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Conservation laws on networks

Networks

Finite collection of directed arcs Ii = ]ai, bi[ connected by nodes

I1

I2

I3

I4

I5 I6

I7

I8 I9
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LWR model1

Non-linear transport equation: PDE for mass conservation

∂tρ+ ∂xf(ρ) = 0 x ∈ R, t > 0

ρ ∈ [0, ρmax] mean traffic density
f(ρ) = ρv(ρ) flux function

Empirical flux-density relation: fundamental diagram

ρρcr ρmax

fmax

f(ρ)

0

Greenshields ’35

ρρcr ρmax

fmax

f(ρ)

vf
fmax

ρmax−ρcr

Newell-Daganzo

1[Lighthill-Whitham 1955, Richards 1956]
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Extension to networks

m incoming arcs
n outgoing arcs
junction

LWR on networks:
[Holden-Risebro, 1995; Coclite-Garavello-Piccoli, 2005; Garavello-Piccoli, 2006]

LWR on each road
Optimization problem at the junction

Modeling of junctions with a buffer:
[Herty-Lebacque-Moutari, 2009; Garavello-Goatin, 2012; Garavello, 2014;

Bressan-Nguyen, 2015]

Junction described with one or more buffers
Suitable for optimization and Nash equilibrium problems
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Riemann problem at J

{
∂tρk + ∂xf(ρk) = 0
ρk(0, x) = ρk,0

k = 1, . . . , n+m

Riemann solver: RSJ : (ρ1,0, . . . , ρn+m,0) 7−→ (ρ̄1, . . . , ρ̄n+m) s.t.

conservation of cars:
∑n
i=1 fi(ρ̄i) =

∑n+m
j=n+1 fj(ρ̄j)

waves with negative speed in incoming roads
waves with positive speed in outgoing roads

Consistency condition:

RSJ
(
RSJ(ρ1,0, . . . , ρn+m,0)

)
= RSJ(ρ1,0, . . . , ρn+m,0) (CC)
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Dynamics at junctions

(A) prescribe a fixed distribution of traffic in outgoing roads

A = {aji} ∈ Rm×n : 0 < aji < 1,

n+m∑
j=n+1

aji = 1

outgoing fluxes = A· incoming fluxes
=⇒ conservation through the junction

(B) maximize the flux through the junction
=⇒ entropy condition

(A)+(B) equivalent to a LP optimization problem and a unique solution to
RPs

More incoming than outgoing roads =⇒ priority parameters
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Demand & Supply 2

Incoming roads i = 1, . . . , n:

γmax
i =

{
f(ρi,0) if 0 ≤ ρi,0 < ρcr

fmax if ρcr ≤ ρi,0 ≤ 1

ρ

, f(ρ)γmax
i

fmax(ρ)

Outgoing roads j = n+ 1, . . . , n+m:

γmax
j =

{
fmax if 0 ≤ ρj,0 ≤ ρcr

f(ρj,0) if ρcr < ρj,0 ≤ 1

ρ

, f(ρ)γmax
j

fmax(ρ)

Admissible fluxes at junction: Ωl = [0, γmax
l ]

2[Lebacque]
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Priority Riemann Solver

(A) distribution matrix of traffic from incoming to outgoing roads3

A = {aji} ∈ Rm×n : 0 ≤ aji ≤ 1,

n+m∑
j=n+1

aji = 1

(B) priority vector

P = (p1, . . . , pn) ∈ Rn : pi > 0,

n∑
i=1

pi = 1

(C) feasible set

Ω =

{
(γ1, · · · , γn) ∈

n∏
i=1

Ωi : A · (γ1, · · · , γn)T ∈
n+m∏
j=n+1

Ωj

}

3[Coclite-Garavello-Piccoli, SIMA 2005]
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Priority Riemann Solver

Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do
∀i ∈ Jc → hi = max{h : h pi ≤ γmaxi } =

γmax
i
pi

,

∀j ∈ {n+ 1 . . . , n+m} → hj = sup{h :
∑
i∈J ajiQi + h(

∑
i∈Jc ajipi) ≤

γmaxj }.
Set ~ = minij{hi, hj}.
if ∃ j s.t. hj = ~ then
Set Q = ~P and J = {1, . . . , n}.

else
Set I = {i ∈ Jc : hi = ~} and Qi = ~ pi for i ∈ I.
Set J = J ∪ I.

end if
end while
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PRS in practice

2× 2 junction (n = 2, m = 2):

Γ2

Γ1

γ1

γ2

P

γ3

γ4

1 Define the spaces of the incoming
fluxes

2 Consider the demands

3 Trace the supply lines

4 Trace the priority line

5 The feasible set is given by Ω

Different situations can occur
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PRS: optimal point

P intersects the supply lines inside Ω

Γ2

Γ1

γ1

γ2

γ3

γ4

Q

P
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Γ2

Γ1

γ1
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Q
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PRS

Definition (PRS)

Q = (γ̄1, . . . , γ̄n) incoming fluxes defined by Algorithm 1
A ·QT = (γ̄n+1, . . . , γ̄n+m)T outgoing fluxes
Set

ρ̄i =

{
ρi,0 if f(ρi,0) = γ̄i

ρ ≥ ρcr s.t. f(ρ) = γ̄i
i ∈ {1, . . . , n}

ρ̄i =

{
ρj,0 if f(ρj,0) = γ̄i

ρ ≤ ρcr s.t. f(ρ) = γ̄j
j ∈ {n+ 1, . . . , n+m}

Then, PRS : [0, ρmax]n+m → [0, ρmax]n+m is given by

PRS(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m) .

