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Introduction Mathematical Model

Mathematical Model I

A slow moving large vehicle along a road reduces its capacity and generates a
moving bottleneck for the cars flow.
From a macroscopic point of view this can be modeled by a PDE-ODE coupled
model consisting in a scalar conservation law with moving density constraint and
an ODE describing the slower vehicle.1


∂tρ+ ∂x f (ρ) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ αR, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.

(1)

ρ = ρ(t, x) ∈ [0,R] mean traffic density.

y = y(t) ∈ R bus position.

1F. Giorgi. Prise en compte des transports en commun de surface dans la
modélisation macroscopique de l’ écoulement du trafic. 2002. Thesis (Ph.D.) -
Institut National des Sciences Appliquées de Lyon
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Introduction Mathematical Model

Mathematical Model II

ρ̌α

f (ρ)

ρ

Vb

ρ̂α ρ∗

ω(ρ)

Vb

v(ρ)

ρ∗ ρ

v(ρ) = V (1− ρ
R ) mean traffic velocity, smooth decreasing.

f : [0,R]→ R+ flux function, strictly concave f (ρ) = ρv(ρ) .

ω(ρ) =

{
Vb if ρ ≤ ρ∗ .= R(1− Vb/V ),
v(ρ) otherwise,

with Vb ≤ V lower vehicle speed.
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Introduction Mathematical Model

Mathematical Model III

Fixing the value of the parameters:

α ∈]0, 1[ reduction rate of the road capacity due to the presence of the bus.

R = V = 1 respectively the maximal density and the maximal velocity
allowed on the road.

We obtain 
∂tρ+ ∂x (ρ(1− ρ)) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ α, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.

(2)
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Introduction Existing Models

Lattanzio, Maurizi and Piccoli Model


∂tρ+ ∂x f (x , y(t), ρ) = 0,
ρ(0, x) = ρ0(x),
ẏ(t) = ω(ρ(t, y(t))),
y(0) = y0.

(3)

The model 2 gives a similar approach to the traffic flow problem even though with
specific differences:

Use of a cut-off function for the capacity dropping of car flows against
constrained conservation laws with non-classical shocks.

→ f (x , y , ρ) = ρ · v(ρ) · ϕ(x − y(t)).

Assumption that the slower vehicle has a velocity ω(ρ) such that ω(0) = V
and ω(R) = 0.

ODE considered in the Filippov sense against Carathéodory approach.

2C.Lattanzio, A. Maurizi and B. Piccoli. Moving bottlenecks in car traffic flow:
A PDE-ODE coupled model. SIAM J. Math. Anal.,43(1):50-67, 2011.
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Introduction Existing Models

Colombo and Marson Model


∂tρ+ ∂x [ρ · v(ρ)] = 0,
ρ(0, x) = ρ̄(x),
ṗ(t) = ω(ρ(t, p)),
p(0) = p̄.

(4)

The model 3 is a coupled ODE-PDE problem with:

Assumption that ω(ρ) ≥ v(ρ) .

Weak coupling between the ODE and the PDE.

Dependence of Filippov solutions to the ODE from the initial datum both of
the ODE and of the conservation law.

Hölder dependence on p̄.

3R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow.
Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759-772, 2003.
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The Riemann problem with moving density constraint Riemann Problem

Riemann Problem I

Consider (2) with the particular choice4

y0 = 0 and ρ0(x) =

{
ρL if x < 0,
ρR if x > 0.

(5)

Rewriting equations in the bus reference frame i.e., setting X = x − Vbt.
We get 

∂tρ+ ∂X (f (ρ)− Vbρ) = 0,

ρ(0, x) =

{
ρL if X < 0,

ρR if X > 0,

(6)

under the constraint
ρ(t, 0) ≤ α. (7)

Solving problem (6), (7) is equivalent to solving (6) under the corresponding
constraint on the flux

f (ρ(t, 0))− Vbρ(t, 0) ≤ fα(ρα)− Vbρα
.

= Fα .

4R. M. Colombo and P. Goatin, A well posed conservation law with a variable
unilateral constraint. J. Differential Equations, 234(2):654-675, 2007.
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The Riemann problem with moving density constraint Riemann Problem

Riemann Problem II

ρ̌α α

f (ρ)

ρ

Vb

ρ̂αρα 1

f (ρ)− Vbρ

Fα

ρα ρ

Vbρ

ρ̂αρ̌α
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The Riemann problem with moving density constraint Riemann Solver

Riemann Solver

Definition (Riemann Solver)

The constrained Riemann solver Rα for (2), (5) is defined as follows.

