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Abstract

We study invariance and viability properties of a closed set for the trajectories
of either a controlled diffusion process or a controlled deterministic system with
disturbances. We use the value functions associated to suitable optimal control
problems or differential games and analyze the related Dynamic Programming
equation within the theory of viscosity solutions.
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1.1 Introduction

Consider the controlled Ito stochastic differential equation in IR

(SDE) { ?{Xt_:x(f t (Xt)dBt +f ‘(Xt)dt, t>0, (11)
0=21x.

where B; is an M-dimensional Brownian motion and «; is the control taking
values in a given set A. A set K is invariant for (SDE) if for all initial points z €
K and all admissible controls «, the trajectory X; of (SDFE) remains in K for all
t > 0 almost surely. One of the main results of this paper is a characterization
of the closed invariant sets for (SDE) under general assumptions on the data.
Of course this problem is interesting when the diffusion process described by
(SDE) is degenerate, namely, the matrix oo’ is merely positive semidefinite
(in the nondegenerate case the only invariant set is the whole IR"). From now
on we will assume K C IRY is a closed set.

Let us recall the classical theorem of Nagumo (1942) that solves this problem
in the deterministic case (i.e., 0 = 0) and without controls, that is, for the ODE

Xff :f(Xt)a t>07
X():l'.

In this case K is invariant if and only if f(x) € Tk (x) for all x € OK, where
Tk (x) is the Bouligand-Severi contingent cone to K at z (see Sect. 4 for the
definition; Tk (z) coincides with the tangent space if K is a smooth manifold
near z). An equivalent characterization can be given in terms of the cone of
generalized interior normal vectors, or 1st order normal cone,

Ni(@):={peR": p-(y—z)>o(y—=z|) as K>y —az}.

This is the positive polar cone of Tk (x), and it reduces to the half line generated
by the interior normal to K at x if K is the closure of an open set with smooth
boundary and z € 0K. We can reformulate Nagumo’s theorem as follows:

K is invariant if and only if f(z)-p >0 for all p € N} (z) and all z € OK.

For deterministic systems with control, that is,

X{ = f(Xt,CKt), t> 0,
{ Xy = . (1.2)
the property characterizing the invariance of a closed set K becomes
f(z,a) - p>0 Va€ A, pe Ni(z), v € OK. (1.3)



The corresponding result for the controlled diffusion process (SDFE) requires
the following 2nd order normal cone

Ni(z) == {(p,Y) e RN x S(N): for K>y —=x
Py =)+ 5y =) Yy —2) 2 olly ),

where S(N) is the set of symmetric N x N matrices. The relation between the
1st and the 2nd order normal cones is transparent, in particular p € N (z) if
(p,Y) € N&(x). Here is the Invariance Theorem for (SDE):

all the trajectories of (SDE) starting in K remain forever in K a.s. if and
only if

1
) p+ §trace(a“(m)aa(x)TY) >0 Ya€ A, (pY)€eNi(z), » € OK.
(1.4)
This result is better understood if K is the closure of an open set whose boundary
is twice differentiable at the point z € K. Let us consider for simplicity an
uncontrolled equation of the form

dXt = f(Xt)dt + U'(Xt)dBt

where B; is a one-dimensional Brownian motion and o is a vector field. In this
case the condition (1.4) becomes

o(z)-7(z) =0 and %S(Po(m)) > f(z) - fi(z), (1.5)

where 7i(z) is the exterior normal to K, P is the orthogonal projection on the
tangent space to K at z, S is the second fundamental form of 0K at z (oriented
with 7i(x)). This says that the diffusion vector o is tangential to 0K and the
component of the drift pointing outward K is smaller than a quantity depending
on the curvature matrix of 0K and the diffusion vector. This is the stochastic
generalization of the condition f(z)-7(z) <0 in the deterministic case.

