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Associated Team “ORESTE"

ORESTE (Optimal RErouting Strategies for Traffic mangEment) is an associated
team between Inria project-team OPALE and the Connected Corridors project at
UC Berkeley.
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Workshop TRAM?2

Traffic Modeling and Management:
Trends and Perspectives
Inria Sophia Antipolis, March 20-22, 2013
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Road traffic congestion

@ Congestion in the US in 2011 [Urban Mobility Report, 2012]

e $121 billions in wasted time and fuel (1% of GDP)
e 5.5 billions hours of delay
e 56 billions pounds of additional C02 emissions

o Federal Highway Administration forecast

— Uncongested
Congested
— Highly Congested

2002 2035

e 37% of total delay occours outside the peak hours
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New opportunities

@ Spread of smart phones and GPS navigation
devices

e US smartphone penetration is at 65%

@ Real-time information

e accurate live information (<5 minute

delay)
e high granularity (>1 minute update
frequency) AN\
¥
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e Adaptive control e P

e stochastic routing
e dynamic re-routing
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ORESTE project goals

@ Optimize traffic flow in corridors

e ramp metering
e re-routing strategies

@ Modeling approach:

e macroscopic traffic flow models
e discrete adjoint method for gradient computation
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Other ramp-metering models

o ALINEA
[Papageorgiou - Hadj-Salem - Blosseville, TRB, 1991]
e Closed-loop
e Only uses state estimation (no forward-sim model)
e Local policy (single ramp), extensions (HERO) for multi-ramp using heuristics

e Continuous adjoint approach
[Jacquet - Canudas de Wit - Koenig, Proc IFAC, 2005]
e Derive and discretize
e Onramps modeled as source terms
e Control the number of car entering the highway

@ Link-node CTM with ramp metering problem as LP
[Muralidharana - Horowitz, ACC, 2012]
e For n X m junctions
e Priorities are proportional to demand (junction solver not " self-similar”)
e Relaxation of the junction model
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© A macroscopic model for ramp metering
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Traffic flow models

Three possible approaches

@ Microscopic Models
e ODE system: each single car is modeled
e Large number of parameters
e Numerical simulations

@ Kinetic Models

e Distribution functions of the macroscopic quantities
e Boltzmann-like equations

@ Macroscopic Models

Traffic flow modeled as a fluid, i.e., PDEs from fluid dynamics
Few parameters

Analytical solutions

Suitable for optimization and control problems
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LWR model

[Lighthill-Whitham '55, Richards '56]
Non-linear transport equation: PDE for mass conservation

Orp+ Oxf(p) =0 xeRt>0

@ p € [0, pmax] mean traffic density
e f(p) = pv(p) flux function

Empirical flux-density relation: fundamental diagram

f(p)

fmax o

0 o Prmax P

Greenshields '35
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Extension to networks
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@ Maximization of flux through the junction subject to

e Mass conservation

e Distribution/priority parameters

[Coclite-Garavello-Piccoli, SIAM J. Math. Anal., 2005]

13/45



A model for ramp metering

@ Two incoming roads:
e Upstream mainline I; =] — oo, 0]
e Onramp Ry

@ Two outgoing roads:

e Downstream mainline / =]0, +o00[
e Offramp R,

Figure : Junction modeled
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A model for ramp metering

Coupled PDE-ODE model:
o Classical LWR on each mainline Iy, b

Bup+ 0xf(p) =0, (t,x)€RY x I,
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A model for ramp metering

Coupled PDE-ODE model:
o Classical LWR on each mainline Iy, b

Bup+ 0xf(p) =0, (t,x)€RY x I,

@ Dynamics of the onramp described by an ODE (buffer)

di(t

% - Fin(t)_’)/rl(t)a t€R+7
e /(t) € [0,+oc[ length of the onramp queue
e Fin(t) flux entering the onramp
e r1(t) flux leaving the onramp (through the junction)
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A model for ramp metering

Coupled PDE-ODE model:
o Classical LWR on each mainline Iy, b

Bup+ 0xf(p) =0, (t,x)€RY x I,

@ Dynamics of the onramp described by an ODE (buffer)

di(t

% - Fin(t)_’)/rl(t)a t€R+7
e /(t) € [0,+oc[ length of the onramp queue
e Fin(t) flux entering the onramp
e r1(t) flux leaving the onramp (through the junction)

@ Coupled at junction
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Junction solver: Demand & Supply

a(p) . f(p)
(p)

