and Relation (78) in Appendix A, one obtains

ż = X(z)AdX(f(α))(C̄(α)ū− AdX(g̃−1)vr) (24)

with

C̄(α) := (C | −A(α))

=

(

Im −A1(α)
0 −A2(α)

)

(25)

and ū′ := (u′, α̇′) = (u1, . . . , um, α̇m+1, . . . , α̇n), which
may be seen as an augmented n-dimensional control vector
composed of the original m control inputs and the n − m
time-derivative components of α. Then, if C̄(α) is invertible
for any α, the feedback

ū = C̄(α)−1
(

AdX(g̃−1)vr + AdX(f(α)−1)v̄
)

(26)

transforms the equation of evolution of z into the system

ż = X(z)v̄ (27)

Therefore, any asymptotic stabilizer v̄(z) of z = e for this
system yields a feedback ū(g, gr, ur, α) which makes the
tracking error g̃ converge to the image set of the function
f . The design of such a stabilizer is not difficult because,
in view of (27), the variations of z along each of the n
possible directions –given by Xi, i ∈ {1, . . . , n}– are directly
monitored via an independent control input. For example, in
the case of the nD chained system with the basis X defined by
(9), v̄(z) = (−k1z1,−k2z2, k3z3, . . . , (−1)

i−1kizi, . . .)
′,

with k1,...,n > 0, is a global exponential stabilizer of
z = e = 0.

When v̄(z) is an exponential stabilizer of z = e then,
along any solution to the controlled system, dist(z(t), e) and
|v̄(z(t))| converge to zero exponentially. In the particular
case where the reference trajectory reduces to a fixed point,
i.e. when ur = 0, and in view of (26), all components of
the extended control ū also converge to zero exponentially.
This in turn implies that the extended state (g̃, α) converges
exponentially to some fixed point (g̃lim, αlim) ∈ G×T

n−m,
with g̃lim = f(αlim).

B. Existence and calculation of transverse functions

In order to apply the control law (26), the matrix C̄(α)
must be invertible for every α ∈ T

n−m. From the expression
(25) of C̄, this property is itself equivalent to the invertibility
of A2(α) for every α. The TF theorem given in [24] asserts
that the existence of functions f which satisfy this property
(of transversality w.r.t. the v.f. X1, . . . , Xm) is equivalent
to the satisfaction of the LARC by X1, . . . , Xm, i.e. the
controllability of the corresponding driftless system. This
theorem also provides a general expression for a family of
such functions, the usage of which for the 3D and 4D chained
systems is detailed next.

In the case of the 3D chained system, a possible choice is

f(α) = exp(ε1 sin(α)X1 + ε2 cos(α)X2)

=





ε1 sin(α)
ε2 cos(α)

ε1ε2
4

sin(2α)





(28)
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with ε1 and ε2 any non-zero real numbers. Note that the
second equality in (28) can be deduced from (16) by setting
ξ1 = ε1 sin(α), ξ2 = ε2 cos(α), and ξ3 = 0. It is simple to
check that this function is transverse to the v.f. X1 and X2

of the 3-dimensional chained system. Indeed, one has

ḟ(α) =





ε1 cos(α)
−ε2 sin(α)
ε1ε2
2

cos(2α)



 α̇ = X(f(α))





ε1 cos(α)
−ε2 sin(α)

ε1ε2
2



 α̇

so that, in this case,

A1(α) =

(

ε1 cos(α)
−ε2 sin(α)

)

, A2(α) =
ε1ε2
2

(29)

Note that the Euclidean distance (which is equivalent to a
left-invariant distance near the group’s unit element) between
f(α) and e = 0 can be kept as small as desired by choosing
|ε1| and |ε2| small enough.

In the case of the 4D chained system, a TF is obtained as
the (group) product of two functions: with α = (α3, α4)

′ ∈
T
2,

f(α) = f4(α4)f3(α3)

with

f3(α3) = exp(ε31sα3X1 + ε32cα3X2)

f4(α4) = exp(ε41sα4X1 + ε42cα4X3)

and the concise notation sα = sin(α) and cα = cos(α).
Using (7) and (17), this yields:

f(α) =









ε41sα4
0

−ε42cα4
− ε41ε42

4
s2α4

















ε31sα3
ε32cα3

ε31ε32
4

s2α3
ε2
31
ε32
6

(sα3)
2cα3









=









ε31sα3 + ε41sα4
ε32cα3

ε31ε32
4

s2α3 − ε42cα4
ε2
31
ε32
6

(sα3)
2cα3 −

ε41ε42
4

s2α4 − ε31ε42sα3cα4









(30)
We leave to the interested reader the task of verifying that,
in this case,

A1(α) =

(

ε31cα3 ε41cα4
−ε32sα3 0

)

A2(α) =









ε31ε32
2

−ε42sα4 + ε32ε41cα3cα4

−
ε2
31
ε32
6

sα3
ε41ε42

2
+ ε31ε42sα3sα4

− ε31ε32ε41
2

sα3cα3cα4









(31)
and that sufficient conditions for the invertibility of A2(α)
are

|ε41| >
4

3
|ε31| > 0 , |ε42| >

|ε32|

2( 3
|ε31|

− 4
|ε41|

)
> 0 (32)

C. Transformation of a controllable nonholonomic system
into an omnidirectional companion system

It is conceptually useful to view the TF control approach
as a means to transform an initial controllable (left-invariant)
system ġ = X(g)Cu into a companion system whose state
is ḡ := gf−1 and whose equation of evolution, obtained for
instance by setting gr = e and ur = 0 in (24), is

