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Introduction Mathematical Model

Mathematical Model |

A slow moving large vehicle along a road reduces its capacity and generates a
moving bottleneck for the cars flow.

From a macroscopic point of view this can be modeled by a PDE-ODE coupled
model consisting in a scalar conservation law with moving density constraint and
an ODE describing the slower vehicle.?

Orp + Oxf(p) = 0, (t,x) e R* xR,

(0, x) = po(x), x €R,

p(t,y(t)) < R, t € RY, (1)
y(t) =w(p(t,y()+)), teRT,

¥(0) = yo.

e p = p(t,x) € [0, R] mean traffic density.
e y = y(t) € R bus position.

LF. Giorgi. Prise en compte des transports en commun de surface dans la o
modélisation macroscopique de I’ écoulement du trafic. 2002. Thesis (Ph.D.) - 22z
Institut National des Sciences Appliquées de Lyon
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Introduction Mathematical Model

Mathematical Model Il

f(p)
Pa Pa P* P p
e v(p) = V(1 — £) mean traffic velocity, smooth decreasing.
e f:[0,R] — R* flux function, strictly concave f(p) = pv(p) .
Vi if p<p*=R(1-Vp/V),
o w(p) = b P = p ( b/ V)
v(p) otherwise, .
&zn/-m..,n.m

with V}, < V lower vehicle speed.
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Introduction Mathematical Model

Mathematical Model IlI

Fixing the value of the parameters:

@ « €]0, 1] reduction rate of the road capacity due to the presence of the bus.

® R =V =1 respectively the maximal density and the maximal velocity
allowed on the road.

We obtain
Oip + 0x(p(1 —p)) =0, (t,x)€ R* x R,
p(0,x) = po(x), x € R,
p(t,y(t)) < a, t € RY, (2)
y(t) =wlp(t,y(t)+)), teRT,
y(0) = yo.

&’zw.mw.m
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Introduction Existing Models

Lattanzio, Maurizi and Piccoli Model

atp + (9Xf(X,y(t),p) = 07

p(0,x) = po(x), (3)
y(t) = w(p(t, y(t))),
y(0) = yo.

The model ? gives a similar approach to the traffic flow problem even though with
specific differences:

@ Use of a cut-off function for the capacity dropping of car flows against
constrained conservation laws with non-classical shocks.

= fxy,p) = p-v(p) - olx = y(t)).
@ Assumption that the slower vehicle has a velocity w(p) such that w(0) = V
and w(R) = 0.

@ ODE considered in the Filippov sense against Carathéodory approach.

2C.Lattanzio, A. Maurizi and B. Piccoli. Moving bottlenecks in car traffic flow: o
A PDE-ODE coupled model. SIAM J. Math. Anal.,43(1):50-67, 2011. (/527 =
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Introduction Existing Models

Colombo and Marson Model

dep+ Ox[p-v(p)] =0,

p(0, %) = A(x),
p(t) = w(p(t, p)), (#)
p(0) = p.

The model 3 is a coupled ODE-PDE problem with:
e Assumption that w(p) > v(p) .
@ Weak coupling between the ODE and the PDE.

@ Dependence of Filippov solutions to the ODE from the initial datum both of
the ODE and of the conservation law.

@ Holder dependence on p.

3R. M. Colombo and A. Marson. A Hdlder continuous ODE related to traffic flow.
Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759-772, 2003.
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The Riemann problem with moving density constraint

Outline
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The Riemann problem with moving density constraint Riemann Problem

Riemann Problem |

Consider (2) with the particular choice*

- | p ifx<0,
Yo=0 and pO(X)_{ pr ifx>0.
Rewriting equations in the bus reference frame i.e., setting X = x — Vjt.
We get
Oep + Ox (f(p) = Vbp) = 0,

pL if X <0, (6)
p(0,x) = .
pr if X >0,
under the constraint
p(t,0) < a. (7)

Solving problem (6), (7) is equivalent to solving (6) under the corresponding
constraint on the flux

| £(p(£,0)) = Vop(t,0) < fulpa) — Vopa = Fa |

4R. M. Colombo and P. Goatin, A well posed conservation law with a variable o
unilateral constraint. J. Differential Equations, 234(2):654-675, 2007. (/527 =
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The Riemann problem with moving density constraint Riemann Problem

Riemann Problem I

VP
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The Riemann problem with moving density constraint Riemann Solver

Riemann Solver

Definition (Riemann Solver)

The constrained Riemann solver R* for (2), (5) is defined as follows.
Q If f(R(pL,pR)(Vb)) > Fo + VbR(pL,pR)(Vb), then

R(Paspr) if x > Vpt, and y(t) = Vpt.

