FREE BOUNDARY PROBLEMS 2012

A GENERAL PHASE TRANSITION MODEL FOR VEHICULAR TRAFFIC

Paola Goatin INRIA Sophia Antipolis - Méditerranée France

Chiemsee, June 14, 2012

Outline of the talk

Macroscopic traffic flow models

Traffic flow models with phase transitions

Analytical study

Finite volume numerical schemes

Extension to road networks

First order macroscopic models

Lighthill-Whitham '55, Richards '56, Greenshields '35:

- ▶ Traffic state: density $\rho(t, x)$ of vehicles at time t and location x
- ▶ Non-linear transport equation: scalar one dimensional conservation law

 $\partial_t \rho + \partial_x f(\rho) = 0, \quad f(\rho) = \rho v(\rho)$

▶ Empirical flux function: the fundamental diagram

with R the maximal or *jam* density, and ρ_c the critical density:

- flux is increasing for $\rho \leq \rho_c$: free-flow phase
- flux is decreasing for $\rho \ge \rho_c$: congested phase

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- ▶ Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- ▶ Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- ▶ Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Second order models

▶ Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

Critics (Del Castillo et al. '94, Daganzo '95):

- drivers should have only positive speeds;
- ▶ anisotropy: drivers should react only to stimuli from the front.

Inría

Second order models

▶ Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

► Aw-Rascle '00:

$$egin{aligned} &\partial_t
ho + \partial_x(
ho v) = 0 \ &\partial_t(
ho w) + \partial_x(
ho v w) = 0 \end{aligned} \quad v = v(
ho,w) \end{aligned}$$

 $w=v+p(\rho)$ Lagrangian marker, $p=p(\rho)$ "pressure"

Second order models

▶ Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

► Aw-Rascle '00:

$$egin{aligned} &\partial_t
ho + \partial_x(
ho v) = 0 \ &\partial_t(
ho w) + \partial_x(
ho v w) = 0 \end{aligned} \quad v = v(
ho,w) \end{aligned}$$

 $w=v+p(\rho)$ Lagrangian marker, $p=p(\rho)$ "pressure"

► Colombo '02:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t q + \partial_x((q-Q)v) = 0 \end{cases} \quad v = v(\rho, q)$$

 \boldsymbol{q} "momentum", \boldsymbol{Q} road parameter

nría

Traffic flow models with phase transitions

Outline of the talk

Macroscopic traffic flow models

Traffic flow models with phase transitions

Analytical study

Finite volume numerical schemes

Extension to road networks

Traffic flow models with phase transitions

Phase transition (Colombo '02)

Fluid flow: $(\rho, q) \in \Omega_f$

 $\begin{cases} \partial_t \rho + \partial_x (\rho v_f) = 0\\ q = \rho V \end{cases}$ $v_f(\rho) = \left(1 - \frac{\rho}{R}\right) V$

Congestion: $(\rho, q) \in \Omega_c$

$$\begin{cases} \partial_t \rho + \partial_x (\rho v_c) = 0\\ \partial_t q + \partial_x ((q - Q) v_c) = 0 \end{cases}$$
$$v_c(\rho, q) = \left(1 - \frac{\rho}{R}\right) \frac{q}{\rho}$$

Traffic flow models with phase transitions

Aw-Rascle model with phase transition

(Goatin '06)

nría

General view point

(Blandin-Work-Goatin-Piccoli-Bayen '11)

nría

General view point

(Blandin-Work-Goatin-Piccoli-Bayen '11)

Outline of the talk

Macroscopic traffic flow models

Traffic flow models with phase transitions

Analytical study

Finite volume numerical schemes

Extension to road networks

Analysis of congestion phase

Eigenvalues	$\lambda_1(\rho, q) = v_c^{eq}(\rho) \left(1 + q\right) + q v_c^{eq}(\rho) + \rho \left(1 + q\right) \partial_\rho v_c^{eq}(\rho)$	$\lambda_2(\rho, q) = v_c^{eq}(\rho)(1+q)$
Eigenvectors	$r_1 = \left(\begin{array}{c} \rho \\ q \end{array}\right)$	$r_2 = \begin{pmatrix} v_c^{eq}(\rho) \\ -(1+q) \partial_\rho v_c^{eq}(\rho) \end{pmatrix}$
Nature of the	$\nabla \lambda_1 \cdot r_1 = \rho^2 \left(1 + q \right) \partial^2_{\rho \rho} v_c^{eq}(\rho) +$	$\nabla \lambda_2 . r_2 = 0$
Lax-curves	$2 \rho (1+2q) \partial_{\rho} v_c^{eq}(\rho) + 2 q v_c^{eq}(\rho)$	
Riemann in-	$v_c^{eq}(\rho) \left(1+q\right)$	q/ ho
variants		