˙̄g = X(ḡ)w (33)

with w = AdX(f)C̄ū. Since dim(w) = dim(ū), and since
both matrices AdX(f) and C̄ are invertible (provided that
f is a TF), this equation indicates that the companion state
can be directly modified along any direction of the tangent
space (omnidirectionality). Therefore, the companion system
is much more easily controlled than the original system.
Moreover, thanks to the associativity of the group product,
the modified tracking error z = g̃f−1 may also be viewed as
the tracking error z = g−1

r ḡ associated with the companion
system. The corresponding equation, given by (24), should
then be written as follows

ż = X(z)(w − AdX(z−1)vr)

D. Transverse function shaping for the asymptotic stabiliza-
tion of feasible trajectories

Throughout this section it is assumed that the reference
trajectory gr is feasible, i.e. vr = Cur . When v̄(z) is
an exponential stabilizer of z = e for System (27), g̃(t)
converges to the set f(Tn−m) contained in a neighborhood of
e. This convergence property is clearly a desirable feature, but
in many cases one would like to guarantee the convergence of
g̃(t) to e. This is possible only if there exists α ∈ T

n−m such
that f(α) = e. One easily verifies that the latter equality can-
not be satisfied in the case of the TFs (28) and (30) proposed
previously. This in turn raises the question of the construction
of TFs which admit e as an image point, and also, more
generally, of criteria for the selection of an adequate function
among all possibilities. In the case of the functions (28) and
(30), another matter related to this issue is the choice of
the parameters εi (i = 1, 2) and εij (i = 3, 4 , j = 1, 2),
knowing that large values for these parameters increase the
maximal distance between f(α) and e, whereas small values
render C̄(α) close to singular, yielding large control gains
and problems commonly associated with such gains. Note
also that nothing forbids the use of time-varying parameters,
provided that the property of transversality is preserved all
the time. The design of TFs is still a largely open research
domain and, in what follows, the present paper only explores
the connection existing between the choice of a TF and the
possibility of achieving asymptotic stabilization in the case
of persistent feasible trajectories, as a complement to the
practical stabilization objective which, as explained above, is
achieved whatever the chosen TF and whatever the reference
trajectory.
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We define a generalized transverse function as a smooth
function f̄ : (α, αr) ∈ T

n−m × T
n−m 7→ f̄(α, αr) ∈ G

such that
1) f̄ is transversal to X1 w.r.t. α, i.e. the

matrix A2(α, αr) defined by the relation
˙̄f(α, αr) = X1(f̄(α, αr))A

1(α, αr)α̇ +
X2(f̄(α, αr))A

2(α, αr)α̇, with α an arbitrary
smooth curve and αr constant, is invertible ∀(α, αr),

2) f̄(αr, αr) = e, ∀αr ∈ T
n−m.

In other words, a generalized TF is a function which, besides
the variables needed for the satisfaction of the transversality
property, depends on as many additional variables which,
when equal to the first variables, “shrink” the image of this
function to the unit element e. This feature may be thought
of as a phase synchronisation property.

Given any TF f , it is not difficult to obtain a generalized
TF. An example is the function f̄ defined by

f̄(α, αr) := f(αr)
−1f(α) (34)

The conservation of the transversality property w.r.t. α comes
from that, for any smooth curve α(.) and any constant αr ,

˙̄f(α, αr) = dLf(αr)−1(f(α))ḟ(α)

= dLf(αr)−1(f(α))X(f(α))A(α)α̇

= X(f̄(α, αr))A(α)α̇

whereas the fact that f̄(αr, αr) = e is just a consequence
of the definition of the inverse of an element of G. In
[25], other generalized TFs are proposed to achieve the
asymptotic stabilization of fixed equilibrium points, for the
nD chained system. When using such a function in the control
law, the convergence of g̃ to e is then obtained when α
converges to αr . Are there “good” values of αr for which
this latter convergence can take place when tracking a feasible
trajectory? This question is treated next.

From now on αr is assumed to be constant and the
dependence of f̄ upon αr is omitted for the sake of lightening
the notation. Let us assume that the feedback control (26)
is applied to the system with the TF (34) and with v̄(z)
an exponential stabilizer of e for the system (27). Then
z = g̃f̄(α)−1 converges exponentially to e. The extinction of
the transient phase of convergence of z to e, characterized by
the equality g̃ = f̄(α), leaves us with the a differential system
in the variable α, the so-called zero dynamics. If α−αr = 0
is an asymptotically stable equilibrium of this system, then
one can prove that (g̃, α) = (e, αr) is asymptotically stable
for the controlled system. Let us thus have a closer look at
the system’s zero dynamics.

Proposition 1: Assume that the reference trajectory is fea-
sible. Then, on the zero dynamics z = e the variable
ᾱ := A(αr)(α− αr) satisfies the equation

P ˙̄α = −P adX(Cur)ᾱ+
r
∑

i=1

ur,i oi(ᾱ) (35)

with P = (0m×m|In−m) (so that PC = 0) and oi(.)
denoting a function such that lim|y|→0

|oi(y)|
|y|

= 0.