. Rlot, ba) if x < Vit
R (o)) = { ot Pl S
Q If VoR(pr, pr)(Vb) < F(R(pL, pr)(Vb)) < Fa + VbR(pL, pr)(Vb), then
R%(pr,pr) = R(pL,pr) and y(t) = Vjt.

Q If f(R(pL, pr)(Vb)) < VbR(pL, pr)(Vb), then

R*(pLspr) = R(pr,pr) and y(t) = v(pr)t.

Note: when the constraint is enforced, a nonclassical shock arises, which satisfies
the Rankine-Hugoniot condition but violates the Lax entropy condition e

) o
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The Riemann problem with moving density constraint Riemann Solver

Riemann Solver: Example

S 4
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The Cauchv problem: Existence of solutions

Outline

© The Cauchy problem: Existence of solutions
Cauchy Problem

@ Wave-Front Tracking Method

@ Bounds on the total variation

@ Convergence of approximate solutions

@ Existence of weak solution
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The Cauchv problem: Existence of solutions | Cauchy Problem

Cauchy Problem

A bus travels along a road modelled by

9ep + Ox(p(1 - p)) =0,
p(0,x) = po(x), (8)
p(t,y(t)) < o

The bus influences the traffic along the road but it is also influenced by it. The
bus position y = y(t) then solves

9(2) = wlp(t, y(£)1)).
{ ¥(0) = yo. ©)

Solutions to (9) are intended in Carathéodory sense, i.e., as absolutely continuous
functions which satisfy (9) for a.e. t > 0.
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The Cauchv problem: Existence of solutions | Cauchy Problem

Cauchy Problem: Solution

Definition (Weak solution)

A couple (p,y) € C° (RT; L1 N BV(R)) x WH1(RT) is a solution to (2) if
© p is a weak solution of the conservation law, i.e. for all ¢ € CL(R?)
[ [ 0o+ roppe)ax de+ [ pmx)e0x) de=0i  (109)
R+ JR R
@ y is a Carathéodory solution of the ODE, i.e. for a.e. t € RT
t
A6 =0+ [ wlols.pls)+) o (10b)
© the constraint is satisfied, in the sense that for a.e. t € RT
lim  (F(p) — w(p)p) (£, %) < Fu. (10c)
x—y(t)x
Note: The above traces exist because p(t,-) € BV(R) for all t € R™. Cr
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The Cauchv problem: Existence of solutions = Wave-Front Tracking Method

Wave-Front Tracking Method |

e Fix n € N, n> 0 and introduce in [0, 1] the mesh M, by

M, = (27"NN[0,1]) U{pa, fa}-

@ Let f, be the piecewise linear function which coincides with f on M,,.
o Let
=1t Xy 1wy With p0; € Mo,
= T
such that

n';”go oo — Po|||_1(R) =0,
and TV(pg) < TV(po).

@ o is given.

&’ZWWM

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012 17 / 24



The Cauchv problem: Existence of solutions = Wave-Front Tracking Method

Wave-Front Tracking Method ||

For small times t > 0, a piecewise approximate solution (p”, y,) to (2) is
constructed piecing together the solutions to the Riemann problems

dep + 0x (f"(p)) = 0, Owp + 0x (f"(p)) = 0,
| po if x < yo, o ifx<x;,
p(0,x) = p1 if x > yo, p(0,x) = pi+1 if x > Xx;, (11)

p(t; ya(t)) < e, J#0,

where y, satisfies
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The Cauchv problem: Existence of solutions Bounds on the total variation

Bounds on the total variation

Define the Glimm type functional

T(t) =T(p"(t,)) =TV(p") +7 = Z |Pfi1 = 0]+, (13)
with
Y ):{ o v M Eyn(02) = o P2(Ein ) =P
2|po — Pa| otherwise.