Previous sufficient conditions of invariance of closed sets for uncontrolled
diffusions can be found in the books of Friedman (1976) (for K closure of a
smooth open set) and of Ikeda and Watanabe (1981) (for K smooth manifold
and stochastic differential equations in the Stratonovich sense). Aubin and Da
Prato (1990) (1995) characterized the invariance of random closed sets by means
of a notion of stochastic contingent set, see also Gautier and Thibault (1993)
and Milian (1993) (1995) (1997).

Our approach is completely different from the preceding. We start from the
observation that K is invariant if and only if the first exit time ,(a.) of the
trajectory of (SDE) from K is +oo for all z € K and all admissible controls «,
almost surely. Then we consider the value function

v(z) := inf B(1 - e te(o)y, (1.6)



and note that
K is invariant <= v(z) =1 Vz € K.

A Hamilton-Jacobi-Bellman equation is associated to the stochastic control
problem of (1.6) via Dynamic Programming, and even if the value function
is not continuous in general, it satisfies such nonlinear PDE in the viscosity
sense in the interior of K, and a generalized Dirichlet boundary condition on
0K, see P.L. Lions (1983a) (1983b), Ishii (1989), Ishii and Lions (1990). We
proved in Bardi and Goatin (1997) that v is indeed the maximal subsolution of
a suitable boundary value problem (BV P) for the HJB equation, see Sect. 2.
Thus we can establish if K is invariant by checking whether the constant 1 is
the maximal subsolution of (BV P), and this leads naturally to the condition
(1.4) involving the 2nd order normal cone.

The approach is rather flexible and we believe it applies to other related
problems, such as the viability of the set K. This weaker property says that for
all initial points z € K there exists at least one trajectory of the system that
remains in K for all ¢ > 0 almost surely. Viability has a large literature in the
case of deterministic differential inclusions, see Aubin and Cellina (1981), Aubin
(1991), Ledyaev (1994) and the references therein, and was studied recently by
Aubin and Da Prato (1997) in the stochastic case.

Here we test our method to prove a viability theorem for controlled sys-
tems affected by a bounded disturbance whose statistics are not known. More
precisely we consider

Xff = f(Xt,at,bt), t > 0
XU =,

where a; is an unknown measurable disturbance taking values in a compact
set A, b; is the control taking values in a compact set B, and the controller is
allowed to use relaxed controls. We say that K is viable if for all z € K there
exists a nonanticipating strategy for the controller that keeps the trajectory X;
forever in K for all disturbances (see Guseinov, Subbotin and Ushakov (1985)
for a class of related problems formulated within the Krasovskii-Subbotin theory
of positional differential games). In this problem we consider the value function
of a suitable differential game, see Sect. 2 for all the definitions. By means of
the Hamilton-Jacobi-Isaacs equation of this game we prove that K is viable if
and only if

Ve €K, ac€ A, peNk(x), b, € B : f(x,a,b,)-p>0.

Note that if B is a singleton we obtain the characterization of invariance (1.3) for
system (1.2), while in the case that A is a singleton we obtain a viability theorem
for a (parametrized) differential inclusion. In Sect. 4 we also reformulate these
results in terms of the contingent cone Tk (x), which is the usual tool in viability
theory, and of other objects of nonsmooth analysis (such as proximal normals
and Clarke tangent cone).



We refer the reader to Crandall, Ishii, Lions (1992) and Bardi, Crandall,
Evans, Soner, Souganidis (1997) for surveys of the theory of viscosity solutions,
to the books by Fleming and Soner (1993) and Bardi and Capuzzo-Dolcetta
(1997) for the applications, respectively, to stochastic control and to deter-
ministic control and games, to Fleming and Souganidis (1989) for stochastic
differential games.

The paper is organized as follows. Section 2 recalls some results on discontin-
uous viscosity solutions and their relation with the value functions of stochastic
control problems and differential games involving the exit time from a closed
set. Section 3 is devoted to the invariance theorem for (SDE) and to several
examples. Section 4 deals with viability and invariance for deterministic sys-
tems with and without disturbances, and gives several equivalent characterizing
properties based on various tools of nonsmooth analysis.