1 If f (R(ρL, ρR )(Vb)) > Fα + VbR(ρL, ρR )(Vb), then

Rα(ρL, ρR )(x) =

{
R(ρL, ρ̂α) if x < Vbt,
R(ρ̌α, ρR ) if x ≥ Vbt,

and y(t) = Vbt.

2 If VbR(ρL, ρR )(Vb) ≤ f (R(ρL, ρR )(Vb)) ≤ Fα + VbR(ρL, ρR )(Vb), then

Rα(ρL, ρR ) = R(ρL, ρR ) and y(t) = Vbt.

3 If f (R(ρL, ρR )(Vb)) < VbR(ρL, ρR )(Vb), then

Rα(ρL, ρR ) = R(ρL, ρR ) and y(t) = v(ρR )t.

Note: when the constraint is enforced, a nonclassical shock arises, which satisfies
the Rankine-Hugoniot condition but violates the Lax entropy condition

... .
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The Riemann problem with moving density constraint Riemann Solver

Riemann Solver: Example

f (ρ)

ρ

ρ̄

ρ̌α ρ̂α

ρ̄
ρ̄

ρ̂α
ρ̌α

x

t
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The Cauchy problem: Existence of solutions Cauchy Problem

Cauchy Problem

A bus travels along a road modelled by ∂tρ+ ∂x (ρ(1− ρ)) = 0,
ρ(0, x) = ρ0(x),
ρ(t, y(t)) ≤ α.

(8)

The bus influences the traffic along the road but it is also influenced by it. The
bus position y = y(t) then solves{

ẏ(t) = ω(ρ(t, y(t)+)),
y(0) = y0.

(9)

Solutions to (9) are intended in Carathéodory sense, i.e., as absolutely continuous
functions which satisfy (9) for a.e. t ≥ 0.
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The Cauchy problem: Existence of solutions Cauchy Problem

Cauchy Problem: Solution

Definition (Weak solution)

A couple (ρ, y) ∈ C0
(
R+;L1 ∩ BV(R)

)
×W1,1(R+) is a solution to (2) if

1 ρ is a weak solution of the conservation law, i.e. for all ϕ ∈ C1
c (R2)∫

R+

∫
R

(ρ∂tϕ+ f (ρ)∂xϕ) dx dt +

∫
R
ρ0(x)ϕ(0, x) dx = 0 ; (10a)

2 y is a Carathéodory solution of the ODE, i.e. for a.e. t ∈ R+

y(t) = y0 +

∫ t

0

ω(ρ(s, y(s)+)) ds ; (10b)

3 the constraint is satisfied, in the sense that for a.e. t ∈ R+

lim
x→y(t)±

(f (ρ)− ω(ρ)ρ) (t, x) ≤ Fα. (10c)

Note: The above traces exist because ρ(t, ·) ∈ BV(R) for all t ∈ R+.
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The Cauchy problem: Existence of solutions Wave-Front Tracking Method

Wave-Front Tracking Method I

Fix n ∈ N, n > 0 and introduce in [0, 1] the mesh Mn by

Mn =
(
2−nN ∩ [0, 1]

)
∪ {ρ̌α, ρ̂α}.

Let fn be the piecewise linear function which coincides with f on Mn.

Let
ρn

0 =
∑
j∈Z

ρn
0,j χ]xj−1,xj ]

with ρn
0,j ∈Mn,

such that
lim

n→∞
‖ρn

0 − ρ0‖L1(R) = 0,

and TV(ρn
0) ≤ TV(ρ0).

y0 is given.
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The Cauchy problem: Existence of solutions Wave-Front Tracking Method

Wave-Front Tracking Method II

For small times t > 0, a piecewise approximate solution (ρn, yn) to (2) is
constructed piecing together the solutions to the Riemann problems


∂tρ+ ∂x (f n(ρ)) = 0,

ρ(0, x) =

{
ρ0 if x < y0,
ρ1 if x > y0,

ρ(t, yn(t)) ≤ α,


∂tρ+ ∂x (f n(ρ)) = 0,

ρ(0, x) =

{
ρj if x < xj ,
ρj+1 if x > xj ,

j 6= 0,

(11)

where yn satisfies {
ẏn(t) = ω(ρn(t, yn(t)+)),
yn(0) = y0.

