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0 Introduction

In this paper we consider the Dirichlet type boundary value problem

* F(ZL’,U,DU,DZU):O in Q,
(BVP ){ U:gorF(x,u,Du,D2u) =0 on 8(2,

where Q C IRY is an open set, F is a fully nonlinear degenerate elliptic operator, increasing
in the variable u, and ¢ is continuous on 0€). By degenerate elliptic we mean that for any
symmetric matrices X, Y

F(z,r,p,X) < F(z,r,p,Y) wheneverY — X <0,

an assumption which is satisfied even by first order operators.

This boundary value problem was introduced by Barles and Perthame [10, 11] and the
third author [22] for first order equations, and by the third author and Lions [25] for second
order equations. It arises naturally in the vanishing viscosity method as well as in the
Dynamic Programming PDE for optimal control problems involving the exit time of the
controlled system from 2 or Q, see the books [8, 4] for 1st order equations and [14, 9] for
2nd order equations, as well as the references therein. In particular it was proved in [25]
that there may exist at most one continuous viscosity solution of (BV P*). However such a
solution does not exist in general, and existence results need either some nondegeneracy of
F at boundary points, or some coercitivity in the p variables and some compatibility of the
boundary data g, see [22, 11, 14, 4] and the recent work of Barles and Burdeau [9] on 2nd
order quasilinear equations.

On the other hand in the main examples of (BV P*) arising in stochastic control theory
and deterministic differential games, where the operator F' is of the form, respectively,

F(x,r,p,X) = sgp[—trace(Aa(I)X) +b0%(x) - p+ c(x)r — f(x)], (0.1)

and
Fla,r.p) = supinfl*(a) - p+ (@) = (@), 02

(BV P*) is formally solved by the value function, respectively, of a time-optimal control
problem for diffusion processes (we describe it later in this introduction), and of a general-
ized pursuit-evasion game with open target, and these value functions are discontinuous in
general, see [36, 32] and [21, 20, 7, 4]. In these applications ¢ = 0 and f®, f*? >0, so the
constant 0 is a subsolution of the PDE F' = 0 in IR".

With these motivations we seek a good notion of generalized solution of (BV P*) which
allows it to be discontinuous. Under the assumption that the boundary data ¢ satisfy
F(x,g9,Dg,D%j) < 0 in IRN, we consider the mazimal subsolution u of (BV P*) and prove

(i) that w is the infimum of the supersolutions of the PDE F' = 0 in some open set O D ,
larger than g on 0€2;

(ii) the consistency with the notions of viscosity solution of [23] and [25, 14] and of
distributional solution in [36, 32];

(iii) a representation formula as the value function of the corresponding control problem
when F' is of the form (0.1) and (0.2);



(iv) some approximation results, either by smoothing the set Q or by a penalization
method.
We call this generalized viscosity solution envelope solution, briefly e-solution, or Perron-
Wiener solution, a name proposed in [4, 2, 1] for a similar notion in the case of the standard
Dirichlet problem
F(x,u, Du, D*u) =0 in €,
u=g on 02,

ior){

see also [37, 3] for first order equations and applications to pursuit-evasion games. We
remark that (BV P*) and (DP) have the same solution under various types of nondegeneracy
conditions, but in general their e-solutions are different. In fact they are both obtained by
approximating the domain €, but this is done from the outside in the case of (BV P*),
and from the inside in the case of (DP). This is the PDE counterpart of the fact that in
control problems (BV P*) and (DP) are naturally associated to cost functionals involving,
respectively, the exit time from Q and the exit time from €.

Let us remark that the results (i), (ii) and (iv) work for the larger class of second order
Hamilton-Jacobi-Isaacs operators

F(x,r,p, X) =sup iIﬁlf[—t?”CLC@(Aa’B (2)X) + 0P (z) - p + P (x)r — f*P(2)]

[0}

arising in stochastic differential games, see [18], and in general for any operator satisfy-
ing the Comparison Principle for (DP), see [26, 27, 24, 25, 14, 13] and Section 1. More-
over the property (i) of the maximal subsolution u holds without the assumption that
F(z,9,Dg, D*g) < 0, and the minimal supersolution U of (BV P*) satisfies a symmetric
property (it is the supremum of subsolutions on some larger set). If F(z,g, Dg, D*g) > 0
then U, instead of u, coincides with a continuous solution of (BV P*), if this exists; thus in
this case U is the correct generalized solution of (BV P*). This assumption on ¢ is satisfied
in control problems with state-space constraints and we believe the value functions of these
problems coincide with U, but we do not study this issue here. A related result for infinite
dimensional deterministic systems was proved by Kocan and Soravia [28].
Our results hold as well for the more general problem

(BVP) F(,T,'U,, D'LL, D2u) =0 in K,
u=gor F(z,u, Du,D*u) =0 on 0K,

where K is an arbitrary closed set and K its interior, a generality motivated again by control

theory. Even the limit case K= () is covered by our analysis, but the trivial solution u = ¢
does not necessarily coincide with the e-solution.

Next we describe the time-optimal stochastic control problem related to (BV P) in the
case F is given by (0.1) and g = 0. Consider the controlled stochastic differential equation

where ¢ — «; is the control, o is an N x M matrix such that $0%(c®)" (z) = A*(z), By is



an M-dimensional Brownian motion, and the cost functional
fm(a_) ‘o
I(z,0.) = E / o (Xpye foct Xty |
0

where E denotes the expectation and 7, is the first exit time of the trajectory of (SDE)
from K. The value function of this problem is

v(z) = igf J(z, ).

Under standard Lipschitz regularity assumptions on the data and the condition f¢ > 0 for
all v, we prove that v is the unique e-solution of (BV P).

