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Road traffic congestion

Congestion in the US in 2011 [Urban Mobility Report, 2012]

$121 billions in wasted time and fuel (1% of GDP)
5.5 billions hours of delay
56 billions pounds of additional C02 emissions

Federal Highway Administration forecast

2002 2035

37% of total delay occours outside the peak hours
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New opportunities

Spread of smart phones and GPS navigation
devices

US smartphone penetration is at 65%

Real-time information

accurate live information (<5 minute
delay)
high granularity (>1 minute update
frequency)

Adaptive control

stochastic routing
dynamic re-routing
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ORESTE project goals

Optimize traffic flow in corridors

ramp metering
re-routing strategies

Modeling approach:

macroscopic traffic flow models
discrete adjoint method for gradient computation
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Other ramp-metering models

ALINEA
[Papageorgiou - Hadj-Salem - Blosseville, TRB, 1991]

Closed-loop
Only uses state estimation (no forward-sim model)
Local policy (single ramp), extensions (HERO) for multi-ramp using heuristics

Continuous adjoint approach
[Jacquet - Canudas de Wit - Koenig, Proc IFAC, 2005]

Derive and discretize
Onramps modeled as source terms
Control the number of car entering the highway

Link-node CTM with ramp metering problem as LP
[Muralidharana - Horowitz, ACC, 2012]

For n ×m junctions
Priorities are proportional to demand (junction solver not ”self-similar”)
Relaxation of the junction model
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Traffic flow models

Three possible approaches

Microscopic Models

ODE system: each single car is modeled
Large number of parameters
Numerical simulations

Kinetic Models

Distribution functions of the macroscopic quantities
Boltzmann-like equations

Macroscopic Models

Traffic flow modeled as a fluid, i.e., PDEs from fluid dynamics
Few parameters
Analytical solutions
Suitable for optimization and control problems
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LWR model

[Lighthill-Whitham ’55, Richards ’56]

Non-linear transport equation: PDE for mass conservation

∂tρ+ ∂x f (ρ) = 0 x ∈ R, t > 0

ρ ∈ [0, ρmax] mean traffic density
f (ρ) = ρv(ρ) flux function

Empirical flux-density relation: fundamental diagram

ρρcr ρmax

f max

f (ρ)

0

Greenshields ’35
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Extension to networks

⇒
m incoming arcs

n outgoing arcs

junction

LWR on arcs

Maximization of flux through the junction subject to:

Mass conservation
Distribution/priority parameters

[Coclite-Garavello-Piccoli, SIAM J. Math. Anal., 2005]
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A model for ramp metering

Two incoming roads:

Upstream mainline I1 =]−∞, 0[
Onramp R1

Two outgoing roads:

Downstream mainline I2 =]0,+∞[
Offramp R2

J
I1 I2

R1 R2

Figure : Junction modeled
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A model for ramp metering

Coupled PDE-ODE model:

Classical LWR on each mainline I1, I2

∂tρ+ ∂x f (ρ) = 0, (t, x) ∈ R+ × Ii ,

Dynamics of the onramp described by an ODE (buffer)

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+,

l(t) ∈ [0,+∞[ length of the onramp queue
Fin(t) flux entering the onramp
γr1(t) flux leaving the onramp (through the junction)

Coupled at junction
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Junction solver: Demand & Supply

δ(ρ1) =

{
f (ρ1) if 0 ≤ ρ1 < ρcr,
f max if ρcr ≤ ρ1 ≤ 1,

ρ

, f (ρ)δ(ρ)

f max(ρ)

d(Fin, l) =

{
γmax
r1 if l(t) > 0,

min (Fin(t), γmax
r1 ) if l(t) = 0,

σ(ρ2) =

{
f max if 0 ≤ ρ2 ≤ ρcr,
f (ρ2) if ρcr < ρ2 ≤ 1,

ρ

, f (ρ)σ(ρ)

f max(ρ)
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Junction solver: flux maximization