- First family of Lax-curves is not genuinely-non-linear (in flux-density coordinates curves GNL equivalent to all Lax-curves have same concavity)
- Second family of Lax-curves is linearly degenerate (information propagates at a constant speed)
- ▶ System is Temple class (shock and rarefaction curves coincide)

Domain definition

Definition of free-flow and congestion phases as invariant domains of dynamics

Model parameters: free-flow speed V, jam density R, critical density ρ_c , upper and lower bound for perturbation q^- and q^+

Paola GOATIN

Innía

Riemann solver

▶ free-flow to free-flow: contact discontinuity

June 14, 2012 - 13

Riemann solver

- ▶ free-flow to free-flow: contact discontinuity
- ▶ congestion to congestion: shock or rarefaction + contact discontinuity

Riemann solver

- ▶ free-flow to free-flow: contact discontinuity
- ▶ congestion to congestion: shock or rarefaction + contact discontinuity
- ▶ congestion to free-flow: shock or rarefaction + contact discontinuity

Riemann solver

- ▶ free-flow to free-flow: contact discontinuity
- ▶ congestion to congestion: shock or rarefaction + contact discontinuity
- ▶ congestion to free-flow: shock or rarefaction + contact discontinuity
- ▶ free-flow to congestion: phase transition + (rarefaction) + contact discontinuity

Cauchy problem - admissible solutions

Consider weak solutions $\mathbf{u} = (\rho, q)$ of

$$\begin{cases} \partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0\\ \mathbf{u}(0, x) = \mathbf{u}_0(x) \end{cases}$$

where

$$\begin{cases} \mathbf{f}(\mathbf{u}) = \mathbf{f}_f(\mathbf{u}) = \begin{pmatrix} \rho v_f(\rho) \\ q v_f(\rho) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_f \\ \mathbf{f}(\mathbf{u}) = \mathbf{f}_c(\mathbf{u}) = \begin{pmatrix} \rho v_c(\rho, q) \\ q v_c(\rho, q) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_c \end{cases}$$

Cauchy problem - admissible solutions

Consider weak solutions $\mathbf{u} = (\rho, q)$ of

$$\begin{cases} \partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0\\ \mathbf{u}(0, x) = \mathbf{u}_0(x) \end{cases}$$

where

$$\begin{cases} \mathbf{f}(\mathbf{u}) = \mathbf{f}_f(\mathbf{u}) = \begin{pmatrix} \rho v_f(\rho) \\ q v_f(\rho) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_f \\ \mathbf{f}(\mathbf{u}) = \mathbf{f}_c(\mathbf{u}) = \begin{pmatrix} \rho v_c(\rho, q) \\ q v_c(\rho, q) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_c \end{cases}$$

• $\forall \varphi$ in $C_c^1(\mathbb{R}^2)$ with compact support contained in $\mathbf{u}^{-1}(\Omega_f)$

$$\iint \left(\mathbf{u}\partial_t \varphi + \mathbf{f}_f(\mathbf{u})\partial_x \varphi\right) dx dt + \int \mathbf{u}_0(x) \,\varphi(0,x) dx = 0$$

Cauchy problem - admissible solutions

Consider weak solutions $\mathbf{u} = (\rho, q)$ of

$$\begin{cases} \partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0\\ \mathbf{u}(0, x) = \mathbf{u}_0(x) \end{cases}$$

where

$$\begin{cases} \mathbf{f}(\mathbf{u}) = \mathbf{f}_f(\mathbf{u}) = \begin{pmatrix} \rho v_f(\rho) \\ q v_f(\rho) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_f \\ \mathbf{f}(\mathbf{u}) = \mathbf{f}_c(\mathbf{u}) = \begin{pmatrix} \rho v_c(\rho, q) \\ q v_c(\rho, q) \end{pmatrix} & \text{if} \quad (\rho, q) \in \Omega_c \end{cases}$$

