Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion			
Congres SWAI 2013							

Modèles macroscopiques de trafic routier et piétonnier

Paola Goatin

EPI OPALE INRIA Sophia Antipolis - Méditerranée paola.goatin@inria.fr

Seignosse Le Penon, 30 mai, 2013

Conclusion

Outline of the talk

1 Traffic flow models

Phase transition models

3 Flux constraints

4 Crowd dynamics

5 Conclusion

Traffic flow models

Three possible scales:

• Microscopic:

- ODEs system
- numerical simulations
- many parameters

• Kinetic:

- distribution function of the microscopic states
- Boltzmann-like equations

• Macroscopic:

- PDEs from fluid dynamics
- analytical theory
- few parameters
- suitable to formulate control and optimization problems

Phase transition

Flux constraints

Pedestrians

Conclusion

Macroscopic models

[number of vehicles in
$$[a, b]$$
 at time t] = $\int_{a}^{b} \rho(t, x) dx$

must be conserved!

divergence theorem for (ρ,f) \Downarrow

$$\int_{t_1}^{t_2} \int_a^b \partial_t \rho + \partial_x f \, dx \, dt = 0$$

Introduction	Phase 1

Flux

Flux constraints

Pedestrians

Conclusion

Conservation laws

(System of) PDEs of the form

ransition

 $\partial_t u(t, \mathbf{x}) + \operatorname{div}_{\mathbf{x}} f(u(t, \mathbf{x})) = 0 \qquad t > 0, \ \mathbf{x} \in \mathbb{R}^D$

where $u \in \mathbb{R}^n$ conserved quantities $f : \mathbb{R}^{n \times D} \to \mathbb{R}$ smooth strictly hyperbolic flux

Basic facts:

- No classical smooth solutions \Longrightarrow weak solutions
- No uniqueness \implies entropy conditions
- Well posedness known only if $\min\{n, D\} = 1$

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion				
Requirements								

- No information propagates faster than vehicles (anisotropy)
- Flux-density relation: $f(t, x) = \rho(t, x)v(t, x)$.
- Density and mean velocity must be non-negative and bounded: $0 \le \rho(t,x), v(t,x) < +\infty, \forall x, t > 0.$
- Different from fluid dynamics:
 - preferred direction
 - no conservation of momentum / energy
 - no viscosity
 - Avogadro number for vehicles: 106 vh/lane×km $\ll 6\cdot 10^{23}$

Phase transition

Flux constraints

Pedestrians

Conclusion

Macroscopic models

 $n \ll 6 \cdot 10^{23}$ but ...

P. Goatin (INRIA)

Phase transition

Flux constraints

Pedestrians

Conclusion

First order models

Lighthill-Whitham '55, Richards '56, Greenshields '35:

• Non-linear transport equation: scalar conservation law

 $\partial_t \rho + \partial_x f(\rho) = 0, \quad f(\rho) = \rho v(\rho)$

• Empirical flux function: fundamental diagram

- flux is increasing for $\rho \leq \rho_c$: free-flow phase
- flux is decreasing for $\rho \ge \rho_c$: congestion phase

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Motivation for higher order models

- Traffic satisfies "mass" conservation. What about other fundamental conservation principles from fluid dynamics: conservation of momentum, conservation of energy?
- Experimental observations of fundamental diagrams are more complex than postulated by first order traffic models

Viale Muro Torto, Roma

Second order models

• Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

Critics (Del Castillo et al. '94, Daganzo '95):

- drivers should have only positive speeds;
- anisotropy: drivers should react only to stimuli from the front.

Conclusion

Second order models

• Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

• Aw-Rascle '00:

$$egin{aligned} &\partial_t
ho + \partial_x (
ho v) = 0 \ &\partial_t (
ho w) + \partial_x (
ho v w) = 0 \end{aligned} \quad v = v(
ho,w) \end{aligned}$$

 $w=v+p(\rho)$ Lagrangian marker, $p=p(\rho)$ "pressure"

Second order models

• Payne '71:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t v + v \partial_x v = -\frac{c_0^2}{\rho} \partial_x \rho + \frac{v_*(\rho) - v}{\tau} \end{cases}$$