1.2 Value functions and Dynamic Programming
Equations

We consider the boundary value problem

(BVP) F(l‘,U,DU,DzU) =0 in Q I:I%, (21)
u=0or F(zx,u,Du,D*>uv) =0 on 0K,
where F' is a nonlinear degenerate elliptic operator and K is an arbitrary closed

set and K is its interior. The boundary condition in (BV P) is to be under-
stood in the pointwise viscosity sense, see the precise definition (2.6) below. In
particular, we are interested in the Isaacs-Bellman operator

F(z,r,p,X) = sup i%f[—trace(Aa’B(:n)X)—fa’B (w)-p+ca’5(w)r—la’5(w)], (2.2)

and we assume that for all z € RY, 4*#(z) = 167 (z)0* (z)", where 0% (z)
is a N x M matrix, T denotes the transpose matrix, g®#, f&8 %8 %8 are
bounded and uniformly continuous, uniformly with respect to «, 3, so that the
operator is continuous. Moreover we require that A*?(z) > 0 for all a, 8 and
there exist C > 0 and ¢g > 0 such that

lo®P(z) — a®B(y)|| < Clz —y|, for all z,y € Q and all «, 3 (2.3)

|foP(z) — f*B(y)| < Ol —yl, for all z,y € Q and all «, 3, (2.4)
B (x) > ¢p, for all x € Q, and all a, 3.
We denote by S, the set of all subsolutions of (BV P), that is

Sy = {w:K — R bounded, upper semicontinuous,
and subsolution of (BV P)},



and by Z, the following set

Z., = {W:0 — IR is bounded and lower semicontinuous,
O is open, K C O,
W is supersolution of F' = 0in O, W > 0 on 00}.

For the definitions of viscosity sub- and supersolution we refer to Ishii, Lions
(1990) or Crandall, Ishii, Lions (1992). By a subsolution of (BV P) we mean a
subsolution in viscosity sense not only of the PDE in  but also of the boundary
condition; this means that, for all x € 0K,

min{u(z), F(z,u(z),p,Y)} <0 ¥(p,Y) € T u(x), (2.6)
where
T2t u(z) :={(p,Y) e RN x S(N): for K3y > =

1
u(y) Su@) +p-(y—2) + 5 -2) Yy —2) +olly -2}
In Bardi and Goatin (1997) we proved that for general nonlinear degenerate
elliptic equations, there exists the maximal subsolution of (BV P) and

= = inf . 2.
u(z) = maxw(z) = inf W(z) (2.7)
This is the natural generalized solution of (BV P), and we call it envelope solu-
tion (briefly e-solution), or Perron-Wiener solution, of (BV P). Here is a precise
statement for the Isaacs-Bellman operator (2.2).

Theorem 2.2.1 Assume A*P = 15%8 ()T for some N x M matriz val-
ued functions 0P, and o®P, foB c*B 198 be uniformly bounded with respect
to o, B and satisfy (2.3), (2.4), (2.5) with co > 0. Suppose also I*? are uni-
formly continuous, uniformly in o, 3. Then for any closed set K there exists
the mawximal subsolution u of (BV P) and it satisfies (2.7).

For the proof see Bardi and Goatin (1997); see also Bardi, Goatin and Ishii
(1998) for further properties of the e-solution.

In the sequel we will study the time-optimal stochastic control problem and a
deterministic differential game. The two following theorems state that the value
function of the control problem and the differential game are the e-solutions of
the corresponding (BV P).