In the case K = Q with smooth boundary 05, the connection between v and the standard
Dirichlet problem (DP) was studied in depth by Stroock and Varadhan [36] in the case of
linear F', when (SDE) is uncontrolled, and by P.L.Lions [32, 33, 34] in the controlled case.
Most of Lions’ work is devoted to analyzing the case where v is the unique continuous
viscosity solution of (DP), or a solution in a stronger sense [33]; in the case that v is
not necessarily continuous he proves it is larger than any continuous subsolution in the
distributional sense of all the linear operators appearing in the right hand side of (0.1), with
a suitable boundary condition.

Let us recall also that in the deterministic case o = 0, and for K = Q, v was characterized
as the maximal viscosity subsolution of (BV P*) by various methods; see [11, 8, 7, 35], where
different uniqueness theorems are given, and also the connection with the control problem
involving the exit time ¢, from €2 is analyzed. However, the results of the present paper seem
to be new even in this special case.

We refer to [30, 14, 17, 31] for more informations on nonlinear degenerate elliptic equa-
tions, and to [23, 10, 12, 7, 35], the books [8, 4], and the survey [1] for discontinuous viscosity
solution.

The paper is organized as follows. Section 1 collects some known definitions and some
preliminary results. In Section 2 we prove the property (i) of the maximal subsolution and
the symmetric property of the minimal supersolution of (BV P), we study the consistency
with earlier definitions of viscosity solution and the approximation by smoothing the domain.
Section 3 deals with the applications to deterministic differential games and to stochastic
control. Section 4 is about the approximation of (BV P) with a penalized equation in all
IRY which is applied to give an existence theorem in unbounded domains.

Some results of this paper were part of Goatin’s thesis [19], in particular Section 4, they
were also announced in [5] jointly with the control applications of Section 3.

1 Definitions and preliminary results

We consider the partial differential equation
F(z,u(z), Du(x), D*u(x)) = 0 in{, (1.1)

where () is an open subset of IR", the function u : Q — IR is the unknown, Du denotes the
gradient of u and D?u denotes the Hessian matrix of the second order derivatives of u. The
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function F' = F(z,r,p, X) is a real-valued function on R" x IR x RN x S(N), where S(N)
is the set of symmetric N x N matrices equipped with its usual order. Following [14] we will
assume throughout the paper that F' is continuous and proper, that is,

F(Iaraan) S F(ZE, S, D, Y)

forallz € RN, r,s € IR, p e IRY, X,Y € S(N), such that r < s, Y < X. In particular this
implies that F' is degenerate elliptic in the sense defined in the introduction. For S C RN
we will use the following notations

USC(S) = {upper semicontinuous functionsu : S — IR},
LSC(S) = {lower semicontinuous functionsu : S — IR},

while with BUSC(S), BLSC(S) we will denote the corresponding subsets of bounded func-
tions.

Definition 1.1 We will say that F satisfies the Comparison Principle in  if for all sub-

solutions w € BUSC(R) and supersolutions W € BLSC(Q) such that w < W on 09, we
have w < W in Q.

We refer to [14] for general structural assumptions on F' which imply the Comparison Prin-
ciple. If such a result holds then the Dirichlet problem (DP) has at most one bounded
continuous solution, and any non-continuous (i.e. not necessarily continuous) solution of
(DP) in the generalized viscosity sense of [23] is automatically continuous. Let us recall
that if ©* and u, denote, respectively, the smallest u.s.c. function greater than or equal to
u and the largest l.s.c. function less than or equal to u, then a non-continuous solution of
(DP) is a locally bounded function u such that u* is subsolution and u, is supersolution of
(DP). By the Comparison Principle u* < u,, so u is continuous.
The main example we have in mind is the class of Hamilton-Jacobi-Bellman equations

sup L% = 0,
6]

where « is a parameter and, for each «, £ is a linear nondivergence form operator

. TN R < NP T .
Lou(r)=— Y afi(x) Sror > b ()5~ + " (2)u = f*(). (1.2)
ij=1 ¢ i=1 ¢

More generally we are interested in the upper and lower Isaacs equations

sup iIﬁlf L3Py =0,

i%f sup L%y = 0,

where 3 is a second parameter and £ are linear operators of the form (1.2). The corre-
sponding nonlinear operators F' have the form

F(a,r,p, X) = sup[—trace(A™(x) X) + 0% (2) - p + ¢*(2)r — [*(2)] (1.3)

[0}



for the HJB equation, and

F(x,r,p, X) =sup irﬁlf[—tmce(Ao"ﬁ (2)X) 4+ 0P (x) - p 4 P (z)r — [P (2)] (1.4)

[0}

for the upper Isaacs equation (respectively, F'(x,r,p, X) = infgsup,|...] for the lower Isaacs
equation). If, for all x € RN, A*%(z) = 10%P(2)(c™?)" (x), where c®P(z) is a N x M
matrix, 7 denotes the transpose matrix, c®?, b®#, c¢*F fF are bounded and uniformly
continuous, uniformly with respect to «a, 8, then F'is continuous. Moreover F'is degenerate
elliptic if and only if A%?(z) > 0 for all «, 3, and it is proper if also ¢*#(z) > 0.

HJB and Isaacs equations satisfy the Comparison Principle if, for instance, there exist
C > 0 and ¢y > 0 such that

lo®?(z) — o®B(y)|| < Clo —y|, for all z,y € Q and all «, 3 (1.5)
b8 (z) — b (y)| < Ola — y|, for all 2,y € Q and all «, 3, (1.6)
c®B(x) > ¢p, for all z € Q, and all a, 3. (1.7)

This result can be found in [24] in the case of unbounded domains, for bounded domains see
also [25, 14]. Condition (1.7) can be weakened at points where F' is uniformly elliptic: see
[27].