• Aw-Rascle '00:

$$\begin{aligned} \partial_t \rho + \partial_x (\rho v) &= 0 \\ \partial_t (\rho w) + \partial_x (\rho v w) &= 0 \end{aligned} \qquad v = v(\rho, w)$$

 $w=v+p(\rho)$ Lagrangian marker, $p=p(\rho)$ "pressure"

• Colombo '02:

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0\\ \partial_t q + \partial_x((q-Q)v) = 0 \end{cases} \quad v = v(\rho, q)$$

 \boldsymbol{q} "momentum", \boldsymbol{Q} road parameter

P. Goatin (INRIA)

Conclusion

Outline of the talk

Traffic flow models

Phase transition models

3 Flux constraints

4 Crowd dynamics

5 Conclusion

A general traffic flow model with phase transition

(Blandin-Work-Goatin-Piccoli-Bayen, 2011)

A general traffic flow model with phase transition

(Blandin-Work-Goatin-Piccoli-Bayen, 2011)

Analytical study

Analysis of congestion phase:

Eigenvalues	$\lambda_1(\rho, q) = v_c^{eq}(\rho) (1 + q) +$	$\lambda_2(\rho, q) = v_c^{eq}(\rho)(1+q)$
	$q v_c^{eq}(\rho) + \rho \left(1+q\right) \partial_\rho v_c^{eq}(\rho)$	
Eigenvectors	$r_1 = \left(\begin{array}{c} \rho \\ q \end{array} \right)$	$r_2 = \begin{pmatrix} v_c^{eq}(\rho) \\ -(1+q) \partial_\rho v_c^{eq}(\rho) \end{pmatrix}$
Nature of the	$\nabla \lambda_1 \cdot r_1 = \rho^2 \left(1 + q \right) \partial_{\rho \rho}^2 v_c^{eq}(\rho) +$	$\nabla \lambda_2 . r_2 = 0$
Lax-curves	$2 \rho (1+2q) \partial_{\rho} v_c^{eq}(\rho) + 2 q v_c^{eq}(\rho)$	
Riemann in-	$v_c^{eq}(\rho) \left(1+q\right)$	q/ ho
variants		

- Across first family waves (shocks or rarefactions) ρ/q is conserved, which models the average driver aggressiveness
- Across second family waves (contact discontinuities) v is conserved (like in free flow)

Domain definition

Definition of free-flow and congestion phases as invariant domains of dynamics

$$\Omega_f = \{(\rho, q) \mid (\rho, q) \in [0, R] \times [0, +\infty[, v_c(\rho, q) = V , 0 \le \rho \le \sigma_+\}$$
$$\Omega_c = \left\{(\rho, q) \mid (\rho, q) \in [0, R] \times [0, +\infty[, v_c(\rho, q) < V , \frac{q^-}{R} \le \frac{q}{\rho} \le \frac{q^+}{R}\right\}$$

Model parameters: free-flow speed V, jam density R, critical density ρ_c , upper and lower bound for perturbation q^- and q^+

Flux constraints

Pedestrians

Conclusion

Riemann solver

• free-flow to free-flow: contact discontinuity

Conclusion

Riemann solver

- free-flow to free-flow: contact discontinuity
- congestion to congestion: shock or rarefaction + contact discontinuity

Flux constraints

Pedestrians

Conclusion

Riemann solver

- free-flow to free-flow: contact discontinuity
- \bullet congestion to congestion: shock or rarefaction + contact discontinuity
- congestion to free-flow: rarefaction + contact discontinuity

Conclusion

Riemann solver

- free-flow to free-flow: contact discontinuity
- congestion to congestion: shock or rarefaction + contact discontinuity
- congestion to free-flow: rarefaction + contact discontinuity
- free-flow to congestion: phase transition + contact discontinuity

Phase transition

Flux constraints

Pedestrians

Conclusion

Mass conservation across phase transitions

Phase transition speed Λ must satisfy Rankine-Hugoniot conditions

 $\Lambda(\rho_+-\rho_-)=F_+-F_-$

with

$$F_{-} = \begin{cases} \rho_{-} v_{f}(\rho_{-}) & \text{if } \rho_{-} \in \Omega_{f} \\ \rho_{-} v_{c}(\rho_{-}, q_{-}) & \text{if } \rho_{-} \in \Omega_{c} \end{cases}$$
$$F_{+} = \begin{cases} \rho_{+} v_{f}(\rho_{+}) & \text{if } \rho_{+} \in \Omega_{f} \\ \rho_{+} v_{c}(\rho_{+}, q_{+}) & \text{if } \rho_{+} \in \Omega_{c} \end{cases}$$