• $\forall \varphi$ in $C_c^1(\mathbb{R}^2)$ with compact support contained in $\mathbf{u}^{-1}(\Omega_f)$

$$\iint \left(\mathbf{u}\partial_t \varphi + \mathbf{f}_f(\mathbf{u})\partial_x \varphi\right) dx dt + \int \mathbf{u}_0(x) \,\varphi(0,x) dx = 0$$

• $\forall \varphi$ in $C_c^1(\mathbb{R}^2)$ with compact support contained in $\mathbf{u}^{-1}(\Omega_c)$

$$\iint \left(\mathbf{u} \partial_t \varphi + \mathbf{f}_c(\mathbf{u}) \partial_x \varphi \right) dx dt + \int \mathbf{u}_0(x) \, \varphi(0, x) dx = 0$$

Cauchy problem - admissible solutions

• Mass conservation at phase transitions: phase transition speed Λ must satisfy Rankine-Hugoniot conditions

$$\Lambda(\rho_+ - \rho_-) = F_+ - F_-$$

with

$$F_{-} = \begin{cases} \rho_{-} v_{f}(\rho_{-}) & \text{if } \rho_{-} \in \Omega_{f} \\ \rho_{-} v_{c}(\rho_{-}, q_{-}) & \text{if } \rho_{-} \in \Omega_{c} \end{cases}$$
$$F_{+} = \begin{cases} \rho_{+} v_{f}(\rho_{+}) & \text{if } \rho_{+} \in \Omega_{f} \\ \rho_{+} v_{c}(\rho_{+}, q_{+}) & \text{if } \rho_{+} \in \Omega_{c} \end{cases}$$

Cauchy problem - well posedness

Theorem (Colombo-Goatin-Priuli '06)

 $\forall M > 0, \text{there exists a semigroup } S : \mathbb{R}^+ \times \mathcal{D} \mapsto \mathcal{D} \text{ s.t.}$

- $\triangleright \ \mathcal{D} \supseteq \{ \mathbf{u} \in \mathbf{L}^{\mathbf{1}} \colon \mathrm{TV}(\mathbf{u}) \le M \};\$
- $||S_{t_1}\mathbf{u}_1 S_{t_2}\mathbf{u}_2||_{\mathbf{L}^1} \le L(M) \cdot \left(||\mathbf{u}_1 \mathbf{u}_2||_{\mathbf{L}^1} + |t_1 t_2| \right) \quad \forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{D}.$

Sketch of proof

- ► Existence:
 - Construction of sequence of approximate solutions by wave-front tracking method (piecewise constant approximations: Dafermos '72, DiPerna '76, Bressan '92, Risebro '93)
 - Proof of convergence of the sequence of approximate solutions using BV compactness result (Helly's theorem)
 - Show that limit is a weak solution to the Cauchy problem
- ▶ Uniqueness: shift differentials

Outline of the talk

Macroscopic traffic flow models

Traffic flow models with phase transitions

Analytical study

Finite volume numerical schemes

Extension to road networks

Paola GOATIN

June 14, 2012 - 17

Problem:

 $\Omega_f \cup \Omega_c$ is not convex \longrightarrow Godunov method doesn't work in general

 $\mathbf{u}_{j}^{n} \in \Omega_{c}, \mathbf{u}_{j+1}^{n} \in \Omega_{f} \quad \not\Rightarrow \quad \mathbf{u}_{j}^{n+1} \in \Omega_{f} \cup \Omega_{c}$

Problem:

 $\Omega_f \cup \Omega_c$ is not convex \longrightarrow Godunov method doesn't work in general

$$\mathbf{u}_{j}^{n} \in \Omega_{c}, \mathbf{u}_{j+1}^{n} \in \Omega_{f} \quad \not\Rightarrow \quad \mathbf{u}_{j}^{n+1} \in \Omega_{f} \cup \Omega_{c}$$

Solutions

- moving meshes for phase transitions: Zhong - Hou - LeFloch '96;
- **transport-equilibrium method:** Chalons '07.

