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Chapter 34

Motion control of wheeled mobile robots

This chapter may be seen as a follow up to Chapter
17, devoted to the classification and modeling of basic
wheeled mobile robot (WMR) structures, and a natu-
ral complement to Chapter 35, which surveys motion
planning methods for WMRs. A typical output of these
methods is a feasible (or admissible) reference state-
trajectory for a given mobile robot, and a question which
then arises is how to make the physical mobile robot
track this reference trajectory via the control of the ac-
tuators with which the vehicle is equipped. The object
of the present chapter is to bring elements of answer to
this question by presenting simple and effective control
strategies. A first approach would consist in applying
open-loop steering control laws like those developed in
Chapter 35. However, it is well known that this type of
control is not robust to modeling errors (the sources of
which are numerous) and that it cannot guarantee that
the mobile robot will move along the desired trajectory
as planned. This is why the methods here presented are
based on feedback control. Their implementation sup-
poses that one is able to measure the variables involved
in the control loop (typically the position and orienta-
tion of the mobile robot with respect to either a fixed
frame or a path that the vehicle should follow). All along
this chapter we will assume that these measurements are
available continuously in time and that they are not cor-
rupted by noise. In a general manner, robustness con-
siderations will not be discussed in detail, a reason being
that, beyond imposed space limitations, a large part of
the presented approaches are based on linear control the-
ory. The feedback control laws then inherit the strong
robustness properties associated with stable linear sys-
tems. Results can also be subsequently refined by using
complementary, eventually more elaborated, automatic
control techniques.

34.1 Introduction

The control of wheeled mobile robots has been, and still
is, the subject of numerous research studies. In particu-
lar, nonholonomy constraints associated with these sys-
tems have motivated the development of highly nonlinear
control techniques. These approaches are addressed in
the present chapter, but their exposition is deliberately
limited in order to give the priority to more classical
techniques whose bases, both practical and theoretical,
are better established.

For the sake of simplicity, the control methods are
developed mainly for unicycle-type and car-like mobile
robots, which correspond respectively to the types (2, 0)
and (1, 1) in the classification proposed in Chapter 17.
Most of the results can in fact be extended/adapted to
other mobile robots, in particular to systems with trail-
ers. We will mention the cases where such extensions are
straightforward. All reported simulation results, illus-
trating various control problems and solutions, are car-
ried out for a car-like vehicle whose kinematics is slightly
more complex than that of unicycle-type vehicles.

Recall (see Figure 34.1 below) that:

1. A unicycle-type mobile robot is schematically
composed of two independent actuated wheels on
a common axle whose direction is rigidly linked to
the robot chassis, and one or several passively ori-
entable –or caster– wheels, which are not controlled
and serve for sustentation purposes.

2. A (rear-drive) car-like mobile robot is composed
of a motorized wheeled-axle at the rear of the chas-
sis, and one (or a pair of) orientable front steering
wheel(s).

Note also, as illustrated by the diagram below, that a
car-like mobile robot can be viewed (at least kinemati-
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Figure 34.1: Unicycle-type and car-like mobile robots

cally) as a unicycle-type mobile robot to which a trailer
is attached.

φ φ

Figure 34.2: Analogy car / unicycle with trailer

Three generic control problems are studied in this
chapter

Path following: Given a curve C on the plane, a (non
zero) longitudinal velocity v0 for the robot chassis, and
a point P attached to the chassis, the goal is to have the
point P follow the curve C when the robot moves with the
velocity v0. The variable that one has to stabilize at zero
is thus the distance between the point P and the curve
(i.e. the distance between P and the closest point M on
C). This type of problem typically corresponds to driving
on a road while trying to maintain the distance between
the vehicle chassis and the side of the road constant.
Automatic wall following is another possible application.

Stabilization of trajectories: This problem differs
from the previous one in that the vehicle’s longitudi-
nal velocity is no longer pre-determined because one also
aims at monitoring the distance gone along the curve
C. This objective supposes that the geometric curve C
is complemented with a time-schedule, i.e. that it is
parametrized with the time variable t. This comes up to
defining a trajectory t 7−→ (xr(t), yr(t)) with respect to
a reference frame F0. Then the goal is to stabilize the
position error vector (x(t) − xr(t), y(t) − yr(t)) at zero,
with (x(t), y(t)) denoting the coordinates of point P in
F0 at time t. The problem may also be formulated as the
one of controlling the vehicle in order to track a reference
vehicle whose trajectory is given by t 7−→ (xr(t), yr(t)).
Note that perfect tracking is achievable only if the ref-
erence trajectory is feasible for the physical vehicle, and

that a trajectory which is feasible for a unicycle-type
vehicle is not necessarily feasible for a car-like vehicle.
Also, in addition to monitoring the position (x(t), y(t))
of the robot, one may be willing to control the chassis
orientation θ(t) at a desired reference value θr(t) associ-
ated with the orientation of the reference vehicle. For a
nonholonomic unicycle-type robot, a reference trajectory
(xr(t), yr(t), θr(t)) is feasible if it is produced by a ref-
erence vehicle which has the same kinematic limitations
as the physical robot. For instance, most trajectories
produced by an omnidirectional vehicle (omnibile vehi-
cle in the terminology of Chapter 17) are not feasible for
a nonholonomic mobile robot. However, non-feasibility
does not imply that the reference trajectory cannot be
tracked in an approximate manner, i.e. with small (al-
though non-zero) tracking errors. This justifies the intro-
duction of a concept of practical stabilization, by opposi-
tion to asymptotic stabilization when the tracking errors
converge to zero. The last part of this chapter will be de-
voted to a recent, and still prospective, control approach
for the practical stabilization of trajectories which are
not necessarily feasible.

Stabilization of fixed postures: Let F1 denote a
frame attached to the robot chassis. In this chapter,
we call a robot posture (or situation) the association of
the position of a point P located on the robot chassis
with the orientation θ(t) of F1 with respect to a fixed
frame F0 in the plane of motion. For this last problem,
the objective is to stabilize at zero the posture vector
ξ(t) = (x(t), y(t), θ(t)), with (x(t), y(t)) denoting the po-
sition of P expressed in F0. Although a fixed desired
(or reference) posture is obviously a particular case of
a feasible trajectory, this problem cannot be solved by
classical control methods.

The chapter is organized as follows. Section 34.2 is
devoted to the choice of control models and the determi-
nation of modeling equations associated with the path
following control problem. In Section 34.3, the problems
of path following and trajectory stabilization in position
are studied under an assumption upon the location of the
point P chosen on the robot chassis. This assumption
implies that the motion of this point is not constrained.
It greatly simplifies the resolution of the considered prob-
lems. However, a counterpart of this simplification is
that the stability of the robot’s orientation is not always
guaranteed, in particular during phases when the sign
of the robot’s longitudinal velocity is not constant. The
assumption upon P is removed in Section 34.4, and both
problems are re-considered, together with the problem
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of stabilizing a fixed posture. At the end of this sec-
tion, a certain number of shortcomings and limitations
inherent to the objective of asymptotic stabilization are
pointed out. They can be circumvented by considering
an objective of practical stabilization instead. Some ele-
ments of a recent, and still prospective, control approach
developed with this point of view –based on the use of
so-called transverse functions– are presented in the Sec-
tion 34.4.6. Finally, a few complementary issues on the
feedback control of mobile robots are shortly discussed
in the concluding Section 34.5, with a list of commented
references for further reading on WMR motion control.

34.2 Control models

34.2.1 Kinematics versus dynamics

Relation (17.29) in Chapter 17 provides a general config-
uration dynamic model for WMRs. Its particularization
to the case of unicycle-type and car-like mobile robots
gives

H(q)u̇+ F (q, u)u = Γ(φ)τ (34.1)

with q denoting a robot’s configuration vector, u a vec-
tor of independent velocity variables associated with the
robot’s degrees of freedom, H(q) a reduced inertia ma-
trix (which is invertible for any q), F (q, u)u a vector of
forces combining the contribution of Coriolis and wheel-
ground contact forces, φ the orientation angle of the car’s
steering wheel, Γ an invertible control matrix (which is
constant in the case of a unicycle-type vehicle), and τ a
vector of independent motor torques (whose dimension
is equal to the number of degrees of freedom in the case
of full actuation, i.e. equal to two for the vehicles here
considered). In the case of a unicycle-type vehicle, a con-
figuration vector is composed of the components of the
chassis posture vector ξ and the orientation angles of the
castor wheels (with respect to the chassis). In the case
of a car-like vehicle, a configuration vector is composed
of the components of ξ and the steering wheel angle φ.

To be complete, this dynamic model must be comple-
mented with kinematic equations in the form (the rela-
tion (17.30))

q̇ = S(q)u (34.2)

from which one can extract a reduced kinematic model
(the relation (17.33))

ż = B(z)u (34.3)

with z = ξ, in the case of a unicycle-type vehicle, and
z = (ξ, φ) in the case of a car-like vehicle.

In the automatic control terminology, the complete
dynamic model (34.1)–(34.2) forms a “control system”
which can be written as Ẋ = f(X, τ) with X = (q, u)
denoting the state vector of this system, and τ the vec-
tor of control inputs. The kinematic models (34.2) and
(34.3) are also control systems with respective state vec-
tors q and z, and control vector u. Any of these models
can be used for control design and analysis purposes. In
the remainder of this chapter, we have chosen to work
with the kinematic model (34.3). By analogy with the
motion control of manipulator arms, this comes up to
using a model with velocity control inputs, rather than
a model with torque control inputs. The main reasons
for this choice are the following.

1. The kinematic model is simpler than the dynamic
one. In particular, it does not involve a certain num-
ber of matrix-valued functions whose precise deter-
mination relies on the knowledge of numerous pa-
rameters associated with the vehicle and its actu-
ators (geometric repartition of constitutive bodies,
masses and mass moments of inertia, coefficients of
reduction in the transmission of torques produced
by the motors, etc.). For many applications, it is
not necessary to know all these terms precisely.

2. In the case of robots actuated with electrical mo-
tors, these motors are frequently supplied with “low
level” velocity control loops which take a desired an-
gular velocity as input and stabilize the motor an-
gular velocity at this value. If the regulation loop
is efficient, the difference between the desired and
actual velocities remains small, even when the de-
sired velocity and the motor load vary continuously
(at least within a certain range). This type of ro-
bustness allows in turn to view the desired velocity
as a free control variable. Many controllers supplied
with industrial manipulator arms are based on this
principle.

3. If the servo-loops evoked above, whose role is to
decouple the kinematics from the dynamics of the
vehicle, are not present, one can design them and
even improve their performance by using the in-
formation that one has of the terms involved in
the dynamic equation (34.1). For instance, assume
that the torques produced by the actuators can be
used as control inputs, a simple way to proceed (at
least theoretically) consists in applying the so-called
“computed torque” method. The idea is to linearize
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the dynamic equation by setting

τ = Γ(φ)−1[H(q)w + F (q, u)u]

This yields the simple decoupled linear control sys-
tem u̇ = w with the variable w, homogeneous to
a vector of accelerations, playing the role of a new
control input vector. This latter equation indicates
that the problem of controlling the vehicle with mo-
tor torques can be brought back to a problem with
acceleration control inputs. It is usually not diffi-
cult to deduce a control solution to this problem
from a velocity control solution devised by using a
kinematic model. For instance,

w = −k(u− u?(z, t)) +
∂u?

∂z
(z, t)B(z)u+

∂u?

∂t
(z, t)

with k > 0 is a solution if u? is a differentiable
kinematic solution and

u = u?(z, t) + (u(0)− u?(z0, 0))e
−kt

is also a solution.