1 Mass conservation: f (ρ1(t, 0−)) + γr1(t) = f (ρ2(t, 0+)) + γr2(t)

2 f (ρ2(t, 0+)) maximum subject to 1 and

f (ρ2(t, 0+)) = min
(

(1− β)δ(ρ1(t, 0−)) + d(Fin(t), l(t)), σ(ρ2(t, 0+))
)

3 Right of way parameter P ∈ ]0, 1[ to ensure uniqueness:

f (ρ2(t, 0+)) = P f1(ρ(t, 0−)) + (1− P) γr1

4 Offramp treated as a sink (infinite capacity)

5 No flux from the onramp to the offramp is allowed
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Ramp metering discretized system H(~ρ, ~u) = 0

i i

on-ramp i

i + 1
f ini (k) f outi (k) f ini+1 (k)

ri (k)Di (k)
βi (k) f outi (k)

f outi+1 (k)
. . .

block i

Dynamics and junctions solutions based on the model described earlier

Piecewise affine system

Control parameter ui is a constraint on the ramp inflow ri (k)
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Ramp metering discretized system H(~ρ, ~u) = 0

Lower triangular forward system H(~ρ, ~u) = 0:

hi,k = ρi (k)− ρi (k − 1)− {flux update equations for cell i and time step k}

H system of concatenated hi,k

H lower triangular

Very efficient to solve HT x = b
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Ramp metering discretized system H(~ρ, ~u) = 0

Time 0

Time T

Time k · · ·

ρ0 (0)

· · ·

ρN (0)

l1 (0)

· · ·

lN−1 (0)

δ0 (0)

· · ·

δN (0)

σ1 (0)

· · ·

σN (0)

d1(0)

· · ·

dN(0)

f in1 (0)

· · ·

f inN (0)

f out1 (0)

· · ·

f outN−1 (0)

r1 (0)

· · ·

rN−1 (0)

ρ1 (T )

· · ·

ρN (T )

l1 (T )

· · ·

lN−1 (T )

δ0 (T )

· · ·

δN (T )

σ1 (T )

· · ·

σN (T )

d1(T )

· · ·

dN(T )

f in1 (T )

· · ·

f inN (T )

f out1 (T )

· · ·

f outN−1 (T )

r1 (T )

· · ·

rN−1 (T )

Figure : Dependency diagram of the variables in the system.
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Lower triangular forward system H(~ρ, ~u) = 0

Figure : ∂H
∂~ρ

matrix
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Optimization of a PDE-constrained system

Optimization problem

minimize~u∈U J(~ρ, ~u)

subject to H(~ρ, ~u) = 0

~ρ ∈ X ⊆ RNT : state variables

~u ∈ U ⊆ RMT : control variables

Want to do gradient descent: How to compute the gradient ∂J
∂~ρ∇~u~ρ+ ∂J

∂~u ?

On trajectories, H(~ρ, ~u) = 0 constant, thus ∂H
∂~ρ∇~u~ρ+ ∂H

∂~u = 0
Adjoint system:

∂H

∂~ρ

T

λ = −∂J
∂~ρ

T

Then
∂J

∂~ρ
∇~u~ρ = −λT ∂H

∂~ρ
∇~u~ρ = λT

∂H

∂~u
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Exploiting system structure

The structure of the forward system influences the efficiency adjoint system solving

Solving for λ

∂H

∂~ρ

T

λ = −∂J
∂~ρ

T

Since ∂H
∂~ρ is lower triangular, ∂H

∂~ρ

T
is an upper triangular matrix

=⇒ The adjoint system can be solved efficiently using backward substitution

Complexity reduction from O((NT )2MT ) to O((NT )2 + (NT )(MT ))

Sparsity =⇒ O(NT + MT )
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Optimization algorithm

Algorithm 1 Gradient descent loop

Pick initial control ~uinit ∈ Uad

while not converged do

~ρ = forwardSim(~u, IC ,BC ) solve for state trajectory (forward system)

λ = adjointSln(~ρ, ~u) solve for adjoint parameters (adjoint system)

∇uJ = λT ∂H
∂~u + ∂J

∂~u compute the gradient (search direction)

~u ← ~u − α∇uJ, α ∈ (0, 1) s.t. ~u ∈ Uad update the control ~u (update step)

end while
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Remarks on descrete adjoint

Strengths:

Requires only one solution of adjoint system, independent of dim(~u) (unlike
finite differences or sensitivity analysis).

