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ORESTE is an associated team between OPALE project-team at
INRIA and the Mobile Millennium / Integrated Corridor
Management (ICM) team at UC Berkeley focused on traffic
management. With this project, we aim at processing GPS traffic
data with up-to-date mathematical techniques to optimize traffic
flows in corridors. More precisely, we seek for optimal reroute
strategies to reduce freeway congestion employing the unused
capacity of the secondary network. The project uses macroscopic
traffic flow models and a discrete approach to solve the
corresponding optimal control problems. The overall goal is to
provide constructive results that can be implemented in practice.
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1
Macroscopic models for
road traffic



First-order models

Lighthill-Whitham-Richards ’56:

PDE for mass conservation

∂tρ+ ∂x (ρv) = 0, v = v(ρ)

t > 0 time ρ = ρ(t, x) vehicle density
x ∈ R space v = v(t, x) mean velocity

=⇒ number of vehicles is conserved!
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Experimental data
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Phase transitions

Fluid flow: in Ωf

∂tρ+ ∂x(ρvf ) = 0

vf (ρ) = V

Congestion: in Ωc
{

∂tρ+ ∂x (ρvc) = 0

vc(ρ, q) = v
eq
c (ρ)

(Blandin - Work - Goatin - Piccoli - Bayen ’11)
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Phase transitions

Fluid flow: in Ωf

∂tρ+ ∂x(ρvf ) = 0

vf (ρ) = V

Congestion: in Ωc
{

∂tρ+ ∂x (ρvc) = 0
∂tq + ∂x (qvc) = 0

vc(ρ, q) = v
eq
c (ρ)(1 + q)

(Blandin - Work - Goatin - Piccoli - Bayen ’11)
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2
Finite volume schemes



Classical Godunov scheme

Conservation on rectangular cells:

t
n+1

t
n

xj−3/2 xj−1/2 xj+1/2 xj+3/2

a

b c

d

un+1
j = un

j −
∆t

∆x

(

f n
j+1/2 − f n

j−1/2

)

=
1

∆x

∫ xj+1/2

xj−1/2

uν(t
n+1−, x)dx

Ωf ∪ Ωc non convex =⇒ un+1
j 6∈ Ωf ∪ Ωc in general
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Modified Godunov scheme

Conservation on modified cells:

t
n+1

t
n

xj−3/2 xj−1/2 xj+1/2 xj+3/2

x j−1/2 x j+1/2

a

b c

d

un+1
j =

∆x

∆x j

un
j −

∆t

∆x j

(f
n,−
j+1/2−f

n,+
j−1/2) =

1

∆x

∫ x j+1/2

x j−1/2

uν(t
n+1−, x)dx

with the numerical fluxes

f
n,±
j+1/2 = f(vr(σ

±

j+1/2
;un

j ,u
n
j+1))− σj+1/2vr(σ

±

j+1/2
; vn

j , v
n
j+1)

+ sampling
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Modified Godunov scheme
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3
Estimation:
the Mobile Millennium project



Estimation/control of large scale physical systems

I Model of the physical world
I Partial differential equation

(PDE)
I Statistical model

I Integration of sensor data in the
model

I Numerical algorithms
I Inference

I Closing the loop on the physical
system

I Network optimization
I Control
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Estimation/control of large scale physical systems

Model
Mathematical abstraction of
the dynamics

+
Data
(Indirect) measurements of
the state of the system

⇒ Estimation and control
Best knowledge given the
data.
Adaptive control strategies
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Available data

GPS measurements sent by a fleet of 500 probe vehicles (source:
www.cabspotting.org)

Data
(Indirect) measurements of
the state of the system
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mm_raw_cabspotting.avi
Media File (video/avi)



Available data

Map matching and path reconstruction between successive GPS
measurements.

Data
(Indirect) measurements of
the state of the system
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one_day_mapped_taxi_data_authored.avi
Media File (video/avi)



Physical system

Model
Mathematical abstraction
of how the system evolves

The function ψ is called
“flux function” or
fundamental diagram.

Model characteristics
I Hydrodynamic and horizontal

queuing theory

∂ρ

∂t +
∂ψ(ρ)

∂x = 0

I On arterials: intersections with
unknown signal parameters (signal
locations are known)

I Errors and noise: model
inaccuracies, pedestrians, driving
behavior,. . .
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Estimation: Highway traffic

Mobile Century Experiment
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Estimation: Highway traffic

Real-time validation
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Estimation: arterial traffic
Deterministic solution of the PDE: horizontal queues

Assumptions
I Triangular fundamental

diagram
I Uniform arrivals
I Periodic dynamic (cycle

time)
Derivation of the pdf of travel times:
travel time = delay + free flow travel time

I Pdf of delay: Derived from the solution of the PDE:
I Non stopping vehicle: zero delay
I Stopping vehicles: uniform delay

I Pdf of free flow travel times: Model of driving behavior
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Estimation: arterial traffic
Probability distribution of travel times

Experimental validation: Network setting:
I Conservation of vehicles at

intersections
I Learning and inference with

a Dynamic Bayesian
Network
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4
Network optimization:
Integrated Corridor Management



Routing Users “Altruistically”

Today’s Routing Algorithms:
I Route individuals optimally
I Leads to greedy, inefficient

traffic conditions

Societal Routing:
I Routing algorithms

optimize over all users
I At the expense of some

users, some of the time

Aude HOFLEITNER - UC Berkeley May 22, 2012 - 23



Travel-time reduction via flow reroutes

Save total travel-time
by rerouting a fraction
of the users

I Re-route some
drivers from the
shorter congested
route to the longer
uncongested route

I Incentives and
games

I Overall social gain

Aude HOFLEITNER - UC Berkeley May 22, 2012 - 24



Fractional Compliance: Stackelberg Games

Price of Anarchy: Nash eq. Cost/Social optimum cost

Stackelberg games:
I Optimally route social

drivers?
I In the presence of

greedy drivers?
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Simple example: SO DTA with partial compliance
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5
Perspectives



Project plan

Optimal reroute strategies for traffic management:
I Formulation of a PDE constrained optimization problem, with

an objective function that encodes network efficiency.
I Solution algorithms for the relaxed (convex) optimization

problem.
I Construction of solutions to the original problem from the

solution of the relaxed problem.
I Implementation on sub-networks of the corridor of interest,

simulations and validation.
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Thanks for your attention
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