For the unicycle-type mobile robot, the kinematic model
(34.3) used from now on is







ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

(34.4)

where (x, y) represents the coordinates of the point Pm
located at mid-distance of the actuated wheels, and the
angle θ characterizes the robot’s chassis orientation (see
Figure 34.3 below). In this equation, u1 represents the
intensity of the vehicle’s longitudinal velocity, and u2 is
the chassis instantaneous velocity of rotation. The vari-
ables u1 and u2 are themselves related to the angular
velocity of the actuated wheels via the one-to-one rela-
tions

u1 = r
2 (ψ̇r + ψ̇`)

u2 =
r

2R
(ψ̇r − ψ̇`)

with r the wheels’ radius, R the distance between the two
actuated wheels, and ψ̇r (resp. ψ̇`) the angular velocity
of the right (resp. left) rear wheel.

For the car-like mobile robot, the kinematic model
(34.3) used from now on is



















ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ =
u1
L

tanφ

φ̇ = u2

(34.5)

where φ represents the vehicle’s steering wheel angle, and
L is the distance between the rear and front wheels’ axles.
In all forthcoming simulations, L is set equal to 1.2m.

θ

0

φ

θ
y

xx ~ı

~

Pm Pm

Figure 34.3: Configuration variables

34.2.2 Modeling in a Frénet frame

The object of this subsection is to generalize the previous
kinematic equations when the reference frame is a Frénet
frame. This generalization will be used later on when
addressing the path following problem.

Let us consider a curve C in the plane of motion, as
illustrated on Figure 34.4, and let us define three frames
F0, Fm, and Fs, as follows. F0 = {0,~ı,~} is a fixed frame,
Fm = {Pm,~ım,~m} is a frame attached to the mobile
robot with its origin –the point Pm– located on the rear
wheels axle, at mid-distance of the wheels, and Fs =
{Ps,~ıs,~s}, which is indexed by the curve’s curvilinear
abscissa s, is such that the unit vector ~ıs tangents C.

C

~ı

s
θs~

~s

P

d

0

Ps

~ıs

Pm

~ım

θe

~m

Figure 34.4: Representation in a Frénet frame

Consider now a point P attached to the robot chassis,
and let (l1, l2) denote the coordinates of P expressed in
the basis of Fm. To determine the equations of motion
of P with respect to the curve C let us introduce three
variables s, d, and θe, defined as follows.

• s is the curvilinear abscissa at the point Ps obtained
by projecting P orthogonally on C. This point exists
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and is unique if the point P is enough close to the
curve. More precisely, it suffices that the distance
between P and the curve be smaller than the lower
bound of the curve radii. We will assume that this
condition is satisfied.

• d is the ordinate of P in the frame Fs; its absolute
value is also the distance between P and the curve.

• θe = θ−θs is the angle characterizing the orientation
of the robot chassis with respect to the frame Fs.

Let us now determine ṡ, ḋ, and θ̇e. By definition of
the curvature c(s) of C at Ps, i.e. c(s) = ∂θs/∂s, one
deduces from (34.4) that

θ̇e = u2 − ṡc(s) (34.6)

Since
−−→
PsP = d~s, by using the equality d

−−→
OPs/dt = ṡ~ıs it

first comes that

∂
−−→
OP
∂t = ∂

−−→
OPs
∂t + ḋ~s − dc(s)ṡ~ıs

= ṡ(1− dc(s))~ıs + ḋ~s
(34.7)

One also has
−−−→
PmP = l1~ım + l2~m. Since d

−−→
OPm/dt =

u1~ım, one gets

∂
−−→
OP
∂t = ∂

−−→
OPm

∂t + l1u2~m − l2u2~ım
= (u1 − l2u2)~ım + l1u2~m
= (u1 − l2u2)(cos θe~ıs + sin θe~s)

+l1u2(− sin θe~ıs + cos θe~s)
= [(u1 − l2u2) cos θe − l1u2 sin θe]~ıs

+[(u1 − l2u2) sin θe + l1u2 cos θe]~s

(34.8)

By forming the scalar products of the vectors in the equa-
tions (34.7) and (34.8) with~ıs and ~s, and by using (34.6)
also, one finally obtains the following system of equa-
tions:















ṡ =
1

1− dc(s)
[(u1 − l2u2) cos θe − l1u2 sin θe]

ḋ = (u1 − l2u2) sin θe + l1u2 cos θe
θ̇e = u2 − ṡc(s)

(34.9)
These equations are a generalization of (34.4). To verify
this, it suffices to take P as the origin of the frame Fm
(i.e. l1 = l2 = 0), and identify the axis (O,~ı) of the frame
F0 with the curve C. Then s = x, c(s) = 0 (∀s), and, by
setting y ≡ d and θ ≡ θe, one recovers (34.4) exactly.

For the car-like vehicle, one easily verifies, by using

(34.5), that the system (34.9) becomes



















ṡ = u1

1−dc(s) [cos θe −
tanφ
L (l2 cos θe + l1 sin θe)]

ḋ = u1[sin θe +
tanφ
L (l1 cos θe − l2 sin θe)]

θ̇e = u1

L tanφ− ṡc(s)

φ̇ = u2
(34.10)

(it suffices to replace u2 = θ̇ in (34.9) by the new value
of θ̇: (u1 tanφ)/L). To summarize, we have shown the
following result

Proposition 1 The kinematic equations of unicycle-
type and car-like vehicles, expressed with respect to
a Frénet frame, are given by the systems (34.9) and
(34.10) respectively.

34.3 Adaptation of control meth-

ods for holonomic systems

We address in this section the problems of trajectory
stabilization and path following. When we have defined
these problems in the introduction, we have considered a
reference point P attached to the robot chassis. It turns
out that the choice of this point is important. Indeed,
consider for instance the equations (34.9) for a unicycle
point P when C is the axis (O,~ı). Then, s = xP , d = yP ,
and θe = θ represent the robot’s posture with respect
to the fixed reference frame F0. There are two possible
cases depending on whether P is, or is not, located on
the actuated wheels axle. Let us consider the first case
for which l1 = 0. From the first two equations of (34.9),
one has

ẋP = (u1 − l2u2) cos θ , ẏP = (u1 − l2u2) sin θ

These relations indicate that P can move only in the
direction of the vector (cos θ, sin θ). This is a direct con-
sequence of the nonholonomy constraint to which the ve-
hicle is subjected. Now, if P is not located on the wheels
axle, then

(

ẋP
ẏP

)

=

(

cos θ −l1 sin θ
sin θ l1 cos θ

)(

1 −l2
0 1

)(

u1
u2

)

(34.11)

The fact that the two square matrices in the right-hand
side of this equality are invertible indicates that ẋP and
ẏP can take any values, and thus that the motion of
P is not constrained. By analogy with holonomic ma-
nipulator arms, this means that P may be seen as the
extremity of a two d.o.f. manipulator, and thus that it
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can be controlled by applying the same control laws as
those used for manipulators. In this section, we assume
that the point P , used to characterize the robot’s posi-
tion, is chosen away from the rear wheels axle. In this
case we will see that the problems of trajectory stabi-
lization and path following can be solved very simply.
However, as shown in the subsequent section, choosing
P on the wheels axle may also be of interest in order to
better control the vehicle’s orientation.

34.3.1 Stabilization of trajectories for a

non-constrained point

Unicycle: Consider a differentiable reference trajectory
t 7−→ (xr(t), yr(t)) in the plane. Let e = (xP − xr, yP −
yr) denote the tracking error in position. The control
objective is to asymptotically stabilize this error at zero.
In view of (34.11), the error equations are

ė =

(

cos θ −l1 sin θ
sin θ l1 cos θ

)(

u1 − l2u2
u2

)

−

(

ẋr
ẏr

)

(34.12)

Introducing new control variables (v1, v2) defined by

(

v1
v2

)

=

(

cos θ −l1 sin θ
sin θ l1 cos θ

)(

u1 − l2u2
u2

)

(34.13)

the equations (34.12) become simply

ė =

(

v1
v2

)

−

(

ẋr
ẏr

)

The classical techniques of stabilization for linear sys-
tems can then be used. For instance, one may consider
a proportional feedback control with pre-compensation
such as

v1 = ẋr − k1e1 = ẋr − k1(xP − xr) (k1 > 0)
v2 = ẏr − k2e2 = ẏr − k2(yP − yr) (k2 > 0)

which yields the closed-loop equation ė = −Ke. Of
course, this control can be re-written for the initial con-
trol variables u, since the mapping (u1, u2) 7−→ (v1, v2)
is bijective.

Unicycle with trailers: The previous technique ex-
tends directly to the case of a unicycle-type vehicle to
which one or several trailers are hooked, provided that
the point P is chosen away from the actuated wheels
axle and on the side opposite to the trailers. Besides, it
is preferable in practice that the robot’s longitudinal ve-
locity u1 remains positive all the time in order to prevent
the relative orientations between all vehicles (i.e. the

non-actively controlled variables involved in the system’s
“zero dynamics”) to take overly large values (jack-knife
effect). This issue will be discussed further in Section
34.4.

Car: This technique also extends to car-like vehicles by
choosing a point P attached to the steering wheel frame
and not located on the steering wheel axle.

34.3.2 Path following with no orienta-

tion control

Unicycle: Let us adopt the notation of Figure 34.4 to
address the problem of following a path associated with a
curve C in the plane. The control objective is to stabilize
the distance d at zero. From (34.9), one has

ḋ = u1 sin θe + u2(−l2 sin θe + l1 cos θe) (34.14)

Recall that in this case the vehicle’s longitudinal velocity
u1 is either imposed or pre-specified. We will assume
that the product l1u1 is positive, i.e. the position of
the point P with respect to the actuated wheels axle is
chosen in relation to the sign of u1. This assumption
will be removed in Section 34.4. To simplify, we will
also assume that l2 = 0, i.e. the point P is located on
the axis (Pm,~ım). Let us then consider the following
feedback control law

u2 = −
u1

l1 cos θe
sin θe −

u1
cos θe

k(d, θe)d (34.15)

with k a continuous, strictly positive, function on R ×
(−π/2, π/2) such that k(d,±π/2) = 0. Since l2 = 0,
applying the control (34.15) to (34.14) gives

ḋ = −l1u1k(d, θe)d

Since l1u1 and k are strictly positive, this relation im-
plies that |d| is non-increasing along any trajectory of
the controlled system. For the convergence of d to zero,
it suffices that i) the sign of u1 remains the same, ii)
π/2− |θe(t)| > ε > 0 for all t, and iii)

∫ t

0

|u1(s)| ds −→ +∞ when t −→ +∞

This latter condition is satisfied, for instance, when u1
is constant. In this case, d converges to zero exponen-
tially. There just remains to examine the conditions un-
der which u2, as given by (34.15), is always defined. Since
the function in the right-hand side of (34.15) is not de-
fined when cos θe = 0, we are going to determine con-
ditions on the system parameters and the initial state
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values the satisfaction of which implies that cos θe can-
not approach zero. To this purpose, let us consider the
limit value of θ̇e when θe tends to π/2 (resp. −π/2) from
below (resp. from above). By using (34.9), (34.15), and
the fact that l2 = 0, a simple calculation shows that

θ̇e = u1

[

− c(s)
1−d c(s) cos θe −

(

1 + l1 c(s)
1−d c(s) sin θe

)

(

tan θe
l1

+ k(d,θe)d
cos θe

)]

Let us assume first that θe tends to π/2 from below.
Then the sign of θ̇e is given, in the limit, by the sign of

−u1

(

1 +
l1 c(s)

1− d c(s)

)

1

l1

To prevent θe from reaching π/2 it suffices that this sign
be negative. It is so if

∣

∣

∣

∣

l1c(s)

1− d c(s)

∣

∣

∣

∣

< 1 (34.16)

Now, if θe tends to −π/2 from above, the sign of θ̇e is
given, in the limit, by the sign of

−u1

(

1−
l1 c(s)

1− d c(s)

)(

−1

l1

)

To prevent θe from reaching −π/2 it suffices that this
sign be positive, and such is the case if (34.16) is true.
From this analysis one obtains the following proposition.