(12)
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The Cauchy problem: Existence of solutions Bounds on the total variation

Bounds on the total variation

Define the Glimm type functional

Υ(t) = Υ(ρn(t, ·)) = TV(ρn) + γ =
∑

j

∣∣ρn
j+1 − ρn

j

∣∣+ γ, (13)

with

γ = γ(t) =

{
0 if ρn(t, yn(t)−) = ρ̂α, ρn(t, yn(t)+) = ρ̌α

2|ρ̂α − ρ̌α| otherwise.
(14)

Lemma (Decreasing functional)

For any n ∈ N, the map t 7→ Υ(t) = Υ(ρn(t, ·)) at any interaction either decreases
by at least 2−n, or remains constant and the number of waves does not increase.

Proof
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The Cauchy problem: Existence of solutions Convergence of approximate solutions

Convergence of approximate solutions

Lemma (Convergence of approximate solutions)

Let ρn and yn, n ∈ N, be the wave front tracking approximations to (1)
constructed as detailed in Section 2, and assume TV(ρ0) ≤ C be bounded,
0 ≤ ρ0 ≤ 1. Then, up to a subsequence, we have the following convergences

ρn → ρ in L1
loc(R+ × R); (15a)

yn(·)→ y(·) in L∞([0,T ]), for all T > 0; (15b)

ẏn(·)→ ẏ(·) in L1([0,T ]), for all T > 0; (15c)

for some ρ ∈ C0
(
R+;L1 ∩ BV(R)

)
and y ∈W1,1(R+).

Sketch of the proof:

(15a): TV(ρn(t, ·)) ≤ Υ(t) ≤ Υ(0) + Helly’s theorem.

(15b): |ẏn(t)| ≤ Vb + Ascoli-Arzelà theorem.

(15c): TV (ẏn; [0,T ]) ≤ 2 NV (ẏn; [0,T ]) + ‖ẏn‖L∞([0,T ]) ≤ 2TV(ρ0) + Vb

Complete Proof
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The Cauchy problem: Existence of solutions Existence of weak solution

Convergence of weak solution

Theorem (Existence of solutions)

For every initial data ρ0 ∈ BV (R) such that TV(ρ0) ≤ C is bounded, problem (1)
admits a weak solution in the sense of Definition (Weak Solution).

Sketch of the proof:∫
R+

∫
R (ρ∂tϕ+ f (ρ)∂xϕ) dx dt +

∫
R ρ0(x)ϕ(0, x) dx = 0 :

ρn → ρ in L1
loc(R+ × R) ⇒ limit in the weak formulation of the conservation

law.

ẏ(t) = ω(ρ(t, y(t)+)) for a.e. t > 0:

limn→∞ ρn(t, yn(t)+) = ρ+(t) = ρ(t, y(t)+) for a.e. t ∈ R+ 5 + (15c).

limx→y(t)± (f (ρ)− ω(ρ)ρ) (t, x) ≤ Fα :

direct use of the convergence result already proved.

Complete Proof

5A. Bressan and P.G. LeFloch. Structural stability and regularity of entropy
solutions to hyperbolic systems of conservation laws. Indiana Univ. Math. J.,
48(1):43-84, 1999, Section 4
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Conclusions

Conclusions and Future work

The coupled PDE-ODE model represents a good approach to the problem of
moving bottleneck, as shown by different numerical approaches (works by
F.Giorgi, J. Laval, L. Leclerq, C.F. Daganzo).

We were able to develop a strong coupling between the PDE and ODE.

We proved the existence of solutions for this model.

Stability of solution is currently a work in progress.
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Conclusions

Thank you for your attention.
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Riemann Solver: Remarks

Remark 1 Definition 1 is well posed even if the classical solution
R(ρL, ρR )(x/t) displays a shock at x = Vbt. In fact, due to
Rankine-Hugoniot equation, we have

f (ρL) = f (ρR ) + Vb(ρL − ρR )

and hence

f (ρL) > fα(ρα) + Vb(ρL − ρα) ⇐⇒ f (ρR ) > fα(ρα) + Vb(ρR − ρα).