Lemma (Decreasing functional)

For any n € N, the map t — T(t) = T(p"(t,-)) at any interaction either decreases
by at least 2—", or remains constant and the number of waves does not increase.

&’zw.mw.m
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The Cauchv problem: Existence of solutions | Convergence of approximate solutions

Convergence of approximate solutions

Lemma (Convergence of approximate solutions)

Let p" and y,, n € N, be the wave front tracking approximations to (1)
constructed as detailed in Section 2, and assume TV(po) < C be bounded,
0 < po < 1. Then, up to a subsequence, we have the following convergences

p"—=p in L (R x R); (15a)
o) = y() in L*°([0, T]), for all T > 0; (15b)
o) = y() in LY([0, T]), forall T > 0; (15¢)

for some p € C° (R*; LY N BV(R)) and y € WHL(RT).

Sketch of the proof:
e (15a): TV(p"(t,-)) < T(t) < T(0) + Helly's theorem.
@ (15b): |yn(t)] < Vi + Ascoli-Arzela theorem.
@ (15¢): TV (yn; [0, T]) < 2NV (yn: [0, T]) + [I¥nll (o, 77) < 2TV (p0) + Vb

Complete Proof

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012
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The Cauchv problem: Existence of solutions Existence of weak solution

Convergence of weak solution

Theorem (Existence of solutions)

For every initial data py € BV (R) such that TV(po) < C is bounded, problem (1)
admits a weak solution in the sense of Definition (Weak Solution).

Sketch of the proof:

 for Jr (PO + f(p)Oxp) dx dt + [ po(x)p(0,x) dx =0
p" — pin LL.(RT x R) = limit in the weak formulation of the conservation
law.

e y(t) =w(p(t,y(t)+)) forae. t>0:
limposoo p"(t, ya(t)+) = p(t) = p(t, y(t)+) fora.e. t € RT ° + (15¢).

® limesy (o= (F(p) —w(p)p) (t,x) < Fa :

direct use of the convergence result already proved.

5A. Bressan and P.G. LeFloch. Structural stability and regularity of entropy o
solutions to hyperbolic systems of conservation laws. Indiana Univ. Math. J., 2222

48(1):43-84, 1999, Section 4
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Conclusions
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Conclusions
Conclusions and Future work

@ The coupled PDE-ODE model represents a good approach to the problem of
moving bottleneck, as shown by different numerical approaches (works by
F.Giorgi, J. Laval, L. Leclerq, C.F. Daganzo).

@ We were able to develop a strong coupling between the PDE and ODE.
@ We proved the existence of solutions for this model.

@ Stability of solution is currently a work in progress.
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Conclusions

Thank you for your attention.
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Riemann Solver: Remarks

@ Remark 1 Definition 1 is well posed even if the classical solution
R(pL, pr)(x/t) displays a shock at x = V,t. In fact, due to
Rankine-Hugoniot equation, we have

f(pr) = f(pr) + Vi(pL — pr)
and hence

flor) > falpa) + Vo(p — pa) = f(pr) > falpa) + Vi(pr — pa)-

e Remark 2 The density constraint p(t, y(t)) < a is handled by the
corresponding condition on the flux

Fp(t, y(1))) —wlp(t, y(t)))e(t, y(1)) < Fa. (16)

The corresponding density on the reduced roadway at x = y(t) is found
taking the solution to the equation

f(py) +wlpy)(p—py) =p (1 N g)

closer to p, = p(t, y(t))). Loz
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Lemma 3: Proof |

Pi Pr
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Lemma 3: Proof |

Either two shocks collide (which means
pi Pr that the number of waves diminishes) or
a shock and a rarefaction cancel.

Pm
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Lemma 3: Proof |

Either two shocks collide (which means
pi Pr that the number of waves diminishes) or
a shock and a rarefaction cancel.
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Lemma 3: Proof |

Either two shocks collide (which means
pi Pr that the number of waves diminishes) or
a shock and a rarefaction cancel.