Proposition 2 Consider the path following problem for
a unicycle-type mobile robot with

A. a strictly positive, or strictly negative, longitudinal
velocity u1.

B. a reference point P of coordinates (l1, 0) in the ve-
hicle’s chassis frame, with l1u1 > 0.

Let k denote a continuous function, strictly positive on
R × (−π/2, π/2), and such that k(d,±π/2) = 0 for ev-
ery d (for instance, k(d, θe) = k0 cos θe). Then, for any
initial conditions (s(0), d(0), θe(0)) such that

θe(0) ∈ (−π/2, π/2) ,
l1cmax

1− |d(0)|cmax
< 1

with cmax = maxs |c(s)|, the feedback control

u2 = −
u1 tan θe

l1
− u1

k(d, θe)d

cos θe

makes the distance |d| between P and the curve non-
increasing, and makes it converge to zero if

∫ t

0

|u1(s)| ds −→ +∞ when t −→ +∞

Unicyle with trailers: The above result applies also
to such a system, except that u1 has to be positive in or-
der to avoid jack-knife effects which otherwise may (will,
if u1 is kept negative long enough) occur because the
orientation angles between the vehicles are not actively
monitored.

Car: This control technique thus applies also to this case
by considering a point P attached to the steering wheel
frame, with u1 positive.

34.4 Methods specific to nonholo-

nomic systems

The control technique presented in the previous section
has the advantage of being simple. However, it is not
well-suited for all control purposes. One of its main lim-
itations is that it relies on the invariance of the sign of
the robot’s longitudinal velocity (see the assumptions
in Proposition 2). For systems with trailers, this ve-
locity is further required to be positive. This condi-
tion/restriction is related to the fact that the orientation
variables are not actively monitored. To understand its
nature better, let us consider the control solution given
in Proposition 2 for u1 > 0, and assume that this control
is applied with u1 negative (and constant, for instance),
with the point P being unchanged. The Figure 34.5 illus-
trates a possible scenario. The chosen curve is a simple
straight line and we assume that, at time t = 0, P is
already on this curve (i.e. d = 0). If u1 is negative,
while P is bound to stay on the line, the magnitude |θe|
of the robots’ orientation angle increases rapidly. The
angle θe reaches −π/2 at t = 1. At this time the control
expression is no longer defined (explosion in finite time)
and, since the velocity vector has become orthogonal to
the curve, the point P can no longer stay on the curve.

The explanation for this behavior is as follows. Since
the orientation is not controlled, the variable θe has its
own, a priori unknown, dynamics. It can be stable, or
unstable. For the considered control solution, we have
shown that it is stable when u1 > 0. In particular, θe
remains in the domain of definition (−π/2, π/2) of the
feedback law for u2. When u1 < 0, this dynamics be-
comes unstable and θe reaches the border of the control
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u1

u1

P

t = 1 t = 0

P

Figure 34.5: Path following instability with reverse lon-
gitudinal velocity

law’s domain of definition (−π/2, π/2). This instability
upon the part of the system which is not directly con-
trolled (the system’s “zero dynamics”, in the control ter-
minology) occurs in the same manner when trailers are
hooked to a leading vehicle. When the longitudinal ve-
locity is positive, the vehicle has a “pulling” action which
tends to align the followers along the curve. In the other
case, the leader has a pushing action which tends to mis-
align them (the jack-knife effect). In order to remove
this constraint on the sign of the longitudinal velocity,
the control has to be designed so that all orientation an-
gles are actively stabilized. An indirect way to do this
consists in choosing the point P on the actuated wheels
axle, at mid-distance of the wheels, for instance. In this
case, the nonholonomy constraints intervene much more
explicitly, and the control can no longer be obtained by
applying the techniques used for holonomic manipula-
tors.

This section is organized as follows. First, the model-
ing equations with respect to a Frénet frame are recast
into a canonical form called the chained form. From
there, a solution to the path following problem with ac-
tive stabilization of the vehicle’s orientation is worked
out. The problem of (feasible) trajectory stabilization is
also revisited with the complementary objective of con-
trolling the vehicle’s orientation. The asymptotic sta-
bilization of fixed postures is then addressed. Finally,
some comments on the limitations of the proposed con-
trol strategies, in relation to the objective of asymptotic
stabilization, serve to motivate and introduce a new con-
trol approach developed in the subsequent section.

34.4.1 Transformation of kinematic

models into the chained form

In the previous chapter dedicated to path planning, it is
shown how the kinematic equations of the mobile robots
here considered (unicycle-type, car-like, with trailers)

can be transformed into the chain form via a change
of state and control variables. In particular, the equa-
tions of a unicycle (34.4), and those of a car (34.5),
can be transformed into a three-dimensional and a four-
dimensional chained system respectively. Those of a
unicycle-type vehicle with N trailers yield a chained sys-
tem of dimension N + 3 when the trailers are hooked to
each other in a specific way. As shown below, this trans-
formation can be generalized to the kinematic models
derived with respect to a Frénet frame. The result will
be given only for the unicycle and car cases (equations
(34.9) and (34.10)), but it also holds when trailers are
hooked to such vehicles. The reference point P is now
chosen at mid-distance of the vehicle’s rear wheels (or
at mid-distance of the wheels of the last trailer, when
trailers are involved).

Let us start with the unicycle case. Under the as-
sumption that P corresponds to the origin of Fm, one
has l1 = l2 = 0 so that the system (34.9) simplifies to











ṡ =
u1

1− dc(s)
cos θe

ḋ = u1 sin θe
θ̇e = u2 − ṡc(s)

(34.17)

Let us determine a change of coordinates and control
variables (s, d, θe, u1, u2) 7−→ (z1, z2, z3, v1, v2) allowing
to (locally) transform (34.17) into the three-dimensional
chained system







ż1 = v1
ż2 = v1z3
ż3 = v2

(34.18)

By first setting

z1 = s , v1 = ṡ =
u1

1− dc(s)
cos θe

we already obtain ż1 = v1. This implies that

ḋ = u1 sin θe =
u1

1− dc(s)
cos θe(1− dc(s)) tan θe

= v1(1− dc(s)) tan θe

We then set z2 = d et z3 = (1− dc(s)) tan θe, so that the
above equation becomes ż2 = v1z3. Finally, we define

v2 = ż3
= (−ḋc(s)− d ∂c∂s ṡ) tan θe

+(1− dc(s))(1 + tan2 θe)θ̇e

The equations (34.18) are satisfied with the variables zi
et vi so defined.
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From this construction it is simple to verify that the
mapping (s, d, θe) 7−→ z is a local change of coordinates
defined on R

2×(−π
2 ,

π
2 ) (to be more rigorous, one should

also take the constraint |d| < 1/c(s) into account). Let
us finally remark that the change of control variables
involves the derivative (∂c/∂s) of the path’s curvature
(whose knowledge is thus needed for the calculations).
One can similarly transform the car’s equations into a
4-dimensional chained system, although the calculations
are slightly more cumbersome. Let us summarize these
results in the following proposition.

Proposition 3 The change of coordinates and of con-
trol variables (s, d, θe, u1, u2) 7−→ (z1, z2, z3, v1, v2) de-
fined on R

2 × (−π
2 ,

π
2 ) by

(z1, z2, z3) = (s, d, (1− d c(s)) tan θe)
(v1, v2) = (ż1, ż3)

transforms the model (34.17) of a unicycle-type vehicle
into a 3-dimensional chained system.
Similarly, the change of coordinates and control vari-

ables (s, d, θe, φ, u1, u2) 7−→ (z1, z2, z3, z4, v1, v2) defined
on R

2 × (−π
2 ,

π
2 )

2 by

(z1, z2, z3, z4) =

(

s, d, (1− dc(s)) tan θe,

− c(s)(1− dc(s))(1 + 2 tan2 θe)
− d ∂c∂s tan θe

+ (1− dc(s))2
tanφ

L

1 + tan2 θe
cos θe

)

(v1, v2) = (ż1, ż4)

transforms the model (34.10) of a car-like vehicle (with
l1 = l2 = 0) into a 4-dimensional chained system.

34.4.2 Tracking of a reference vehicle

with the same kinematics

Let us now consider the problem of tracking, in both po-
sition and orientation, a reference vehicle (see Fig. 34.6
below). Contrary to what happens when the control ob-
jective is limited to the tracking in position only (see
Section 34.3.1), the choice of the reference point P is of
lesser importance because, whatever P , most reference
trajectories t 7−→ (xr(t), yr(t), θr(t)) are not feasible for
the state vector (xP , yP , θ). For simplicity, we choose P
as the origin Pm of the robot’s chassis frame Fm.

Although the terminology is rather loose, the “tracking
problem” is usually associated, in the control literature,

with the problem of asymptotically stabilizing the refer-
ence trajectory. In this case, a necessary condition for
the existence of a control solution is that the reference is
feasible. Feasible trajectories t 7−→ (xr(t), yr(t), θr(t))
are smooth time functions which are solution to the
robot’s kinematic model for some specific control input
t 7−→ ur(t) = (u1,r(t), u2,r(t))

T , called “reference con-
trol”. For a unicycle-type robot for example, this means
in view of (34.4) that







ẋr = u1,r cos θr
ẏr = u1,r sin θr
θ̇r = u2,r

(34.19)

In other words, feasible reference trajectories correspond
to the motion of a reference frame Fr = {Pr,~ır,~r}
rigidly attached to a reference unicycle-type robot, with
Pr (alike P = Pm) located at mid-distance of the actu-
ated wheels (see Fig. 34.6). From there, the problem
is to determine a feedback control which asymptotically
stabilizes the tracking error (x−xr, y−yr, θ−θr) at zero,
with (xr, yr) the coordinates of Pr in F0, and θr the ori-
ented angles between ~ı and ~ır. One can proceed as in
the path following case, first by establishing the error
equations with respect to the frame Fr, then by trans-
forming these equations in the chain form via a change
of variables alike the one used to transform the kine-
matic equations of a mobile robot into a chained system,
and finally by designing stabilizing control laws for the
transformed system.

Reference vehicle     

~ım

Pr

~ır

~r

~ı

~ Pm

xe

ye

θe
~m

0

Figure 34.6: Tracking of a reference vehicle

Expressing the tracking error in position (x− xr, y− yr)
with respect to the frame Fr gives the vector (see Figure
34.6)

(

xe
ye

)

=

(

cos θr sin θr
− sin θr cos θr

)(

x− xr
y − yr

)

(34.20)
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Calculating the time-derivative of this vector yields

(

ẋe
ẏe

)

= θ̇r

(

− sin θr cos θr
− cos θr − sin θr

)(

x− xr
y − yr

)

+

(

cos θr sin θr
− sin θr cos θr

)(

ẋ− ẋr
ẏ − ẏr

)

=

(

u2,rye + u1 cos(θ − θr)− u1,r
−u2,rxe + u1 sin(θ − θr)

)

By denoting θe = θ − θr the orientation error between
the frames Fm and Fr, we obtain







ẋe = u2,rye + u1 cos θe − u1,r
ẏe = −u2,rxe + u1 sin θe
θ̇e = u2 − u2,r

(34.21)

To determine a control (u1, u2) which asymptotically sta-
bilizes the error (xe, ye, θe) at zero, let us consider the
following change of coordinates and control variables

(xe, ye, θe, u1, u2) 7−→ (z1, z2, z3, w1, w2)

defined by

z1 = xe
z2 = ye
z3 = tan θe ,

w1 = u1 cos θe − u1,r

w2 =
u2 − u2,r
cos2 θe

Note that, around zero, this mapping is only defined
when θe ∈ (−π/2, π/2). In other words, the orienta-
tion error between the physical robot and the reference
robot has to be smaller than π/2.