Remark: PRS may be obtained as limit of solvers defined by Dynamic
Traffic Assignment based on junctions with queues
[Bressan-Nordli, NHM, to appear]
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Riemann solver: properties4

Definition (P1)
RS(ρ1,0, . . . , ρn+m,0) = RS(ρ′1,0, . . . , ρ

′
n+m,0)

if ρl,0 = ρ′l,0 whenever either ρl,0 or ρ′l,0 is a bad datum (γmax
l 6= fmax).

Definition (P2)

∆TVf (t̄) ≤ C min
{
|f(ρl,0)− f(ρl)| , |Γ(t̄+)− Γ(t̄−)|+

∣∣h̄(t̄+)− h̄(t̄−)
∣∣}

∆h̄(t̄) ≤ C |f(ρl,0)− f(ρl)|

with C ≥ 1, where Γ(t) :=
∑n
i=1 f(ρi(t, 0−)), h̄ = sup{h ∈ R+ : hP ∈ Ω}.

Definition (P3)

If f(ρl) < f(ρl,0): ∆Γ(t̄) ≤ C
∣∣h̄(t̄+)− h̄(t̄−)

∣∣, h̄(t̄+) ≤ h̄(t̄−).

4Garavello-Piccoli, AnnIHP 2009
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Cauchy problem: existence results

Theorem (DelleMonache-Goatin-Piccoli, CMS 2018)

If a Riemann solver satisfies (P1)-(P3), then every Cauchy problem with
BV initial data admits a weak solution.

Proof: Wave-Front Tracking, bound on TV(f) and “big shocks”.

Proposition (DelleMonache-Goatin-Piccoli, CMS 2018)

The Priority Riemann Solver PRS satisfies (P1)-(P3) for junctions with
n ≤ 2, m ≤ 2 and 0 < aji < 1 for all i, j.
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Cauchy problem: counterexample for Lipschitz dependence

Proposition (Garavello-Piccoli, Section 5.4)

Let C > 0 and a 2× 2 junction with RSJ(ρ1,0, . . . , ρ4,0) = (ρ1,0, . . . , ρ4,0).
Then there exist two piece-wise constant initial data such that the
L1-distance between the corresponding solutions increases by C

‖ρ(t, ·)− ρ̄(t, ·)‖1 ≥ C‖ρ0 − ρ̄0‖1
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PRS on 3× 2 junction

A =

[
0.5 0.6 0.2
0.5 0.4 0.8

]
P =

[
0.5 0.3 0.2
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PRS VS RSCGP on 2× 2 junction
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In summary

General Riemann Solver at junctions:

no restriction on A

no restriction on the number of roads

priorities come before flux maximization

compact algorithm to compute solutions

general existence result
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Riemann problem at J with buffer

∂tρk + ∂xf(ρk) = 0
ρk(0, x) = ρk,0

k = 1, . . . , n+m

r′(t) =

n∑
i=1

f(ρi(t, 0−))−
n+m∑
j=n+1

f(ρj(t, 0+))

r(0) = r0 ∈ [0, rmax] buffer load

Riemann solver:
RSr(t) : (ρ1,0, . . . , ρn+m,0, r0) 7−→ (ρ1(t, x), . . . , ρn+m(t, x), r(t)) s.t.

buffer dynamics: r′(t) =
∑n
i=1 fi(ρi(t, 0−))−

∑n+m
j=n+1 fj(ρj(t, 0+))

waves with negative speed in incoming roads
waves with positive speed in outgoing roads

Consistency condition:

RS r̄
(
RS r̄(ρ1,0, . . . , ρn+m,0)

)
= RS r̄(ρ1,0, . . . , ρn+m,0), ∀r̄ ∈ [0, rmax]
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Riemann problem with buffer: construction

Let θk ∈ ]0, 1[, k = 1, . . . , n+m, s.t.
∑n
i=1 θi =

∑n+m
j=n+1 θj = 1

µ ∈ ]0,max{n,m}fmax[: maximum load entering the junction

1 Γ1
inc =

∑n
i=1 γ

max
i Γ1

out =
∑n+m
j=n+1 γ

max
j

2

Γinc =

{
min{Γ1

inc, µ}
min{Γ1

inc,Γ
1
out, µ}

Γout =

{
min{Γ1

out, µ} r̄ ∈ [0, rmax[

min{Γ1
inc,Γ

1
out, µ} r̄ = rmax

3 (γ̄1, . . . , γ̄n) = ProjIΓinc
(θ1Γinc, . . . , θnΓinc)