P. Goatin (INRIA)

Modeling forward moving discontinuities in congestion

P. Goatin (INRIA)

Modèles macroscopiques de trafic routier et piétonnier

30 mai, 2013 17 / 50

Modeling forward moving discontinuities in congestion

P. Goatin (INRIA)

Modèles macroscopiques de trafic routier et piétonnier

30 mai, 2013 17 / 50

Phase transition

Flux constraints

Pedestrians

Conclusion

Cauchy problem - well posedness

Theorem (Colombo-Goatin-Priuli, 2006)

 $\forall M > 0, \text{there exists a semigroup } S : \mathbb{R}^+ \times \mathcal{D} \mapsto \mathcal{D} \text{ s.t.}$

- $\mathcal{D} \supseteq \{ \mathbf{u} \in \mathbf{L}^1 \colon \mathrm{TV}(\mathbf{u}) \le M \};$
- $\|S_{t_1}\mathbf{u}_1 S_{t_2}\mathbf{u}_2\|_{\mathbf{L}^1} \le L(M) \cdot (\|\mathbf{u}_1 \mathbf{u}_2\|_{\mathbf{L}^1} + |t_1 t_2|) \quad \forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{D}.$

Sketch of proof

- Existence:
 - Construction of sequence of approximate solutions by wave-front tracking method (piecewise constant approximations: Dafermos '72, DiPerna '76, Bressan '92, Risebro '93)
 - Proof of convergence of the sequence of approximate solutions using BV compactness result (Helly's theorem)
 - Show that limit is a weak solution to the Cauchy problem
- Uniqueness: shift differentials

Finite volume numerical schemes

Problem:

 $\Omega_f \cup \Omega_c$ is not convex \longrightarrow Godunov method doesn't work in general

 $\mathbf{u}_{j}^{n} \in \Omega_{c}, \mathbf{u}_{j+1}^{n} \in \Omega_{f} \quad \not\Rightarrow \quad \mathbf{u}_{j}^{n+1} \in \Omega_{f} \cup \Omega_{c}$

Finite volume numerical schemes

Problem:

 $\Omega_f \cup \Omega_c$ is not convex \longrightarrow Godunov method doesn't work in general

$$\mathbf{u}_{j}^{n} \in \Omega_{c}, \mathbf{u}_{j+1}^{n} \in \Omega_{f} \quad \not\Rightarrow \quad \mathbf{u}_{j}^{n+1} \in \Omega_{f} \cup \Omega_{c}$$

Solutions

• moving meshes for phase transitions: Zhong - Hou - LeFloch '96;

• transport-equilibrium method: Chalons '07.

Godunov method

$$\mathbf{u}_{j}^{n+1} = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{v}(\Delta t, x) dx$$

Modified Godunov method (Chalons-Goatin, 2008)

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{1}{\overline{\Delta x_{j}}} \int_{\overline{x_{j-1/2}}}^{\overline{x_{j+1/2}}} \mathbf{v}(\Delta t, x) dx$$

Modified Godunov method (Chalons-Goatin, 2008)

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{1}{\overline{\Delta x_{j}}} \int_{\overline{x_{j-1/2}}}^{\overline{x_{j+1/2}}} \mathbf{v}(\Delta t, x) dx$$

Green's formula:

$$\overline{\mathbf{u}}_{j}^{n+1} = \frac{\Delta x}{\overline{\Delta x_{j}}} \mathbf{u}_{j}^{n} - \frac{\Delta t}{\overline{\Delta x_{j}}} (\overline{\mathbf{f}}_{j+1/2}^{n,-} - \overline{\mathbf{f}}_{j-1/2}^{n,+})$$

with numerical flux

$$\overline{\mathbf{f}}_{j+1/2}^{n,\pm} = \mathbf{f}(\mathbf{v}_{\mathbf{r}}(\sigma_{j+1/2}^{\pm};\mathbf{u}_{j}^{n},\mathbf{u}_{j+1}^{n})) - \sigma_{j+1/2}\mathbf{v}_{\mathbf{r}}(\sigma_{j+1/2}^{\pm};\mathbf{v}_{j}^{n},\mathbf{v}_{j+1}^{n})$$