The proof can be found in [29].
Remark: Eq. (35) is related to the linearized equation (19)
of the error-system. Indeed, by pre-multiplying both sides of
(19) by the matrix P , one obtains P ˙̃

ξ = −P adX(Cur)ξ̃.
Since ᾱ is a n-dimensional vector and α − αr is only

(n−m)-dimensional, the components of ᾱ are not indepen-
dent. Let y := Pᾱ = A2(αr)(α − αr). By the property of
transversality y = 0 if and only if α = αr . By rewritting Eq.
(35) as

ẏ = −P adX(Cur)A(αr)(PA(αr))
−1y ++

r
∑

i=1

ur,i oi(y)

= −P adX(Cur)

(

A1(αr)A
2(αr)

−1

In−m

)

y +
r
∑

i=1

ur,i oi(y)

(36)

one obtains the following linear approximation of the zero
dynamics at the equilibrium y = 0:

ẏ = −adX21(Cur)A
1(αr)A

2(αr)
−1
y − adX22(Cur)y (37)

where the decomposition of adX in four blocks adXij (i, j ∈
{1, 2}) of adequate dimensions has been used. From the
above equation, this equilibrium is (exponentially) stable if
and only if the feedback control v = A1(αr)A

2(αr)
−1
y

(exponentially) stabilizes the origin of the linear system

ẏ = −adX22(Cur)y − adX21(Cur)v (38)

Note that the linearized error system (19) can also be written
as

{

ξ̇1 = w

ξ̇2 = −adX22(Cur)ξ2 − adX21(Cur)ξ1

with w = ũ − (adX11(Cur)ξ1 + adX21(Cur)ξ2). This is just
a dynamic extension of (38) with integrators added at the
input control level. When ur is constant, the above linear
system does not depend on time and it is well known (and
simple to verify) that the stabilizability of the latter system is
equivalent to the stabilizability of (38). Therefore, when ur is
constant, a necessary condition for the exponential stability of
α−αr = 0 and, subsequently, of x̃ = e, is the stabilizability
of the linearized error-system (19). For the 3D (resp. 4D)
chained system, we have already seen that this condition is
equivalent to (ur,1, ur,2) 6= (0, 0) (resp. ur,1 6= 0). This
indicates that, as for the problem of asymptotic stabilization
of feasible trajectories, the TF approach cannot perform better
than classical control methods. But it may perform as well
(in the sense of achieving exponential stabilization) and, to
this aim, the linear feedback v = A1(αr)A

2(αr)
−1
y must

asymptotically stabilize the origin of (38). For the 3D (resp.
4D) chained system and the TF f̄(α) = f(αr)

−1f(α) with f
given by (28) (resp. (30)), we show below that the satisfaction
of this condition itself depends on the choice of αr in relation
with the signs of the TF parameters εi (resp. εij), i, j ∈
{1, 2}.
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1) 3D chained system: From (21), the system (38) spe-
cializes to ẏ =

(

ur,2 −ur,1
)

v and, from (29),

A1(α)A2(α)−1 =

(

2 cos(α)
ε2

− 2 sin(α)
ε1

)

Therefore, the application of the feedback v =
A1(αr)A

2(αr)
−1y to this system yields the closed-loop

system

ẏ = 2

(

ur,1(t) sin(αr)

ε1
+
ur,2(t) cos(αr)

ε2

)

y

This yields the following result, with sign(.) denoting the
classical sign function and sign(0) chosen equal to either 1
or −1 :

Lemma 1: (3D chained system) Assume that the reference
trajectory is feasible with ur continuous, bounded, and such
that 0 < c ≤ |ur,1(t)| ∀t (for some constant c). Then the
control (26) with

i) f = f̄ given by (28), (34) and the following comple-
mentary specifications

{

ε1 = |ε1|sign(ur,1(t)),
αr = −

π
2
(= α(0))

(39)

ii) v̄(z) an exponential stabilizer of z = 0 for the system
ż = X(z)v̄ (e.g., v̄(z) = (−k1z1,−k2, z2, k3z3)

′ with
k1,2,3 > 0)

locally exponentially stabilizes the tracking error g̃ at zero.

This lemma establishes the convergence of the tracking
errors to zero under a persistence condition upon ur,1. Other
conditions would result from other possible choices of αr .
Note also that the rate of convergence on the zero dynamics
is proportional to |ur,1| and to the inverse of |ε1|.

2) 4D chained system: In this case, the system (38)
specializes to

ẏ =

(

0 0
−ur,1(t) 0

)

y +

(

ur,2(t) −ur,1(t)
0 0

)

v

In view of (31), when setting αr = (−π
2
,−π

2
)′ one obtains

after elementary calculations

A1(αr)A
2(αr)

−1 =
4

ε31(ε41 +
4
3
ε31)

(

0 0
(ε31 +

ε41
2
) −1

)

Therefore, the feedback v = A1(αr)A
2(αr)

−1y yields in
this case the closed-loop system

ẏ = ur,1(t)

(

− 2(2ε31+ε41)

ε31(
4

3
ε31+ε41)

4

ε31(
4

3
ε31+ε41)

−1 0

)

y

One deduces the following result :
Lemma 2: (4D chained system) Assume that the reference

trajectory is feasible with ur continuous, bounded, and such
that 0 < c ≤ |ur,1(t)| ∀t (for some constant c). Then the
control (26) with

i) f = f̄ given by (30), (34) and the following comple-
mentary specifications

{

εi1 = |εi1|sign(ur,1(t)) , i = 3, 4
αr = (−π

2
,−π

2
)(= α(0))

(40)

ii) v̄(z) an exponential stabilizer of z = 0 for the system
ż = X(z)v̄ (e.g., v̄(z) = (−k1z2,−k2z2, k3z3,−k4z4)′

with k1,2,3,4 > 0)
locally exponentially stabilizes the tracking error g̃ at zero.