Remark 2 The density constraint ρ(t, y(t)) ≤ α is handled by the
corresponding condition on the flux

f (ρ(t, y(t)))− ω(ρ(t, y(t)))ρ(t, y(t)) ≤ Fα. (16)

The corresponding density on the reduced roadway at x = y(t) is found
taking the solution to the equation

f (ρy ) + ω(ρy )(ρ− ρy ) = ρ
(

1− ρ

α

)
closer to ρy

.
= ρ(t, y(t))).

Back
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Lemma 3: Proof I

ρl ρr

ρm

Either two shocks collide (which means
that the number of waves diminishes) or
a shock and a rarefaction cancel.

ρl

Vb

ρr

TV(ρn), Υ and the number of waves remain
constant.

Back
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Lemma 3: Proof II

ρ̂α

ρ̌α

ρl

Vb

After the collision, the number of discontinuities
in ρn diminishes and the functional Υ remains
constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρl − ρ̌α|+ 2|ρ̂α − ρ̌α| − (|ρl − ρ̂α|+ |ρ̂α − ρ̌α|)
= 0.

ρ̂α

ρ̌α

ρr

ρr
v(ρr )

The number of discontinuities in ρn diminishes
and the functional Υ remains constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρ̂α − ρr |+ 2|ρ̂α − ρ̌α| − (|ρ̌α − ρr |+ |ρ̂α − ρ̌α|)
= 0.

Back
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Lemma 3: Proof III

ρr = ρ̌α

ρ̌α

Vb

ρ̂α

ρl

New waves are created at t and the total
variation is given by:

TV(t̄−) = |ρ̌α − ρl | ≤ 2−n;

TV(t̄+) = |ρ̂α − ρ̌α|+ |ρ̂α − ρl | ≤ 2|ρ̂α − ρ̌α|,

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−) ≤ −2−n

ρl = ρ̂α

ρ̂α

Vb

ρr

ρ̌α

New waves are created at t̄ and the total
variation is given by:

TV(t̄−) = |ρ̂α − ρr | ≤ 2−n;
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Convergence of approximate solutions II

Proof:
From 3 we have TV(ρn(t, ·)) ≤ Υ(t) ≤ Υ(0). Using Helly’s Theorem we ensure
the existence of a subsequence converging to some function
ρ ∈ C0

(
R+;L1 ∩ BV(R)

)
, proving (15a).

Since |ẏn(t)| ≤ Vb, the sequence {yn} is uniformly bounded and equicontinuous
on any compact interval [0,T ]. By Ascoli-Arzelà Theorem, there exists a
subsequence converging uniformly, giving (15b).

We can estimate the speed variation at interactions times t̄ by the size of the
interacting front:

|ẏn(t̄+)− ẏn(t̄−)| = |ω(ρl )− ω(ρr )| ≤ |ρl − ρr |.

ẏn increases only at interactions with rarefaction fronts, which must be originated
at t = 0. Therefore,

TV (ẏn; [0,T ]) ≤ 2 NV (ẏn; [0,T ]) + ‖ẏn‖L∞([0,7]) ≤ 2TV(ρ0) + Vb

is uniformly bounded, proving (15c). Back
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Convergence of weak solution I

∫
R+

∫
R

(ρ∂tϕ+ f (ρ)∂xϕ) dx dt +

∫
R
ρ0(x)ϕ(0, x) dx = 0 ; (17)

Proof:
Since ρn converge strongly to ρ in L1

loc(R+ × R), it is straightforward to pass to
the limit in the weak formulation of the conservation law, proving that the limit
function ρ satisfies (17).

ẏ(t) = ω(ρ(t, y(t)+)) for a. e.t > 0. (18)

Proof:
We prove that

lim
n→∞

ρn(t, yn(t)+) = ρ+(t) = ρ(t, y(t)+) for a. e. t ∈ R+. (19)

By pointwise convergence a. e. of ρn to ρ, ∃ a sequence zn ≥ yn(t) s.t. zn → y(t)
and ρn(t, zn)→ ρ+(t).

Back
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Convergence of weak solution II

Cont.

For a. e. t > 0, the point (t, y(t)) is for ρ(t, ·) either a continuity point, or it
belongs to a discontinuity curve (either a classical or a non-classical shock ).

Fix ε∗ > 0 and assume TV (ρ(t, ·); ]y(t)− δ, y(t) + δ[) ≤ ε∗, for some δ > 0.

