Mathematical modeling of crowds

Paola Goatin

INRIA Sophia Antipolis - Méditerranée
paola.goatin@inria.fr

Washington DC, January 12, 2014
Outline of the talk

1. Mathematical models

3. Conclusion and perspectives
Outline of the talk

1. Mathematical models

3. Conclusion and perspectives
Mathematical modeling of pedestrian motion: frameworks

Microscopic

- individual agents
- ODEs system
- many parameters
- low and high densities
- comp. cost \sim ped. number.
Mathematical modeling of pedestrian motion: frameworks

Microscopic

- individual agents
- ODEs system
- many parameters
- low and high densities
- comp. cost \sim ped. number.

Macroscopic

- continuous fluid
- PDEs
- few parameters
- very high densities
- analytical theory
- comp. cost \sim domain size
Macroscopic models

- Pedestrians as "thinking fluid"\(^1\)
- Averaged quantities:
 - \(\rho(t, x)\) pedestrians density
 - \(\vec{v}(t, x)\) mean velocity

\[\begin{align*}
\partial_t \rho + \text{div}_x (\rho \vec{v}) &= 0 \\
\rho(0, x) &= \rho_0(x)
\end{align*} \]

for \(x \in \Omega \subset \mathbb{R}^2, \ t > 0\)

\(^1\)R.L. Hughes, Transp. Res. B, 2002
Macroscopic models

- Pedestrians as "thinking fluid"\(^1\)
- Averaged quantities:
 - \(\rho(t, x)\) pedestrians density
 - \(\bar{v}(t, x)\) mean velocity

Mass conservation

\[
\begin{aligned}
\partial_t \rho + \nabla \cdot (\rho \bar{v}) &= 0 \\
\rho(0, x) &= \rho_0(x)
\end{aligned}
\]

for \(x \in \Omega \subseteq \mathbb{R}^2, t > 0\)

Two classes

- **1st order models**: velocity given by a phenomenological speed-density relation \(\bar{v} = V(\rho)\bar{v}\)
- **2nd order models**: velocity given by a momentum balance equation

\(^1\)R.L. Hughes, Transp. Res. B, 2002
Macroscopic models

- Pedestrians as "thinking fluid"\(^1\)
- Averaged quantities:
 - \(\rho(t, x)\) pedestrians density
 - \(\bar{v}(t, x)\) mean velocity

Mass conservation
\[
\begin{aligned}
\partial_t \rho + \text{div}_x (\rho \bar{v}) &= 0 \\
\rho(0, x) &= \rho_0(x)
\end{aligned}
\]
for \(x \in \Omega \subset \mathbb{R}^2, t > 0\)

Two classes

- **1st order models:** velocity given by a phenomenological speed-density relation \(\bar{v} = V(\rho)\bar{v}\)
- **2nd order models:** velocity given by a momentum balance equation

- Density must stay non-negative and bounded: \(0 \leq \rho(t, x) \leq \rho_{\text{max}}\)
- Different from fluid dynamics:
 - preferred direction
 - no conservation of momentum / energy
 - \(n \ll 6 \cdot 10^{23}\)

\(^1\)R.L. Hughes, Transp. Res. B, 2002
Desired direction of motion \vec{v}^1

Pedestrians:
- seek the shortest route to destination
- try to avoid high density regions

$\vec{v} = -\frac{\nabla x \phi}{|\nabla x \phi|}$

$\phi: \Omega \to \mathbb{R}$ is given by the Eikonal equation

$|\nabla x \phi| = C(t, x, \rho)$ in Ω

$\phi(t, x) = 0$ for $x \in \Gamma$ outflow

where $C = C(t, x, \rho) \geq 0$ is the running cost

\Rightarrow the solution $\phi(t, x)$ represents the weighted distance of the position x from the target Γ outflow

\(^1\)Hughes (macro 1st), Jiang et al. (macro 2nd), Colombo (non-local), Hartmann (micro)…
Desired direction of motion \vec{v}^1

Pedestrians:
- seek the shortest route to destination
- try to avoid high density regions

\[\vec{v} = -\frac{\nabla_x \phi}{|\nabla_x \phi|} \]