P. Goatin (INRIA)

 (a_n) equi-distributed random sequence in]0,1[(ex. Van der Corput)

$$\mathbf{u}_{j}^{n+1} = \begin{cases} \overline{\mathbf{u}}_{j-1}^{n+1} & \text{si} & a_{n+1} \in]0, \frac{\Delta t}{\Delta x} \sigma_{j-1/2}^{+} [\\ \overline{\mathbf{u}}_{j}^{n+1} & \text{si} & a_{n+1} \in [\frac{\Delta t}{\Delta x} \sigma_{j-1/2}^{+}, 1 + \frac{\Delta t}{\Delta x} \sigma_{j+1/2}^{-} [\\ \overline{\mathbf{u}}_{j+1}^{n+1} & \text{si} & a_{n+1} \in [1 + \frac{\Delta t}{\Delta x} \sigma_{j+1/2}^{-}, 1[\end{cases}$$

$$\sigma_{j+1/2} = \text{phase transition speed at } x_{j+1/2} \\ \sigma_{j+1/2}^+ = \max\{\sigma_{j+1/2}, 0\}, \ \sigma_{j+1/2}^- = \min\{\sigma_{j+1/2}, 0\}$$

Benchmark test

Newell-Daganzo with V = 45, R = 1000, $\rho_c = 220$, $\sigma_- = 190$, $\sigma_+ = 270$:

Initial data: $\mathbf{u}_l = (100, 0) \in \Omega_f$, $\mathbf{u}_r = (700, 0.5) \in \Omega_c$ above equilibrium. Gives: phase transition + 2-contact discontinuity linked by $\mathbf{u}_m = (474, -0.42) \in \Omega_c$.

(Blandin-Work-Goatin-Piccoli-Bayen, 2011)

Outline of the talk

Traffic flow models

Phase transition models

Flux constraints

4 Crowd dynamics

5 Conclusion

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
	А	toll gate		

May be written as a conservation law with unilateral constraint:

 $\partial_t \rho + \partial_x f(\rho) = 0 \quad x \in \mathbb{R}, \ t > 0$ $ho(0, x) =
ho_0(x) \qquad x \in \mathbb{R}$ $f(
ho(t, 0)) \le F(t) \quad t > 0$

The Constrained Riemann Solver \mathcal{R}^F

(CRP)
$$\begin{cases} \partial_t \rho + \partial_x f(\rho) = 0\\ \rho(0, x) = \rho_0(x)\\ f(\rho(t, 0)) \le F \end{cases} \qquad \rho_0(x) = \begin{cases} \rho^l & \text{if } x < 0\\ \rho^r & \text{if } x > 0 \end{cases}$$

Definition (Colombo-Goatin, 2007)

If
$$f(\mathcal{R}(\rho^l, \rho^r))(0) \leq F$$
, then $\mathcal{R}^F(\rho^l, \rho^r) = \mathcal{R}(\rho^l, \rho^r)$.
Otherwise, $\mathcal{R}^F(\rho^l, \rho^r)(x) = \begin{cases} \mathcal{R}(\rho^l, \hat{\rho}_F)(x) & \text{if } x < 0, \\ \mathcal{R}(\check{\rho}_F, \rho^r)(x) & \text{if } x > 0. \end{cases}$

\implies non-classical shock at x = 0

P. Goatin (INRIA)

Modèles macroscopiques de trafic routier et piétonnier

30 mai, 2013 25 / 50

The Constrained Riemann Solver \mathcal{R}^F

(CRP)
$$\begin{cases} \partial_t \rho + \partial_x f(\rho) = 0\\ \rho(0, x) = \rho_0(x)\\ f(\rho(t, 0)) \le F \end{cases} \qquad \rho_0(x) = \begin{cases} \rho^l & \text{if } x < 0\\ \rho^r & \text{if } x > 0 \end{cases}$$

Definition (Colombo-Goatin, 2007)