It is immediate to verify that, in the new variables,
the system (34.21) can be written as







ż1 = u2,rz2 + w1

ż2 = −u2,rz1 + u1,rz3 + w1z3
ż3 = w2

(34.22)

We remark that the last term in each of the above three
equations corresponds to the one of a chained system.
We then have the following result:

Proposition 4 The control law

{

w1 = −k1|u1,r| (z1 + z2z3) (k1 > 0)
w2 = −k2u1,r z2 − k3|u1,r| z3 (k2, k3 > 0)

(34.23)
renders the origin of the system (34.22) globally asymp-
totically stable if u1,r is a bounded differentiable function
whose derivative is bounded and which does not tend to
zero as t tends to infinity.

Remark: By comparison with the results of Section
34.3, we note that u1,r may well pass through zero and
change its sign.

Proof: Consider the following positive definite function

V (z) =
1

2
(z21 + z22 +

1

k2
z23)

The time-derivative of V along the trajectories of the
controlled system (34.22)–(34.23) is given by

V̇ = z1w1 + z2(u1,rz3 + w1z3) +
1

k2
z3w2

= w1(z1 + z2z3) + z3(u1,rz2 +
1

k2
w2)

= −k1|u1,r| (z1 + z2z3)
2 −

k3
k2
|u1,r| z

2
3

Therefore, along any of these trajectories, V is non-
increasing and converges to some limit value Vlim ≥
0. This implies that the variables z1, z2, and z3 are
bounded. Since u1,r is continuous, and since its deriva-
tive is bounded, |u1,r| is uniformly continuous. There-

fore, V̇ is uniformly continuous and, by application of
Barbalat’s lemma, V̇ tends to zero when t tends to in-
finity. In view of the expression of V̇ , this implies that
u1,rz3 and u1,r(z1 + z2z3) (and thus u1,rz1 also) tend to
zero. On the other hand, by using the expression of w2

(= ż3) one has

d

dt
(u21,rz3) = 2u̇1,ru1,rz3 − k3u

2
1,r|u1,r|z3 − k2u

3
1,rz2

and one deduces from what precedes that

d

dt
(u21,rz3) + k2u

3
1,rz2

tends to zero. Since u31,rz2 is uniformly continuous (it
is continuous and its derivative is bounded), and since
u21,rz3 tends to zero, one deduces by application of a
slightly extended version of Barbalat’s lemma that u31,rz2
(and thus u1,rz2 also) tends to zero. In view of the ex-
pression of V , the convergence of u1,rzi (i = 1, 2, 3) to
zero implies the convergence of u1,rV to zero. Therefore,
u1,rVlim = 0, and Vlim = 0 by using the assumption that
u1,r does not tend to zero.

The linearization of the control (34.23) yields the simpler
control

{

w1 = −k1|u1,r|z1
w2 = −k2u1,rz2 − k3|u1,r|z3
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Since w1 ≈ u1 − u1,r and w2 ≈ u2 − u2,r near the origin,
it is legitimate to wonder if the control

{

u1 = u1,r − k1|u1,r|z1
u2 = u2,r − k2u1,rz2 − k3|u1,r|z3

can also be used for the system (34.21). In fact, it is not
difficult to verify, via a classical pole placement calcula-
tion, that this control asymptotically stabilizes the ori-
gin of the linear system which approximates the system
(34.21) when u1,r and u2,r are constant, with u1,r 6= 0.
Therefore, it also locally asymptotically stabilizes the ori-
gin of the system (34.21) when these conditions on u1,r
and u2,r are satisfied. This means also that the tuning
of the gains k1,2,3 can be performed by using classical
linear control techniques applied to the linear approxi-
mation of the system (34.21). The control (34.23) is in
fact designed so that its tuning for the specific velocities
u1,r = 1 and u2,r = 0 gives good results for all other ve-
locities (except, of course, u1,r = 0, for which the linear
approximation of the system (34.21) is not controllable
and the control vanishes). Indeed, the multiplication of
all control gains by ±u1,r boils down to normalize the
equations of the controlled system with respect to the
longitudinal velocity, so that the transient path followed
by the vehicle in the process of catching up with the
reference vehicle is independent of the intensity of the
longitudinal velocity.

Generalization to a car-like vehicle: The previous
method extends to the car case. We provide below the
main steps of this extension, and leave to the interested
reader the task of verifying the details.

Consider the car’s kinematic model (34.5), comple-
mented with the following model of the reference car that
one wishes to track



















ẋr = u1,r cos θr
ẏr = u1,r sin θr

θ̇r =
u1,r
L

tanφr

φ̇r = u2,r

(34.24)

We assume that there exists δ ∈ (0, π/2) such that the
steering angle φr belongs to the interval [−δ, δ].

By defining xe, ye, and θe as in the unicycle case, and
by setting φe = φ − φr, one easily obtains the following
system (to be compared with (34.21))


















ẋe = (
u1,r

L tanφr)ye + u1 cos θe − u1,r
ẏe = −(

u1,r

L tanφr)xe + u1 sin θe

θ̇e =
u1
L

tanφ−
u1,r
L

tanφr

φ̇e = u2 − u2,r

(34.25)

Introduce the new state variables



















z1 = xe
z2 = ye
z3 = tan θe

z4 =
tanφ− cos θe tanφr

L cos3 θe
+ k2ye (k2 > 0)

We note that for any φr ∈ (−π/2, π/2), the mapping
(xe, ye, θe, φ) 7−→ z defines a diffeomorphism between
R
2 × (−π/2, π/2)2 and R

4. Introduce now the new con-
trol variables















w1 = u1 cos θe − u1,r

w2 = ż4 = k2ẏe +

(

3 tanφ
cos θe

− 2 tanφr

)

sin θe
L cos3 θe

θ̇e

−
u2,r

L cos2 φr cos2 θe
+ u2

L cos2 φ cos3 θe

(34.26)
One shows that (u1, u2) 7−→ (w1, w2) defines a change
of variables for θe, φ, and φr, inside the interval
(−π/2, π/2). These changes of state and control vari-
ables transform the system (34.25) into































ż1 = (
u1,r

L tanφr)z2 + w1

ż2 = −(
u1,r

L tanφr)z1 + u1,rz3 + w1z3
ż3 = −k2u1,rz2 + u1,rz4

+w1

(

z4 − k2z2 + (1 + z23)
tanφr
L

)

ż4 = w2

(34.27)

The Proposition 4 then becomes:

Proposition 5 The control law







w1 = −k1|u1,r|

(

z1 +
z3
k2

(

z4 + (1 + z23)
tanφr
L

))

w2 = −k3u1,r z3 − k4|u1,r| z4
(34.28)

with k1,2,3,4 denoting positive numbers, renders the origin
of the system (34.27) globally asymptotically stable if i)
u1,r is a bounded differentiable function whose derivative
is bounded and which does not tend to zero when t tends
to infinity, and ii) |φr| is smaller or equal to δ < π/2.

As in the case of the unicycle, the gain parameters ki
can be tuned from the controlled system’s linearization.
More precisely, one can verify from (34.25), (34.26), and
(34.28), that in the coordinates η = (xe, ye, θe, φe/L)

T ,
the linearization of the controlled system at the equilib-
rium η = 0 yields, when ur = (1, 0), the linear system
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η̇ = Aη with

A =









−k1 0 0 0
0 0 1 0
0 0 0 1
0 −k2k4 −k3 −k4









The control gains ki can then be chosen to give desired
values to the roots of the corresponding characteristic
polynomial P (λ) = (λ + k1)(λ

3 + k4λ
2 + k3λ + k2k4).

The nonlinear feedback law (34.28) is designed so that
this choice also yields good results when the intensity of
u1,r is different from 1 and/or varies arbitrarily, provided
that the convergence conditions specified in Proposition
5 are satisfied.

The simulation shown on Figure 34.7 illustrates this
control scheme. The gain parameters ki have been cho-
sen as (k1, k2, k3, k4) = (1, 1, 3, 3). The initial config-
uration of the reference vehicle (i.e. at t = 0), which
is represented on the upper sub-figure in dashed lines,
is (xr, yr, θr)(0) = (0, 0, 0). The reference control ur is
defined by (34.29). The initial configuration of the con-
trolled robot, represented on the figure in plain lines,
is (x, y, θ)(0) = (0,−1.5, 0). The configurations at time
t = 10, 20, and 30, are also represented on the figure.
Due to the fast convergence of the tracking error to zero
(see the time evolution of the components xe, ye, θe of
the tracking error on the lower sub-figure), one can ba-
sically consider that the configurations of both vehicles
coincide after time t = 10.

ur(t) =







(1, 0)T if t ∈ [0, 10]
(−1, 0.5 cos(2π(t− 10)/5))T if t ∈ [10, 20]
(1, 0)T if t ∈ [20, 30]

(34.29)

34.4.3 Path following with orientation

control

We re-consider the path following problem with the ref-
erence point P now located on the actuated wheels axle,
at mid-distance of the wheels. The objective is to syn-
thesize a control law which allows the vehicle to follow
the path in a stable manner, independently of the sign
of the longitudinal velocity.

Unicycle case: We have seen in Section 34.4.1 how to
transform kinematic equations with respect to a Frénet
frame into the 3-dimensional chained system







ż1 = v1
ż2 = v1z3
ż3 = v2

(34.30)
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Figure 34.7: Tracking of a reference vehicle

Recall that (z1, z2, z3) = (s, d, (1−dc(s)) tan θe) and that

v1 =
u1

1− dc(s)
cos θe. The objective is to determine a

control law which asymptotically stabilizes (d = 0, θe =
0) and also ensures that the constraint on the distance
d to the path (i.e. |d c(s)| < 1) is satisfied along the
trajectories of the controlled system. For the control law,
a first possibility consists in considering a proportional
feedback like

v2 = −v1k2z2 − |v1|k3z3 (k2, k3 > 0) (34.31)

It is then immediate to verify that the origin of the
closed-loop sub-system

{

ż2 = v1z3
ż3 = −v1k2z2 − |v1|k3z3

(34.32)

is asymptotically stable when v1 is constant, either posi-
tive or negative. Since u1 (not v1) is the intensity of the
vehicle’s longitudinal velocity, one would rather establish
stability conditions which depend on u1. The following
result provides a rather general stability condition and
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gives a sufficient condition for the satisfaction of the con-
straint |d c(s)| < 1.

Proposition 6 Consider the system (34.30) controlled
with (34.31), and assume that the initial conditions
(z2(0), z3(0)) = (d(0), (1− d(0)c(s(0))) tan θe(0)) verify

z22(0) +
1

k2
z23(0) <

1

c2max

with cmax = maxs |c(s)|. Then, the constraint |d c(s)| <
1 is satisfied along any solution to the controlled system.
Moreover, the function

V (z) =
1

2
(z22 +

1

k2
z23) (34.33)

is non-increasing along any trajectory z(t) of the sys-
tem, and V (z(t)) tends to zero as t tends to infinity if,
for instance, u1 is a bounded differentiable time-function
whose derivative is bounded and which does not tend to
zero as t tends to infinity.

The proof is similar to the one of Proposition 4: a simple
calculation shows that the function V is non-increasing
so that, along any solution to the controlled system, it
converges to some limit value Vlim. The same arguments
as those used in the proof of Proposition 4 can then be
repeated to show that Vlim = 0.