The assumptions (1.5)-(1.7) imply that the functions F' defined by (1.3), (1.4) satisfy the
following C(ElditiOIlS: for each R > 0 there exists yg > 0 such that for R > r > s > —R,
(2,p,X) € Q x RN x S(N)

Yr(r —s) < F(z,r,p, X) = F(z,s,p, X); (1.8)

and
F(y,r,a(e —y),Y) ~ Fle,r,a(e ), X) < wg(alz — g + ) (19)

whenever z,y € Q, a > 1, |r| < R, X,Y € S(N) satisfy

I 0 X 0 I -I
(1) <(F % )<sa( ] 7). 010
Moreover, F is continuous on Q x IR x R x S(N).
Indeed, if a function F is continuous on  x IR x IRY x S(N) and satisfies (1.8) and (1.9)
and €2 is bounded, then it satisfies the Comparison Principle in €2.
Next we give the definition of viscosity solution of the problem

(BVP) F(.I',U,DU,DQ'LL) =0 in Q 3:K,
u = gor F(x,u, Du, D*u) =0 on 0K,

where F' is continuous and proper, K C IRY is a closed set, g € C(OK). This is well known
in the special case K = Q, see [10, 22, 25, 14].



Definition 1.2 A function v € USC(K) (respectively LSC(K)) is a subsolution (respec-
tively, a supersolution) of (BVP) if it is a viscosity subsolution (respectively, supersolution)
of (1.1) and, for any ¢ € C*(IRYN) and v € OK such that u — ¢|x has a local mazimum
(respectively minimum) at x,

(u—g)(x) A F(z,u(z), Dé(x), D*¢(x)) < 0
(respectively (u — g)(x) V F(x,u(x), Dé(z), D*¢(x)) > 0);
u € C(K) is a (viscosity) solution of (BV P) if it is a sub- and a supersolution.

It is well known that in general a subsolution of (BV P) is not necessarily smaller than
any supersolution of (BV P). The standard comparison theorem for (BV P) (see Weak
Comparison Principle Theorem 1.7) requires the continuity of at least one semisolution and
some regularity of 2. Now we present three comparison results that need less assumptions
and are useful in Section 2.

Theorem 1.3 Let K be a compact set and O O K a bounded open set. Suppose that F
satisfies (1.8) and (1.9), with Q replaced by O. If w € BUSC(K) is a subsolution (respec-
tively W € BLSC(K) is a supersolution) of (BVP) and W € BLSC(O) is a supersolution
(respectively w € BUSC(O) is a subsolution) of F = 0 in O, and W > g (respectively
W < g) on OK, then w < W (respectively v < W) in K.

Proof. The proof is an adaptation of standard arguments of usual comparison results that
can be found for example in [14]. We sketch here the main idea. We only prove that w < W
in K. We assume that

max(w — W) > 0,
K

which is a typical assumption leading to a contradiction in the standard proof of comparison.
Let a > 0 and let (z,,¥a) € K x O be a maximum point of the function

w(z) — W(y) — alz —y|?

on K x O. Tt is clear that as a — 00, |7, — ¥a| — 0. By compactness, we may assume that
for some sequence a; — oo and point z € K, r, — 2z as o = «; and j — 0o. Arguing as
usual we see that y, — 2, w(z,) — w(z), and W(y,) — W(z) as a = a; and j — oo and
that w(z) — W (z) = maxg (w — W).

Note that y, & 00 for @ = «; with j large enough. Note also that if 2 € JK, then
w(z) > W(z) > g(2) and hence w(Zqa;) > g(Ta;) for j large enough. From now on we
proceed as usual. O

Theorem 1.4 Let K be a compact set and O D K a bounded open set. Suppose that for
any continuous extension of g to O, the function

G(z,r,p, X) := min{r — g(x), F(x,r,p, X)}

satisfies the Comparison Principle in O. Then the same conclusion holds as that of Theorem
1.5.



Proof. We only prove that w < W in K.

Since W € BLSC(Q) and W > ¢ on 0K, we can choose a continuous extension of g to
O, denoted again by g, such that W > ¢ in O.

Define G(z, 7, p, X) as above with the current choice of g. Observe that W is a superso-
lution of G = 0 in O and that if we define the function v on O by

| max{w(z),g(x)}, z €K,
=1 3 ¢ K.

then v € BUSC(O) and is a subsolution of G =0 in O. Since v(z) = g(z) < W(I)~On 00,
we conclude by the Comparison Principle that v < W in O. This shows that w < W in K.
0

Theorem 1.5 Let K be a compact set and O O K a bounded open set. Assume that g
is defined and continuous on O and is a subsolution of F = 0 in O and that F satisfies
the Comparison Principle in every open subset of O containing K. If w € BUSC(K) is a
subsolution of (BV P) and W € BLSC(O) is a supersolution of F =0 in O, and W > g on
0K , then we have w < W in K.

If we assume instead that g is a supersolution of F =0 in O and if W € BLSC(K) is a
supersolution of (BV P) and w € BUSC(O) is a subsolution of F =0 in O, and @ < g on
0K, then we have w < W in K.

Proof. Fix ¢ > 0 and set V(z) = W(z) + ¢ for z € O.

Since V' > g on K and V € LSC(O), we may assume by replacing O by a smaller set
that V' > ¢ on 00.

Define v € BUSC(O) by

| max{w(z),g9(x)}, ze€K,
v(x)—{ g(x), r ¢ K.

It is easy to see that the function ¢ on K is a subsolution of (BVP). Hence, the function
max{w(z), g(z)} on K is a subsolution of (BVP). Moreover, we see that v is a subsolution
of F=01in O.

Now, we apply the Comparison Principle in O to v and V, to conclude that v <V in O,
which implies that w(z) < W (z) 4 . The proof is complete. O

Next we report the standard comparison result for (BV P) that allows to compare semiso-
lutions of (BV P) with semisolutions of (DP) that are continuous at the boundary, in the
case K = Q.

