Scalar conservation laws with moving density constraints arising in traffic flow modeling

Maria Laura Delle Monache

Email: maria-laura.delle_monache@inria.fr.

Joint work with Paola Goatin

14th International Conference on Hyperbolic Problems:Theory, Numerics, Applications Università di Padova

28, June 2012

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

1 Introduction

- 2 The Riemann problem with moving density constraint
- 3 The Cauchy problem: Existence of solutions

4 Conclusions

(日) (四) (王) (王)

Outline

1 Introduction

- Mathematical Model
- Existing Models

2 The Riemann problem with moving density constraint

- Riemann Problem
- Riemann Solver

3 The Cauchy problem: Existence of solutions

- Cauchy Problem
- Wave-Front Tracking Method
- Bounds on the total variation
- Convergence of approximate solutions
- Existence of weak solution

4 Conclusions

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.⊒ . ►

Mathematical Model I

A slow moving large vehicle along a road reduces its capacity and generates a moving bottleneck for the cars flow.

From a macroscopic point of view this can be modeled by a PDE-ODE coupled model consisting in a scalar conservation law with moving density constraint and an ODE describing the slower vehicle.¹

$$\begin{cases} \partial_t \rho + \partial_x f(\rho) = 0, & (t, x) \in \mathbb{R}^+ \times \mathbb{R}, \\ \rho(0, x) = \rho_0(x), & x \in \mathbb{R}, \\ \rho(t, y(t)) \le \alpha R, & t \in \mathbb{R}^+, \\ \dot{y}(t) = \omega(\rho(t, y(t)+)), & t \in \mathbb{R}^+, \\ y(0) = y_0. \end{cases}$$
(1)

• $\rho = \rho(t, x) \in [0, R]$ mean traffic density.

• $y = y(t) \in \mathbb{R}$ bus position.

¹F. Giorgi. *Prise en compte des transports en commun de surface dans la modélisation macroscopique de l' écoulement du trafic.* 2002. Thesis (Ph.D.) - Institut National des Sciences Appliquées de Lyon

Mathematical Model

Mathematical Model II

• $v(\rho) = V(1 - \frac{\rho}{R})$ mean traffic velocity, smooth decreasing. • $f: [0, R] \to \mathbb{R}^+$ flux function, strictly concave $f(\rho) = \rho v(\rho)$. • $\omega(\rho) = \begin{cases} V_b & \text{if } \rho \le \rho^* \doteq R(1 - V_b/V), \\ v(\rho) & \text{otherwise,} \end{cases}$ with $V_b \le V$ lower vehicle speed.

Innin-

Mathematical Model III

Fixing the value of the parameters:

- $\alpha \in]0,1[$ reduction rate of the road capacity due to the presence of the bus.
- R = V = 1 respectively the maximal density and the maximal velocity allowed on the road.

We obtain

$$\begin{cases} \partial_t \rho + \partial_x (\rho(1-\rho)) = 0, \quad (t,x) \in \mathbb{R}^+ \times \mathbb{R}, \\ \rho(0,x) = \rho_0(x), & x \in \mathbb{R}, \\ \rho(t,y(t)) \le \alpha, & t \in \mathbb{R}^+, \\ \dot{y}(t) = \omega(\rho(t,y(t)+)), & t \in \mathbb{R}^+, \\ y(0) = y_0. \end{cases}$$
(2)

▲□▶ ▲冊▶ ▲冨▶ ▲

Introduction Existing Models

Lattanzio, Maurizi and Piccoli Model

$$\begin{cases} \partial_t \rho + \partial_x f(x, y(t), \rho) = 0, \\ \rho(0, x) = \rho_0(x), \\ \dot{y}(t) = \omega(\rho(t, y(t))), \\ y(0) = y_0. \end{cases}$$
(3)

The model 2 gives a similar approach to the traffic flow problem even though with specific differences:

• Use of a cut-off function for the capacity dropping of car flows against constrained conservation laws with non-classical shocks.

$$\rightarrow f(x, y, \rho) = \rho \cdot v(\rho) \cdot \varphi(x - y(t)).$$

- Assumption that the slower vehicle has a velocity ω(ρ) such that ω(0) = V and ω(R) = 0.
- ODE considered in the Filippov sense against Carathéodory approach.