Note that the constraints upon u1 are rather weak. In
particular, the sign of u1 does not have to be constant.

From a practical point of view it can be useful to com-
plement the control action with an integral term. More
precisely, let us define a variable z0 by

ż0 = v1z2 , z0(0) = 0 .

The control (34.31) can be modified as follows:

v2 = −|v1|k0z0 − v1k2z2 − |v1|k3z3 (k0, k2, k3 > 0)

= −|v1|k0

∫ t

0

v1z2 − v1k2z2 − |v1|k3z3

(34.34)
and Proposition 6 becomes:

Proposition 7 Consider the system (34.30) controlled
by (34.34) with k0, k2, and k3 such that the polynomial

s3 + k3s
2 + k2s+ k0

is Hurwitz stable1. Assume also that the initial condi-
tions (z2(0), z3(0)) = (d(0), (1 − d(0)c(s(0))) tan θe(0))

1All roots of this polynomial have a negative real part.

verify:

z22(0) +
1

k2 −
k0

k3

z23(0) <
1

c2max

Then the constraint |d c(s)| < 1 is satisfied along any
solution to the controlled system. Moreover, the function

k0
k3

(∫ t

0

v1z2

)2

+ z22(t) +
1

k2 −
k0

k3

z23(t)

is non-increasing along any trajectory of the system, and
it tends to zero as t tends to infinity if, for instance, u1
is a bounded differentiable time-function whose derivative
is bounded and which does not converge to zero as t tends
to infinity.

Generalization to a car-like vehicle and to a

unicycle-type vehicle with trailers: One of the as-
sets of this type of approach, besides the simplicity of
the control law and little demanding conditions of sta-
bility associated with it, is that it can be generalized in a
straightforward manner to car-like vehicles and unicyle-
type vehicles with trailers. The result is summarized
in the next proposition by considering a n-dimensional
chained system



























ż1 = v1
ż2 = v1z3

...
żn−1 = v1zn
żn = v2

(34.35)

with n ≥ 3. Its proof is a direct extension of the one
in the 3-dimensional case. The dimension n = 4 cor-
responds to the car case (see Section 34.4.1). As for a
unicycle-type vehicle with N trailers, one has n = N+3.
Recall also that, in all cases, z2 represents the distance
d between the path and the point P located at mid-
distance of the rear wheels of the last vehicle.

Proposition 8 Let k2, . . . , kn denote parameters such
that the polynomial

sn−1 + kns
n−2 + kn−1s

n−3 + . . .+ k3s+ k2

is Hurwitz stable. With these parameters, let us associate
the control law

v2 = −v1

n
∑

i=2

sign(v1)
n+1−ikizi . (34.36)
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Then, there exists a positive definite matrix Q (whose
entries depend on the coefficients ki) such that, if the
initial conditions (z2(0), z3(0), . . . , zn(0)) verify

‖(z2(0), z3(0), . . . , zn(0))‖Q <
1

cmax
(34.37)

the constraint |d c(s)| < 1 is satisfied along any solution
to the controlled system. Moreover, the function

‖(z2(t), z3(t), . . . , zn(t))‖Q

is non-increasing along any trajectory of the system, and
it tends to zero as t tends to infinity if, for instance, u1
is a bounded differentiable function whose derivative is
bounded and which does not converge to zero as t tends
to infinity.

Remark: The condition (34.37) is always satisfied when
c(s) = 0 for every s (i.e. when the path is a straight line).
It is little demanding in practice when cmax is small.
Note also that it is possible to calculate the matrix Q
explicitly as a function of the parameters ki (see [27] for
more details).

As in the 3-dimensional case, it is possible to add an
integral term to the control. In this case, the control
is calculated from the expression of an “extended sys-
tem” whose state vector is composed of the variables
z1, . . . , zn, and a complementary variable z0 such that
ż0 = v1z2. Since adding the variable z0 preserves the
chained structure of the system, the control expression
is simply adapted from the one determined for a system
of dimension n+1 with no integral term. More precisely,
one obtains

v2 = −k0v1sign(v1)
n

∫ t

0

v1z2 − v1

n
∑

i=2

sign(v1)
n+1−ikizi

with the parameters ki chosen so that the polynomial
sn+kns

n−1+kn−1s
n−3+ . . .+k2s+k0 is Hurwitz stable.

The simulation results reported on Figure 34.8 illus-
trate how this control scheme performs for a car-like ve-
hicle. The reference curve is the circle of radius equal
to four, centered at the origin. The robot’s longitudi-
nal velocity u1 is defined by u1 = 1 for t ∈ [0, 5], and
u1 = −1 for t > 5. The control gains have been cho-
sen as (k2, k3, k4) = (1, 3, 3). The motion of the car-like
robot in the plane is represented on the upper sub-figure,
and its configuration at times t = 0, 5, and 25 are also de-
picted on the figure. The time-evolution of the variables
z2, z3, z4 (defined in Proposition 3) is represented on the

lower sub-figure. One can observe that the (discontinu-
ous) change of the longitudinal velocity u1 at t = 5 does
not affect the convergence of these variables to zero.
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Figure 34.8: Path following along a circle

34.4.4 Asymptotic stabilization of fixed

postures

We now consider the problem of asymptotic stabilization
of a fixed desired (reference) posture (i.e. position and
orientation) for the robot chassis. This problem may be
seen as a limit case of the trajectory tracking problem.
However, none of the feedback controllers proposed pre-
viously in this chapter provides a solution to this prob-
lem. For instance, in Section 34.3 although the result
about the stabilization in position of feasible trajecto-
ries did not exclude the case of a trajectory reduced to a
single point, the stability of the vehicle’s orientation was
not granted in this case. As for the results in Section
34.4, the convergence of the posture error to zero has
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been proven when the robot’s longitudinal velocity did
not converge to zero (which excludes the case of fixed
postures).

From the automatic control point of view, the asymp-
totic stabilization of fixed postures is very different from
the problems of path following and trajectory tracking
with non-zero longitudinal velocity, much in the same
way as a human driver knows, from experience, that
parking a car at a precise location involves techniques
and skills different from those exercised when cruising
on a road. In particular, it cannot be solved by any clas-
sical control method for linear systems (or based on lin-
earization). Technically, the underlying general problem
is the one of asymptotic stabilization of equilibria of con-
trollable driftless systems with less control inputs than
state variables. This problem has motivated numerous
studies during the last decade of the last century, from
many authors and with various angles of attack, and it
has remained a subject of active research five years later.
The variety of candidate solutions proposed until now,
the mathematical technicalities associated with several
of them, together with unsolved difficulties and limita-
tions, particularly (but not only) in terms of robustness
(an issue on which we will return), prevent us from at-
tempting to cover the subject here with the ambition
of exhaustivity. Instead, we have opted for a somewhat
informal exposition of approaches which have been con-
sidered, with the illustration of a few control solutions,
without going into technical and mathematical details.

A central aspect of the problem, which triggered much
of the subsequent research on the control of nonholo-
nomic systems, is that asymptotic stabilization of equi-
libria (or fixed points) cannot be achieved by using con-
tinuous feedbacks which depend on the state only (i.e.
continuous pure-state feedbacks). This is a consequence
of an important result due to Brockett2 in 1983 (see also
related comments in Section 17.3.2).

Theorem 1 (Brockett [7]) Consider a control system
ẋ = f(x, u) (x ∈ R

n, u ∈ R
m), with f a differentiable

function and (x, u) = (0, 0) an equilibrium of this sys-
tem. A necessary condition for the existence of a contin-
uous feedback control u(x) which renders the origin of the
closed-loop system ẋ = f(x, u(x)) asymptotically stable is
the local surjectivity of the application (x, u) 7−→ f(x, u).
More precisely, the image by f of any neighborhood Ω of
(0, 0) in R

n+m must be a neighborhood of 0 in R
n.

2The original result by Brockett concerned differentiable feed-
backs; it has later been extended to the larger set of feedbacks
which are only continuous.

This result implies that the equilibria of many control-
lable (nonlinear) systems are not asymptotically stabi-
lizable by continuous pure-state feedbacks. All non-
holonomic WMRs belong to this category of systems.
This will be shown in the case of a unicycle-type ve-
hicle; the proof for the other mobile robots is similar.
Let us thus consider a unicycle-type vehicle, whose kine-
matic equations (34.4) can be written as ẋ = f(x, u)
with x = (x1, x2, x3), u = (u1, u2), and f(x, u) =
(u1 cosx3, u1 sinx3, u2)

T , and let us show that f is not
locally onto in the neighborhood of (x, u) = (0, 0). To
this purpose, take a vector in R

3 of the form (0, δ, 0)T . It
is obvious that the equation f(x, u) = (0, δ, 0)T does not
have a solution in the neighborhood of (x, u) = (0, 0)
since the first equation, namely u1 cosx3 = 0, implies
that u1 = 0, so that the second equation cannot have a
solution if δ is different from zero.

It is also obvious that the linear approximation (about
the equilibrium (x, u) = (0, 0)) of the unicycle kinematic
equations is not controllable. If it were, it would be pos-
sible to (locally) asymptotically stabilize this equilibrium
with a linear (thus continuous) state feedback.

Therefore, by application of the above theorem, a
unicycle-type mobile robot (like other nonholonomic
robots) cannot be asymptotically stabilized at a de-
sired posture (position/orientation) by using a contin-
uous pure-state feedback. This impossibility has moti-
vated the development of other control strategies in order
to solve the problem. Three major types of controls have
been considered:

1. continuous time-varying feedbacks, which, besides
from depending on the state x, depend also on the
exogenous time variable (i.e. u(x, t) instead of u(x)
for classical feedbacks).

2. discontinuous feedbacks, in the classical form u(x),
except that the function u is not continuous at the
equilibrium that one wishes to stabilize.

3. hybrid discrete/continuous feedbacks. Although this
class of feedbacks is not defined as precisely as the
other two sets of controls, it is mostly composed
of time-varying feedbacks, either continuous or dis-
continuous, such that the part of the control which
depends upon the state is only updated periodically,
e.g. u(t) = ū(x(kT ), t) for any t ∈ [kT, (k + 1)T ),
with T denoting a constant period, and k ∈ N.

We will now illustrate these approaches. In fact, only
time-varying and hybrid feedbacks will be considered
here. The main reason is that discontinuous feedbacks
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involve difficult questions (existence of solutions, mathe-
matical meaning of these solutions,...) which complicate
their analysis and for which complete answers are not
available. Moreover, for most of the discontinuous con-
trol strategies described in the literature, the property of
stability in the sense of Lyapunov is either not granted
or remains an open issue.

Time-varying feedbacks

The use of time-varying feedbacks for the asymptotic
stabilization of a fixed desired equilibrium, for a non-
holonomic WMR, in order to circumvent the obstruc-
tion pointed out by Brockett’s Theorem, has been first
proposed in [35]. Since then, very general results about
the stabilization of nonlinear systems by means of time-
varying feedbacks have been obtained. For instance, it
has been proved that any controllable driftless system
can have any of its equilibria asymptotically stabilized
with a control of this type [11]. This includes the kine-
matic models of the nonholonomic mobile robots here
considered. We will illustrate this approach in the case
of unicycle-type and car-like mobile robots modeled by
three and four-dimensional chained systems respectively.
In order to consider the three-dimensional case, let us
come back on the results obtained in Section 34.4.3 for
path following. We have established (see Proposition 6)
that the control v2 = −v1k2z2 − |v1|k3z3 applied to the
system







ż1 = v1
ż2 = v1z3
ż3 = v2

renders the function V (z) defined by (34.33) non-
increasing along any trajectory of the controlled system,
i.e.