(γ̄n+1, . . . , γ̄n+m) = ProjJΓout
(θn+1Γinc, . . . , θn+mΓinc)

where
IΓinc =

{
(γ1, . . . , γn) ∈

∏n
i=1[0, γmax

i ] :
∑n
i=1 γi = Γinc

}
JΓout =

{
(γn+1, . . . , γn+m) ∈

∏n+m
j=n+1[0, γmax

j ] :
∑n+m
j=n+1 γj = Γout

}
.
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Let θk ∈ ]0, 1[, k = 1, . . . , n+m, s.t.
∑n
i=1 θi =

∑n+m
j=n+1 θj = 1

µ ∈ ]0,max{n,m}fmax[: maximum load entering the junction

1 Γ1
inc =

∑n
i=1 γ

max
i Γ1

out =
∑n+m
j=n+1 γ

max
j

2

Γinc =

{
min{Γ1

inc, µ}
min{Γ1

inc,Γ
1
out, µ}

Γout =

{
min{Γ1

out, µ} r̄ ∈ [0, rmax[

min{Γ1
inc,Γ

1
out, µ} r̄ = rmax

3 (γ̄1, . . . , γ̄n) = ProjIΓinc
(θ1Γinc, . . . , θnΓinc)

(γ̄n+1, . . . , γ̄n+m) = ProjJΓout
(θn+1Γinc, . . . , θn+mΓinc)

where
IΓinc =

{
(γ1, . . . , γn) ∈

∏n
i=1[0, γmax

i ] :
∑n
i=1 γi = Γinc

}
JΓout =

{
(γn+1, . . . , γn+m) ∈

∏n+m
j=n+1[0, γmax

j ] :
∑n+m
j=n+1 γj = Γout

}
.
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Riemann problem with buffer: example

The solution to the Riemann problem when n = m = 1:
Γinc > Γout on the left, Γinc < Γout on the right.
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Cauchy problem with buffer: existence

Theorem (Garavello-Goatin, DCDS-A 2012)

For every T > 0, the Cauchy problem admits a weak solution at J
(ρ1, . . . , ρn+m, r) such that

1 for every l ∈ {1, . . . , n+m}, ρl is a weak entropic solution of

∂tρl + ∂xf(ρl) = 0

in [0, T ]× Il;
2 for every l ∈ {1, . . . , n+m}, ρl(0, x) = ρ0,l(x) for a.e. x ∈ Il;
3 for a.e. t ∈ [0, T ]

RSr(t)(ρ1(t, 0−), . . . , ρn+m(t, 0+)) = (ρ1(t, 0−), . . . , ρn+m(t, 0+));

4 for a.e. t ∈ [0, T ]

r′(t) =
n∑
i=1

f(ρi(t, 0−))−
n+m∑
j=n+1

f(ρj(t, 0+)).

Proof: Wave-Front Tracking, bound on TV(f) and “big shocks”.
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Cauchy problem with buffer: stability

Theorem (Garavello-Goatin, DCDS-A 2012)

The solution (ρ1, . . . , ρn+m, r) constructed in the previous Theorem depends
on the initial condition (ρ0,1, . . . , ρ0,n+m, r0) ∈(∏n

i=1 BV (]−∞, 0]; [0, 1])
)
×
(∏n+m

j=n+1 BV ([0,+∞[; [0, 1])
)
×[0, rmax]

in a Lipschitz continuous way with respect to the strong topology of the
Cartesian product

(∏n
i=1 L

1(−∞, 0)
)
×
(∏n+m

j=n+1 L
1(0,∞)

)
× R

(with Lipschitz constant L = 1).

Proof: Shifts differentials.
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Outline of the talk

1 Traffic flow on networks

2 The Riemann Problem at point junctions

3 Existence of solutions

4 Examples

5 The Riemann Problem at junctions with buffer

6 The Riemann Problem at junctions for 2nd order models
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Riemann problem ARZ at J


∂tρk + ∂x(ρkvk) = 0
∂t(ρkwk) + ∂x(ρkvkwk) = 0
ρk(0, x) = ρk,0, vk(0, x) = vk,0

k = 1, . . . , n+m

Riemann solver:

waves with negative speed in incoming roads
waves with positive speed in outgoing roads
conservation of cars:

∑n
i=1(ρ̄iv̄I) =

∑n+m
j=n+1(ρ̄j v̄j)

drivers’ preferences ρ̄n+1v̄n+1

...
ρ̄n+mv̄n+m

 = A

 ρ̄1v̄1

...
ρ̄nv̄n


max

∑n
i=1 ρivi

34 / 35



Introduction The Riemann Problem at point junctions Existence Examples The Riemann Problem at junctions with buffer The Riemann Problem at junctions for 2nd order models

Riemann problem ARZ at J


∂tρk + ∂x(ρkvk) = 0
∂t(ρkwk) + ∂x(ρkvkwk) = 0
ρk(0, x) = ρk,0, vk(0, x) = vk,0

k = 1, . . . , n+m

Previous rules are sufficient to isolate a unique solution in incoming roads,
but not in outgoing roads.

Additional rules

maximize the velocity v of cars in outgoing roads
maximize the density ρ of cars in outgoing roads
minimize the total variation of ρ along the solution of the Riemann
problem in outgoing roads
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