²C.Lattanzio, A. Maurizi and B. Piccoli. Moving bottlenecks in car traffic flow: A PDE-ODE coupled model. *SIAM J. Math. Anal.*,43(1):50-67, 2011.

Introduction Existin

Existing Models

Colombo and Marson Model

$$\begin{cases} \partial_t \rho + \partial_x [\rho \cdot v(\rho)] = 0, \\ \rho(0, x) = \bar{\rho}(x), \\ \dot{p}(t) = \omega(\rho(t, p)), \\ p(0) = \bar{p}. \end{cases}$$

The model 3 is a coupled ODE-PDE problem with:

- Assumption that $\omega(\rho) \ge v(\rho)$.
- Weak coupling between the ODE and the PDE.
- Dependence of Filippov solutions to the ODE from the initial datum both of the ODE and of the conservation law.
- Hölder dependence on \bar{p} .

³R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759-772, 2003. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$ (4)

Outline

- 1 Introduction
 - Mathematical Model
 - Existing Models

2 The Riemann problem with moving density constraint

- Riemann Problem
- Riemann Solver

3 The Cauchy problem: Existence of solutions

- Cauchy Problem
- Wave-Front Tracking Method
- Bounds on the total variation
- Convergence of approximate solutions
- Existence of weak solution

4 Conclusions

・ロト ・同ト ・ヨト ・

Riemann Problem I

Consider (2) with the particular choice⁴

$$y_0 = 0$$
 and $\rho_0(x) = \begin{cases} \rho_L & \text{if } x < 0, \\ \rho_R & \text{if } x > 0. \end{cases}$ (5)

Rewriting equations in the bus reference frame i.e., setting $X = x - V_b t$. We get

$$\begin{cases} \partial_t \rho + \partial_X \left(f(\rho) - V_b \rho \right) = 0, \\ \rho(0, x) = \begin{cases} \rho_L & \text{if } X < 0, \\ \rho_R & \text{if } X > 0, \end{cases} \tag{6}$$

under the constraint

$$\rho(t,0) \le \alpha. \tag{7}$$

Solving problem (6), (7) is equivalent to solving (6) under the corresponding constraint on the flux

$$egin{aligned} &f(
ho(t,0))-V_b
ho(t,0)\leq f_lpha(
ho_lpha)-V_b
ho_lpha\doteq F_lpha\ . \end{aligned}$$

⁴R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. *J. Differential Equations*, 234(2):654-675, 2007.

Riemann Problem II

Riemann Solver

Definition (Riemann Solver)

The constrained Riemann solver \mathcal{R}^{α} for (2), (5) is defined as follows. **a** If $f(\mathcal{R}(\rho_L, \rho_R)(V_b)) > F_{\alpha} + V_b \mathcal{R}(\rho_L, \rho_R)(V_b)$, then $\mathcal{R}^{\alpha}(\rho_L, \rho_R)(x) = \begin{cases} \mathcal{R}(\rho_L, \hat{\rho}_{\alpha}) & \text{if } x < V_b t, \\ \mathcal{R}(\check{\rho}_{\alpha}, \rho_R) & \text{if } x \ge V_b t, \end{cases}$ and $y(t) = V_b t.$

• If $V_b \mathcal{R}(\rho_L, \rho_R)(V_b) \leq f(\mathcal{R}(\rho_L, \rho_R)(V_b)) \leq F_{\alpha} + V_b \mathcal{R}(\rho_L, \rho_R)(V_b)$, then $\mathcal{R}^{\alpha}(\rho_L, \rho_R) = \mathcal{R}(\rho_L, \rho_R)$ and $y(t) = V_b t$.