Godunov method

$$\mathbf{u}_{j}^{n+1} = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{v}(\Delta t, x) dx$$

Paola GOATIN

June 14, 2012 - 19

Modified Godunov method (Chalons-Goatin '08)

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{1}{\overline{\Delta x_{j}}} \int_{\overline{x_{j-1/2}}}^{\overline{x_{j+1/2}}} \mathbf{v}(\Delta t, x) dx$$

Modified Godunov method (Chalons-Goatin '08)

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{1}{\overline{\Delta x_{j}}} \int_{\overline{x_{j-1/2}}}^{\overline{x_{j+1/2}}} \mathbf{v}(\Delta t, x) dx$$

Green's formula:

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{\Delta x}{\overline{\Delta x_{j}}} \mathbf{u}_{j}^{n} - \frac{\Delta t}{\overline{\Delta x_{j}}} (\overline{\mathbf{f}}_{j+1/2}^{n,-} - \overline{\mathbf{f}}_{j-1/2}^{n,+})$$

with numerical flux

$$\overline{\mathbf{f}}_{j+1/2}^{n,\pm} = \mathbf{f}(\mathbf{v}_{\mathbf{r}}(\sigma_{j+1/2}^{\pm};\mathbf{u}_{j}^{n},\mathbf{u}_{j+1}^{n})) - \sigma_{j+1/2}\mathbf{v}_{\mathbf{r}}(\sigma_{j+1/2}^{\pm};\mathbf{v}_{j}^{n},\mathbf{v}_{j+1}^{n})$$

Inría

Random sampling

 (a_n) equi-distributed random sequence in]0,1[(ex. Van der Corput)

$$\mathbf{u}_{j}^{n+1} = \begin{cases} \overline{\mathbf{u}}_{j-1}^{n+1} & \text{si} & a_{n+1} \in]0, \frac{\Delta t}{\Delta x} \sigma_{j-1/2}^{+} [\\ \overline{\mathbf{u}}_{j}^{n+1} & \text{si} & a_{n+1} \in [\frac{\Delta t}{\Delta x} \sigma_{j-1/2}^{+}, 1 + \frac{\Delta t}{\Delta x} \sigma_{j+1/2}^{-} [\\ \overline{\mathbf{u}}_{j+1}^{n+1} & \text{si} & a_{n+1} \in [1 + \frac{\Delta t}{\Delta x} \sigma_{j+1/2}^{-}, 1[\end{cases}$$

$$\begin{array}{l} \sigma_{j+1/2} = \text{phase transition speed at } x_{j+1/2} \\ \sigma_{j+1/2}^+ = \max\{\sigma_{j+1/2}, 0\}, \ \sigma_{j+1/2}^- = \min\{\sigma_{j+1/2}, 0\} \end{array}$$

Benchmark tests

Newell-Daganzo with V = 45, R = 1000, $\rho_c = 220$, $\sigma_- = 190$, $\sigma_+ = 270$:

Initial data: $\mathbf{u}_l = (100, 0) \in \Omega_f$, $\mathbf{u}_r = (700, 0.5) \in \Omega_c$ above equilibrium. Gives: phase transition + 2-contact discontinuity linked by $\mathbf{u}_m = (474, -0.42) \in \Omega_c$.

(Blandin-Work-Goatin-Piccoli-Bayen '11)

Paola GOATIN

Innía

Benchmark tests

Newell-Daganzo with V = 45, R = 1000, $\rho_c = 220$, $\sigma_- = 190$, $\sigma_+ = 270$:

Initial data: $\mathbf{u}_l = (500, 0.3) \in \Omega_c$ under equilibrium, $\mathbf{u}_r = (40, 0) \in \Omega_f$. Gives: shock + 1-contact discontinuity linked by metastable state $\mathbf{u}_m = (199, -0.12) \in \Omega_c$.

(Blandin-Work-Goatin-Piccoli-Bayen '11)

Inría

Outline of the talk

Macroscopic traffic flow models

Traffic flow models with phase transitions

Analytical study

Finite volume numerical schemes

Extension to road networks

Extension to road networks

Road networks with phase transitions

 \mathcal{I} : unidirectional roads $I_i =]a_i, b_i[, i = 1, \dots, N$ \mathcal{J} : junctions

Riemann problem at J

$$\begin{cases} \partial_t \mathbf{u}_k + \partial_x \mathbf{f}(\mathbf{u}_k) = 0, \\ \mathbf{u}_k(0, x) = \mathbf{u}_{k,0} \end{cases}$$

Riemann solver $\mathcal{RS}_J : (\mathbf{u}_{1,0}, \ldots, \mathbf{u}_{n+m,0}) \longmapsto (\hat{\mathbf{u}}_1, \ldots, \hat{\mathbf{u}}_{n+m})$ s.t.