If
$$f(\mathcal{R}(\rho^l, \rho^r))(0) \leq F$$
, then $\mathcal{R}^F(\rho^l, \rho^r) = \mathcal{R}(\rho^l, \rho^r)$.
Otherwise, $\mathcal{R}^F(\rho^l, \rho^r)(x) = \begin{cases} \mathcal{R}(\rho^l, \hat{\rho}_F)(x) & \text{if } x < 0, \\ \mathcal{R}(\check{\rho}_F, \rho^r)(x) & \text{if } x > 0. \end{cases}$

\implies non-classical shock at x = 0

P. Goatin (INRIA)

Modèles macroscopiques de trafic routier et piétonnier

30 mai, 2013 25 / 50

The Constrained Riemann Solver \mathcal{R}^F

(CRP)
$$\begin{cases} \partial_t \rho + \partial_x f(\rho) = 0\\ \rho(0, x) = \rho_0(x)\\ f(\rho(t, 0)) \le F \end{cases} \qquad \rho_0(x) = \begin{cases} \rho^l & \text{if } x < 0\\ \rho^r & \text{if } x > 0 \end{cases}$$

Definition (Colombo-Goatin, 2007)

If
$$f(\mathcal{R}(\rho^l, \rho^r))(0) \leq F$$
, then $\mathcal{R}^F(\rho^l, \rho^r) = \mathcal{R}(\rho^l, \rho^r)$.
Otherwise, $\mathcal{R}^F(\rho^l, \rho^r)(x) = \begin{cases} \mathcal{R}(\rho^l, \hat{\rho}_F)(x) & \text{if } x < 0, \\ \mathcal{R}(\check{\rho}_F, \rho^r)(x) & \text{if } x > 0. \end{cases}$

\implies non-classical shock at x = 0

P. Goatin (INRIA)

Modèles macroscopiques de trafic routier et piétonnier

30 mai, 2013 25 / 50

Phase transition

Flux constraints

Pedestrians

Conclusion

Entropy conditions

Definition (Colombo-Goatin, 2007)

$$\begin{split} \rho \in \mathbf{L}^{\infty} \text{ is weak entropy solution if} \\ \bullet \ \forall \phi \in \mathcal{C}_c^1, \ \phi \ge 0, \ \text{and} \ \forall k \in [0, R] \\ \int_0^{+\infty} & \int_{\mathbb{R}} (|\rho - \kappa| \partial_t + \Phi(\rho, \kappa) \partial_x) \ \phi \ dx \ dt + \int_{\mathbb{R}} |\rho_0 - \kappa| \ \phi \ dx \\ & + 2 \int_0^{+\infty} \left(1 - \frac{F(t)}{f(\rho_c)} \right) f(\kappa) \ \phi(t, 0) \ dt \ge 0 \\ \bullet \ f(\rho(t, 0-)) = f(\rho(t, 0+)) \le F(t) \ \text{a.e.} \ t > 0 \end{split}$$

where $\Phi(a, b) = \operatorname{sgn}(a - b)(f(a) - f(b))$

(Cfr. conservation laws with discontinuous flux function: Karlsen-Risebro-Towers '03, Karlsen-Towers '04, Coclite-Risebro '05...)

Conclusion

Well-posedness in BV

We consider the function

$$\Psi(\rho) = \operatorname{sgn}(\rho - \rho_c)(f(\rho_c) - f(\rho))$$

(cfr. Temple '82, Coclite-Risebro '05 ...)

Well-posedness in BV

Theorem (Colombo-Goatin, 2007)

$$F\in \mathrm{BV}.$$
 There exists a semigroup $S^F:\mathbb{R}^+\times\mathcal{D}\mapsto\mathcal{D}$ s.t.

•
$$\mathcal{D} \supseteq \{ \rho \in \mathbf{L}^1 \colon \Psi(\rho) \in \mathrm{BV} \};$$

•
$$\left\|S_{t}^{F}\rho_{1}-S_{t}^{F}\rho_{2}\right\|_{\mathbf{L}^{1}} \leq \left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{L}^{1}} \quad \forall \rho_{1}, \rho_{2} \in \mathcal{D}.$$

Proof

- Wave-front tracking.
- **2** Glimm functional *ad hoc*

$$\Upsilon(\rho^n, F^n) = \sum_{\alpha} |\Psi(\rho_{\alpha+1}^n) - \Psi(\rho_{\alpha}^n)| + 5 \sum_{t_{\beta} \ge 0} |F_{\beta+1}^n - F_{\beta}^n| + \gamma(\rho^n)$$

Oubling of variables method with constraint.