• If $f(\mathcal{R}(\rho_L, \rho_R)(V_b)) < V_b \mathcal{R}(\rho_L, \rho_R)(V_b)$, then

 $\mathcal{R}^{\alpha}(\rho_L, \rho_R) = \mathcal{R}(\rho_L, \rho_R) \text{ and } y(t) = v(\rho_R)t.$

Note: when the constraint is enforced, a nonclassical shock arises, which satisfies the Rankine-Hugoniot condition but violates the Lax entropy condition

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Riemann Solver

Riemann Solver: Example

Ínría 三日 **の**への

(日) (四) (王) (王)

Outline

- 1 Introduction
 - Mathematical Model
 - Existing Models
- 2 The Riemann problem with moving density constraint
 - Riemann Problem
 - Riemann Solver

3 The Cauchy problem: Existence of solutions

- Cauchy Problem
- Wave-Front Tracking Method
- Bounds on the total variation
- Convergence of approximate solutions
- Existence of weak solution

Conclusions

Cauchy Problem

A bus travels along a road modelled by

$$\begin{cases} \partial_t \rho + \partial_x (\rho(1-\rho)) = 0, \\ \rho(0,x) = \rho_0(x), \\ \rho(t,y(t)) \le \alpha. \end{cases}$$
(8)

The bus influences the traffic along the road but it is also influenced by it. The bus position y = y(t) then solves

$$\begin{cases} \dot{y}(t) = \omega(\rho(t, y(t)+)), \\ y(0) = y_0. \end{cases}$$
(9)

(a)

Solutions to (9) are intended in Carathéodory sense, i.e., as absolutely continuous functions which satisfy (9) for a.e. $t \ge 0$.

Cauchy Problem: Solution

Definition (Weak solution)

A couple
$$(\rho, y) \in C^0(\mathbb{R}^+; \mathbf{L}^1 \cap BV(\mathbb{R})) \times \mathbf{W}^{1,1}(\mathbb{R}^+)$$
 is a solution to (2) if
 ρ is a weak solution of the conservation law, i.e. for all $\varphi \in C^1_c(\mathbb{R}^2)$

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left(\rho \partial_t \varphi + f(\rho) \partial_x \varphi \right) dx \ dt + \int_{\mathbb{R}} \rho_0(x) \varphi(0, x) \ dx = 0 ; \qquad (10a)$$

2 y is a Carathéodory solution of the ODE, i.e. for a.e. $t \in \mathbb{R}^+$

$$y(t) = y_0 + \int_0^t \omega(\rho(s, y(s)+)) \, ds$$
; (10b)

(3) the constraint is satisfied, in the sense that for a.e. $t \in \mathbb{R}^+$

$$\lim_{\substack{\to y(t) \pm}} \left(f(\rho) - \omega(\rho)\rho \right)(t, x) \le F_{\alpha}.$$
(10c)

Note: The above traces exist because $\rho(t, \cdot) \in BV(\mathbb{R})$ for all $t \in \mathbb{R}^+$. (日) (四) (三) (三) (三)

x

Innia

Wave-Front Tracking Method I

• Fix $n \in \mathbb{N}$, n > 0 and introduce in [0,1] the mesh \mathcal{M}_n by

$$\mathcal{M}_n = \left(2^{-n}\mathbb{N}\cap[0,1]\right)\cup\{\check{
ho}_{\alpha},\hat{
ho}_{\alpha}\}.$$

- Let f_n be the piecewise linear function which coincides with f on \mathcal{M}_n .
- Let

$$\rho_0^n = \sum_{j \in \mathbb{Z}} \rho_{0,j}^n \; \chi_{]x_{j-1},x_j]} \quad \text{with } \rho_{0,j}^n \in \mathcal{M}_n,$$

such that

$$\lim_{n\to\infty}\|\rho_0^n-\rho_0\|_{\mathbf{L}^1(\mathbb{R})}=0,$$

and $\mathrm{TV}(\rho_0^n) \leq \mathrm{TV}(\rho_0)$.

• y_0 is given.