Definition 1.6 We will say that F satisfies the Weak Comparison Principle in K = Q if
for all subsolutions w € BUSC(Q) (respectively supersolutions W € BLSC(Q)) of (BVP)
and all supersolutions W € BLSC(Q) (respectively subsolutions w € BUSC(Q)) of (DP)
and continuous at the boundary, we have w < W in Q.
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Here we give a list of conditions under which the Weak Comparison Principle holds.
Theorem 1.7 Let €2 be a bounded open set, OS2 a Lipschitz surface, or, more precisely,

there is ¢ > 0 and n : @ — RN continuous such that B(x + tn(x),ct)C Q for
alzeQ, 0<t<ec.

Suppose that F satisfies (1.8) and the following conditions: for each R > 0 there exists a
modulus of continuity wg and a neighborhood V- of 0X2 relative to §) such that

forz eV, pge RN, XY € S(N);
F(y,T,p, Y) - F(l’,T,p,X) S (,UR(O(|£E - y|2 + |$ - y|(|p| + 1)) (112)

whenever z,y € Q, a >0, |r| < R, X,Y € S(N) such that (1.10) holds.
Then F' satisfies the Weak Comparison Principle in €2.

The proof is obtained by combining standard arguments from [13, 14] and [22, 25], see [19]
for the details. A Weak Comparison Principle for 1st order equations in unbounded sets can
be found in [6].

We end this section with a stability property that will be useful in the sequel.

Proposition 1.8 Let {w,} C USC(Q2) be a sequence of subsolutions (respectively {W,} C

LSC(Q) a sequence of supersolutions) of (1.1), such that wy,(z) \, u(z) for all z €
(respectively Wi, (x)  u(x)) and u is a locally bounded function. Then u is a subsolution
(respectively supersolution) of (1.1).

For the proof see for instance [4, Chapter V, Proposition 2.16].

2 Maximal subsolution and minimal supersolution

Let K and O denote respectively a closed and an open subset of IRY. In the following we
will assume ¢ to be a continuous function on K. We denote by S, S, respectively the
sets of all subsolutions and supersolutions of (BV P), that are

S, = {w e BUSC(K) : w is subsolution of (BV P)},
St = {W e BLSC(K) : W is supersolution of (BV P)},

and by S, S the sets of all subsolutions, respectively supersolutions of the PDE on some
open set D K and smaller, respectively larger, than or equal to g on the boundary of K, i.e.

S, = {weBLSC(O):0Oisopen, K CO,
w is subsolution of F'=0in O, @ < g on 0K'}.

Sh = {J/T/ € BLSC(0) : O is open, K C O,
W is supersolution of FF'=0in O, W > g on 0K }.

Here the subscript v stands for “viscosity” and e for “extended”.
Next, our main assumptions are



(CP~) ifwe Sy and W € SF then w < W in K;
(CPM) ifweS, and W e S} then w <W in K.

See Theorems 1.3-1.5 for some cases where (C'P~) and (C'P™) hold.
Now we can give the main result of this section.

Theorem 2.1 (i) Assume that S, # 0 and S} # 0. If (CP~) holds, then

u(r) == max w(z) = inf W(x). (2.1)

weS, West

(ii) Assume that S, # 0 and S} # (0. If (CP*) holds, then

U(z):= min W(z) = sup w(z). (2.2)

wes; WEST

Proof. We will give only the proof of (i), the proof of the symmetric case (ii) being com-
pletely similar.
By assumption (C'P~), we have

sup w(z) < inf W(z) in K.
wWES, west

To show the reverse inequality, define V : K — IR by

V(z) = inf W*(z).

west

Since W < W*, we have

inf Wi(z) <V(z) in K.

Wwest
So it is enough to prove that V(z) < sup,cs- w(z) in K. It is clear that V € BUSC(K).
It suffices to show that V' is a subsolution of (BV P), which implies that V' € S and then
V' = u. We argue by contradiction and hence suppose that V" is not a subsolution of (BV P).
Then we find a function ¢ € C?(K) and a point 2z € K such that

1. V — ¢ has a strict maximum at z,

2. V(2) = ¢(2) (and hence, V(z) < ¢(z) for all x € K, x # z),

3. F(z,V(2),D¢(z), D*p(z)) > 0 if z EIO(, and F(z,V(z2),D¢(z), D*¢(z)) > 0 and
V(z) > g(z) if z € 0K.

We choose € > 0 and § > 0 so that

F(z,¢(x) — e, Do(x), D*¢(x)) >0 in B(z,26) N K,

o

V(z) < ¢(x) —e in (B(z,20) N K)\ B (z,9).
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We now treat the case where z EK and the case Where z € 0K separately. Consider first
the case where z €K. We may assume that B(z,20) CK. For each z ¢ 0B(z,9) we select
W, € 8 so that

W (z) < olx) -

By semicontinuity, this inequality holds in a neighborhood of x. Thus, by the standard
compactness argument, we find a finite sequence of points z;, ¢ = 1, ..., N, such that

min WZ( z) < ¢(x) —

1<i<N

holds for all z in a neighborhood of dB(z, ). Let O; be the domain of definition of W, and
set O = Ni<i<nO;. Define Uy : O — IR by

U (:L’) i { minlSiSN le(l’), _ reQ \ B(Z,(S)
O min{p(x) — e, minicien We,(2)}, = € B(z,0)

This function Uj is a supersolution of F = 0 in O and, moreover, satisfies Uy > g on 0K.
Hence, Uy € 8. However, we have

V(z) = 6(2) > 6(2) —e 2 Ug(2) > V(2).

This is a contradiction. .
Next consider the case where z € OK. For each x € K NdB(z,d) we select W, € S so

that
W;(z) < é(z) —

As above, we can select a finite sequence x;, ..., xy of points of K N 0B(z, ) so that

min W (z) < ¢(z) —

1<i<N i

in an open neighborhood N of KNAB(z, ). Choose an open neighborhood M of dB(z, §)\N
so that M N K = (). Define O as before and set @Oy = O \ M and define Uy : Oy — IR by

o (.1‘) . minlSiSN le (ZL’), ~ x € OO \ B(Z, (5),
O min{e(z) — e, minjcicy W, (2)}, z € B(2,0).