_J f(p1) if0<p1 <p,
5([)1) - { fmax if pcr < p < 1’

. N A if I(t) >0,
) = ey 1) 0

a(p). f(p)

_ ()
fmax If O S p2 S pCI"

o(p2) = { F(p2) if p™ < pp <1,
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Junction solver: flux maximization

@ Mass conservation: f(p1(t,0-)) + vr1(t) = f(p2(t,0+)) + n2(t)
@ f(p2(t,0+)) maximum subject to 1 and

F(pa(t,0+)) = min (1= B)a(pa(t,0-)) + d(Fin(t), [(£)), r(pa(£,0+)))
© Right of way parameter P € |0, 1] to ensure uniqueness:

F(p2(t,0+)) = Pfi(p(t,0-)) + (1 = P)yn

@ Offramp treated as a sink (infinite capacity)

@ No flux from the onramp to the offramp is allowed
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© Discretized system
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Ramp metering discretized system H(p, o) =0

e RN QIO
D, (k) 7 (k)

block i

@ Dynamics and junctions solutions based on the model described earlier
@ Piecewise affine system

e Control parameter u; is a constraint on the ramp inflow r;(k)
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Ramp metering discretized system H(p, o) =0

Lower triangular forward system H(p, &) = 0:
e hix = pi(k) — pi(k — 1) — {flux update equations for cell i and time step k}
@ H system of concatenated h;
e H lower triangular

@ Very efficient to solve H ' x = b
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Ramp metering discretized system H(p, o) =0
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~ Figure : Dependency diagram of the variables in the system.
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Lower triangular forward system H(p, &) = 0

Figure : 55 Matrix
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Quick review of the adjoint method
(4] j
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Optimization of a PDE-constrained system

Optimization problem
minimizegzey  J(P, )
subject to H(p, o) =0

e g€ X C RNT: state variables
@ 7eU CRMT: control variables

EJ&J
~J

Want to do gradient descent: How to compute the gradient g—évlf—f—

On.t.rajectories, H(p, &) = 0 constant, thus %—';Vgﬁ—k 9h =0
Adjoint system:

oHT )T

o7 " op
Then 0J oH oH
V= NV = AT
a7 " a7 " " od
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Exploiting system structure

The structure of the forward system influences the efficiency adjoint system solving

Solving for A
oHT N T
op ~ op
. . . T. . .
Since %’; is lower triangular, %’; is an upper triangular matrix

= The adjoint system can be solved efficiently using backward substitution
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Exploiting system structure

The structure of the forward system influences the efficiency adjoint system solving

Solving for A
oHT N T
op ~ op
. . . T. . .
Since %’; is lower triangular, %’; is an upper triangular matrix

= The adjoint system can be solved efficiently using backward substitution

Complexity reduction from O((NT)2MT) to O((NT)? + (NT)(MT))

Sparsity = O(NT + MT)
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Optimization algorithm

Algorithm 1 Gradient descent loop

Pick initial control Gip; € Uaq

while not converged do

p = forwardSim(i, IC, BC) solve for state trajectory (forward system)
A = adjointSIn(p), i) solve for adjoint parameters (adjoint system)
Vud = /\T% + g—é compute the gradient (search direction)
U+ T—aV,J,a€(0,1)s.t. € Uyq update the control & (update step)

end while
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Remarks on descrete adjoint

Strengths:

@ Requires only one solution of adjoint system, independent of dim(&) (unlike
finite differences or sensitivity analysis).

@ Extends existing simulation code

o General technique, can be applied in very different settings

Weaknesses:

e Optimization of the discretized problem, rather than approximation of the
optimal solution of the continuous problem
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© Numerical results
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Numerical Results: case study

Daley Ranch Uﬁ)

; A Onramp
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Figure : 115 South, San Diego: 31 km

N = 125 links

M =9 onramps

T = 1800 time-steps

At = 4 seconds (120 minutes time interval)
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Numerical Results
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Freeway offset (miles)

Figure

&'z’m_,,,m

20

T T T T T
0.64
s 056 |
0.48
0.40
10 032 +
0.24
0.16
5 0.08
0.00
0 1 1 1 1 1
0 20 40 60 80 100 120
Time (minutes)
20 T T T T T
amp7s 36
32
15 | 28 N
S _ ramp 6 24
20
L amp 5 i
10 ramp 16
12
\ 8
stk mmey M
— ampt Uo
0 1 1 L 1 L
0 20 40 60 80 100 120
Time (minutes)
: Density and queue lengths without control