<ロト < 同ト < ヨト < ヨト

Wave-Front Tracking Method II

For small times t > 0, a piecewise approximate solution (ρ^n, y_n) to (2) is constructed piecing together the solutions to the Riemann problems

where y_n satisfies

$$\begin{cases} \dot{y}_{n}(t) = \omega(\rho^{n}(t, y_{n}(t)+)), \\ y_{n}(0) = y_{0}. \end{cases}$$
(12)

▲□▶ ▲冊▶ ▲冨▶ ▲

Bounds on the total variation

Bounds on the total variation

Define the Glimm type functional

$$\Upsilon(t) = \Upsilon(\rho^n(t, \cdot)) = \operatorname{TV}(\rho^n) + \gamma = \sum_j \left| \rho_{j+1}^n - \rho_j^n \right| + \gamma,$$
(13)

with

$$\gamma = \gamma(t) = \begin{cases} 0 & \text{if } \rho^n(t, y_n(t)) = \hat{\rho}_\alpha, \ \rho^n(t, y_n(t)) = \check{\rho}_\alpha \\ 2|\hat{\rho}_\alpha - \check{\rho}_\alpha| & \text{otherwise.} \end{cases}$$
(14)

Lemma (Decreasing functional)

For any $n \in \mathbb{N}$, the map $t \mapsto \Upsilon(t) = \Upsilon(\rho^n(t, \cdot))$ at any interaction either decreases by at least 2^{-n} , or remains constant and the number of waves does not increase.

Convergence of approximate solutions

Lemma (Convergence of approximate solutions)

Let ρ^n and y_n , $n \in \mathbb{N}$, be the wave front tracking approximations to (1) constructed as detailed in Section 2, and assume $TV(\rho_0) \leq C$ be bounded, $0 \leq \rho_0 \leq 1$. Then, up to a subsequence, we have the following convergences

$$\begin{array}{ll}
\rho^{n} \to \rho & \text{in } \mathbf{L}^{1}_{\text{loc}}(\mathbb{R}^{+} \times \mathbb{R}); & (15a) \\
y_{n}(\cdot) \to y(\cdot) & \text{in } \mathbf{L}^{\infty}([0, T]), \text{ for all } T > 0; & (15b) \\
\dot{y}_{n}(\cdot) \to \dot{y}(\cdot) & \text{in } \mathbf{L}^{1}([0, T]), \text{ for all } T > 0; & (15c)
\end{array}$$

for some $\rho \in C^0(\mathbb{R}^+; \mathbf{L}^1 \cap BV(\mathbb{R}))$ and $y \in \mathbf{W}^{1,1}(\mathbb{R}^+)$.

Sketch of the proof:

- (15a): $\operatorname{TV}(\rho^n(t,\cdot)) \leq \Upsilon(t) \leq \Upsilon(0) + \operatorname{Helly's}$ theorem.
- (15b): $|\dot{y}_n(t)| \leq V_b$ + Ascoli-Arzelà theorem.
- (15c): $\operatorname{TV}(\dot{y}_n; [0, T]) \le 2 \operatorname{NV}(\dot{y}_n; [0, T]) + \|\dot{y}_n\|_{\mathbf{L}^{\infty}([0, T])} \le 2 \operatorname{TV}(\rho_0) + V_b$

Complete Proof

Convergence of weak solution

Theorem (Existence of solutions)

For every initial data $\rho_0 \in BV(\mathbb{R})$ such that $TV(\rho_0) \leq C$ is bounded, problem (1) admits a weak solution in the sense of Definition (Weak Solution).

Sketch of the proof:

•
$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left(\rho \partial_t \varphi + f(\rho) \partial_x \varphi \right) dx dt + \int_{\mathbb{R}} \rho_0(x) \varphi(0,x) dx = 0$$
:

 $\rho^n\to\rho$ in $\mathsf{L}^1_{\mathsf{loc}}(\mathbb{R}^+\times\mathbb{R})\Rightarrow$ limit in the weak formulation of the conservation law.