This function Uy is a supersolution of F' = 0 in Oy and, moreover, we may assume that
Uy > g on OK. Hence, Uy € S. However, we have

V(z) = 6(2) > ¢(2) —e 2 Ug(2) > V(2).

This is a contradiction. The proof is now complete. O

Theorem 2.1 provides two candidates as generalized viscosity solutions of (BV P). Next
we study their consistency properties. We consider first the notion of non-continuous vis-
cosity solution (see [23]), namely, u is a solution of (BV P) if u* is subsolution and u, is
supersolution.

11



Corollary 2.2 Under the hypotheses of Theorem 2.1, the mazimal subsolution u and the
minimal supersolution U are non-continuous solutions of (BV P).

Proof. We observe that u = u* is a subsolution of (BV P) by Theorem 2.1. On the other
side, since u = infy o+ W, u, is a supersolution of (1.1) in K, and W > g on dK implies

Uy 2> Gs = G-
The proof for U is the same. O

Now we consider the case that (BV P) has a continuous solution v, and we wonder if
either u or U coincides with v. We can answer this question in the following two cases

(HO) g € C(O') is a bounded subsolution of F' =0 in @', for some open set O’ D K.

(H1) g € C(O') is a bounded supersolution of F' =0 in O', for some open set O’ D K.

Theorem 2.3 (Consistency) Let K = Q, Q open. Assume there exists v € C(Q) solution
of (BVP) and F satisfies the Weak Comparison Principle in €.

(i) If (CP~) and (HO) hold, then u = v.
(i1) If (CP*) and (H1) hold, then U = v.

Proof. Let us consider case (i), case (ii) being again similar. Observe that v > ¢ in Q
by standard comparison between continuous solutions of (BV P). Therefore v > w for all
w € S, by the Weak Comparison Principle, so v is the maximal subsolution of (BV P). O

From now on we study the maximal subsolution u under the assumptions (CP~) and
(HO0). In view of the previous results we consider u as the correct generalized solution of
(BV'P) in this case, and we call it the envelope solution, briefly e-solution, or the Perron-
Wiener solution of (BV P), by analogy with a similar generalized solution of the Dirichlet
problem studied in [4, 2, 1].

We observe here that the e-solution of (BV P) depends only on the restriction of the
operator F' to K x IR x IRY x S(N) in the following sense: if two different operators coincide
on this set and both satisfy the assumptions of Theorem 2.1, then the e-solution of (BV P)
is the same, because it is characterized as the maximal element of S, .

Example 2.4 The Isaacs equations sup, infs £¥’u = 0 and infgsup, £L*u = 0, where
L% are linear operators of the form (1.2), fit into the assumptions of Theorem 2.1 if their
coefficients satisfy (1.5)-(1.7). If f*# > 0 for all o, 3, then g = 0 is a subsolution in RN and
Theorem 2.3 (i) applies for any compact set K with Lipschitz boundary. These conditions
of nonnegative running cost and null terminal cost are satisfied in time-optimal control and
differential games. A result for (BV P) associated to the Isaacs equation and unbounded K
is given in Section 4.
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A similar characterization of the e-solution can be given considering the set

Z, = {WeBLSC(O):0Oisopen, K COCO,
W is supersolution of FF'=0in O, W > g on 00},

instead of 8. Then we have the following

Theorem 2.5 Assume (HO0), Z. # 0 and that F satisfies the Comparison Principle on
every open set O, K C O C O'. Then
= = inf W(x).
u(z) = maxw(z) = inf W(z)
The proof of this theorem parallels that of Theorem 2.1, (i) and we leave it to the reader to
check the details. Note that under the hypotheses (HO) and the Comparison Principle we
have W > g in O for W € Z,, i.e.,, S} D Z..
The e-solution can also be characterized as the infimum of supersolutions of (BV P),
instead of (DP), in larger sets. We consider

Z, = {WeBLSC(O): Oisopen, K COC O,
W is supersolution of F'=0in O and of W =g or F =0 on 00}.

We see that S D Z, D Z, under the hypotheses (H0) and (C'P*) with K and O replaced
by O and O’ respectively. Therefore, under the assumptions of Theorem 2.5 the e-solution
of (BV P) satisfies also
u(z) = inf W(z) for all = € K.
Wez,

We end this section with two results on the approximation of the e-solution.

Theorem 2.6 Assume (H0) and that F satisfies the Comparison Principle in every open
O C O'. Suppose there exist a nonincreasing sequence of open sets O, C O" and a sequence

of functions v, € C(O) such that (), O, = K and v, is a solution of F = 0 in O, and
v, = g on 00,,. Then v,(x) N\ u(zx) for all x € K, where u is the e-solution of (BV P).

Proof. By Comparison Principle between a subsolution g and a supersolution v, which
satisfy ¢ < v, on 00,,we have v, > ¢ on O,, in particular v, > g on 0K, so v, € S. Then
by Theorem 1.5 we have u(x) < inf,, v,(x).

Next we prove that {v,} is a nonincreasing sequence, and that it converges to a sub-
solution of (BV P), so that the theorem is proved. To this end, we extend v, equal to
g in Oy \ Onyq, call it U,;. We claim that 7,1 is a subsolution of (DP) in O, which
takes up continuously the boundary data g. Then v, > v, ,; by comparison, so in particular
Uy > Upyq in O,p1. To prove the claim we note that the PDE is satisfied in O,,,; and in
O, \ O,41. We have only to check on 90,,,1, so let x € 30,1, ¢ € C*(IRN) such that x is
a maximum point of T, 41 — ¢ in B(x,r) for some r > 0. Note that v,1(z) = g(x), then z
is a maximum point of ¢ — ¢ in B(z,r) and we know that ¢ is subsolution of F' = 0, so the
proof of the claim is complete.