30/45



Numerical Results
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Model Predictive Control

Performance under noisy input data: MPC loop
e initial conditions at time t and boundary fluxes on T} (noisy inputs)
@ optimal control policy on Tp

e forward simulation on T, < T using optimal controls and exact initial and
boundary data

et t+ T,

Comparison with ALINEA (local feedback control without boundary conditions)
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Figure : Congestion reduction and noise robustness

32/45



234
233
232
231
230
Convergence 29
228
227
226

otal travel time (veh-s)

T T T

\ — Finite differences
\ — - Adjoint

L N L L

107!

35
3.0
2.5
2.0
Simulation time 15
1.0

0.5

Reduced Congestion (%)

0.0
0

s e

Z

10° 10! 10
Running time (ms)

103

— - Alinea

—  Adjoint ||

! ! ! ! T T T

100 150 200 250 300 350 400
Running time (seconds)

450

33/45



@ Application to MPC-based ramp metering control
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Predictive/Coordinated
Ramp Metering in
Connected Corridors
UC Berkeley - PATH

CALIFORNIA

PATH Berkeley




Connected Corridors Framework

Decision Support

Estimation

Real time
Occupancy

Prediction

Boundary
Flows

Calibration

Macro-
scopic
Network

Model Predictive

Control

Dynamic Reroute

Ramp
Metering

Queue-limited
Metering




Simulation Framework
Y

Loop Detector

) Vehicle

rmsun (\,« Occupancies Data
Real time
® Estimation Occupan
= cy
5_
ks Bound
& ‘g’ Prediction ey
3O
. °
Actuate Metering CC Output § Macro-
Calibration scopic
Network

Ramp Metering

Microscopic
Engine

Simulator



Model Predictive Control: Ramp Metering

5AM 5:30 AM 6 AM

>

5 AM Forecasted Boundary Flows

5 AM Estimated Occupancies

5:15 AM Forecasted Boundary Flows
5:15 AM Estimated Occupancies
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115 South Simulation
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115 South: Total Travel Time-
Mainline
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0 Application to optimal re-routing
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Application to optimal re-routing

Multi-commodity flow:

pi(k) = pic(k)

ceC

accounting for compliant ¢, € CC and non-compliant c, users

Goal:
Control compliant users to optimize traffic flow J
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Application to optimal re-routing

Example [Ziliaskopoulos, 2001]:

C=1 N=Inf

C=7 N=10

e Normal conditions: link capacity between cell 3 and cell 4 = 6
Optimal total travel time: 190.9875
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Application to optimal re-routing

Example [Ziliaskopoulos, 2001]:

C=1 N=Inf

C=7 N=10

e Normal conditions: link capacity between cell 3 and cell 4 = 6
Optimal total travel time: 190.9875

@ Incident between cell 3 and cell 4: capacity goes to 0
Optimal total travel time: 229.1973 (otherwise 254.758)

37/45



Application to optimal re-routing

With partial control:
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Percentage of rerouted vehicles

Total travel time reduction as a function of the percentage of vehicles that are
rerouted:
almost optimal allocation can be achieved by controlling ~60% of the demand
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@ Perspectives
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California Connected Corridors project

Local Arterial
N Traffic Signals




Testbed for deployment in California: SCOPE
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CPS operational decision support system: SENSING
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CPS operational decision support system: CONTROL
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CPS operational decision support system: DSS
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Perspectives for the future of ORESTE

@ Models developed as part of the project feed "estimation” and " prediction”

Accurate modeling is required to perform efficient traffic management

Perspectives for 2014 - 2015:
e New member on secondment at Inria Sophia
e 2015: IPAM workshop at UCLA, co-organized by Berkeley and Inria Sophia as
part of "New Directions in Mathematical Approaches for Traffic Flow
Management” trimester

~10 joint publications (journals, conferences)
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Perspectives for the future of ORESTE

@ Models developed as part of the project feed "estimation” and " prediction”

Accurate modeling is required to perform efficient traffic management

Perspectives for 2014 - 2015:
e New member on secondment at Inria Sophia
e 2015: IPAM workshop at UCLA, co-organized by Berkeley and Inria Sophia as
part of "New Directions in Mathematical Approaches for Traffic Flow
Management” trimester

~10 joint publications (journals, conferences)

Thank you for your attention!
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