As in the case of the 3D chained system, other values of αr
also ensure the convergence of g̃ to zero. The important point
here was to show that, by a proper choice of the transverse
function used in the control law, perfect tracking of feasible
reference trajectories can be achieved asymptotically with
the complementary insurance of global practical stabilization
when the reference trajectory is not feasible, or when it is
feasible but the linear approximation of the error system is
not stabilizable. Note that the conditions (39) or (40) upon
the parameters ε1 or εi1 entering the expression of the TF
render this function dependent upon the sign of ur,1 and that
they introduce discontinuities at the time-instants when this
sign changes. Since all previously stated stability results rely
on the differentiability of the TF, they do not apply stricto
sensu in this case. For both practical and theoretical reasons,
discontinuities of the control input at “high frequency” should
not be allowed, and one should prespecify a minimum amount
of time T > 0 between two successive updates of ε1
and εi1 in (39) and (40). Then, one can show that i) the
control expression remains well-defined ∀(x, t), ii) practical
stabilization of g̃ = e remains unconditionally granted,
whatever the reference trajectory, and iii) dist(g̃, e) continues
to be ultimately bounded by a value which can be rendered
as small as desired by choosing the absolute values of the TF
parameters small enough. The proofs of the last two points
much rely on the fact that the distance between two modified
tracking errors z1 = g̃f1(α1)

−1 and z2 = g̃f2(α2)
−1

associated with two different TFs, being equal to the distance
between these two functions, is upper-bounded by a value
depending only on the size of the parameters entering the
expressions of the functions (but not on their signs).

E. Tuning of TF parameters

The values of the TF parameters set ultimate upper-bounds
for the tracking errors, independently of the reference tra-
jectory. For illustrative purposes, let us specify these bounds
in the case of the 3D chained system. We first consider the
case when the classical TF (28) is used. Since the tracking
error converges to the image set of f , one deduces that |g̃1|,
|g̃2|, and |g̃3| are ultimately bounded by ε1, ε2, and ε1ε2/4
respectively. Once z has converged to zero, one has g̃ = f(α)
and v̄ = 0 so that, by (26), ū = C̄(α)−1AdX(f(α)−1)vr .
This expression allows one to estimate the amplitude of the
control inputs involved in the tracking of a given reference
trajectory, and to relate this amplitude to the TF parameters
via the dependence of C̄(α)−1AdX(f(α)−1) upon these
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parameters. The choice of the εi’s then becomes a matter
of compromise between the tracking precision demand and
the requirement of keeping the control inputs within given
bounds. Let us now consider the case when the TF is defined
according to Lemma 1. The analysis is slightly more involved
due to possible sign changes of ε1. By using the feedback law
v̄(z) = (−k1z1,−k2z2, k3z3)

′ proposed in this lemma, one
obtains the following ultimate upper-bounds for |g̃1|, |g̃2|, and
|g̃3|:

2ε1 +
4ε1

1− exp(−k1T )
, ε2,

ε1ε2
4

+
ε1ε2

2(1− exp(−k3T ))

with T denoting the minimal time interval between two
successive updates of ε1. Recall that these values are only
upper-bounds. For example, in the case of feasible refer-
ence trajectories satisfying the assumptions of Lemma 1, the
property of asymptotic stability ensures null ultimate tracking
errors.

IV. CONTROL OF A UNICYCLE-TYPE VEHICLE

As explained in Section II, the kinematic equations (2) of
a unicycle-type vehicle define a (left-invariant) system on the
Lie group SE(2), with the group operation specified by (5).
From (5) and (6), the tracking error g̃ between g = (x, y, θ)′

and gr = (xr, yr, θr)
′ is given by

g̃ := g−1
r g =





R(−θr)

(

x− xr
y − yr

)

θ − θr





Note that the components of this vector are nothing else than
the coordinates of the unicycle’s situation with respect to the
reference frame associated with gr , expressed in the basis of
this frame. One also deduces from (5) that

dLg(ḡ) =

(

R(θ) 0
0 1

)

, dRḡ(g) =





I2 R(θ)

(

−ȳ
x̄

)

0 1





Using the above relations, the “perturbation” term P in the
error system equation (10) is defined by

P (g̃, gr, ġr) = −





R(−θr)

(

−ỹ
x̃

)

0 1



 ġr

and, from (12),

Ad(g) =





R(θ)

(

y
−x

)

0 1





With the Lie algebra basis X defined by (8), the matrix-valued
function AdX(.) in (13) is defined by

AdX(g) = X(e)−1





R(θ)

(

y
−x

)

0 1



X(e) (41)

with

X(g) =





cos θ 0 sin θ
sin θ 0 − cos θ
0 1 0



 (42)

A. Transverse functions

There are many ways to derive TFs. One of them consists
in using the general expression given in [24, Th. 1], as we
did before for the 3D and 4D chained systems (relations (28)
and (30) respectively). In the case of the kinematic model (2),
another option consists in using the close kinship between this
system and the 3D chained system. Indeed, by setting







x̄1 = x
x̄2 = tan θ
x̄3 = y

and
{

v1 = u1 cos θ
v2 = u2

(cos θ)2

System (2) is transformed into the 3D chained system with
state x̄ = (x̄1, x̄2, x̄3)

′ and input vector v = (v1, v2)
′. This

transformation involves both a change of state coordinates
and a change of control inputs, and it is well-defined provided
that θ ∈ (−π

2
, π
2
). Such a transformation is not unique. In

fact, there exist more global transformations, defined for all
angles θ 6= ±π, but this is not important here. Let φ denote
the local diffeomorphism which relates x̄ to g, i.e. such that
g = φ(x̄) = (x̄1, x̄3, arctan(x̄2))

′. Then one can show that
the function f defined by f(α) = φ(f̄c(α)) is transversal
to the v.f. X1 and X2 of System (2) provided that f̄c is
transversal to the v.f. of the 3D chained system. For instance,
one can take f̄c(α) := f c(αr)

−1fc(α) with f c the basic TF
given by (28) associated with the 3-D chained system 2. This
yields:

f̄c(α) =





ε1(sα− sαr)
ε2(cα− cαr)

ε1ε2
4

(s2α+ s2αr − 4sαcαr)





and

f(α) =





ε1(sα− sαr)
ε1ε2
4

(s2α+ s2αr − 4sαcαr)
arctan(ε2(cα− cαr))



 (43)

Differentiation w.r.t. α gives:

∂f

∂α
(α) =









ε1cα
ε1ε2(cα(cα− cαr)−

1
2
)

−
ε2sα

1 + ε22(cα− cαr)2









= X(f(α))A(α)

with

A(α) =








cos(f3(α))(ε1cα+ ε1ε
2
2(cα(cα− cαr)

2 − cα−cαr

2
))

−
ε2sα

1 + ε22(cα− cαr)2

ε1ε2
2

cos(f3(α))









(44)

2The group product here involved is the one associated with
chained systems, i.e. the one defined by (7).
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B. Control

To calculate the feedback control ū = (u1, u2, α̇)
′ speci-

fied by (26) there remains to determine i) the TF parameters
ε1, ε2, and αr , and ii) an asymptotic stabilizer v̄(z) of the
origin of the system ż = X(z)v̄, with z := g̃f(α)−1.
Concerning the first issue, the transposition of the study
performed for the 3D chained system suggests to choose
the TF parameters according to (39) in order to stabilize
feasible trajectories asymptotically. As for the second issue,
a possibility consists in linearizing the closed-loop system
(w.r.t. the chosen coordinates) by taking

v̄(z) = X(z)−1Kz (45)

with K denoting a Hurwitz stable matrix. Indeed, this choice
yields the linear closed-loop system ż = Kz whose origin
is exponentially stable. Another possibility, proposed in [2],
arises from the concern of limiting the control energy during
transient phases corresponding to the convergence of z to e.
A way to address this issue consists in rewriting the error
system’s equation (24) as ż = H(z, α)¯̄u with

H(z, α) = X(z)AdX(f(α))C̄(α)

¯̄u = ū− C̄(α)−1AdX(g̃−1)vr

and in determining the control ¯̄u which minimizes the cost
function ¯̄u′W1 ¯̄u under the constraint z′H(z, α)¯̄u+z′W2z =
0, with W1 and W2 denoting two symmetric positive definite
(s.p.d.) matrices. The underlying idea is to select W1 in
order to penalize the physical entries of the control, i.e. the
velocities u1 and u2, more than the virtual control input α̇.
For instance, the fact that ¯̄u = ū = (u′, α̇)′ when vr = 0
suggests to choose W1 diagonal with the first two elements
on the diagonal significantly larger than the third one. As for
the enforcement of the constraint equality, it yields the closed-
loop equation d

dt
|z|2 = −2z′W2z and thus the exponential

stabilization of z = 0. The solution to this simple constrained
minimization problem is:

¯̄u = −
z′W2z

z′HW−1
1 H ′z

W−1
1 H ′z (46)

One easily verifies that this is the same as taking:

v̄(z) = −
z′W2z

z′HW−1
1 H ′z

AdX(f(α))C̄(α)W−1
1 H ′z (47)

Intuitively, lateral motion of the vehicle can be performed via
the execution of either frequent maneuvers involving large and
rapidly changing velocity values or less frequent maneuvers
involving smaller velocities. Therefore, by penalizing the size
of these velocities one can expect to reduce the number of
maneuvers during the transient phase of convergence of z to
zero. This has been confirmed by many simulations.

C. Simulation results

For these simulations, the length and width of the unicycle
represented on the figures are equal to 2 (meters). A single
reference trajectory presenting different properties at different

times is used. The time history of the associated reference
frame velocity vr is summarized in the following table.

t ∈ (s) vr = (m/s, rad/s,m/s)′ properties
[0, 5) (0, 0, 0)′ f,npe
[5, 10) (1, 0, 0)′ f,pe
[10, 20) (−1, 0, 0)′ f,pe
[20, 25) (1, 0.314, 0)′ f,pe
[25, 30) (−1,−2 sin(2t), 0)′ f,pe
[30, 35) (0, 0,−1)′ nf
[35, 40) (0, 0, 0)′ f,npe
[40, 45) (2,−0.5 sin(3t), 0.5)′ nf
[45, 50) (0, 0, 0)′ f,npe

In this table, the abbreviations used to describe the
properties of each part of the reference trajectory are:

• f and nf for feasible and non-feasible respectively, ac-
cording to whether vr,3 is or is not equal to zero;

• pe and npe for persistent and non-persistent respectively,
according to whether (vr,1, vr,2) is or is not equal to
zero.

The feedback control (26) with v̄ defined by (47), which
includes a monitoring of the transient phase before the conver-
gence of z to zero, has been used. The parameters chosen for
this control are W1 = diag{1, 1, 0.01}, W2 = diag{1, 1, 1}.
The parameters of the TF are ε1 = 0.8, ε2 = 0.5.

Figure 1 shows the time-evolution of the three components
of the modified tracking error z. The other figures are attempts
to visualize the vehicle’s motion in the plane during different
phases of the reference trajectory.

V. CONTROL OF A CAR-LIKE VEHICLE

A. Kinematic model

The kinematic equations of a car-like vehicle have been
recalled in Section II. Unfortunately they do not define a
left-invariant system on a Lie group. Nevertheless, we show
below that, modulo minor adaptations, the control approach
presented in Section III applies to car-like vehicles. As a
matter of fact, the approach also applies to the more general
case of a vehicle with multiple trailers (see [30] for details).

To simplify the notation, let us rewrite the kinematic model
(4) of a car-like vehicle as















ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u1η
η̇ = uη

(48)

with η := (tanϕ)/L and uη := (1 + (tanϕ)2)/L. This
system can be rewritten as

{

ġ = X(g)C(η)u1
η̇ = uη

(49)

with g = (x, y, θ)′ and X(g) (given by (42)), defined as for
unicycle-type vehicles, and C(η) = (1, η, 0)′. Note that, if
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C was a constant vector, the above system would be left-
invariant on G = SE(2) × R, with the group law inherited
from the group law of SE(2) and the addition on R, i.e.