Next we extend v, equal to g in O; \ O, and we define

V(z) = ilTlLf v (). (2.3)

13



Note that, by Proposition 1.8, V' is subsolution of F' = 0 in K. To check the boundary
condition, let z € 0K, ¢ € C?*(IRN) such that z is a maximum point of V — ¢ in B(z,r) N K,
r > 0, and V(x) > g(z). Then z is a maximum point of V' — ¢ in B(z, R) C O, for some
R > 0, because V = g in RN \ K and g is continuous, so

F(z,V(z), Dé(z), D*¢(x)) < 0.

Theorem 2.7 Under the assumptions of Theorem 2.6, let O,, be any nonincreasing sequence
of open sets with C* boundary such that O, C O', (N, On = K. Then for all n there ewists

a unique v, € C(O,,) which solves

{ —dist(z, K)?Av + F(z,v, Dv, D*v) =0 in O,, (2.4)

v=yg on 00,
and v, (z) Ny u(z) for all z € K as n — +oo, where u is the e-solution of (BV P).

Proof. The existence of a nonincreasing sequence of smooth open sets whose intersections
is a given closed set is well-known. The PDE appearing in (2.4) satisfies the Comparison
Principle, so the Dirichlet problem (2.4) has at most one continuous solution. The existence
of such a solution follows from standard methods in viscosity theory [13, 14]: since the PDE
is nondegenerate near 00, and O, satisfies an exterior sphere condition one can build a
supersolution of (2.4) attaining the boundary data, then v, is found by Perron’s method. By
Theorem 2.6, v, converge to the e-solution @ of (BV P) for the operator F' := —dist?(-, K)A+
F. Since F = F on K x IR x RN x S(N), @t = u as we remarked earlier. O

3 Applications to differential games and stochastic con-
trol

3.1 A pursuit-evasion game

In this section we consider a two-players zero-sum deterministic differential game, see [21,
20, 15, 16, 37]. We are given a controlled dynamical system

(g L e o

where f : RN x A x B — IR" is continuous, A, B are compact metric spaces and a = a(-) €
A := {measurable functions [0, +00) — A} is the control function of the first player. For the
second player we will use relaxed controls b = b(:) € B" := {measurable functions [0, +00) —
B"} where B" is the set of Radon probability measures on B. For the definitions of relaxed
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trajectories of (3.1) we refer for instance to [38],[4]. Throughout this section we will always
assume that the system satisfies, for some constant L,

(f(@,0,b) = f(y,0,b)) - (x —y) < Lz —y/* (3-2)

for all 2,y € RN, a € A, b € B.
The cost functional, which the first player wants to minimize and the second player wants
to maximize, is

fz(a,b) X
J(x, CL, b) = / eitdt g 1 — eftfﬂ(aﬂb),
0

where #,(a,b) is the first exit time from a given closed set K C IRN, i.e. {,(a,b) := inf{t €
[0,+00) : yu(t,a,0) & K}, ys(t, a,b) being the solution of (3.1) corresponding to a € A,
b € B'. Note that £, is the time taken by the system to reach the open target RN \ K, and
that .J is a bounded and increasing rescaling of #,.

A relaxed strategy for the second player is a map 5 : A — B"; it is nonanticipating if, for
any t > 0 and a,a € A, a(s) = a(s) for all s < ¢ implies fFa](s) = Blal(s) for all s < t, see
[15, 16]. We will denote with A" the set of nonanticipating relaxed strategies for the second
player.

Now we can define the upper value of this differential game, which is

u(x) = sup inf J(z,a, Sla]).

BEAT aEA

It is well known by the Dynamic Programming Principle that the upper value is a viscosity
solution of the upper Hamilton-Jacobi-Isaacs (briefly HJI) equation

u(x) + H(z, Du(r)) := u(z) + max min{—f(z,a,b) - Du(z) — 1} =0 in K. (3.3)

a€A beBT

We are going to prove, by means of the results of the previous section, that the upper value
@(z) is the e-solution of

u=0oru+ H(z,Du) =0 on JK.

The idea is to approximate from above u(x) with the upper values on larger sets. Note that
g = 0 is a subsolution of the HJI equation in IR".

Theorem 3.1 Assume (3.2). Then the upper value of the minimum time problem

=(afla)
() = f it
i) = sup i e

is the mazimal subsolution of (3.4) and therefore the e-solution of (BV Fy).

Proof. Since 4(z) = 1—e 7@ where T(z ) = supgear infucats(a, Bla]), in the proof we will
refer to the upper minimum time function ( ), and then apply the transformation. We may
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assume without loss of generality T(x) < 400. It is well known that 7* € S, . We want to
build a sequence of supersolutions on larger sets converging to T from above. We consider
the sequence ), = {z € IRY : dist(x, K) < h} of open sets converging to K from outside,
and let T}, be the corresponding minimum time function, i.e.

Ty (z) = sup inf t(a, Bla)),
BEAT acA

where t"(a, 8[a]) := inf{t € [0,400) : y.(t,a, Ba]) & W}. Then Ty(x) > T(x) and (Tj,), is
supersolution of (3.3) in €, and (T}). > 0 on OK. For each h there exists 3, € A" such
that Ty,(z) < inf,eqt"(a, Bpla]) + h. By compactness of the set of relaxed strategies (see
[15, 20, 38]), there exists 5 € A" such that for each a € A there exists h, = hin(a) ¢ 0 such
that

B, la] — Bla] in the weak star topology of B”,

vz (v a, Br, [a]) = ye(; a,B[a]) uniformly in [O,T], for any T.