29 / 50

Well-posedness in \mathbf{L}^∞

If
$$F^1, F^2 \in \mathbf{L}^{\infty}, \rho_1, \rho_2 \in \mathbf{L}^{\infty}$$
 and $\rho_1 - \rho_2 \in \mathbf{L}^1$:

$$\int_{\mathbb{R}} |\rho^{1} - \rho^{2}|(T, x) \, dx \leq 2 \int_{0}^{T} |F^{1} - F^{2}|(t) \, dt + \int_{\mathbb{R}} |\rho_{0}^{1} - \rho_{0}^{2}|(x) \, dx$$

Theorem (Andreianov-Goatin-Seguin, 2010)

 $\forall \rho_0 \in \mathbf{L}^{\infty} \text{ and } \forall F \in \mathbf{L}^{\infty} \exists ! \text{ weak entropy solution.}$

Proof

 $Truncation + regularization + finite \ propagation \ speed.$

Finite volume schemes

Constraint at i = 0:

$$u_i^{n+1} = u_i^n - \frac{k}{h_i} (g(u_i^n, u_{i+1}^n, F_{i+1/2}^n) - g(u_{i-1}^n, u_i^n, F_{i-1/2}^n))$$

with numerical flux

$$g(u, v, F) = \begin{cases} \min(h(u, v), F) & \text{if interface } i = 0\\ h(u, v) & \text{otherwise} \end{cases}$$

 \boldsymbol{h} classical numerical flux:

- regular: Lipschitz L;
- consistent: h(s,s) = f(s);
- monotone: $u \nearrow, v \searrow$.

(Andreianov-Goatin-Seguin, 2010)

Phase transition

Flux constraints

Pedestrians

Conclusion

Example: toll gate

We consider

$$\partial_t \rho + \partial_x \left(\rho(1-\rho) \right) = 0$$
$$\rho(0,x) = 0.3\chi_{[0.2,1]}(x)$$
$$f(\rho(t,1)) \le 0.1$$

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
		Extensions		

- Second order models (Aw-Rascle) (Garavello-Goatin, 2011)
- Rigorous study of general fluxes and non-classical problems (Chalons-Goatin-Seguin, 2013)
- Improved numerical techniques for non-classical problems (Chalons-Goatin-Seguin, 2013)
- Moving bottlenecks (DelleMonache-Goatin, 2012)

Conclusion

Outline of the talk

Traffic flow models

Phase transition models

3 Flux constraints

4 Crowd dynamics

5 Conclusion

Phase transition

Flux constraints

Pedestrians

Conclusion

Crowd dynamics

2D system modeling a crowd in a confined space:

 $\begin{cases} \partial_t \rho(t, \mathbf{x}) + \operatorname{div}_{\mathbf{x}} \mathbf{f}(t, \mathbf{x}) = 0 & t > 0, \ \mathbf{x} \in \Omega \subset \mathbb{R}^2 \\ + \text{ boundary conditions} \\ + \text{ closure equation for the flux } \mathbf{f} \end{cases}$

to reproduce known pedestrian behavior:

- seeking the *fastest* route
- avoiding high densities and borders
- lines formation in opposite fluxes
- collective auto-organization at intersections
- behavior changes in **panic** situations and becomes irrational
- etc ...

Phase transition

Flux constraints

Conclusion

Hughes' model (2002)

Mass conservation

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion: $\vec{N} = -\frac{\nabla \phi}{|\nabla \phi|}$ is given by $|\nabla \phi| = \frac{1}{v(\rho)}$ in Ω $\phi(t, \mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega_{exit}$

- pedestrians tend to minimize their estimated travel time to the exit
- pedestrians temper their estimated travel time avoiding high densities
- CRITICS: instantaneous global information on entire domain