Pm
TV(p"), T and the number of waves remain
constant.
p ac
" : =
pl &z;n/-m..,n.m

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012 2/11



Lemma 3: Proof Il
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Lemma 3: Proof Il

After the collision, the number of discontinuities
in p” diminishes and the functional T remains
constant:

AT(t) = T(t+) — T(i-)
= lp1 = Bal + 2|pa — Pal = (lp1 = Pal + |pa — Pal)
=0.

&’ZWWM
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Lemma 3: Proof Il

After the collision, the number of discontinuities
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Lemma 3: Proof Il

After the collision, the number of discontinuities
in p” diminishes and the functional T remains
constant:

AT(t) = T(t+) — T(i-)
= lp1 = Bal + 2|pa — Pal = (lp1 = Pal + |pa — Pal)
=0.

The number of discontinuities in p” diminishes
and the functional T remains constant:

AT(F) = T(E+) - T(E-)
= |pa = prl +2|pa = Pal = (Ipa = pr| + 1pa — pal)
=0.

Back &z,w'm’"m
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Lemma 3: Proof Ill

Vi
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Lemma 3: Proof Ill

A New waves are created at t and the total

Pa v variation is given by:
¢ Pa @ TV(t—) = |pa —pi| <277
Iz - o v . o
@ TV(t+) = [pa — Pal + |Pa — pil < 2|pa — fal,
pr=pe AT(F) = T(E+) - T(E-) < -27"
Vi

&z‘w«-m..,n.m
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Lemma 3: Proof Ill

A New waves are created at t and the total

Pa v variation is given by:
¢ Pa @ TV(t—) = |pa —pi| <277
Iz - o v . o
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Lemma 3: Proof Ill

A New waves are created at t and the total

Pa v variation is given by:
P $ e @ TV(i-) = |pa —pi| <277
° TV(E"’) = |pa — pvoé‘ + ‘ﬁa - PI| < 2|pa — Pal,
pr=pe AT(F) = T(E+) - T(E-) < -27"
Vb

New waves are created at t and the total
variation is given by:

® TV(t—) = |fa — pr| <277

® TV(t+) = |fa — fal + |Pa — pr| < 2|pa — Pal,

AT(E) = T(F+) - T(F-) < —27"

By —

/577 >R
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Convergence of approximate solutions |l

Proof:

From 3 we have TV(p"(t,-)) < T(t) < T(0). Using Helly's Theorem we ensure
the existence of a subsequence converging to some function

p € C° (RT; LY N BV(R)), proving (15a).

Since |yn(t)| < Vb, the sequence {y,} is uniformly bounded and equicontinuous
on any compact interval [0, T]. By Ascoli-Arzela Theorem, there exists a
subsequence converging uniformly, giving (15b).

We can estimate the speed variation at interactions times t by the size of the
interacting front:

Yn(t4) = ya(t=)| = lw(pr) — w(pr)l < lpr = prl.

yn increases only at interactions with rarefaction fronts, which must be originated
at t = 0. Therefore,

TV (ya: [0, TI) < 2NV (y5; [0, T]) + [[¥nllLoe 0,77y < 2TV(p0) + Vi

Lo

is uniformly bounded, proving (15c).

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012 5/11



Convergence of weak solution |

| [ o+ dede + [ mixgo00) de=0i] )

Proof:
Since p" converge strongly to p in LL_(R* x R), it is straightforward to pass to

the limit in the weak formulation of the conservation law, proving that the limit
function p satisfies (17).

&’zw.mw.m
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Convergence of weak solution |

| [ o+ dede + [ mixgo00) de=0i] )

Proof:

Since p" converge strongly to p in LL_(R* x R), it is straightforward to pass to
the limit in the weak formulation of the conservation law, proving that the limit
function p satisfies (17).