We now keep a fixed and call 8, = By, T(a) = t'(a, By, [a]), so that y,(m,(a); a, Bu]a]) €
thn and
Tu(a) > Th, (x) — ho. (3.5)

If the sequence {7, } is unbounded, so that 7, — 400 up to a subsequence, then #,(a, 5[a]) =
+o00. In fact, if we assume by contradiction #,(a, 8[a]) = 6 < +o0, v.(0;a, Bla]) & Q; for
some f > 0 and some h small enough. Then, by uniform convergence of the trajectories,
Tn < 0 for n large enough. Now we suppose {7,,} bounded, 7,,(a) — 7(a) up to a subsequence.
By uniform convergence v, (7(a);a, B[a]) € K. We claim that 7(a) < t,(a, B[a]). Assume
by contradiction 7(a) > t,(a, Sla]), so that there exists # < 7 such that y,(6;a, 8[a]) & K.
If h = dist(y,(#), K), then by uniform convergence of the trajectories y,(8; a, 8y, [a]) & Q9
for n large enough, a contradiction to the fact that 7, > 6 for n large. To conclude, if
ty(a, Bla]) = +oo for every a € A, then T(z) = +oo, otherwise call A := {a € A :
t.(a, Bla]) < +o0o}. Then

A

T(x) > inf{t,(a,Bla]) :a € A’}
and we have just proved that 7(a) < £,(a, Bla]). So, by inequality (3.5), we have

T(z) > inf #,(a, Bla]) > inf 7(a) > Tp, (x) — A,

ac A’ ac A’

and, passing to the limit as n — 400, we obtain
T(z) = inf ), ().
n

Now the statement is an easy consequence of Theorem 2.1. O

16



3.2 Time-optimal control of diffusion processes

In this section we study a stochastic optimal control problem following [32, 34], see also [29,
17]. We consider a probability space (€', F, P) with a right-continuous increasing filtration
of complete sub-o fields {F;}, a Brownian motion B; in IRM F;-adapted, a compact set A,
and call A the set of progressively measurable processes a; taking values in A. We are given
bounded maps o from IRY x A into the set of N x M matrices and b : RN x A — RN
satisfying (1.5),(1.6) and consider the controlled stochastic differential equation

(SDE) { dXt =0 t(Xt)dBt —b t(Xt)dt, t> 0,
XO =x.

This has a pathwise unique solution X; which is F;-progressively measurable and has con-
tinuous sample paths. We are given also two bounded and uniformly continuous maps
fie: RN x A — IR, ¢*(z) > ¢y > 0 for all z,a, and consider the cost functional

fw(a-) ¢
J(z, ) :=E ( / fo(Xp)e b C““Xs’%) :
0

where E denotes the expectation and

~

tr(a) :=inf{t >0: X, & K}

for a given compact set K (of course t,(a.) = +oc if X; € K for all t > 0). We define the
value function

v(a) = inf J(z,a),

and consider the Bellman equation

P, Dot D) = iy (), () - D () — ()} = 0

where the matrix (a;;) is 300”7. We consider the boundary value problem
(BVPO){ F(x,u, Du, D*u) = 0 in IO(,
u = 0or F(z,u, Du,D*u) =0 on 0K,
under the additional assumption
fz) >0 forall z € RN, a € A. (3.6)
Note that in this case ¢ = 0 is a subsolution of F =0 in R".

Theorem 3.2 Under the previous assumptions the value function v is the unique e-solution
of (BVF).

Proof. We consider a Brownian motion Et in RN F,-adapted and the stochastic differential
equation

(SDEI) { AC)i(Xt_:IO'at (Xt)dBt — b (Xt)dt + ﬂdzst(x, K)d_ét, t> 0,
0=2.
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Note that the solutions of (SDE’) and (SDE) are the same as long as they remain in K,
and it is easy to see that the exit time from K, #,, is also the same for (SDFE) and (SDE').
We take a decreasing sequence {O,} of bounded open sets with C? boundary such that
M, On = K and define the cost functionals

Jza)=E ( /

where t;(cn)(a,) = inf{t > 0: X; € 0,} and X, is the solution of (SDE’). By the results of
P.L. Lions [32] the value function

N

fat (Xt)ef fot s (XS)det> ,

vp(x) == 1inf J,(z, o))

is continuous in O, v, = 0 on 90,,, and it is the unique solution of
—~dist*(z, K)Aw + F(z,w, Dw, D*w) =0 in O,

taking up the null boundary data continuously. Therefore, by Theorem 2.7, v,(z) \, u(z)
for all x € K as n — oo, where u is the e-solution of (BV F).
It remains to prove that u = v in K. We fix . such that t}(a.) < +00, and observe that

M N\, 7 implies X,m — X7 € 0K, thus i N\, £, as n — oco. Therefore, by (3.6),
Jo(z,o) N J(z,c0)) asn — 0.
Then, for all x € K,
u(z) = i%f igf Jo(z,00) = igf i%f Jo(z, ) = v(x),

and the proof is complete. O

Remark 3.3 In the case K = Q with smooth boundary the function v was studied in detail
by Stroock and Varadhan [36] in the uncontrolled case and by P.L. Lions [32] in general.
They characterized it as the solution, or maximal subsolution, of (DP) in a suitable weak
sense based on the theory of distributions. As a consequence of Theorem 3.2, the e-solution
solves (DP) in that sense as well. In the case v is continuous it is also characterized in
[32, 34] as the unique solution of the Bellman equation which is null on the "usable part” of
the boundary.

4 Approximation by penalization

In this section we characterize the e-solution of (BV P) as the limit of a sequence of solutions
of equations in all IR" involving a term which penalizes the distance between the unknown
u and the boundary data g of (BV P). This was originally motivated by a similar result
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in [36] for linear equations. Here we apply the penalization theorem to prove an existence
result for (BV P) in unbounded sets. At the end of the section we give a control theoretic
interpretation of the penalization procedure.

Throughout this section we assume that

g is a bounded and continuous subsolution of F' = 0 in IRY

and ¢ € C(IR") is a function such that

{((x)zO in K,
0<C(z)<1 in RN\ K.