- conservation of cars: $\sum_{i=1}^{n} \mathbf{f}_1(\hat{\mathbf{u}}_i) = \sum_{j=n+1}^{n+m} \mathbf{f}_1(\hat{\mathbf{u}}_j);$
- waves with negative speed in incoming roads;
- waves with positive speed in outgoing roads.

Riemann problem at J

$$\begin{cases} \partial_t \mathbf{u}_k + \partial_x \mathbf{f}(\mathbf{u}_k) = 0, \\ \mathbf{u}_k(0, x) = \mathbf{u}_{k,0} \end{cases}$$

Riemann solver \mathcal{RS}_J : $(\mathbf{u}_{1,0},\ldots,\mathbf{u}_{n+m,0}) \longmapsto (\hat{\mathbf{u}}_1,\ldots,\hat{\mathbf{u}}_{n+m})$ s.t.

- conservation of cars: $\sum_{i=1}^{n} \mathbf{f}_1(\hat{\mathbf{u}}_i) = \sum_{j=n+1}^{n+m} \mathbf{f}_1(\hat{\mathbf{u}}_j);$
- waves with negative speed in incoming roads;
- waves with positive speed in outgoing roads.

Consistency condition:

$$\mathcal{RS}_J(\mathcal{RS}_J(\mathbf{u}_{1,0},\ldots,\mathbf{u}_{n+m,0})) = \mathcal{RS}_J(\mathbf{u}_{1,0},\ldots,\mathbf{u}_{n+m,0}) \qquad (\mathbf{CC})$$

Dynamics at junctions

(A) prescribe a fixed distribution of traffic in outgoing roads

$$A = \{a_{ji}\} \in \mathbb{R}^{m \times n} : \ 0 < a_{ji} < 1, \sum_{j=n+1}^{n+m} a_{ji} = 1$$

(B) maximize the flux through the junction

(Coclite-Garavello-Piccoli '05)

Wave-front tracking

- \blacktriangleright piecewise constant approximate solutions \mathbf{u}_{ν}
- bound on the total variation

Assumption (H)

 $\exists \bar{v} > 0 \text{ s.t. } \mathbf{u}_{\nu} = (\mathbf{u}_{1,\nu}, \dots, \mathbf{u}_{N,\nu}) \text{ takes values in the set} \\ \widetilde{\Omega} = \Omega_f \cup (\Omega_c \cap \{(\rho, q) \in \Omega_c : v_c(\rho, q) \ge \bar{v}\}).$

bound on $\mathrm{TV}_f = \mathrm{TV}(\mathbf{f}_1(\mathbf{u}_{\nu})) \Rightarrow$ bound on $\mathrm{TV}(\rho_{\nu})$ and $\mathrm{TV}(q_{\nu})$

Existence theorem (Colombo-Goatin-Piccoli '09)

If $TV(\mathbf{u}_0) \leq C$ and \mathbf{u}_{ν} satisfies **(H)**:

- $\mathbf{u}_{\nu} \rightarrow \mathbf{u}$ in $\mathbf{L}_{loc}^{1};$
- **u** is solution on I, $\forall I$;
- consistency: $\mathcal{RS}_J(\mathbf{u}_J(t)) = \mathbf{u}_J(t)$, a.e. $t > 0, \forall J$.

Joint works with:

- ► Alexandre Bayen (UC Berkeley)
- ▶ Sebastien Blandin (IBM Research Collaboratory Singapore)
- ▶ Christophe Chalons (Université Paris Diderot Paris 7)
- ▶ Rinaldo Colombo (Università di Brescia)
- Benedetto Piccoli (Rutgers University)
- ▶ Fabio Priuli (Università di Padova)
- ▶ Daniel Work (University of Illinois)

Extension to road networks

Thank you for your attention!