V̇ = −
k3
k2
|v1|z

2
3

and ensures the convergence of z2 and z3 to zero if, for
instance, v1 does not tend to zero as t tends to infinity.
For example, if v1(t) = sin t, the proposition applies, z2
and z3 tend to zero, and

z1(t) = z1(0) +
∫ t

0
v1(s) ds = z1(0) +

∫ t

0
sin s ds

= z1(0) + 1− cos t

so that z1(t) oscillates around the mean value z1(0) + 1.
To reduce these oscillations, one can multiply v1 by a
factor which depends on the current state. Take, for
example, v1(z, t) = ‖(z2, z3)‖ sin t, that we complement
with a stabilizing term like −k1z1 with k1 > 0, i.e.

v1(z, t) = −k1z1 + ‖(z2, z3)‖ sin t .

The feedback control so obtained is time-varying and
asymptotically stabilizing.

Proposition 9 [37] The continuous time-varying feed-
back
{

v1(z, t) = −k1z1 + α‖(z2, z3)‖ sin t
v2(z, t) = −v1(z, t)k2z2 − |v1(z, t)|k3z3

(34.38)

with α, k1,2,3 > 0, renders the origin of the 3-dimensional
chained system globally asymptotically stable.

The above proposition can be extended to chained sys-
tems of arbitrary dimension [37]. For the case n = 4,
which corresponds to the car-like robot, one has the fol-
lowing result.

Proposition 10 [37] The continuous time-varying feed-
back






v1(z, t) = −k1z1 + α‖(z2, z3, z4)‖ sin t
v2(z, t) = −|v1(z, t)|k2z2 − v1(z, t)k3z3

−|v1(z, t)|k4z4

(34.39)

with α, k1,2,3,4 > 0 chosen such that the polynomial s3 +
k4s

2 + k3s + k2 is Hurwitz-stable, renders the origin of
the 4-dimensional chained system globally asymptotically
stable.

Figure 34.9 below illustrates the previous result. For
this simulation, the parameters α, k1,2,3,4 in the feedback
law (34.39) have been chosen as α = 3 and k1,2,3,4 =
(1.2, 10, 18, 17). The upper sub-figure shows the motion
of the car-like robot in the plane. The initial configura-
tion, at time t = 0, is depicted in plain lines, whereas the
desired configuration is shown in dashed lines. The time-
evolution of the variables x, y, and θ (i.e. position and
orientation variables corresponding to the model (34.5))
is shown on the lower sub-figure.

A shortcoming of this type of control, very clear on
this simulation, is that the system’s state converges to
zero quite slowly. One can show that the rate of conver-
gence is only polynomial, i.e. it is commensurable with
t−α (for some α ∈ (0, 1)) for most of the trajectories of
the controlled system. This slow rate of convergence is
related to the fact that the control function is Lipschitz-
continuous with respect to x. It is a characteristics of
systems the linear approximation of which is not stabi-
lizable, as specified in the following proposition.

Proposition 11 Consider the control system ẋ =
f(x, u) (x ∈ R

n, u ∈ R
m) with f being differentiable,
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Figure 34.9: Stabilization with a Lipschitz-continuous
controller

and (x, u) = (0, 0) an equilibrium point of this sys-
tem. Assume that the linear approximation of this sys-
tem is not stabilizable. Consider also a continuous time-
varying feedback u(x, t), periodic with respect to t, such
that u(0, t) = 0 for any t, and such that u(., t) is k(t)-
Lipschitz continuous with respect to x, for some bounded
function k. This feedback cannot yield uniform exponen-
tial convergence to zero of the closed-loop systems solu-
tions: there does not exist constants K > 0 and γ > 0
such that, along any trajectory x(.) of the controlled sys-
tem, one has

|x(t)| ≤ K|x(t0)|e
−γ(t−t0) (34.40)

The intuitive reason behind this impossibility can eas-
ily be illustrated on the unicycle example. When us-
ing the chain form representation, the second equation is
ż2 = v1z3. Since the linearization, around (z = 0, v = 0)
of this equation gives ż2 = 0, the linear approximation of
the system is not controllable (nor stabilizable). In these
conditions, exponential convergence, when applying a
linear feedback, would necessitate the use of gains grow-

ing to infinity, thus ruling out the property of Lipschitz-
continuity. This type of reasoning, coupled to the need
of better performance and efficiency, has triggered the
development of stabilizing time-varying feedbacks which
are continuous, but not Lipschitz-continuous. Examples
of such feedbacks, yielding uniform exponential conver-
gence, are given in the following propositions for chained
systems of dimension three and four respectively.

Proposition 12 [27] Let α, k1,2,3 > 0 denote scalars
such that the polynomial p(s) = s2+k3s+k2 is Hurwitz-
stable. For any integers p, q ∈ N

∗, let ρp,q denote the
function defined on R

2 by

∀z̄2 = (z2, z3) ∈ R
2, ρp,q(z̄2) =

(

|z2|
p

q+1 + |z3|
p
q

)
1
p

Then, there exists q0 > 1 such that, for any q ≥ q0 and
p > q + 2, the continuous state feedback







v1(z, t) = −k1(z1 sin t− |z1|) sin t+ αρp,q(z̄2) sin t

v2(z, t) = −v1(z, t)k2
z2

ρ2p,q(z̄2)
− |v1(z, t)|k3

z3
ρp,q(z̄2)

(34.41)
renders the origin of the 3-dimensional chained system
globally asymptotically stable, with a uniform exponential
rate of convergence.

The parenthood of the controls (34.38) and (34.41) is
noticeable. One can also verify that the control (34.41)
is well defined (by continuity) at z̄2 = 0. More precisely,
the ratios

z2
ρ2p,q(z̄2)

and
z3

ρp,q(z̄2)

which are obviously well defined when z̄2 6= 0, tend to
zero when z̄2 tends to zero. This guarantees the conti-
nuity of the control law.

The property of exponential convergence pointed out
in the above result calls for some remarks. Indeed, this
property does not exactly correspond to the classical ex-
ponential convergence property associated with stable
linear systems. In this latter case, exponential conver-
gence implies that the relation (34.40) is satisfied. This
corresponds to the common notion of “exponential sta-
bility”. In the present case, this inequality becomes

ρ(z(t)) ≤ Kρ(z(t0))e
−γ(t−t0)

for some function ρ, defined for example by ρ(z) =
|z1| + ρp,q(z2, z3), with ρp,q as specified in Proposition
12. Although the function ρ shares common features
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with the Euclidean norm of the state vector (it is defi-
nite positive and it tends to infinity when ‖z‖ tends to
infinity), it is not equivalent to this norm. Of course,
this does not change the fact that each component zi of
z converges to zero exponentially. However, the transient
behavior is different because one only has

|zi(t)| ≤ K‖z(t0)‖
αe−γ(t−t0)

with α < 1, instead of

|zi(t)| ≤ K‖z(t0)‖e
−γ(t−t0)

In the case of the four-dimensional chained system,
one can establish the following result, which is similar to
Proposition 12.

Proposition 13 [27] Let α, k1, k2, k3, k4 > 0 be chosen
such that the polynomial p(s) = s3 + k4s

2 + k3s + k2
is Hurwitz-stable. For any integers p, q ∈ N

∗, let ρp,q
denote the function defined on R

3 by

ρp,q(z̄2) =
(

|z2|
p

q+2 + |z3|
p

q+1 + |z4|
p
q

)
1
p

with z̄2 = (z2, z3, z4) ∈ R
3. Then, there exists q0 > 1

such that, for any q ≥ q0 and p > q + 2, the continuous
state feedback















v1(z, t) = −k1(z1 sin t− |z1|) sin t+ αρp,q(z̄2) sin t

v2(z, t) = −|v1(z, t)|k2
z2

ρ3p,q(z̄2)
− v1(z, t)k3

z3
ρ2p,q(z̄2)

−|v1(z, t)|k4
z4

ρp,q(z̄2)

(34.42)
renders the origin of the 4-dimensional chained system
globally asymptotically stable, with a uniform exponential
rate of convergence.

The performance of the control law (34.42) is illus-
trated by the simulation results shown in Figure 34.10.
The control parameters have been chosen as follows:
α = 0.6, k1,2,3,4 = (1.6, 10, 18, 17), q = 2, p = 5. The
comparison with the simulation results of Figure 34.9
shows a clear gain in performance.

Hybrid feedbacks

These feedbacks constitute an alternative for the asymp-
totic stabilization of fixed postures. They may be seen
as a mixt of open-loop and feedback controls in the sense
that the dependence on the state is, in general, only up-
dated periodically (by contrast with time-varying feed-
backs which are updated continuously). Between two
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Figure 34.10: Stabilization with a continuous (non-
Lipschitz) time-varying feedback

updates, the control works in open-loop. Nonetheless,
this type of control may present some advantages with
respect to time-varying feedbacks. This point is briefly
commented upon a little further. An example of a hybrid
feedback is provided in the following proposition.

Proposition 14 [26] The hybrid feedback law v defined
by

v(t) = v̄(z(kT ), t) ∀t ∈ [kT, (k + 1)T ) (34.43)

with
{

v̄1(z, t) =
1
T [(k1 − 1)z1 + 2πρ(z) sin(ωt)]

v̄2(z, t) =
1
T [(k3 − 1)z3 + 2(k2 − 1) z2

ρ(z) cos(ωt)]

and

k1,2,3 ∈ (−1, 1), ω =
2π

T
, ρ(z) = α2|z2|

1/2 (α2 > 0)

is a K(T )-exponential stabilizer for the 3-d chained sys-
tem.
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The property of “K(T )-exponential stabilizer” evoked in
the above proposition means that there exist positive
constants K, η, and γ, with γ < 1, such that for any z0,
the solution at time t of the controlled system associated
with the initial condition z0 at time t = 0, which we
denote as z(t, 0, z0), satisfies for any k ∈ N and any s ∈
[0, T ) the following inequalities:

‖z((k + 1)T, 0, z0)‖ ≤ γ‖z(kT, 0, z0)‖

and
‖z(kT + s, 0, z0)‖ ≤ K‖z(kT, 0, z0)‖

η

These relations imply the exponential convergence of the
system’s trajectories to the origin z = 0. They do not
imply the stability of this point because ‖z(t, 0, z0)‖ may
vanish at some time t = t̄ and not remain equal to
zero everafter. Note, however, that if ‖z(kT, 0, z0)‖ = 0
for some k ∈ N, then the above relations imply that
‖z(t, 0, z0)‖ = 0 for all t ≥ kT .

In the case of four-dimensional systems, a result simi-
lar to Proposition 14 can also be established.

Proposition 15 [26] The hybrid feedback law v defined
by

v(t) = v̄(z(kT ), t) ∀t ∈ [kT, (k + 1)T ) (34.44)

with










v̄1(z, t) =
1
T [(k1 − 1)z1 + 2πρ(z) sin(ωt)]

v̄2(z, t) =
1
T [(k4 − 1)z4 + 2(k3 − 1) z3

ρ(z) cos(ωt)

+8(k2 − 1) z2
ρ2(z) cos(2ωt)]

k1,2,3,4 ∈ (−1, 1), ω = 2π
T , and ρ(z) = α2|z2|

1/4 +

α3|z3|
1/3 (α2,3 > 0), is a K(T )-exponential stabilizer for

the 4-d chained system.

The simulation results reported in Figure 34.11 il-
lustrate the application of the feedback law (34.44).
The control parameters have been chosen as T = 3,
k1,2,3,4 = 0.25, and α2,3 = 0.95. The control perfor-
mance is similar to the one observed in Figure 34.10, as
could be expected from the fact that both controls yield
exponential convergence to the origin.