Extends existing simulation code

General technique, can be applied in very different settings

Weaknesses:

Optimization of the discretized problem, rather than approximation of the
optimal solution of the continuous problem
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Numerical Results: case study

Figure : I15 South, San Diego: 31 km

N = 125 links

M = 9 onramps

T = 1800 time-steps

∆t = 4 seconds (120 minutes time interval)
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Numerical Results

Figure : Density and queue lengths without control
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Numerical Results

Figure : Density and queue difference with control
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Model Predictive Control

Performance under noisy input data: MPC loop

initial conditions at time t and boundary fluxes on Th (noisy inputs)

optimal control policy on Th

forward simulation on Tu ≤ Th using optimal controls and exact initial and
boundary data

t → t + Tu

Comparison with Alinea (local feedback control without boundary conditions)

Adjoint Adjoint w/ Noise Alinea Alinea w/ Noise
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Figure : Congestion reduction and noise robustness
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Running time

Convergence
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Predictive/Coordinated
Ramp Metering in 

Connected Corridors
UC Berkeley - PATH



Connected Corridors Framework

Estimation

Prediction

Calibration M
od

el
 P

re
di

ct
iv

e 
C

on
tr

ol

Dynamic Reroute

Decision Support

Ramp 
Metering

Queue-limited 
Metering

Real time 
Occupancy

Boundary 
Flows

Macro-
scopic

Network



Simulation Framework
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Model Predictive Control: Ramp Metering
5 AM 5:30 AM 6 AM

5 AM Estimated Occupancies
5 AM Forecasted Boundary Flows

5 AM Generated Metering Policies

Actuated Metering Policy

5:15 AM Estimated Occupancies
5:15 AM Forecasted Boundary Flows

5:15 AM Generated Metering Policies

5:30 AM Estimated Occupancies
5:30 AM Forecasted Boundary Flows

5:30 AM Generated Metering Policies

5:45 AM Estimated Occupancies
5:45 AM Forecasted Boundary Flows

5:45 AM Generated Metering Policies



I15 South Simulation



I15 South: Total Travel Time-
Mainline
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Application to optimal re-routing

Multi-commodity flow:

ρi (k) =
∑
c∈C

ρi,c(k)

accounting for compliant cc ∈ CC and non-compliant cn users

Goal:

Control compliant users to optimize traffic flow
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Application to optimal re-routing

Example [Ziliaskopoulos, 2001]:

Normal conditions: link capacity between cell 3 and cell 4 = 6
Optimal total travel time: 190.9875

Incident between cell 3 and cell 4: capacity goes to 0
Optimal total travel time: 229.1973 (otherwise 254.758)
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Application to optimal re-routing

With partial control:

Total travel time reduction as a function of the percentage of vehicles that are
rerouted:

almost optimal allocation can be achieved by controlling ∼60% of the demand
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California Connected Corridors project
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Testbed for deployment in California: SCOPE

41/45



CPS operational decision support system: SENSING
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CPS operational decision support system: CONTROL
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CPS operational decision support system: DSS
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Perspectives for the future of ORESTE

Models developed as part of the project feed ”estimation” and ”prediction”

Accurate modeling is required to perform efficient traffic management

Perspectives for 2014 - 2015:

New member on secondment at Inria Sophia
2015: IPAM workshop at UCLA, co-organized by Berkeley and Inria Sophia as
part of ”New Directions in Mathematical Approaches for Traffic Flow
Management” trimester

∼10 joint publications (journals, conferences)

Thank you for your attention!
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