We can take for instance

0 ifre K
() =1} cdz) ifd(x)<1/c,e>0
1 if d(z) > 1/c

where d(z) = dist(x, K). For each n € IN, we consider the equation
n(z)(u — g) + F(z,u, Du, D*u) = 0 in RY (4.1)
and we assume that there exists a continuous solution v, > g such that

sup |v,(x)| < Ck for each compactum K C RN, for all n (4.2)
K

(we refer to [24, 13, 14] for results ensuring the existence of such v,, see also the examples
at the end of this section).

Now we give the main result of this section which asserts that the sequence {v,} converges
to the e-solution of (BV P).

Theorem 4.1 Assume the equation (4.1) satisfies the Comparison Principle and has a con-
tinuous solution v, for all n verifying (4.2). Moreover suppose F satisfies the Comparison
Principle for every open set O O K. Then

vn(z) \y u(z) == max w(z) = inf W(z), z € K. (4.3)
weS, westH
It is not hard to show that v,, — ¢ uniformly on compacta of K¢ under the assumptions
of the preceding theorem.
Proof. We first claim that

vn(z) > sup w(z) for allz € K.
wWES,

We can assume without loss of generality w > ¢ and we can extend w equal to g in K¢,

obtaining a subsolution of (4.1). In fact this is obvious in K and K€ To check it on 0K,
take ¢ € C?(IRY) and z € 0K local maximum point of w — ¢. If w(z) > g(x) we can
conclude since w € S, . If w(z) = g(x), then x is a maximum point of g — ¢ as well, and we
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obtain the claim because ¢ is a subsolution of F' = 0. Since v, is in particular supersolution
of (4.1), the Comparison Principle yields v, > w in K.
Next we show that
v :=limsup*v, € S, .

n

By a well-known stability property of viscosity solutions [10, 14], ¥ is subsolution of F' = 0 in

K. We need only to check the boundary condition. Let x € 9K and ¢ € C?(IRY) such that
U— ¢ attains a strict maximum point in B(z, )N K at  for some r > 0, and v(z) > g(z). We
may assume that 7(x) = ¢(z). Moreover, we may assume by adding a smooth nonnegative
function vanishing near the point = to ¢ that maxpp(,, (7 — ¢) < (T — ¢)(z) and that ¢ > ¢

on B(z,r). The first of these assumptions guarantees that there is a point y €B (z,r) where
(T — ¢)|B(a,y) attains its maximu at y. Note that T(y) > ¢(y) > ¢(y). Again, by Lemma 6.1
in [14], there is a sequence of points x;, such that (v,, — @)|p(r) attains a local maximum
at xj, and xp — y, vy, () — U(y). We claim that y € K. Indeed, we have

e C (1) (Un, — 9) (1) + F(xg, v, (21), Do (1), D*P(24)) <0 for all k. (4.4)

Letting k — oo, we see that ((y)(7 — ¢)(y) < 0. Therefore, since 7(y) > g(y), we see that
y € K. It is now clear that y = . Since v, (zx) > g(zx) for k large enough, we conclude by
letting k — oo in (4.4) that

F(z,v(z), Do(x), D*¢(z)) < 0. (4.5)
This shows that v € S, . Therefore

u(z) = ur)rgg w(x).

Moreover, v, is supersolution of (4.1) with n replaced by n + 1, so by the Comparison
Principle v,, > v, ;. Then it is not hard to check that

u(z) = i%f vp(T) = lign vn (),

see, e.g., [4, Chapter V, Lemma 2.18|. O

Next we apply the penalization theorem to prove the existence and uniqueness of the
e-solution of (BV P) in any unbounded K for the Isaacs operator (1.4).

Corollary 4.2 Assume AP = %aa’ﬁ (0T for some N x M matriz valued functions c®?,
and o®P b*P B P be uniformly bounded with respect to o, B and satisfy (1.5), (1.6),(1.7)
with ¢y > 0. Suppose also f*P are uniformly continuous, uniformly in o, 3, and g is a
bounded and uniformly continuous subsolution of F' =0 in IRN. Then for any closed set K
there is a unique e-solution u of (BV P). Moreover for all n there is a continuous solution
vn of the penalized equation (4.1), |v,| < C for all n, and v, converge to u, i.e. (4.3) holds.
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Proof. Under the current assumptions the operator F' defined by (1.4) satisfies the Com-
parison Principle in every open set O by Theorem 7.3 in [24], and the same is true for the
operator in (4.1). Define M = sup, , 5 |f*?(2)| and W (z) = max{sup |g|, M/co}. Then
W is a supersolution of (4.1) and we can apply Theorem 7.5 in [24] to produce a solution
v, € C(IRN) of (4.1) such that ¢ < v, < W. Therefore the sequence {v,} satisfies the
uniform bound (4.2) and we can apply Theorem 4.1 to get all the remaining conclusions. O

We end this section with some comments on the penalization procedure in connection
with Bellman-Isaacs equations where the operator F' is given by (1.3) or (1.4). As we saw
in Section 3 on two examples, the boundary value problem (BV P) for these equations is
solved by the value function of an optimal control problem or a differential game whose cost
functional is

fz
J(:L’,a.,ﬁ) . (/ fat’ﬁt(Xt)efécas’BS(XS)dsdt—i-g(Xfm)) '
0

Here f®? is the running cost, ¢®? the interest rate, the system X is stopped at time ¢, when
it exits K and the terminal cost g is paid at the exit point. The penalized equation (4.1) is
itself the Bellman-Isaacs equation of a control problem or a game with the same controlled
system, but with the infinite horizon cost functional

Jn(z,0,B) = E </ (Fo 4 nCg)(Xy)e faes? *”C"Xs’dsd’f) ,
0

where the running cost is f®# +n(g and the interest rate is ¢®? +n¢. The reader can check

that the fooo appearing in J,, converges, as n — 00, to the cost fot”” +9(X;,) which appears
in J, and this gives a control theoretic interpretation of the penalization Theorem 4.1.
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