(

g1
η1

)(

g2
η2

)

=

(

g1g2
η1 + η2

)

(50)

Let us now consider a reference trajectory (gr(t), ηr(t))
for this system, and define the tracking error as (g̃, η̃) :=
(g−1
r g, η− ηr). This corresponds to the group product of the

inverse of (gr, ηr) by (g, η), for the group law (50). One
deduces from this definition that (compare with (13)):

{

˙̃g = X(g̃)(C(η)u1 − AdX(g̃−1)vr)
˙̃η = ũη := uη − η̇r

(51)

with AdX defined by (41) and ġr = X(gr)vr . Following
the transverse function approach, let us consider a function
f = (fg, fη) ∈ SE(2)× R, with the objective of stabilizing
the distance between the tracking error (g̃, η̃) and f to zero.
For reasons that will become clear later on we consider a
function f which depends on both an element α ∈ T

2

and the independent time-variable t, i.e. f(α, t). Define the
“modified” tracking error

z :=

(

zg
zη

)

:=

(

g̃f−1
g

η̃ − fη

)

It follows from relation (78) in the Appendix that






żg = X(zg)AdX(fg(α, t))
(

C(η)u1 −Aα(α, t)α̇
−At(α, t)− AdX(g̃−1)vr

)

żη = ũη − ḟη
(52)

with Aα and At defined by the relation ḟg =
X(fg(α, t))(Aα(α, t)α̇+At(α, t)). Exponential stabilization
of zη to zero is simply achieved by setting ũη = ḟη − kηzη
with kη > 0 a control gain. To simplify the exposition, we
will assume from now on that the convergence of zη to zero
has taken place. In doing so we thus neglect transient effects
associated with this phase and concentrate on the stabilization
of zg to the origin when zη = 0. Since zη = η − ηr − fη ,
the first equation of (52) then becomes

żg = X(zg)AdX(fg(α, t))
(

C̄(α, t)ū

−At(α, t)− AdX(g̃−1)vr
) (53)

with

C̄(α, t) :=
(

C(ηr(t) + fη(α, t)) | −Aα(α, t)
)

(54)

and ū′ := (u1, α̇
′). If C̄(α, t) is invertible for any (α, t),

then the feedback law

ū = C̄(α, t)−1(At(α, t) + AdX(g̃−1)vr

+ AdX(fg(α, t)
−1)v̄

)

(55)

transforms System (53) into żg = X(zg)v̄. It is now simple
to asymptotically stabilize zg to the origin via the choice of
v̄(zg) (see Section V-D).

B. Transverse functions

Let us now address the design of f in order to ensure the
invertibility of the matrix C̄(α, t) for any (α, t). Since X(zg)
is an invertible matrix for any zg , this is equivalent to finding
f such that the matrix

X(fg)C̄(α, t) =





cos(fθ)
sin(fθ)

ηr(t) + fη

−
∂fg
∂α1

−
∂fg
∂α2





is invertible for any (α, t), with fθ the third component of fg .
The argument (α, t) of fg, fθ , and fη is omitted for legibility.
An equivalent condition is the invertibility of the matrix

H(α, t) =

(

X1,ηr(t)(f) X2 −
∂f

∂α1
−

∂f

∂α2

)

(56)

with
X1,ηr (g, η) = (cos θ, sin θ, ηr + η, 0)′

X2 = (0, 0, 0, 1)′
(57)

This corresponds to the property of transversality of f w.r.t.
the v.f. X1,ηr and X2 –compare with the control v.f. of
System (48)–, for any value ηr(t).

Lemma 3: Let φηr : (g, η) 7−→ x̄ = φηr (g, η) denote the
mapping defined by















x̄1 = x
x̄2 = (η + ηr(1− cos3 θ))/(cos3 θ)
x̄3 = tan θ − ηrx

x̄4 = y − ηr
x2

2

(58)

with ηr an arbitrary constant. Then,

1) φηr defines a diffeomorphism from R
2 ×

(−π/2, π/2)× R to R
4,

2) φηr (0, 0) = 0,
3) if f̄c is transverse to the v.f. of the 4D chained system,

then f = φ−1
ηr

(f̄c) is transverse to the v.f. X1,ηr and
X2.

The third property implies that the matrix H(α, t) of relation
(56) is invertible for any (α, t). The proof of this lemma is in
[29]. It relies on the possibility of transforming, via a change
of state and control variables, the kinematic equations of a
car-like vehicle into a 4D chained system.

From the above lemma, the design of a function f such that
the matrix C̄(α, t) defined by (54) is invertible reduces es-
sentially to the design of a TF for the 4D chained system. For
instance, one can take the function f̄c(α) = f c(αr)

−1fc(α)
with fc given by (30) –the product here involved is the group
operation associated with the 4D chained system. Moreover,
by choosing αr = (−π

2
,−π

2
)′ and εi1 (i = 3, 4) as specified

in Lemma 2, one allows for the asymptotic stabilization
of feasible reference trajectories. In this respect, Properties
1-2 in Lemma 3 are important because they ensure that
f = φ−1

ηr
(f̄c) vanishes when f̄c vanishes. With these choices
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for fc and αr one obtains:

f̄c(α)=









ε31(sα3 + 1) + ε41(sα4 + 1)
ε32cα3

ε31ε32
4

s2α3 − ε42cα4
ε2
31
ε32
6

(sα3)
2cα3 −

ε41ε42
4

s2α4 − ε31ε42sα3cα4









Recall that the parameters εi,j (i, j = 3, 4) should also satisfy
the inequalities (32). The corresponding function f to be used
in the control expression is thus

f(α, t) = φ−1
ηr(t)