For the time-optimal stochastic control problem we consider a probability
space (Q', F, P) with a right-continuous increasing filtration of complete sub-o
fields {F;}, a Brownian motion B; in IRM F;-adapted, a compact set A, and
call A the set of progressively measurable processes a; taking values in A. We
are given bounded maps ¢ from IRY x A into the set of N x M matrices and



f: RN x A — IRV satisfying (2.3), (2.4) and consider the controlled stochastic
differential equation

(SDE) { ?(Xt_z 0% (X¢)dBy + f (X¢)dt, >0,
0=

This has a pathwise unique solution X; which is F;-progressively measurable
and has continuous sample paths. We are given also two bounded and uniformly
continuous maps [,c : RY x A = IR, ¢*(z) > co > 0 for all z,a, and consider
the cost functional

fe(a) — [ e (Xo)ds
J(z,a):=F / [*(X)e Jo Tt
0

where E denotes the expectation and
te(a):=inf{t>0:X; ¢ K}

for a given compact set K (of course f,(a.) = +oo if X; € K for all t > 0). We
define the value function

v(z) = al,réfA J(z,a),

and consider the Bellman equation
F(z,u, Du, D*u) := max,ea{—trace(A*(z)D?*u — f*(z) - Du +
+c*(x)u —1*(x)} =0,
1

where the matrix A%(z) := Jo*(x)0®(z)”. We consider the boundary value

problem (BV P) under the additional assumption
[“(z) >0 forallz € RN, a € A. (2.8)
Theorem 2.2.2 Assume (2.8). Then the value function

() — [l e (X ds
v(z) = inf E / [ (X¢)e Jo Tt
0

a €A

is the unique e-solution of (BV P), i.e. v =wu with the property (2.7).
For the proof see Bardi and Goatin (1997).

Next we consider a two-person zero-sum deterministic differential game. We
are given a controlled dynamical system

{ ZI(OZ i(g;ft),a(t),b(t)), t>0 (2.9)



where f : RN x Ax B — IRY is continuous, A, B are compact metric spaces and
a = a(-) € A := {measurable functions [0, +00) — A} is the control function of
the first player. For the second player we will use relaxed controls b = b(-) €
B" := {measurable functions [0,+o0c0) — B"} where B" is the set of Radon
probability measures on B. For the definitions of relaxed trajectories of (2.9)
we refer for instance to Warga (1972), Bardi and Capuzzo Dolcetta (1997). We
will always assume that the system satisfies, for some constant L,

(f(a:,a,b)—f(y,a,b))(a:—y) SL|1‘—y|2 (210)

for all z,y € RN, a € A, b€ B.
The cost functional, which the first player wants to minimize and the second
player wants to maximize, is

t.(a,b) .
J(:E,a, b) = / eitdt =1 eitw(avb)’
0

where #,(a,b) is the first exit time from a given closed set K C IRY, i.e.
te(a,b) == inf{t € [0,+00) : y,(t,a,b) € K}, y.(t,a,b) being the solution of
(2.9) corresponding to a € A, b € B". Note that f, is the time taken by the
system to reach the open target IR™ \ K, and that J is a bounded and increasing
rescaling of .

A relaxed strategy for the second player is a map 3 : A — B"; it is nonan-
ticipating if, for any ¢t > 0 and a,a € A, a(s) = a(s) for all s < t implies
Bla](s) = pla](s) for all s < ¢, see Elliot and Kalton (1972), Bardi and Capuzzo-
Dolcetta (1997). We will denote with A" the set of nonanticipating relaxed
strategies for the second player.

Now we can define the upper value of this differential game, which is

a(x) = sup inf J(z,a,f[a]).
BeAr aEA

It is well known by the Dynamic Programming Principle that the upper value is
a viscosity solution of the upper Hamilton-Jacobi-Isaacs (briefly HJI) equation

u(z) + H(z, Du(z)) := u(z) + r;leajigréig{—f(w, a,b) - Du(z) —1} =0 in K.

Theorem 2.2.3 Assume (2.10). Then the upper value of the minimum time
problem

iz (a,Bla])
a(x) = sup inf e 'dt
) BEB a€A Jo
is the mazximal subsolution of
(BVP") u+f[(x,Du)~:0 in K, (2.11)
u=0oru+ H(x,Du) =0 ondK,

and therefore the e-solution (BV P ™).