•
$$\dot{y}(t) = \omega(\rho(t, y(t)+))$$
 for a.e. $t > 0$:

 $\lim_{n \to \infty} \rho^n(t, y_n(t)) = \rho^+(t) = \rho(t, y(t)) \text{ for a.e. } t \in \mathbb{R}^{+5} + (15c).$

•
$$\lim_{x \to y(t)\pm} (f(\rho) - \omega(\rho)\rho)(t,x) \le F_{\alpha}$$

direct use of the convergence result already proved.

⁵A. Bressan and P.G. LeFloch. Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws. *Indiana Univ. Math. J.*, 48(1):43-84, 1999, Section 4

Maria Laura Delle Monache (INRIA)

Outline

1 Introductio

- Mathematical Model
- Existing Models

2 The Riemann problem with moving density constraint

- Riemann Problem
- Riemann Solver

3 The Cauchy problem: Existence of solutions

- Cauchy Problem
- Wave-Front Tracking Method
- Bounds on the total variation
- Convergence of approximate solutions
- Existence of weak solution

Conclusions

(日)

Conclusions and Future work

- The coupled PDE-ODE model represents a good approach to the problem of moving bottleneck, as shown by different numerical approaches (works by F.Giorgi, J. Laval, L. Leclerq, C.F. Daganzo).
- We were able to develop a strong coupling between the PDE and ODE.
- We proved the existence of solutions for this model.
- Stability of solution is currently a work in progress.

Image: A matrix

Thank you for your attention.

Innia

・ロト ・聞ト ・ヨト ・ヨト

Riemann Solver: Remarks

• **Remark 1** Definition 1 is well posed even if the classical solution $\mathcal{R}(\rho_L, \rho_R)(x/t)$ displays a shock at $x = V_b t$. In fact, due to Rankine-Hugoniot equation, we have

$$f(\rho_L) = f(\rho_R) + V_b(\rho_L - \rho_R)$$

and hence

$$f(\rho_L) > f_{\alpha}(\rho_{\alpha}) + V_b(\rho_L - \rho_{\alpha}) \quad \Longleftrightarrow \quad f(\rho_R) > f_{\alpha}(\rho_{\alpha}) + V_b(\rho_R - \rho_{\alpha}).$$

Remark 2 The density constraint ρ(t, y(t)) ≤ α is handled by the corresponding condition on the flux

$$f(\rho(t, y(t))) - \omega(\rho(t, y(t)))\rho(t, y(t)) \le F_{\alpha}.$$
(16)

The corresponding density on the reduced roadway at x = y(t) is found taking the solution to the equation

$$f(\rho_y) + \omega(\rho_y)(\rho - \rho_y) = \rho\left(1 - \frac{\rho}{\alpha}\right)$$

closer to $\rho_y \doteq \rho(t, y(t)))$.

・ロト ・回ト ・ヨト ・ヨト

Ínría হার ৩৭৫

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints

28, June 2012 2 / 11

・ロト ・部ト ・ヨト ・ヨト

Either two shocks collide (which means that the number of waves diminishes) or a shock and a rarefaction cancel.

< □ > < 同 >

Either two shocks collide (which means that the number of waves diminishes) or a shock and a rarefaction cancel.

< □ > < 同 >

Innia

 ρ_r

V_b ρ_l Either two shocks collide (which means that the number of waves diminishes) or a shock and a rarefaction cancel.

 $\mathrm{TV}(\rho^n),\,\Upsilon$ and the number of waves remain constant.

< □ > < 同 >

Ínría হার ৩৭৫

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints

28, June 2012 3 / 11

・ロト ・部ト ・ヨト ・ヨト

After the collision, the number of discontinuities in ρ^n diminishes and the functional Υ remains constant:

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-)$$

= $|
ho_l - \check{
ho}_{lpha}| + 2|\hat{
ho}_{lpha} - \check{
ho}_{lpha}| - (|
ho_l - \hat{
ho}_{lpha}| + |\hat{
ho}_{lpha} - \check{
ho}_{lpha}|)$
= 0.