‘y(t) =w(p(t,y(t)+)) fora. et>0. ‘ (18)

Proof:
We prove that

Jim p"(t,ya(t)+) = p7(t) = p(t,y(t)+) fora. e teRT. (19)

By pointwise convergence a. e. of p” to p, 3 a sequence z, > y,(t) s.t. z, — y(t)
and p"(t, z,) = p*(t). AN

Back
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Convergence of weak solution |l

Cont.

For a. e. t > 0, the point (t, y(t)) is for p(t,-) either a continuity point, or it
belongs to a discontinuity curve (either a classical or a non-classical shock ).

Fix ¢* > 0 and assume TV (p(t,-);ly(t) — d,y(t) + d[) < €*, for some § > 0.

Then by weak convergence of measure® TV (p"(t,-);]y(t) — 4, y(t) + 0]) < 2¢*
for n large enough, and

|0"(t, yn(t)+) = p* (1) < |0"(t, yalt)+) = p"(t, 20) | + | 0" (1, 20) — pT ()| < 3€*

for n large enough.
If p(t,-) has a discontinuity of strength greater than €* at y(t), then
[0"(t, yn(t)+) — p"(t, ya(t)—)| = €*/2 for n sufficiently large.

6Lemma 15, A. Bressan and P.G. LeFloch. Structural stability and regularity of .
entropy solutions to hyperbolic systems of conservation laws. Indiana Univ. Math.
J.,48(1):43-84, 1999

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012 7/11



Convergence of weak solution Il

Cont.

We set p™* = p"(t, yn(t)+) and we show that for each £ > 0 there exists § > 0
such that for all n large enough there holds

|p"(s,x) — p"H| <& for|s—t| <6, |x—y(t)] <6, x> yu(s). (20)

In fact, if (20) does not hold, we could find € > 0 and sequences t, — t, §, — 0
s. t. TV (p"(tn, ); Iyn(tn), yn(tn) + 0n[) = €.

By strict concavity of the flux function f, there should be a uniformly positive
amount of interactions in an arbitrarily small neighborhood of (¢, y(t)), giving a
contradiction. Therefore (20) holds and we get

0" (t, ya()+) — p* ()| < 10" (t, ya(t)+) — p"(t, 20)| + |07 (2, 20) — p*(1)| < 22

for n large enough, thus proving (19).
Combining (15¢) and (19) we get (18).

b=
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Convergence of weak solution IV

i (7o) = (o) (£:3) < For (21)

Proof:

Introduce the sets
QF = {(t,x) e R" x R: x < y(t)}

and
OF = {(t,x) e RT x R: x < y,(t)},

n

Consider a test function ¢ € C}(RT x R), ¢ >0,
supp() N {(t,y(£)): ¢ > 0} # 0 and supp(i2) N {(, n( )):t>0}#0.

Maria Laura Delle Monache (INRIA) Scalar conservation laws with moving constraints 28, June 2012 9/11



Convergence of weak solution V

Cont.

Then by conservation on Q we have
// Xay (P"0xp + £"(p")Oxp) dx dt
+oo +oo
:/ / (Pn5t<,0 + f"(p")axgo) dx dt
0 y(t)
+oo
:/0 (F(p"(t, yn(t)+)) = ya(£)p"(t, ya(£)+)) (L, ya(t)) dt

:/0 ) (F(p" (£, ya(t) 1)) — w(p"(t, ya(t)1))P"(t, ya(t)+)) (t, ya(1)) dt

]
< /0 Faolt, ya(t)) dt, (22)
L
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Convergence of weak solution VI

Cont.

The same can be done for the limit solutions p and y(t) that, by conservation on
Q, satisfy

+oo —+00
[ e e+ Fpr00) v o= [ [ (0904 (g ot
0 y(t

+o00
= [ (o) = Ol () el (e) e
+oo
:/0 (Fp(t, y()+)) — w(o(t, y(£)+))p(t, y(t)+)) o(t, y(t)) dt (23)
By (15a) and (15b) we can pass to the limit in (22) and (23), which gives

/0+Oo (F(p(t, y(t)4)) — w(p(t, y(t)+))p(t, y(t)+) — Fa)e(t, (1)) dt <O.

Since the above inequality holds for every test function ¢ > 0,
we have proved (21). Loz
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