The proof can be found in Bardi and Goatin (1997). Let us recall that,
since the PDE in (2.11) is of 1st order, a formulation of the boundary condition
equivalent to (2.6) is the following:

u(z) <0 or wu(z)+ H(z,p) <0 Vpe Jtu(z), (2.12)
for all z € 0K, where

Tt u(@) == {pe R :uy) <ul)+p-(y—1)+olly—a|) for K>y}

2.3 Invariant sets for diffusions

In this section we consider the stochastic controlled system (SDE) of equation
(1.1), a closed set K C RN, and characterize the invariance of K for the tra-
jectories of (SDE). We recall that K is invariant for (SDE) if f,(a) = 400
almost surely for all z € K and admissible controls «, see the definitions in
Section 2. Following the approach outlined in the Introduction we consider the
value function v defined by (1.6) that satisfies Theorem 2.2.2 with [ = ¢ = 1.
The corresponding HJB equation is then

1
u+ max {—§trace(aa(aa)TD2u) —f“ -Du} —1=0.

Theorem 3.3.1 Assume o, f* be uniformly bounded with respect to o and
satisfy (2.3), (2.4). Then K is invariant if and only if for any x € 0K and any
a€cA

%trace(aa(a:)a“(a:)TY) +f¥z)-p>0V(p,Y) € Ni(z). (3.1)

Proof. By the definitions, the set K is viable if and only if the value function
v = 1. To prove this we observe that v < 1 by definition and, by Theorem 2.2.2,
v is the maximal subsolution of the boundary value problem (BV P) of equation
(2.1). Then v = 1 if and only if the constant function u(x) := 1 is a subsolution

of (BV P). The HJB equation is trivially satisfied by u in IO(, while the boundary
condition (2.6) holds if and only if for all z € K and (p,Y) € Jp " u(x)

max {—%trace(aa(a:)a“(a:)TY) - f° -p} <0.

Now we note that J2 " u(z) = N2 () and get the conclusion. a

In the sequel we will show what (3.1) becomes in some particular cases.



Example 3.3.2 (K closure of a smooth open set) If K = Q, where Q is a
C? N-submanifold of RY with boundary, and = € 99, then the contingent cone
Tk (z) is a halfspace and €2 has an exterior normal 77 at . In this event we have
the following characterization of N7 (z) (see Crandall, Ishii and Lions (1992)):
if we represent () near = 0 in the form

{(@,2n) s an < V(D)

where & = (z1,...,xny—1), and we assume that the boudary of Q is twice differ-
entiable at 0 and rotated so that the normal is 7 = ey = (0, ...,0,1), it is not
hard to see that

p=0,Y >0;

or

p=—Ai, A>0,and for z — 0

AT - D2¥(0)% — (%,0) - Y(Z,0) < o(|Z]?).

(p,Y) € NE(0) <=

If in (SDE) we let 0% be the i-th column of the N x M matrix o, and we drop
the dependence on «, we can write the equation as

M
dX; = f(Xy)dt + Y o'(X¢)dB}, (3.2)

i=1

where B} are the components of By, so they are one-dimensional independent
Brownian motions. Then we can write (3.1) as

M
% Zai(O) Yo' (0) + £(0) - p > 0 for any (p,Y) € NZ(0).

By the characterization of the elements of Nz (0), we have that (3.1) holds at
x = 0 if and only if

M
o(0) =0 Vi=1,..,M, and %Z&i(o)-DQ\II(O)ﬁi(O) > f(0)-7, (3.3)

i=1

where ¢ = (oi,...,0%_,). Note that if K is strictly convex (near 0) and o(0) #
0, the drift vector f must be directed to the interior of K, because the matrix
D2¥(0) is negative definite. On the other hand, if IR™ \ K is strictly convex and
a(0) # 0, the drift can have a small component directed outward K because in
this case the diffusion pushes the system inside K.