Sac

After the collision, the number of discontinuities in ρ^n diminishes and the functional Υ remains constant:

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) = |
ho_l - \check{
ho}_{lpha}| + 2|\hat{
ho}_{lpha} - \check{
ho}_{lpha}| - (|
ho_l - \hat{
ho}_{lpha}| + |\hat{
ho}_{lpha} - \check{
ho}_{lpha}|) = 0.$$

(日)

Innia

900

After the collision, the number of discontinuities in ρ^n diminishes and the functional Υ remains constant:

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) = |
ho_l - \check{
ho}_{lpha}| + 2|\hat{
ho}_{lpha} - \check{
ho}_{lpha}| - (|
ho_l - \hat{
ho}_{lpha}| + |\hat{
ho}_{lpha} - \check{
ho}_{lpha}|) = 0.$$

The number of discontinuities in ρ^n diminishes and the functional Υ remains constant:

$$\begin{split} \Delta \Upsilon(\bar{t}) &= \Upsilon(\bar{t}+) - \Upsilon(\bar{t}-) \\ &= |\hat{\rho}_{\alpha} - \rho_{r}| + 2|\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}| - (|\check{\rho}_{\alpha} - \rho_{r}| + |\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}|) \\ &= 0. \end{split}$$

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ínría 三日 のへで

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints

28, June 2012 4 / 11

New waves are created at \overline{t} and the total variation is given by:

• $\operatorname{TV}(\overline{t}-) = |\check{\rho}_{\alpha} - \rho_{I}| \leq 2^{-n};$

•
$$\operatorname{TV}(\overline{t}+) = |\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}| + |\hat{\rho}_{\alpha} - \rho_{I}| \leq 2|\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}|,$$

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) \leq -2^{-n}$$

(日)

New waves are created at \overline{t} and the total variation is given by:

• $\operatorname{TV}(\overline{t}-) = |\check{\rho}_{\alpha} - \rho_I| \leq 2^{-n};$

•
$$\operatorname{TV}(\overline{t}+) = |\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}| + |\hat{\rho}_{\alpha} - \rho_{I}| \leq 2|\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}|,$$

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) \leq -2^{-n}$$

(日)

New waves are created at \overline{t} and the total variation is given by:

• $\operatorname{TV}(\overline{t}-) = |\check{\rho}_{\alpha} - \rho_{I}| \leq 2^{-n};$

•
$$\operatorname{TV}(\overline{t}+) = |\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}| + |\hat{\rho}_{\alpha} - \rho_{l}| \leq 2|\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}|,$$

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) \leq -2^{-n}$$

New waves are created at \overline{t} and the total variation is given by:

• $\operatorname{TV}(\overline{t}-) = |\hat{\rho}_{\alpha} - \rho_r| \leq 2^{-n};$

•
$$\operatorname{TV}(\overline{t}+) = |\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}| + |\check{\rho}_{\alpha} - \rho_{r}| \leq 2|\hat{\rho}_{\alpha} - \check{\rho}_{\alpha}|,$$

$$\Delta \Upsilon(\overline{t}) = \Upsilon(\overline{t}+) - \Upsilon(\overline{t}-) \leq -2^{-n}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Convergence of approximate solutions II

Proof:

From 3 we have $\operatorname{TV}(\rho^n(t,\cdot)) \leq \Upsilon(t) \leq \Upsilon(0)$. Using Helly's Theorem we ensure the existence of a subsequence converging to some function $\rho \in C^0(\mathbb{R}^+; \mathbf{L}^1 \cap \operatorname{BV}(\mathbb{R}))$, proving (15a).

Since $|\dot{y}_n(t)| \leq V_b$, the sequence $\{y_n\}$ is uniformly bounded and equicontinuous on any compact interval [0, T]. By Ascoli-Arzelà Theorem, there exists a subsequence converging uniformly, giving (15b).