The potential $\phi: \Omega \to \mathbb{R}$ is given by the Eikonal equation

\[
\begin{cases}
|\nabla_x \phi| = C(t, x, \rho) & \text{in } \Omega \\
\phi(t, x) = 0 & \text{for } x \in \Gamma_{outflow}
\end{cases}
\]

where $C = C(t, x, \rho) \geq 0$ is the running cost

\implies the solution $\phi(t, x)$ represents the weighted distance of the position x from the target $\Gamma_{outflow}$

1Hughes (macro 1st), Jiang et al. (macro 2nd), Colombo (non-local), Hartmann (micro)...
Eikonal equation: level set curves for $|\nabla_x \phi| = 1$

In an empty space: potential is proportional to distance to destination
Speed-density relation

Speed function $V(\rho)$:

- decreasing function wrt density
- $V(0) = v_{\text{max}}$ free flow

 $V(\rho_{\text{max}}) = 0$ congestion

Examples:

![Graphs of speed $V(\rho)$ and flux $\rho V(\rho)$](image)
First order models

- Hughes’ model\(^2\)

\[
V(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \quad |\nabla_x \phi| = \frac{1}{V(\rho)}
\]

- pedestrians tend to minimize their estimated travel time to the exit
- pedestrians temper their estimated travel time avoiding high densities
- **CRITICISM:** instantaneous global information on entire domain

\(^3\)Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
First order models

- Hughes’ model

\[V(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \quad |\nabla_x \phi| = \frac{1}{V(\rho)} \]

- pedestrians tend to minimize their estimated travel time to the exit
- pedestrians temper their estimated travel time avoiding high densities
- CRITICISM: instantaneous global information on entire domain

- Dynamic model with memory effect

\[V(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \quad \vec{v} = -\frac{\nabla_x (\phi + \omega D)}{|\nabla_x (\phi + \omega D)|} \]

where

\[|\nabla_x \phi| = \frac{1}{v_{\text{max}}} , \quad D(\rho) = \frac{1}{v(\rho)} + \beta \rho^2 \quad \text{discomfort} \]

- pedestrians seek to minimize their estimated travel time based on their knowledge of the walking domain
- pedestrians temper their behavior locally to avoid high densities

Other first order models

- Non-local flow\(^4\)

\[
\vec{v} = V(\rho \ast \eta) \vec{\nu}(x) \quad \text{OR} \quad \vec{v} = V(\rho) \left(\vec{\nu}(x) - \varepsilon \frac{\nabla(\rho \ast \eta)}{\sqrt{1 + |\nabla(\rho \ast \eta)|^2}} \right)
\]

\[^4\]R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
\[^5\]E. Cristiani, B. Piccoli and A. Tosin, Multiscale Model. Simul., 2011
Other first order models

- **Non-local flow:**
 \[
 \vec{v} = V(\rho \ast \eta) \vec{v}(x) \quad \text{OR} \quad \vec{v} = V(\rho) \left(\vec{v}(x) - \varepsilon \frac{\nabla(\rho \ast \eta)}{\sqrt{1 + |\nabla(\rho \ast \eta)|^2}} \right)
 \]

- **Multi-scale time-evolving measures:**
 Probability distribution of pedestrians
 \[
 \mu_t = \theta m_t + (1 - \theta) M_t \quad \text{where} \quad \begin{cases}
 m_t = \sum_{j=1}^{N} \delta_{P_j(t)} \\
 dM_t(x) = \rho(t, x)dx
 \end{cases}
 \]
 microscopic mass
 macroscopic mass

 Governing equation: probability conservation deduced from individual-based modeling
 \[
 \partial_t \mu_t + \text{div}_x (\mu_t \vec{v}_t) = 0
 \]
 \[
 \vec{v}_t(x) = v_{\text{max}} \vec{v}(x) + N \int_{B_R(x)} K(x, y)d\mu_t(y)
 \]