34.4.5 Limitations inherent to the con-

trol of nonholonomic systems

Let us first mention some problems associated with the
nonlinear time-varying and hybrid feedbacks just pre-
sented. An ever important issue, when studying feed-
back control, is robustness. Indeed, if it were not for
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Figure 34.11: Stabilization with a hybrid dis-
crete/continuous controller

the sake of robustness, feedback control would loose
much of its value and interest with respect to open-
loop control solutions. Robustness aspects are multi-
ple also. One of them concerns the sensitivity to mod-
eling errors. For instance, in the case of a unicycle-
type robot whose kinematic equations are in the form
ẋ = u1b1(x) + u2b2(x), one would like to know whether
a feedback law which stabilizes an equilibrium of this
system also stabilizes this equilibrium for the “neigh-
bor” system ẋ = u1(b1(x)+ εg1(x))+u2(b2(x)+ εg2(x)),
with g1 and g2 denoting continuous applications, and ε
a parameter which quantifies the modeling error. This
type of error can account, for example, for a small uncer-
tainty concerning the orientation of the actuated wheels
axle with respect to the chassis, which results in a bias
in the measurement of this orientation. One can show
that time-varying control laws like (34.41) are not robust
with respect to this type of error in the sense that, for
certain functions g1 and g2, and for ε arbitrarily small,
the system’s solutions end up oscillating in the neighbor-
hood of the origin, instead of converging to the origin.
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In other words, both the properties of stability of the
origin and of convergence to this point can be jeopar-
dized by arbitrarily small modeling errors, even in the
absence of measurement noise. In this respect, the hy-
brid control law (34.43) is more robust: the exponen-
tial convergence to the origin of the controlled system’s
solutions is still obtained when ε is small enough. How-
ever, the slightest discretization uncertainty can produce
the same type of local instability. In view of the above-
mentioned problems, one is brought to question the ex-
istence of fast (exponential) stabilizers endowed with ro-
bustness properties similar to those of stabilizing linear
feedbacks for linear systems. The answer is that, to our
knowledge, no such control solution (either continuous
or discontinuous) has ever been found. More than likely
such a solution does not exist for nonholonomic systems.
Robustness of the stability property against modeling
errors, and control discretization and delays, has been
proved in some cases, but this could only be achieved
with Lipschitz-continuous feedbacks which, as we have
seen, yield slow convergence. The classical compromise
between robustness and performance thus seems much
more acute than in the case of stabilizable linear sys-
tems (or nonlinear systems whose linear approximation
is stabilizable).

A second issue is the proven non-existence of a “uni-
versal” feedback controller capable of stabilizing any fea-
sible reference state-trajectory asymptotically [20]. This
is another notable difference with the linear case. In-
deed, given a controllable linear system ẋ = Ax + Bu,
the feedback controller u = ur + K(x − xr), with K a
gain matrix such that A + BK is Hurwitz stable, ex-
ponentially stabilizes any feasible reference trajectory xr
(solution to the system) associated with the control input
ur. The non-existence of such a controller, in the case of
nonholonomic mobile robots, is related to the conditions
upon the longitudinal velocity stated in previous propo-
sitions concerning trajectory stabilization (Propositions
4 and 5). It basically indicates that such conditions can-
not be removed entirely: whatever the chosen feedback
controller, there always exists a feasible reference trajec-
tory that this feedback cannot asymptotically stabilize.
Note that this limitation persists when considering non-
standard feedbacks (like e.g. time-varying periodic feed-
backs capable of asymptotically stabilizing reference tra-
jectories which are reduced to a single point). Moreover,
it has clear practical consequences because there are ap-
plications (automatic tracking of a human driven car, for
instance) for which the reference trajectory, and thus its
properties, are not known in advance (is the leading car

going to keep moving or stop?) so that one cannot eas-
ily decide on which controller to use. Switching between
various controllers is a possible strategy, which has been
studied by some authors and may give satisfactory re-
sults in many situations. However, since implementing
a pre-defined switching strategy between two controllers
sums up to designing a third controller, this does not
solve the core of the problem nor grant any certitude of
success.

A third issue, which is not specific to nonholonomic
systems, but has seldom been addressed in the nonlinear
control literature, concerns the problem of tracking non-
feasible trajectories (i.e. trajectories which are not so-
lutions to the system’s equations). Since exact tracking
is not possible, by definition of a non-feasible trajectory,
the control objective is then to ensure that the tracking
errors shrink to, and everafter never exceed, certain non-
zero thresholds. The fact that these thresholds can theo-
retically be arbitrarily small in the case of nonholonomic
systems, if the amplitude of the velocity control inputs is
not limited, makes this problem particularly relevant for
these systems. This can be termed as a practical stabi-
lization objective which, although slightly less ambitious
than the objective of asymptotic stabilization considered
in previous sections, opens up both the control design
problem and the range of applications significantly. For
instance, it allows to address the problem of tracking an
omnidirectional vehicle with a unicycle-type, or a car-
like, vehicle. In the context of planning a trajectory with
obstacle avoidance, transforming a non-feasible trajec-
tory into a feasible approximation for a certain mobile
robot can be performed by applying a practical stabi-
lizer to a model of this robot and by numerical integra-
tion of the system’s closed-loop equations. Also, if one
re-formulates the former question about the existence
of a “universal” stabilizer, with the objective of asymp-
totic stabilization now replaced by the one of practical
stabilization, then the answer becomes positive: such a
stabilizer exists and, moreover, the reference trajectories
do not even have to be feasible.

34.4.6 Practical stabilization of arbi-

trary trajectories based on the

transverse function approach

A possible approach for the design of practical stabilizers
in the case of controllable driftless is described in [29].
Some of its basic principles, here adapted to the specific
examples of unicycle-type and car-like mobile robots, are
recalled next.
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Let us introduce some matrix notation that will be
used in this section.

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

, S =

(

0 −1
1 0

)

R̄(θ) =

(

R(θ) 0
0 1

)

Unicycle case: With the above notation, the kinematic
model (34.4) can be written as

ġ = R̄(θ)Cu (34.45)

with g = (x, y, θ)′ and

C =





1 0
0 0
0 1





Let us now consider a smooth function

f : α 7−→ f(α) =





fx(α)
fy(α)
fθ(α)





with α ∈ S1 = R/2πZ (i.e. α is an angle variable), and
define

ḡ :=





x̄
ȳ
θ̄



 := g − R̄(θ − fθ(α))f(α)

=





(

x
y

)

−R(θ − fθ(α))

(

fx(α)
fy(α)

)

θ − fθ(α)





(34.46)

Note that ḡ can be viewed as the situation3 of a frame
F̄m(α) the origin of which has components

−R(−fθ(α))

(

fx(α)
fy(α)

)

in the frame Fm. Hence, F̄m(α) is all the more close
to Fm as the components of f(α) are small. For any
smooth time function t 7−→ α(t), and along any solution
to system (34.45), the time-derivative of ḡ is given by

˙̄g = R̄(θ̄)ū (34.47)

with

ū = A(α)
(

R̄(fθ(α)) − ∂f
∂α (α)

)

(

Cu
α̇

)

(34.48)

3In term of differential geometry, ḡ is the product of g by the
inverse f(α)−1 of f(α), in the sense of the Lie group operations in
SE(2).

and

A(α) =





I2 −S

(

fx(α)
fy(α)

)

0 1



 (34.49)

From (34.47) and (34.48), one can view α̇ as a comple-
mentary control input which can be used to monitor the
motion of the frame F̄m(α). More precisely, F̄m(α) can
be viewed as an omnidirectional frame provided that ū
can be rendered equal to any vector of R

3, i.e. provided
that the mapping (u, α̇) 7−→ ū is onto. Let us determine
when this condition is satisfied. Equation (34.48) can
also be written as

ū = A(α)H(α)

(

u
α̇

)

(34.50)

with

H(α) =





cos fθ(α) 0 −∂fx
∂α (α)

sin fθ(α) 0 −
∂fy
∂α (α)

0 1 −∂fθ
∂α (α)



 (34.51)

Since A(α) is invertible, F̄m(α) is omnidirectional if and
only if the matrix H(α) is also invertible. A function f
which satisfies this property for any α ∈ S1 is called a
“transverse function” [28]. The issue of the existence of
such functions has been treated in the much more general
context of the transverse function approach [28, 29]. In
the present case, a family of transverse functions is given
by:

f(α) =





ε sinα
ε2η sin 2α4

arctan(εη cosα)



 with ε, η > 0 (34.52)

Indeed, one can verify that for any α ∈ S1, detH(α) =

− ε2η
2 cos(arctan(εη cosα)) < 0. Note that the compo-

nents of f uniformly tend to zero as ε tends to zero, so
that the associated omnidirectional frame F̄m(α) can be
made arbitrarily close to Fm by choosing ε small (but
different from zero).

Now, let t 7−→ gr(t) = (xr(t), yr(t), θr(t))
T denote a

smooth, but otherwise arbitrary, reference trajectory. It
is not difficult to derive from (34.47) a feedback law ū
which asymptotically stabilizes ḡ at gr. A possible choice
is given for example by

ū = R̄(−θ̄)(ġr − k(ḡ − gr)) (34.53)

which implies that ( ˙̄g− ġr) = −k(ḡ− gr) and, therefore,
that ḡ − gr = 0 is an exponentially stable equilibrium of
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the above equation for any k > 0. Then, it follows from
(34.46) that

lim
t→+∞

(

g(t)− gr(t)− R̄(θr(t))f(α(t))
)

= 0 (34.54)

The norm of the tracking error ‖g−gr‖ is thus ultimately
bounded by the norm of f(α) which, in view of (34.52),
can be made arbitrarily small via the choice of ε. It is
in this sense that practical stabilization is achieved. The
control u for the unicycle-like robot is then calculated by
inverting the relation (34.50) and using the expression
(34.53) of ū.

While it can be tempting to use very small values of
ε for the transverse function f in order to obtain a good
tracking precision, one must be aware of the limits of
this strategy. Indeed, when ε tends to zero, the matrix
H(α) defined by (34.51) becomes ill-conditioned, and its
determinant tends to zero. This implies, by (34.50), that
the robot’s velocities u1 and u2 may become very large.
In particular, when the reference trajectory gr is not fea-
sible, many manoeuvres are likely to occur. Note that
this difficulty is intrinsic to the robot’s nonholonomy and
that it cannot be circumvented (think about the prob-
lem of parking a car in a very narrow parking place). For
this reason, trying to impose a very accurate tracking of
non-feasible trajectories is not necessarily a good option
in practice. On the other hand, when the trajectory is
feasible, manoeuvres are not needed to achieve accurate
tracking, so that smaller values of ε can be used in this
case. This clearly leads to a dilemma when the refer-
ence trajectory is not known in advance and its proper-
ties in term of feasibility can vary with time. A control
strategy which addresses this issue, based on the use of
transverse functions whose magnitude can be adapted
online, is proposed in [3]. Experimental validations of
the present approach on a unicycle-like robot can also
be found in [2].