We can estimate the speed variation at interactions times \overline{t} by the size of the interacting front:

$$|\dot{y}_n(\bar{t}+)-\dot{y}_n(\bar{t}-)|=|\omega(\rho_l)-\omega(\rho_r)|\leq |\rho_l-\rho_r|.$$

 \dot{y}_n increases only at interactions with rarefaction fronts, which must be originated at t = 0. Therefore,

$$ext{TV}(\dot{y}_n; [0, T]) \le 2 \operatorname{NV}(\dot{y}_n; [0, T]) + \|\dot{y}_n\|_{\mathsf{L}^{\infty}([0, T])} \le 2 \operatorname{TV}(\rho_0) + V_b$$

is uniformly bounded, proving (15c).

(日) (圖) (문) (문) (문)

nain-

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left(\rho \partial_t \varphi + f(\rho) \partial_x \varphi \right) dx \, dt + \int_{\mathbb{R}} \rho_0(x) \varphi(0, x) \, dx = 0 ; \qquad (17)$$

Proof:

Since ρ^n converge strongly to ρ in $L^1_{loc}(\mathbb{R}^+ \times \mathbb{R})$, it is straightforward to pass to the limit in the weak formulation of the conservation law, proving that the limit function ρ satisfies (17).

Image: A matrix and a matrix

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left(\rho \partial_t \varphi + f(\rho) \partial_x \varphi \right) dx \, dt + \int_{\mathbb{R}} \rho_0(x) \varphi(0, x) \, dx = 0 ; \qquad (17)$$

Proof:

Since ρ^n converge strongly to ρ in $L^1_{loc}(\mathbb{R}^+ \times \mathbb{R})$, it is straightforward to pass to the limit in the weak formulation of the conservation law, proving that the limit function ρ satisfies (17).

$$\dot{y}(t) = \omega(\rho(t, y(t)+))$$
 for a. e.t > 0. (18)

Proof:

We prove that

$$\lim_{n\to\infty}\rho^n(t,y_n(t)+)=\rho^+(t)=\rho(t,y(t)+)\quad\text{for a. e. }t\in\mathbb{R}^+. \tag{19}$$

By pointwise convergence a. e. of ρ^n to ρ , \exists a sequence $z_n \ge y_n(t)$ s.t. $z_n \to y(t)$ and $\rho^n(t, z_n) \to \rho^+(t)$.

Cont.

For a. e. t > 0, the point (t, y(t)) is for $\rho(t, \cdot)$ either a continuity point, or it belongs to a discontinuity curve (either a classical or a non-classical shock). Fix $\epsilon^* > 0$ and assume $\operatorname{TV}(\rho(t, \cdot);]y(t) - \delta, y(t) + \delta[) \le \epsilon^*$, for some $\delta > 0$. Then by weak convergence of measure⁶ $\operatorname{TV}(\rho^n(t, \cdot);]y(t) - \delta, y(t) + \delta[) \le 2\epsilon^*$ for *n* large enough, and

$$\left|\rho^{n}(t,y_{n}(t)+)-\rho^{+}(t)\right|\leq\left|\rho^{n}(t,y_{n}(t)+)-\rho^{n}(t,z_{n})\right|+\left|\rho^{n}(t,z_{n})-\rho^{+}(t)\right|\leq3\epsilon^{*}$$

for *n* large enough.

If $\rho(t, \cdot)$ has a discontinuity of strength greater than ϵ^* at y(t), then $|\rho^n(t, y_n(t)+) - \rho^n(t, y_n(t)-)| \ge \epsilon^*/2$ for *n* sufficiently large.

Back

ania.

500

⁶Lemma 15, A. Bressan and P.G. LeFloch. Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws. *Indiana Univ. Math. J.*,48(1):43-84, 1999

Cont.

We set $\rho^{n,+} = \rho^n(t, y_n(t)+)$ and we show that for each $\varepsilon > 0$ there exists $\delta > 0$ such that for all *n* large enough there holds

$$\left|\rho^{n}(s,x)-\rho^{n,+}\right| for $|s-t|\leq\delta,$ $|x-y(t)|\leq\delta,$ $x>y_{n}(s).$ (20)$$

In fact, if (20) does not hold, we could find $\varepsilon > 0$ and sequences $t_n \to t$, $\delta_n \to 0$ s. t. $\mathrm{TV}(\rho^n(t_n, \cdot);]y_n(t_n), y_n(t_n) + \delta_n[) \ge \varepsilon$.