5. E. Cristiani, B. Piccoli and A. Tosin, Multiscale Model. Simul., 2011
Second order model

Momentum balance equation\(^6\)\(^7\)

\[
\partial_t (\rho \vec{v}) + \text{div}_x (\rho \vec{v} \otimes \vec{v}) + \nabla_x P(\rho) = \frac{1}{\tau} \left(\rho V(\rho) \vec{v} - \rho \vec{v} \right)
\]

where

- \(V(\rho) = v_{\text{max}} e^{-\alpha \left(\frac{\rho}{\rho_{\text{max}}} \right)^2} \)
- \(|\nabla_x \phi| = 1/V(\rho) \)
- \(P(\rho) = p_0 \rho^\gamma, \; p_0 > 0, \; \gamma > 1 \) internal pressure
- \(\tau \) response time

\(^6\)Payne-Whitham, 1971
\(^7\)Y.Q. Jiang, P. Zhang, S.C. Wong and R.X. Liu, Physica A, 2010
Outline of the talk

1. Mathematical models

3. Conclusion and perspectives
Hughes’ VS second order model: obstacles effect

Obstacles:

1. one column $r = 0.3m$
2. three columns $r = 0.2m$
3. two walls $1.2m \times 0.2m$

What is the effect of the obstacles on the outflow?
Hughes’ VS second order model: obstacles effect

Obstacles:

1. one column $r = 0.3m$
2. three columns $r = 0.2m$
3. two walls $1.2m \times 0.2m$

What is the effect of the obstacles on the outflow?

Fig. Time evolution of the total mass of pedestrians inside the room.

Hughes’ model

Second order model
Second order model: stop-and-go waves

\[P(\rho) = 0.005 \rho^2, \quad v_{\text{max}} = 2, \quad \rho_{\text{max}} = 7 \]

Fig. Time evolution of density profile at \(x = 64 \) (left exit)
Second order model: dependence on p_0

\[P(\rho) = p_0 \rho^\gamma : \text{total evacuation time optimal for } p_0 \simeq 0.5 \]
Second order model: dependence on v_{max}

Total evacuation time

Social force models\(^8\) show a minimum for $v_{\text{max}} \simeq 1.4 \text{ m/s}$

\Rightarrow faster-is-slower effect\(^9\)

Accounting for inter-pedestrian friction?

\(^8\) D. Helbing, I. Farkas and T. Vicsek, Nature, 2000

Second order model: dependence on \(u_{\text{max}} \)

Total mass evolution

![Graph showing the total mass evolution over time for different values of \(u_{\text{max}} \).]
Evacuation optimization: Braess’ paradox10?

Problem: **clogging** at exit

Can obstacles reduce the evacuation time?

10Braess, D. *Über ein Paradoxon aus der Verkehrsplanung*, Unternehmensforschung, 1968
Evacuation optimization: Braess’ paradox?

Time evolution of the total mass of pedestrians inside the room
Outline of the talk

1. Mathematical models

3. Conclusion and perspectives
Macroscopic models: summary

Strengths:

- lower computational cost for large crowds
- global description of spatio-temporal evolution
- mathematical tools for well-posedness and numerical approximation
- suitable for posing control and optimization problems

Weaknesses:

- only for very high densities
- not all parameters have physical meaning
- able to capture only some features of crowd dynamics

Aspects to be addressed:

- reproduce emerging phenomena observed in real situations
- account for individual choices that may affect the whole system
- validation on empirical data
Macroscopic models: summary

Strengths:
- lower computational cost for large crowds
- global description of spatio-temporal evolution
- mathematical tools for well-posedness and numerical approximation
- suitable for posing control and optimization problems

Weaknesses:
- only for very high densities
- not all parameters have physical meaning
- able to capture only some features of crowd dynamics
Macroscopic models: summary

Strengths:
- lower computational cost for large crowds
- global description of spatio-temporal evolution
- mathematical tools for well-posedness and numerical approximation
- suitable for posing control and optimization problems

Weaknesses:
- only for very high densities
- not all parameters have physical meaning
- able to capture only some features of crowd dynamics

Aspects to be addressed:
- reproduce emerging phenomena observed in real situations
- account for individual choices that may affect the whole system
- validation on empirical data
Thank you for your attention!