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Mathematical modeling of pedestrian motion: frameworks
Microscopic

individual agents
ODEs system
many parameters
low and high densities
comp. cost ∼ ped. number.

Macroscopic

continuous fluid
PDEs
few parameters
very high densities
analytical theory
comp. cost ∼ domain size
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Macroscopic models

Pedestrians as "thinking fluid"1

Averaged quantities:
ρ(t,x) pedestrians density
~v(t,x) mean velocity

Mass conservation{
∂tρ+ divx(ρ~v) = 0

ρ(0,x) = ρ0(x)

for x ∈ Ω ⊂ R2, t > 0

Two classes

1st order models: velocity given by a phenomenological
speed-density relation ~v = V (ρ)~ν

2nd order models: velocity given by a momentum balance equation

Density must stay non-negative and bounded: 0 ≤ ρ(t,x) ≤ ρmax

Different from fluid dynamics:
preferred direction
no conservation of momentum / energy
n� 6 · 1023

1R.L. Hughes, Transp. Res. B, 2002
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Desired direction of motion ~ν1

Pedestrians:
seek the shortest route to destination
try to avoid high density regions

~ν = − ∇xφ

|∇xφ|

The potential φ : Ω→ R is given by the Eikonal equation{
|∇xφ| = C(t,x, ρ) in Ω

φ(t,x) = 0 for x ∈ Γoutflow

where C = C(t,x, ρ) ≥ 0 is the running cost

=⇒ the solution φ(t,x) represents the weighted distance of the position x
from the target Γoutflow

1Hughes (macro 1st), Jiang et al. (macro 2nd), Colombo (non-local), Hartmann (micro)...
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Eikonal equation: level set curves for |∇xφ| = 1

In an empty space: potential is proportional to distance to destination
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Speed-density relation

Speed function V (ρ):

decreasing function wrt density
V (0) = vmax free flow

V (ρmax) = 0 congestion

Examples:

speed V (ρ) flux ρV (ρ)
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First order models

Hughes’ model2

V (ρ) = vmax

(
1− ρ

ρmax

)
|∇xφ| =

1

V (ρ)

pedestrians tend to minimize their estimated travel time to the exit
pedestrians temper their estimated travel time avoiding high densities
CRITICISM: instantaneous global information on entire domain

Dynamic model with memory effect3

V (ρ) = vmax

(
1− ρ

ρmax

)
~ν = − ∇x(φ+ ωD)

|∇x(φ+ ωD)|

where
|∇xφ| =

1

vmax
, D(ρ) =

1

v(ρ)
+ βρ2 discomfort

pedestrians seek to minimize their estimated travel time based on their
knowledge of the walking domain
pedestrians temper their behavior locally to avoid high densities

2R.L. Hughes, Transp. Res. B, 2002
3Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
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Other first order models
Non-local flow:4

~v = V (ρ ∗ η) ~ν(x) OR ~v = V (ρ)

~ν(x)− ε ∇(ρ ∗ η)√
1 + |∇(ρ ∗ η)|2



Multi-scale time-evolving measures:5

Probability distribution of pedestrians

µt = θmt + (1− θ)Mt where

{
mt =

∑N
j=1 δPj(t) microscopic mass

dMt(x) = ρ(t,x)dx macroscopic mass

Governing equation: probability conservation deduced from
individual-based modeling

∂tµt + divx(µt~vt) = 0

~vt(x) = vmax~ν(x) +N

∫
BR(x)

K(x,y)dµt(y)

4R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
5E. Cristiani, B. Piccoli and A. Tosin, Multiscale Model. Simul., 2011
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Second order model

Momentum balance equation67

∂t(ρ~v) + divx(ρ~v ⊗ ~v) +∇xP (ρ) =
1

τ
(ρV (ρ)~ν − ρ~v)

where

V (ρ) = vmaxe
−α

(
ρ

ρmax

)2

|∇xφ| = 1/V (ρ)

P (ρ) = p0ρ
γ , p0 > 0, γ > 1 internal pressure

τ response time

6Payne-Whitham, 1971
7Y.Q. Jiang, P. Zhang, S.C. Wong and R.X. Liu, Physica A, 2010
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Hughes’ VS second order model: obstacles effect
Obstacles:

1. one column r = 0.3m 2. three columns r = 0.2m 3. two walls 1.2m× 0.2m

What is the effect of the obstacles on the outflow?

Hughes’ model Second order model
Fig. Time evolution of the total mass of pedestrians inside the room.
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Second order model: stop-and-go waves

t=90 t=100 t=110 t=120

P (ρ) = 0.005ρ2, vmax = 2, ρmax = 7

Fig. Time evolution of density profile at x = 64 (left exit)
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Second order model: dependence on p0

P (ρ) = p0ρ
γ : total evacuation time optimal for p0 ' 0.5
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Second order model: dependence on vmax

Total evacuation time

Social force models8 show a minimum for vmax ' 1.4 m/s
=⇒ faster-is-slower effect9

Accounting for inter-pedestrian friction?

8D. Helbing, I. Farkas and T. Vicsek, Nature, 2000
9D.R. Parisi and C.O. Dorso, Physica A, 2007

P. Goatin (INRIA) Mathematical modeling of crowds January 12, 2014 16 / 22



Mathematical models Numerical tests Conclusion

Second order model: dependence on vmax

Total mass evolution
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Evacuation optimization: Braess’ paradox10 ?

Problem: clogging at exit

Can obstacles reduce the evacuation time?

10Braess, D. Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung, 1968
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Evacuation optimization: Braess’ paradox?

Time evolution of the total mass of pedestrians inside the room
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Macroscopic models: summary

Strengths:

lower computational cost for large crowds
global description of spatio-temporal evolution
mathematical tools for well-posedness and numerical approximation
suitable for posing control and optimization problems

Weaknesses:

only for very high densities
not all parameters have physical meaning
able to capture only some features of crowd dynamics

Aspects to be addressed:

reproduce emerging phenomena observed in real situations
account for individual choices that may affect the whole system
validation on empirical data
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Thank you for your attention!
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