Phase transition

Flux constraints

Pedestrians

Conclusion

36 / 50

Dynamic model with memory effect

Mass conservation

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion: $\vec{N} = -\frac{\nabla_{\mathbf{x}}(\phi + \omega D)}{|\nabla_{\mathbf{x}}(\phi + \omega D)|}$ where

$$\begin{aligned} |\nabla_{\mathbf{x}}\phi| &= \frac{1}{v_{\max}} \quad \text{in } \Omega, \quad \phi(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \partial\Omega_{exit}, \\ D &= D(\rho) = \frac{1}{v(\rho)} + \beta\rho^2 \quad \text{discomfort} \end{aligned}$$

- pedestrians seek to minimize their estimated travel time based on their knowledge of the walking domain
- pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)

Flux constraints

Pedestrians

Conclusion

Second order model

Euler equations with relaxation

 $\partial_t \rho + \nabla \cdot (\rho \vec{V}) = 0$ $\partial_t (\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) = \underbrace{\frac{1}{\tau} (\rho v_e(\rho) \vec{N} - \rho \vec{V})}_{\substack{relaxation \\ term}} + \underbrace{\nabla P(\rho)}_{\substack{anticipation \\ factor}}$

where

$$v_e(\rho) = v_{\max} \exp\left(-\alpha \left(\frac{\rho}{\rho_{\max}}\right)^2\right), \qquad P(\rho) = p_0 \rho^{\gamma}$$

and boundary conditions: $\nabla_{\mathbf{x}} \rho \cdot \vec{n} = 0$ and $\vec{V} \cdot \vec{n} = 0$

(Jiang-Zhang-Wong-Liu, 2010)

P. Goatin (INRIA)

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
	The fa	stest route		

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
	The fa	stest route		

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
	The fa	stest route		

Introduction	Phase transition	Flux constraints	Pedestrians	Conclusion
	The fa	stest route		

Pedestrians

Conclusion

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

(Twarogowska-Duvigneau-Goatin, 2013)

P. Goatin (INRIA)

Evacuation time:

(Twarogowska-Duvigneau-Goatin, 2013)

P. Goatin (INRIA)

The second order model displays a better behavior:

Flux constraints

Pedestrians

Conclusion

Braess' paradox?

Evacuation time:

(Twarogowska-Duvigneau-Goatin, 2013)

P. Goatin (INRIA)

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: statement of the problem

Rigorous (preliminary) results: We consider the initial-boundary value problem

$$\begin{aligned} \rho_t - \left(\rho(1-\rho)\frac{\phi_x}{|\phi_x|}\right)_x &= 0\\ |\phi_x| &= c(\rho) \end{aligned} \qquad x \in \Omega =]-1, 1[, \ t > 0 \end{aligned}$$

with initial density $\rho(0, \cdot) = \rho_0 \in BV(]0, 1[)$ and *absorbing* boundary conditions

$$\begin{array}{l} \rho(t,-1)=\rho(t,1)=0 \quad (\text{weak sense})\\ \phi(t,-1)=\phi(t,1)=0 \end{array}$$

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: statement of the problem

Rigorous (preliminary) results: We consider the initial-boundary value problem

$$\begin{aligned} \rho_t - \left(\rho(1-\rho)\frac{\phi_x}{|\phi_x|}\right)_x &= 0\\ |\phi_x| &= c(\rho) \end{aligned} \qquad x \in \Omega =]-1, 1[, \ t > 0 \end{aligned}$$

with initial density $\rho(0, \cdot) = \rho_0 \in BV(]0, 1[)$ and *absorbing* boundary conditions

$$\begin{aligned} \rho(t,-1) &= \rho(t,1) = 0 \quad \text{(weak sense)} \\ \phi(t,-1) &= \phi(t,1) = 0 \end{aligned}$$

General cost function $c \colon [0,1[\to [1,+\infty[\text{ smooth s.t. } c(0) = 1 \text{ and } c'(\rho) \ge 0 (\text{e.g. } c(\rho) = 1/v(\rho))$

The 1D case: statement of the problem

The problem can be rewritten as

$$ho_t - \left(\mathrm{sgn}(x - \boldsymbol{\xi}(t)) \ f(
ho)
ight)_x = 0$$

where the *turning point* is given by

$$\int_{-1}^{\xi(t)} c\left(\rho(t, y)\right) \, dy = \int_{\xi(t)}^{1} c\left(\rho(t, y)\right) \, dy$$