By strict concavity of the flux function f, there should be a uniformly positive amount of interactions in an arbitrarily small neighborhood of (t, y(t)), giving a contradiction. Therefore (20) holds and we get

$$\left|\rho^{n}(t,y_{n}(t)+)-\rho^{+}(t)\right|\leq\left|\rho^{n}(t,y_{n}(t)+)-\rho^{n}(t,z_{n})\right|+\left|\rho^{n}(t,z_{n})-\rho^{+}(t)\right|\leq2\varepsilon$$

for n large enough, thus proving (19). Combining (15c) and (19) we get (18).

nría

$$\lim_{x\to y(t)\pm} \left(f(\rho)-\omega(\rho)\rho\right)(t,x) \leq F_{\alpha}.$$

Proof:

Introduce the sets

$$\Omega^{\pm} = \{(t, x) \in \mathbb{R}^+ imes \mathbb{R} \colon x \leqslant y(t)\}$$

and

$$\Omega_n^{\pm} = \{(t,x) \in \mathbb{R}^+ \times \mathbb{R} \colon x \leq y_n(t)\},\$$

Consider a test function $\varphi \in C_c^1(\mathbb{R}^+ \times \mathbb{R})$, $\varphi \ge 0$, s. t. supp $(\varphi) \cap \{(t, y(t)) \colon t > 0\} \neq 0$ and supp $(\varphi) \cap \{(t, y_n(t)) \colon t > 0\} \neq 0$.

Ínría

(21)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cont.

Then by conservation on Ω_n^+ we have

$$\iint \chi_{\Omega_n^+} \left(\rho^n \partial_t \varphi + f^n(\rho^n) \partial_x \varphi \right) \, dx \, dt$$

$$= \int_0^{+\infty} \int_{y_n(t)}^{+\infty} \left(\rho^n \partial_t \varphi + f^n(\rho^n) \partial_x \varphi \right) \, dx \, dt$$

$$= \int_0^{+\infty} \left(f^n(\rho^n(t, y_n(t)+)) - \dot{y}_n(t)\rho^n(t, y_n(t)+) \right) \varphi(t, y_n(t)) \, dt$$

$$= \int_0^{+\infty} \left(f^n(\rho^n(t, y_n(t)+)) - \omega(\rho^n(t, y_n(t)+))\rho^n(t, y_n(t)+) \right) \varphi(t, y_n(t)) \, dt$$

$$\leq \int_0^T F_\alpha \varphi(t, y_n(t)) \, dt, \qquad (22)$$

(日)

Cont.

The same can be done for the limit solutions ρ and y(t) that, by conservation on Ω , satisfy

$$\iint \chi_{\Omega^{+}} \left(\rho \partial_{t} \varphi + f(\rho) \partial_{x} \varphi \right) \, dx \, dt = \int_{0}^{+\infty} \int_{y(t)}^{+\infty} \left(\rho \partial_{t} \varphi + f(\rho) \partial_{x} \varphi \right) \, dx \, dt$$
$$= \int_{0}^{+\infty} \left(f(\rho(t, y(t)+)) - \dot{y}(t)\rho(t, y(t)+) \right) \varphi(t, y(t)) \, dt$$
$$= \int_{0}^{+\infty} \left(f(\rho(t, y(t)+)) - \omega(\rho(t, y(t)+))\rho(t, y(t)+) \right) \varphi(t, y(t)) \, dt \qquad (23)$$

By (15a) and (15b) we can pass to the limit in (22) and (23), which gives

$$\int_0^{+\infty} \big(f(\rho(t,y(t)+)) - \omega(\rho(t,y(t)+))\rho(t,y(t)+) - F_\alpha\big)\varphi(t,y(t)) \,\,dt \leq 0.$$

Since the above inequality holds for every test function $\varphi \ge 0$, we have proved (21).

(日)

main