Then by weak convergence of measure6 TV (ρn(t, ·); ]y(t)− δ, y(t) + δ[) ≤ 2ε∗

for n large enough, and∣∣ρn(t, yn(t)+)− ρ+(t)
∣∣ ≤ |ρn(t, yn(t)+)− ρn(t, zn)|+

∣∣ρn(t, zn)− ρ+(t)
∣∣ ≤ 3ε∗

for n large enough.

If ρ(t, ·) has a discontinuity of strength greater than ε∗ at y(t), then
|ρn(t, yn(t)+)− ρn(t, yn(t)−)| ≥ ε∗/2 for n sufficiently large.

Back

6Lemma 15, A. Bressan and P.G. LeFloch. Structural stability and regularity of
entropy solutions to hyperbolic systems of conservation laws. Indiana Univ. Math.
J.,48(1):43-84, 1999
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Convergence of weak solution III

Cont.

We set ρn,+ = ρn(t, yn(t)+) and we show that for each ε > 0 there exists δ > 0
such that for all n large enough there holds∣∣ρn(s, x)− ρn,+

∣∣ < ε for |s − t| ≤ δ, |x − y(t)| ≤ δ, x > yn(s). (20)

In fact, if (20) does not hold, we could find ε > 0 and sequences tn → t, δn → 0
s. t. TV (ρn(tn, ·); ]yn(tn), yn(tn) + δn[) ≥ ε.

By strict concavity of the flux function f , there should be a uniformly positive
amount of interactions in an arbitrarily small neighborhood of (t, y(t)), giving a
contradiction. Therefore (20) holds and we get∣∣ρn(t, yn(t)+)− ρ+(t)

∣∣ ≤ |ρn(t, yn(t)+)− ρn(t, zn)|+
∣∣ρn(t, zn)− ρ+(t)

∣∣ ≤ 2ε

for n large enough, thus proving (19).
Combining (15c) and (19) we get (18).

Back
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Convergence of weak solution IV

lim
x→y(t)±

(f (ρ)− ω(ρ)ρ) (t, x) ≤ Fα. (21)

Proof:

Introduce the sets
Ω± = {(t, x) ∈ R+ × R : x ≶ y(t)}

and
Ω±n = {(t, x) ∈ R+ × R : x ≶ yn(t)},

Consider a test function ϕ ∈ C1
c (R+ × R), ϕ ≥ 0, s. t.

supp(ϕ) ∩ {(t, y(t)) : t > 0} 6= 0 and supp(ϕ) ∩ {(t, yn(t)) : t > 0} 6= 0.

Back
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Convergence of weak solution V

Cont.

Then by conservation on Ω+
n we have∫∫

χΩ+
n

(
ρn∂tϕ+ f n(ρn)∂xϕ

)
dx dt

=

∫ +∞

0

∫ +∞

yn(t)

(
ρn∂tϕ+ f n(ρn)∂xϕ

)
dx dt

=

∫ +∞

0

(
f n(ρn(t, yn(t)+))− ẏn(t)ρn(t, yn(t)+)

)
ϕ(t, yn(t)) dt

=

∫ +∞

0

(
f n(ρn(t, yn(t)+))− ω(ρn(t, yn(t)+))ρn(t, yn(t)+)

)
ϕ(t, yn(t)) dt

≤
∫ T

0

Fαϕ(t, yn(t)) dt, (22)

Back
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Convergence of weak solution VI

Cont.

The same can be done for the limit solutions ρ and y(t) that, by conservation on
Ω, satisfy∫∫

χΩ+

(
ρ∂tϕ+ f (ρ)∂xϕ

)
dx dt =

∫ +∞

0

∫ +∞

y(t)

(
ρ∂tϕ+ f (ρ)∂xϕ

)
dx dt

=

∫ +∞

0

(
f (ρ(t, y(t)+))− ẏ(t)ρ(t, y(t)+)

)
ϕ(t, y(t)) dt

=

∫ +∞

0

(
f (ρ(t, y(t)+))− ω(ρ(t, y(t)+))ρ(t, y(t)+)

)
ϕ(t, y(t)) dt (23)

By (15a) and (15b) we can pass to the limit in (22) and (23), which gives∫ +∞

0

(
f (ρ(t, y(t)+))− ω(ρ(t, y(t)+))ρ(t, y(t)+)− Fα

)
ϕ(t, y(t)) dt ≤ 0.

Since the above inequality holds for every test function ϕ ≥ 0,
we have proved (21).

Back
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