Optimal RErouting Strategies for Traffic mangEment (ORESTE)

Guillaume Costeseque

Inria Sophia Antipolis Méditerranée

San Francisco, May 11, 2015

- 1 Associated Team ORESTE
- 2 Ramp-metering
- 3 Optimal re-routing
- Perspectives

- 1 Associated Team ORESTE
- 2 Ramp-metering
- 3 Optimal re-routing
- Perspectives

Associated Team "ORESTE"

ORESTE (Optimal RErouting Strategies for Traffic mangEment) is an associated team between Inria team ACUMES (ex OPALE) and the Connected Corridors project at UC Berkeley.

- Paola Goatin (PI)
- Maria Laura Delle Monache
- Guillaume Costeseque

Other fundings:

- ERC Starting Grant TRAM3
- France Berkeley Fund

- Alexandre Bayen (PI)
- Jack Reilly
- Samitha Samaranayake
- Walid Krichene
- Nikolaos Bekiaris-Liberis

- Optimize traffic flow in corridors
 - ramp metering
 - re-routing strategies
- Modeling approach:
 - macroscopic traffic flow models
 - discrete adjoint method for gradient computation

1 Associated Team ORESTE

2 Ramp-metering

3 Optimal re-routing

Perspectives

Numerical Results: case study

Figure: I15 South, San Diego: 31 km

- N = 125 links
- M = 9 onramps
- T = 1800 time-steps
- $\Delta t = 4$ seconds (120 minutes time interval)

Numerical Results

Density and queue difference with control

Model Predictive Control

Performance under noisy input data: MPC loop

- initial conditions at time t and boundary fluxes on T_h (noisy inputs)
- optimal control policy on T_h
- forward simulation on $T_u \leq T_h$ using optimal controls and exact initial and boundary data
- $t \rightarrow t + T_u$

Comparison with ALINEA (local feedback control without boundary conditions)

Figure: Congestion reduction and noise robustness

- 1 Associated Team ORESTE
- 2 Ramp-metering
- 3 Optimal re-routing
 - 4 Perspectives

System Optimal Dynamic Traffic Assignment problem with Partial Control:

- Multi-commodity flow accounting for *compliant* and *non-compliant* users
- Full Lagrangian paths known for the controllable agents
- Knowledge of the aggregate split ratios for the non-controllable (selfish) agents.

Goal: Control compliant users to optimize traffic flow

System Optimal Dynamic Traffic Assignment problem with Partial Control:

- Multi-commodity flow accounting for *compliant* and *non-compliant* users
- Full Lagrangian paths known for the controllable agents
- Knowledge of the aggregate split ratios for the non-controllable (selfish) agents.

Goal: Control compliant users to optimize traffic flow

Numerical study: real case

Figure: I210 with parallel arterial route, Arcadia (13 km)

- N = 24 links
- 1 hour time-horizon
- $\Delta t = 30$ seconds

Numerical Results

50% capacity drop between min 10 and min 30

Numerical Results

Arterial capacity used:

Output

Journal papers

- [J1] M.L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P.Goatin and A. Bayen. A PDE-ODE model for a junction with ramp buffer, SIAM J. Appl. Math., 74(1) (2014), 22-39.
- [J2] J. Reilly, S. Samaranayake, M.L. Delle Monache, W. Krichene, P. Goatin and A. Bayen. Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering, J. Optim. Theory Appl., in review.
- [J3] S. Samaranayake, W. Krichene, J. Reilly, M.L. Delle Monache, J.B. Lespiau, P. Goatin and A. Bayen. Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks, Operations Research, in review.

Conference proceedings

[C1] S. Samaranayake, J. Reilly, W. Krichene, M.L. Delle Monache, J.B. Lespiau, P. Goatin and A. Bayen. Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks, 2015 American Control Conference, Chicago, IL.

PhD thesis

- M.L. Delle Monache. Traffic flow modeling by conservation laws, UNS, 2014.
- J. Reilly. Security of Freeway Traffic Systems: A Distributed Optimal Control Approach, UC Berkeley, 2014.
- S. Samaranayake. Routing strategies for the reliable and efficient utilization of road networks, UC Berkeley, 2014.

- 1 Associated Team ORESTE
- 2 Ramp-metering
- 3 Optimal re-routing
- Perspectives

- 3-years renewal just obtained for:
 - General well posed junction models
 - Variational approach based on Hamilton-Jacobi equations
 - User equilibrium
 - Lagrangian controls based on autonomous vehicles.
- Members:
 - Inria: P. Goatin, G. Costeseque
 - UC Berkeley: A. Bayen, F. Belletti, C. Wu
 - Rutgers U (partner): B. Piccoli, M.L. Delle Monache
- 2015: IPAM (UCLA) workshop "Mathematical Foundations of Traffic", part of the 3-months IPAM program on "New Directions in Mathematical Approaches for Traffic Flow Management",