Car case: The control approach presented above can be
extended to car-like vehicles (and also to the trailer case).
Again, the idea is to associate with the robot’s frame Fm
an omnidirectional “companion”frame F̄m(α) which can
be maintained arbitrarily close to Fm via the choice of
some design parameters. Let us show how this can be
done for a car-like vehicle. To simplify the forthcoming
equations, let us rewrite System (34.5) as















ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u1ξ

ξ̇ = uξ

with ξ = (tanφ)/L and uξ = u2(1 + tan2 φ)/L. This
system can also be written as (compare with (34.45))

{

ġ = R̄(θ)C(ξ)u1
ξ̇ = uξ

(34.55)

with g = (x, y, θ)T and C(ξ) = (1, 0, ξ)T . Let us now
consider a smooth function

f : α 7−→ f(α) =

(

fg(α)
fξ(α)

)

=









fx(α)
fy(α)
fθ(α)
fξ(α)









with α ∈ S1×S1 (i.e. α = (α1, α2)), and define (compare
with (34.46))

ḡ :=





x̄
ȳ
θ̄



 := g − R̄(θ − fθ(α))fg(α)

=





(

x
y

)

−R(θ − fθ(α))

(

fx(α)
fy(α)

)

θ − fθ(α)





(34.56)

which, as in the unicycle case, can be viewed as the sit-
uation of some “companion” frame F̄m(α). By differen-
tiating ḡ along any smooth time function t 7−→ α(t) and
any solution to system (34.55), one can verify that Eq.
(34.47) is still satisfied, except that ū is now given by

ū = A(α)
(

R̄(fθ(α)) −
∂fg
∂α1

(α) −
∂fg
∂α2

(α)
)





C(ξ)u1
α̇1
α̇2





(34.57)
rather than by (34.48) (with A(α) still defined by
(34.49)). Using the fact that

C(ξ)u1 = C(fξ(α))u1 + (C(ξ)− C(fξ(α)))u1

=





1
0

fξ(α)



u1 +





0
0

ξ − fξ(α)



u1

the equation (34.57) can also be written as

ū = A(α)H(α)





u1
α̇1
α̇2



+A(α)





0
0

u1(ξ − fξ(α))



 (34.58)

with

H(α) =







cos fθ(α) − ∂fx
∂α1

(α) − ∂fx
∂α2

(α)

sin fθ(α) −
∂fy
∂α1

(α) −
∂fy
∂α2

(α)

fξ(α) − ∂fθ
∂α1

(α) − ∂fθ
∂α2

(α)






(34.59)
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By setting
uξ = ḟξ(α)− k(ξ − fξ(α) (34.60)

with k > 0, it follows from (34.55) that ξ − fξ(α) ex-
ponentially converges to zero. Hence, after some tran-
sient phase whose duration is commensurable with 1/k,
ξ − fξ(α) ≈ 0, and (34.58) reduces to

ū = A(α)H(α)





u1
α̇1
α̇2



 (34.61)

Provided that the function f is such that H(α) is al-
ways invertible, this latter relation means that the frame
F̄m(α) associated with ḡ is omnidirectional. Any func-
tion f for which this property is satisfied is called a trans-
verse function. Once it has been determined, one can
proceed as in the unicycle case to asymptotically stabi-
lize an arbitrary reference trajectory gr for ḡ, for example
by defining ū as in (34.53). The control u1 for the car is
then obtained by inverting relation (34.61). The follow-
ing lemma specifies a family of transverse functions for
the car case.

Lemma 1 [30] For any ε > 0 and any η1, η2, η3 such
that η1, η2, η3 > 0 and 6η2η3 > 8η3 + η1η2, the function
f defined by

f(α) =









f̄1(α)
f̄4(α)

arctan(f̄3(α))
f̄2(α) cos

3 f3(α)









with f̄ : S1 × S1 −→ R
4 given by f̄(α) =









ε(sinα1 + η2 sinα2)
εη1 cosα1

ε2(η1 sin 2α1

4 − η3 cosα2)

ε3(η1
sin2 α1 cosα1

6 − η2η3 sin 2α2

4 − η3 sinα1 cosα2)









satisfies the transversality condition detH(α) 6= 0 ∀α,
with H(α) defined by (34.59).

The simulation results reported in Figure 34.12 illus-
trate the application of this control approach for a car-
like robot. The reference trajectory is defined by the
initial condition gr(0) = 0 and its time-derivative

ġr(t) =























(0, 0, 0)T if t ∈ [0, 30]
(1, 0, 0)T if t ∈ [30, 38]
(0, 0.3, 0)T if t ∈ [38, 53]
(−1, 0, 0)T if t ∈ [53, 61]
(0, 0, 0.2)T if t ∈ [61, 80]

This corresponds to a fixed situation when t ∈ [0, 30],
three sequences of pure translational motion when t ∈
[30, 61], and a pure rotational motion when t ∈ [61, 80].
Let us remark that this trajectory is not feasible for the
car-like robot when t ∈ [38, 53], since it corresponds to a
lateral translation in the direction of the unit vector ~r
of the frame Fr associated with gr, nor when t ∈ [61, 80],
since a rear-drive car cannot perform pure rotational mo-
tion. The initial configuration of the car-like robot, at
t = 0, is g(0) = (0, 1.5, 0), and the initial steering wheel
angle is φ(0) = 0.
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Figure 34.12: Practical stabilization of an arbitrary tra-
jectory by the t.f. approach

On the upper sub-figure, the robot is drawn in plain
line at several time-instants, whereas the chassis of the
reference vehicle is drawn in dashed-line at the same
time-instants. The figure also shows the trajectory of
the point located at mid-distance of the robot’s rear
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wheels. The lower sub-figure shows the time evolution
of the tracking error expressed in the reference frame
(i.e. (xe, ye) as defined by (34.20), and θe = θ − θr). It
follows from (34.54) that after the transient phase asso-
ciated with the exponential convergence of ḡ to zero, the
ultimate bound for |xe|, |ye|, and |θe| is upper-bounded
by the maximum amplitude of the functions fx, fy, and
fθ respectively. For this simulation, the control parame-
ters of the transverse function f of Lemma 1 have been
chosen as follows: ε = 0.17, η1,2,3 = (12, 2, 20). With
these values, one can verify that |fx|, |fy|, and |fθ| are
bounded by 0.51, 0.11, and 0.6 respectively. This is con-
sistent with the time-evolution of the tracking error on
the figure. As pointed out for the unicycle case, a higher
tracking precision could be obtained by decreasing the
value of ε, but this would involve larger values of the
control inputs and also more frequent manoeuvres, espe-
cially on the time intervals [38, 53] and [61, 80] when the
reference trajectory is not feasible.

34.5 Complementary issues and

bibliographical guide

General trailer systems:
Most of the control design approaches here presented
and illustrated for unicycle and car-like vehicles can
be extended to the case of trains of vehicles composed
of trailers hitched to a leading vehicle. In particular,
the methods of Section 34.4 which are specific to
nonholonomic systems can be extended to this case,
provided that the kinematic equations of motion of
the system can be transformed (at least semi-globally)
into a chained system [37]. This basically requires that
the hitch point of each trailer is located on the rear
wheels axle of the preceding vehicle [38]. For instance,
the transformation to the chained form is not possible
when there are two (or more) successive trailers with
off-axle hitch points [34]. So-called “general trailer
systems” (with off-axle hitch points) raise difficult
control design issues, and the literature devoted to
them is sparse. For this reason, and also because these
systems are not met in applications as frequently as
simpler vehicles, control methods specifically developed
for them are not reported here. Nonetheless, a few
related references are given next. The path following
problem has been considered in e.g. [6] for a system
with two trailers and, more generally, in [19, Ch. 3]
and [1] for an arbitrary number of trailers. To our
knowledge, the problem of stabilizing non-stationary

reference trajectories has not been addressed for these
systems (except in the single trailer case for which
the system can be transformed into the chained form
[17, 34]). As a matter of fact, the explicit calculation
of feasible trajectories joining a given configuration to
another is already a very difficult problem, even in the
absence of obstacles. As for the asymptotic stabilization
of fixed configurations, the problem can (in theory)
be solved by using existing general methods developed
for the larger class of controllable driftless systems.
However, the calculations associated with these methods
quickly become intractable when the number of trailers
increases. More specific and simpler ones have been
proposed in [21], for an arbitrary number of trailers
and the asymptotic stabilization of a reduced set of
configurations, and in [42], in the case of two trailers
and arbitrary fixed configurations.

Sensor-based motion control:
The control laws described in the present chapter,
and their calculation, involve the on-line measurement,
eventually complemented by the on-line estimation, of
variables depending on the position of the vehicles in
their environment. Measures can be acquired via the
use of various sensors (odometry, GPS, proximetry, vi-
sion,...). Usually, various treatments are applied to raw
sensory data prior to computing the control variables
themselves. For instance, noise-filtering and state-
estimation are such basic operations, well documented
in the Automatic control literature. Among all sensors,
vision sensors play a particularly important role in
robotic applications, due to the richness and versatility
of the information which they provide. The combination
of visual data with feedback control is often referred
to as visual servoing. In Chapter 24, a certain number
of visual servoing tasks are addressed, mostly in the
context of manipulation and/or under the assumption
that realizing the robot task is equivalent to controlling
the pose of a camera mounted on an omnidirectional
manipulator. In a certain number of cases, the concepts
and methods described in this chapter can be adapted,
without much effort, to the context of mobile robots.
These cases basically correspond to the control methods
adapted from robotic manipulation which are described
in Section 34.3 of the present chapter. For instance, au-
tomatic driving via the control of the visually estimated
lateral distance between a robotic vehicle and the side of
a road, or car-platooning by controlling the frontal and
lateral distances to a leading vehicle, can be addressed
with the control techniques reported in Chapter 24.
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The reason is that it is possible to simply recast these
techniques in the form of the control laws proposed
in Section 34.3. However, there are also vision-based
applications for nonholonomic mobile robots which
cannot be solved by applying classical visual-servoing
techniques. This is the case, for instance, of the task
objectives addressed in Section 34.4, an example of
which is the stabilization of the complete posture (i.e
position and orientation) of a nonhonomic vehicle at a
desired one. Vision-based-control problems of this type
have been addressed in [3, 23].

A few former surveys on the control of WMRs have
been published. Let us mention [9, 18], and [43], which
contain chapters on the modeling and control issues. A
detailed classification of kinematic and dynamic mod-
els for the different types of WMR structures, on which
Chapter 17 is based, is provided in [8]. The use of the
chain form to represent WMR equations has been pro-
posed in [31], then generalized in [39].

Path following may have been the first mobile robot
control problem addressed by researchers in Robotics.
Among the pioneering works, let us cite [14, 32]. Several
results presented in the present chapter are based on [36,
37].

The problem of tracking admissible trajectories for
unicycle-type and car-like vehicles is treated in the books
[9, 18, 43], and also in numerous conference and journal
papers. Several authors have addressed this problem by
applying dynamic feedback linearization techniques. In
this respect, one can consult [12, 13, 15], and [9, Chap.
8], for instance.

Numerous papers on the asymptotic stabilization of
fixed configurations have been published. Among them,
[16] provides an early overview of feedback control tech-
niques elaborated for this purpose, and also a list of ref-
erences. The first result presenting a time-varying feed-
back solution to this problem, in the case of a unicycle-
type vehicle, is in [35]. The conference paper [25] pro-
vides a survey on time-varying feedback stabilization, in
the more general context of nonlinear control systems.
More specific results, like Propositions 9 and 12, are
given in [27, 37]. Other early results on the design of
smooth time-varying feedbacks can be found in [33, 41],
for example. Concerning continuous (but not Lipschitz-
continuous) time-varying feedbacks yielding exponential
convergence, one can consult [24]. Designs of hybrid dis-
crete/continuous fixed-point stabilizers can be found in
[5, 22, 40], for instance. The control law in Proposition
14 is taken from [26]. Discontinuous control design tech-

niques are not addressed in the present chapter, but the
interested reader will find examples of such feedbacks in
[4, 10].

To our knowledge, the control approach presented in
Section 34.4.6, which is based on the concept of trans-
verse functions [28, 29], is the first attempt to address
the problem of tracking “arbitrary” trajectories (i.e. not
necessarily feasible for the controlled robot). Implemen-
tation issues and experimental results for this approach
can be found in [2, 3]. An overview of trajectory tracking
problems for wheeled mobile robots, with a detailed case
study of car-like systems, is presented in [30].
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