Returning to the original coordinates, the condition (3.1) reads

M
ii(z) o(z) =0 and %Z S(Po(z)) > f(x) - fi(x), (3.4)

i=1



where P is the orthogonal projection on the tangent space to K at = and S
is the second fundamental form of 0K at x, oriented with the exterior normal
We can also rewrite (3.4) in terms of the Hessian matrix of any function p
of class C? in a neighborhood of K and such that p(z) = 0 and Vp(z) = 7i(x)
for all z € OK (e.g., the signed distance function from 0K). In fact S(Pw) =
—w - D?p(x)w for any tangent vector w at = € 0K, so (3.4) is equivalent to

i(z) 0% (x) =0 and f(z) - ii(z) + trace(A® (z)D*p(z)) < 0, (3.5)

where A% = 152 (c®)T. A direct proof of the sufficiency of this condition (for
all z € OK) for the invariance of K can be also found in the book of Friedman
(1976) (without control ).

Example 3.3.3 (Balls and exterior of balls) Here we consider two special
cases of the previous example. The first is the ball K = {z : |z| < R} (see also
Aubin and Da Prato (1990)). We obtain that K is invariant if and only if, for
all @ € A and |z| = R,

tTo%(x) =0 and fo(z) -2+ %BHUO‘(QIJ)H2 <0, (3.6)

where || - || denotes the Euclidean matrix norm.
The second example is the complement of a ball, K = {z : |z| > R}. Now
the condition of invariance is, for all « € A and |z| = R,

1
tTo%(x) =0 and fo(z) -2+ ﬂ%Hao‘(aI:)H2 > 0.
Both examples show clearly the role of the curvature of 0K for the invariance

property.

Example 3.3.4 (K hypersurface) If K is a (N-1)-dimensional manifold of
class C? without boundary in IR", the contingent cone at a point z € K turns
out to be the tangent hyperplane at x. We can change coordinates as in Example
3.3.2 and represent K near z = 0 as the graph of a twice differentiable function
U of the first N — 1 variables, with normal vector 7(0) = (0,...,0,1). Using
the same notations as in Example 3.3.2 we compute

p=0, (£0)-Y(%0) >0Vi e RN
or

p=Aii, A# 0,and for Z — 0

AT - D2W(0)% + (%,0) - Y(Z,0) > o(|Z]?).

(p,Y) € NE(0) <=

So in this case (3.3) becomes

M
o (0)=0 Vi=1,..,M, and %Z&i(()) -D*T(0)5°(0) = £(0) - 7.

i=1

10



Then the invariance condition in the original coordinates is (3.4) or (3.5) with
the inequality replaced by an equality; for the sphere of radius R the condition
is (3.6) with = instead of <.

Example 3.3.5 (Smooth diffusion matrix and Stratonovich equations)
If the matrix o is twice differentiable the conditions of the previous examples
can be also written as follows. We use the notation of Example 3.3.2 and observe
that Vp-o’ =0 on 0K and o’ tangent to K imply

0t -V(Vp-0')=0 on OK.
This gives ' ‘ ‘ ‘
ol - D’pot = —o' - D'V,

where Do is the Jacobian matrix of the vector field o?. Then the inequality in
(3.5) becomes

1 & . .
i(z) - p(x) := 7i(z) - (f(ﬂf) —3 > Do'(z) Ul(ﬂf)> <0, (3.7)

i=1

where we temporarily dropped a. The new vector field ¢ appearing in this
inequality is the drift of the Stratonovich equation equivalent to (3.2), and we
can rewrite its components as

R S
¢j T 2 6Cﬂk Thi-
i=1 k=1

Now the invariance condition (3.4) or (3.5) can be written as
ii(z) o (z) =0 and 7i(z) - ¢*(x) <0 (3.8)

for all z € 0K and a € A.
In the case that K is a hypersurface, as in Example 3.3.4, the inequalities in
(3.7) and (3.8) become equalities, and the invariance condition now is

(c®)i(z) € Tk(x) Vi=1,...,M, ¢*(x) € Tk(z)

for all z € OK and a € A, where Tk (z) is the tangent vector space to K at
z. This is the classical condition for the existence of a diffusion process on
a manifold in Tkeda and Watanabe (1981). See also Milian (1997) for similar
results for manifolds with boundary.

Example 3.3.6 (Polyhedra) Let K be a halfspace, i.e.