(f̄c(α)) (59)

with φ−1
ηr

, the inverse of φηr , given by

φ−1
ηr

(x̄) =















x̄1
x̄4 + ηrx̄

2
1/2

arctan(x̄3 + ηrx̄1)
x̄2 + ηr

(

√

1 + (x̄3 + ηrx̄1)2
)3 − ηr















(60)

From there the calculation of Aα and At in (54) and (55)
can be performed by using the relations

Aα(α, t) = X(fg(α, t))
−1 ∂fg

∂α
(α, t)

= X(fg(α, t))
−1 ∂

∂x̄
φ−1
ηr(t)

(f̄c(α))1,2,3
∂f̄c

∂α
(α)

with

∂
∂x̄
φ−1
ηr

(x̄)1,2,3 =





1 0 0 0
ηrx̄1 0 0 1

ηr/d(x̄, ηr) 0 1/d(x̄, ηr) 0





d(x̄, ηr) = 1 + (x̄3 + ηrx̄1)
2

and

At(α, t) = X(f(α, t))−1 ∂

∂ηr
φ−1
ηr(t)

(f̄c(α))1,2,3 η̇r(t)

with
∂

∂ηr
φ−1
ηr

(x̄)1,2,3 =

(

0,
x̄21
2
,

x̄1
d(x̄, ηr)

)′

C. Determination of ηr
When addressing trajectory stabilization problems, it is

usually assumed that all reference trajectory components (the
functions of time gr and ηr in the present case) are specified.
However, in the case of mobile robot applications, it is
often convenient to only specify the reference pose gr which
corresponds to the desired situation of the vehicle’s main
body. An issue then is the determination of ηr . For feasible
trajectories, provided that ur,1 = ẋr cos θr + ẏr sin θr is
different from zero, one has ηr = θ̇r

ur,1
(see Eq. (48)). This

suggests, among other possibilities, the following choice

ηr =
θ̇rur,1
u2r,1 + ε

(61)

with ε a small positive number whose role is to ensure that i)
ηr is always well defined, in particular when the longitudinal
velocity ur,1 vanishes or when the motion of gr is not feasible
for a car, and ii) ηr is close to the ideal desired value θ̇r

ur,1

when the reference trajectory is feasible and ur,1 6= 0.

D. Control

To calculate the control (55) there remains to determine an
auxiliary control vector v̄(zg) which asymptotically stabilizes
zg = e for the control system żg = X(zg)v̄. A possible
choice yielding exponential stabilization is

v̄(zg) = X(zg)
−1Kzg (62)

with K a Hurwitz-stable matrix. Another possibility, as in the
unicycle case, arises from the concern of limiting the control
energy during the transient phase when zg converges to e and,
at the same time, of limiting the number of car maneuvers
during this phase. As in the unicycle case, let us rewrite the
error system’s equation (53) as żg = H(zg, α, t)¯̄u with

H(zg, α, t) = X(zg)AdX(fg(α, t))C̄(α, t) (63)
¯̄u = ū− C̄(α, t)−1(At(α, t) + AdX(g̃−1)vr) (64)

The idea is again to determine ¯̄u which minimizes at every
time-instant the quadratic cost ¯̄u′W1 ¯̄u under the constraint
z′gH ¯̄u+ z′gW2zg = 0, with W1 and W2 denoting two s.p.d.
matrices. The fact that ¯̄u1 = u1 when vr ≡ 0 and At ≡ 0
suggests to choose W1 diagonal with the first diagonal entry
larger than the others. The solution to this simple problem,
previously derived in the unicycle case, is given by the
relation (46) with zg replacing z, i.e.

¯̄u = −
z′gW2zg

z′gHW−1
1 H ′zg

W−1
1 H ′zg (65)

The control ū = (u1, α̇
′)′ is then calculated by using (64).

E. Simulation results

For these simulations, the car is represented as a tricycle
whose length (distance between front and rear wheels) and
width (distance between the two rear wheels) are equal to 2
(meters). The same reference trajectory as for the unicycle
simulations is used. Note that, for this particular trajectory,
the phases when it is either persistent (pe) or not persistent
(npe) are the same as in the unicycle case. The reason is that
vr,2 is equal to zero only when vr,1 is itself equal to zero,
when the trajectory is feasible, i.e. when vr,3 = 0.

The feedback control (64,65) which includes a monitoring
of the transient phase (before the convergence of z to zero)
has been used. The parameters chosen for this control are
W1 = diag{1, 0.01, 0.01}, W2 = diag{1, 1, 1}, kη = 5. The
parameters of the TF are ε31 = 0.14, ε32 = 1.8, ε41 = 0.8,
ε42 = 0.64.

Figure 6 shows the time-evolution of the four components
of the modified tracking error z. One can observe that,
besides the initial transient phase of convergence of z to
zero, this error is also different from zero during short time-
intervals. This is due to discontinuities of the TF which
result from discontinuities of the term ηr(t) involved in the
TF calculation, themselves induced by discontinuities of the
reference velocity ẋr(t). The other figures are attempts to
visualize the vehicle’s motion in the plane during the different
phases of the reference trajectory.
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CONCLUSION

The stabilization of trajectories for nonholonomic systems
has been addressed. For this study, the framework of systems
on Lie groups is particularly well adapted to the treatment
of mechanical systems and their symmetries. In contrast with
other methods dedicated to the stabilization of particular tra-
jectories —fixed-points and persistent feasible trajectories—,
the Transverse Function (TF) control approach here proposed
aims in the first place at achieving the practical –by op-
position to asymptotic– stabilization of reference trajectories
regardless of their admissibility and other specific properties.
From there, complementary properties can be considered. The
asymptotic stabilization of persistent feasible trajectories is
one of them, and an original contribution of the present study
was to show that it can be achieved via a proper choice of the
transverse function involved in the control law. Another one
is the asymptotic stabilization of fixed-points. A preliminary
study of this issue in [25] shows that solutions can again be
obtained via the search for adequate generalized TFs. When
addressing these complementary issues, it matters to keep in
mind that the “perfect” controller capable of stabilizing any
feasible reference trajectory asymptotically probably does not
exist [20].