The 1D case: statement of the problem

The problem can be rewritten as

$$\rho_t - \left(\operatorname{sgn}(x - \boldsymbol{\xi}(t)) \ f(\rho)\right)_x = 0$$

where the *turning point* is given by

$$\int_{-1}^{\xi(t)} c(\rho(t,y)) \ dy = \int_{\xi(t)}^{1} c(\rho(t,y)) \ dy$$

 \longrightarrow the discontinuity point $\xi = \xi(t)$ is not fixed a priori, but depends non-locally on ρ

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: preliminary results

• existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v (Amadori-DiFrancesco, 2012)

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v (Amadori-DiFrancesco, 2012)
- entropy condition and maximum principle (ElKhatib-Goatin-Rosini, 2012)

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v (Amadori-DiFrancesco, 2012)
- entropy condition and maximum principle (ElKhatib-Goatin-Rosini, 2012)
- wave-front tracking algorithm and convergence of finite volume schemes (Goatin-Mimault, 2013)

The 1D case: entropy condition

Definition: entropy weak solution (ElKhatib-Goatin-Rosini, 2012)

 $\rho \in \mathbf{C}^{\mathbf{0}}\left(\mathbb{R}^{+}; \mathbf{L}^{1}(\Omega)\right) \cap \mathrm{BV}\left(\mathbb{R}^{+} \times \Omega; [0, 1]\right)$ s.t. for all $k \in [0, 1]$ and $\psi \in \mathbf{C}^{\infty}_{\mathbf{c}}(\mathbb{R} \times \Omega; \mathbb{R}^{+})$:

$$\begin{split} 0 &\leq \int_{0}^{+\infty} \int_{-1}^{1} \left(|\rho - k| \psi_{t} + \Phi(t, x, \rho, k) \psi_{x} \right) \, dx \, dt + \int_{-1}^{1} |\rho_{0}(x) - k| \psi(0, x) \, dx \\ &+ \operatorname{sgn}(k) \int_{0}^{+\infty} \left(f \left(\rho(t, 1-) \right) - f(k) \right) \psi(t, 1) \, dt \\ &+ \operatorname{sgn}(k) \int_{0}^{+\infty} \left(f \left(\rho(t, -1+) \right) - f(k) \right) \psi(t, -1) \, dt \\ &+ 2 \int_{0}^{+\infty} f(k) \psi \left(t, \xi(t) \right) \, dt. \end{split}$$

where
$$\Phi(t, x, \rho, k) = \operatorname{sgn}(\rho - k) \left(F(t, x, \rho) - F(t, x, k)\right)$$

P. Goatin (INRIA)

Phase transition

Flux constraints

Pedestrians

Conclusion

The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let $\rho \in \mathbf{C}^{\mathbf{0}} \left(\mathbb{R}^+; \mathrm{BV}(\Omega) \cap \mathbf{L}^1(\Omega) \right)$ be an entropy weak solution. Then $0 \le \rho(t, x) \le \|\rho_0\|_{\mathbf{L}^{\infty}(\Omega)}.$

Characteristic speeds satisfy

$$f'(\rho^+(t)) \le \dot{\xi}(t), \text{ if } \rho^-(t) < \rho^+(t), \\ -f'(\rho^-(t)) \ge \dot{\xi}(t), \text{ if } \rho^-(t) > \rho^+(t).$$

Conclusion

Outline of the talk

Traffic flow models

Phase transition models

3 Flux constraints

4 Crowd dynamics

5 Conclusion

Phase transition

Flux constraints

Pedestrians

Conclusion

Perspectives

Sound analytical basis for practical implementation:

ROAD TRAFFIC :

- finite acceleration for pollution models
- ramp metering and rerouting models
- optimal control techniques for traffic management

(ORESTE Associated Team with UC Berkeley)

PEDESTRIANS :

- ${\scriptstyle \bullet }$ well-posedness
- validation against empirical data
- shape optimization for architecture and urban planning

Phase transition

Flux constraints

Pedestrians

Conclusion

Thank you for your attention!

P. Goatin (INRIA) Modèles macroscopiques de trafic routier et piétonnier 30 mai, 2013 50 / 50