K={zreR":(x—a) <0} =:P(a,i)

11



for some point @ € RY and some vector i € IRY, or, up to rotation,
K ={(Z,zn): 2y <a+ X &}
So in this case (3.3) reads :
f-7<0, ¢¢-7=0Vi=1,...,M.
In general, if we consider a polyhedron, that is any set of the form

K = ﬂ P(ak,fik),
kel

where I = {1,...,r} is a finite set, we recover the following result of Milian
(1995).

Theorem 3.3.7 Let K = [\, P(ax, k) be a polyhedron in RN . Suppose that
f, o satisfy conditions (2.3), (2.4). Then K is invariant for (3.2) if and only
if the following condition holds:

f(x)-fx <0 and o¥(x) - =0 Vi=1,..., M,
for all k € I and x € OK such that (x — ay, i) = 0.

This result follows from the previous one on hyperplanes, by extending f and
o out of K in a suitable way. Of course it is not hard to extend it to the case
that f and o in (3.2) are controlled vector fields.

Example 3.3.8 (Union of smooth sets) Assume K = K; U K, where K,
i = 1,2, are closures of smooth open sets in IR as in Example 3.3.2. If z €
0K N OK,, and 71 (x) # ma(x) (77; denotes the exterior normal to K;), then
NZ(z) ={(0,Y): Y > 0}. In fact, since Tk (z) = Tk, () UTk, (), and Tk, (z)
are halfspaces, if (p,Y) € NZ(z) then p is parallel to both 71 (z) and 7i2(z). So
at the points x € 0K; NOK» we need no conditions on f and o for (3.1) to hold,
while at the other points of K the condition is the same as in Example 3.3.2.

3.4 Viability for deterministic systems with dis-
turbances

In this section we consider the deterministic controlled dynamical system (2.9).
We recall the definition of 1st order normal cone to the set K C IRY at the
point x

1 N o i y—o
= : . > :
Nk () {pEB }éranylgg 7 Wzl _0},

we note that, up to a change of sign, it coincides with the regular normal cone in
the terminology of Rockafellar and Wets (1998). We recall also the definition of
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the Bouligand-Severi contingent cone (see Aubin and Cellina (1981) and Aubin
and Frankowska (1990)), which is simply called tangent cone by Rockafellar and
Wets (1998),

Tk(z) := {v c RN : hminfw — 0} :
h—0+ h

where dg is the distance function from the set K, and of the proximal normal
cone generated by the Bony generalized exterior normals to K

Pr(z)={qeR" |I>0:q - (y—az)<ely—z>Vye K}.

Theorem 4.4.1 Assume (2.10). Then the following statements are equivalent:

(i) K is viable, i.e., for all x € K there ezists a relazed strategy f € A" such
that t,(a, Bla]) = +oo for all a(-) € A;

(ii) for all x € OK, p € N\ (), and a € A, there exists b € B such that
f(:v,a,b) p2>0;

(iii) for all x € OK, q € Pk (z), and a € A, there exists b € B such that
f(a:,a,b) +q <05

(iv) for all x € OK and a € A, there exists b € B such thal f(z,a,b) €
colk (x).

For the proof of the equivalence of (iv) we need one more concept of nons-
mooth analysis, namely, the Clarke tangent cone to K at x

!
Ck(z) := {v e RN : lim inf M = 0}.
K>z'—x,h—0+ h

For equivalent definitions and some properties of all these cones we refer to
Aubin and Frankowska (1990) and Rockafellar and Wets (1998). We only recall
the following inclusions

Ck(z) = liminf Tk(y) = liminf @0Tk(y) C Tk(z), (4.1)

K>y—x K>y—x

where liminf, ., S(z) = {z = lim, 2, : 2n, € S(Yn),yn — x} (see, e.g., Theorem
4.1.10 in Aubin and Frankowska (1990)) . We introduce now the (positive) polar
cone to a subset S C IRY defined by

S°:={pe RN :p-q>0 forany q € S}.
Lemma 4.4.2 N} (z) = (Tk(z))°.