They are numerous possible extensions to the present study.
One of them concerns experimental testing and validation.
Whereas the TF control approach has already been experi-
mented on a unicycle-type vehicle [1], [2], no experimentation
on a car-like vehicle has been reported so far. Then, as
mentioned above, the fine tuning of the properties of a TF
controller much depends on the selected TF. The exploration
of the possibilities offered via the choice of this function is
still largely open. Concerning nonholonomic systems other
than unicycles and cars, the application and adaptation of the
approach to systems like the rolling sphere [8], [31], [34], the
general N-trailer [21], [38], and snake-like robots [13], [35]
constitute, in our eyes, interesting and challenging research
topics. In the case of the rolling sphere, the solution proposed
by the authors in [28] can probably be refined in order to
improve the closed loop system’s performance. The control of
underactuated mechanical systems is also a domain for which
encouraging initial results [22], [26] have been obtained and
which calls for new developments.
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[21] D.A. Lizárraga, P. Morin, and C. Samson. Chained form
approximation of a driftless system. Application to the exponen-
tial stabilization of the general N-trailer system. International
Journal of Control, 74:1612–1629, 2001.
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APPENDIX

A. Recalls of differential relations on Lie groups

Let g, h, σ denote elements of a Lie group G.

dLgh(τ) = dLg(hτ)dLh(τ) (66)

dRgh(τ) = dRh(τg)dRg(τ) (67)

(dLg(τ))
−1 = dLg−1(gτ) (68)

(dRg(τ))
−1 = dRg−1(τg) (69)

Ad(gh) = Ad(g)Ad(h) (70)

Ad(g)−1 = Ad(g−1) (71)

Relations (66) and (67) are obtained by application of the
chain rule to the relations Lgh = Lg◦Lh and Rgh = Rh◦Rg .
Relations (68) and (69) are then deduced from (66) and (67)
by setting h = g−1 and using the fact that Le and Re are
the identity operator on G. Relation (70) is deduced from the
fact that, by (12) and the definition of Jσ ,

Ad(gh) = dJgh(e) = d(Jg ◦ Jh)(e)

= dJg(e)dJh(e) = Ad(g)Ad(h)

Relation (71) is deduced from (70) by setting h = g−1

and using the fact that, by definition, Ad(e) is the identity
operator.

Let gi (i = 1, 2) denote two smooth curves on a Lie group
G, and vi = (vi,1, . . . , vi,n)

′ denote the decomposition of ġi
on a basis of the group’s Lie algebra g, i.e.

ġi = X(gi)vi :=
n
∑

k=1

Xk(gi)vi,k

with X1, . . . , Xn a basis of left-invariant v.f. on G. Then,
d

dt
(g−1

1 ) = −dL
g
−1

1

(e)dR
g
−1

1

(g1)ġ1 (72)

= −dR
g
−1

1

(e)dL
g
−1

1

(g1)ġ1 (73)

= −dR
g
−1

1

(e)X(e)v1 (74)

d

dt
(g−1

1 g2) = X(g−1
1 g2)v2 − dR

g
−1

1
g2
(e)X(e)v1 (75)

= X(g−1
1 g2)v2 − dL

g
−1

1
g2
(e)Ad(g−1

2 g1)X(e)v1 (76)

d

dt
(g1g

−1
2 ) = dR

g
−1

2

(g1)dLg1(e)X(e)(v1 − v2) (77)

d

dt
(g1g

−1
2 ) = dL

g1g
−1

2

(e)Ad(g2)X(e)(v1 − v2) (78)

Relations (72) and (73) are obtained by differentiating the
relation g1g

−1
1 = g−1

1 g1 = e and using (68) and (69).
Relation (74) is directly deduced from (73) and the fact
that ġ1 = X(g1)v1, with X1, . . . , Xn left-invariant. Relation
(75) is then deduced from (74) and (67). Relation (76) is
deduced from (75) and (12). Relation (77) is obtained by
differentiating the equality g1 = (g1g

−1
2 )g2 and using (69).

Finally, Relation (78) is deduced from (77), the fact that
Ad(g2) = Ad(g2g−1

1 )Ad(g1), (by (70)), and also the fact
that

Ad(g1) = dR
g
−1

1

(g1)dLg1(e)

= dR
g2g

−1

1

(g1g
−1
2 )dR

g
−1

2

(g1)dLg1(e)

where the first equality comes from (12) and the second one
from (67).

B. Figures
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Fig. 1. Unicycle: z1,2,3 vs. time
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Fig. 2. Unicycle: Fixed reference t ∈ [0s, 5s)

Fig. 3. Unicycle: Feasible trajectory with rapidly changing curvature
t ∈ [25s, 30s)

Fig. 4. Unicycle: Non-feasible lateral motion inducing maneuvers
t ∈ [30s, 35s)

Fig. 5. Unicycle: Non-feasible motion not inducing maneuvers t ∈

[40s, 45s)
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Fig. 6. Car: z1,2,3,4 vs. time

Fig. 7. Car: Fixed reference t ∈ [0s, 5s)

Fig. 8. Car: Feasible trajectory with rapidly changing curvature
t ∈ [25s, 30s)
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Fig. 9. Car: Non-feasible lateral motion inducing maneuvers t ∈

[30s, 35s)

Fig. 10. Car: Non-feasible motion not inducing maneuvers t ∈

[40s, 45s)