Proof. N} (z) C (Tk(z))° follows from the definitions. On the contrary, assume
that p € N (z). Then there exists a sequence of points K 3 y, — z such that

lim,, o0 p - ‘Z::; < 0. We have that é::il — q € Tk(z). Then p-¢ < 0, and

p & (Tk(x))°. m
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Lemma 4.4.3 A vector ¢ € Pk (z) if and only if (—q,Y) € Nz (z) for some
matriz Y .

The proof of this Lemma is straightforward.

Proof of Theorem 4.4.1. By the definitions,the set K is viable if and
only if the value function & = 1, and this occurs if and only if the constant
u = 1 is a subsolution of (BV P ™) in equation (2.11); in fact & < 1 and it is
the maximal subsolution of (BV P ™) by Theorem 2.2.3. Substituting v =1 in

the equation we see that it is a solution in K, and it is a subsolution of the
boundary condition (2.12) if and only if for any z € K and p € Jx u(z)
in{— -p} <0. 4.2
maxmin{—f(z,a,) - p} <0 (42)
Since 7, [1(’+u(:n) = N (z) we get the equivalence between (i) and (ii).
The equivalence between (ii) and (iii) is obtained in a similar way: now
we use the boundary condition (2.6), we get (4.2) for all p such that (p,Y) €
Tt u(z) = N (z), and then we conclude by Lemma 4.4.3.

The equivalence between (ii) and (iv) follows easily from Lemma 4.4.2; since
S°° =zoS. =

Remark 4.4.4 Guseinov, Subbotin and Ushakov (1985) analyzed a similar
problem in the study of stable bridges for pursuit-evasion games in the frame-
work of the Krasovskii-Subbotin theory of positional differential games. They
found two equivalent conditions related to (iv).

The next two results are consequences of Theorem 4.4.1.

Theorem 4.4.5 (Invariance) Let (2.10) hold and B be a singleton. Then the
following statements are equivalent:

(i) K is invariant for the player a;

(ii) f(z,a) -p >0 for every x € K, p € N} (x), and a € A;

(iii) f(z,a)-q <0 for every x € 0K, q € Px(z), and a € A;

(i) f(x,A) CcolTk(x) for every x € OK;

(v) f(x,A) C Tk(zx) for every x € OK;

(vi) f(xz,A) C Ck(z) for every x € K.

Proof. By Theorem 4.4.1 it is enough to prove the equivalence of the last three
statements. By (4.1) (vi) implies (v) and (iv). Now assume (iv), fix x € 0K
and take K > x, — x. By assumption (iv), f(xy,a) € coTk(x,) for all a € A.
Then f(z,a) € liminfxs,—,» €0Ik(y) and we get the result by (4.1). a

In the last result of this section we assume A is a singleton; then the definition
of viability simplifies because we do not have to use strategies.
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Theorem 4.4.6 (Viability) Let (2.10) hold and A be o singleton. Then the
following statements are equivalent:

(5) K is viable, i.e., for all x € K there exists a relaxed control b(-) € B"
such that t,(b) = 400;

(7j) for all x € OK and p € N} (z) there is b € B such that f(z,b) -p > 0;

(733) for all x € OK and q € Pk (x) there is b € B such that f(z,b) - q <0;
(v) f(xz,B) NcoTk(x) # O for all z € OK.

Remark 4.4.7 Under the assumptions of this theorem the solutions of (2.9)

associated with relaxed controls b(-) correspond to the trajectories of the differ-

ential inclusion y' € ¢of(y, B). Then the classical viability theorem (see Aubin

and Cellina (1981)) implies that the statements (j) - (jv) are also equivalent to
(v) eof (x,B) N Tk (z) # 0 for all z € OK.

Note that, for f(z,B) convex, condition (jv) looks weaker than the standard

condition (v), because Tk (z) is not convex in general. The equivalence between

them is not trivial, Ledyaev (1994) pointed out that it follows from the work of
Guseinov, Subbotin and Ushakov (1985).
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