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Federated Learning

Federated learning involves “Training statistical models over remote
devices or siloed data centers, such as mobile phones or hospitals, while
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Problem Formulation
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Problem Formulation

Each silo maintains a local copy of the model. At time t;(k) silo i startsits k-th
iteration, it

1) updates the local model through minibatch gradient descent.
2) sends the new model to its out-neighbors in the overlay.
3) aggregates the models received from its in-neighbors into a new local model.
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Each silo maintains a local copy of the model. At time t;(k) silo i startsits k-th
iteration, it

1) updates the local model through minibatch gradient descent.

2) sends the new model to its out-neighbors in the overlay.
3) aggregates the models received from its in-neighbors into a new local model.

This is a synchronous system. The following recurrence holds:

ti(k+1) = max (;(k) 4 do(i, j))

FjeENTU{i}



Problem Formulation

The duration of an iteration at silo i is defined as 7; = kliT ti(k)/k.



Problem Formulation

The duration of an iteration at silo i is defined as 7; = kliT ti(k)/k.

Max-plus algebra & synchronization theory show that:
* 7; does not depend on the specific silo.

do()’)
lyl 7

 T; is the cycle time of the graph G,, defined as 7(G,) = max
Y
where y is a circuit of G,.
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Table 1: Algorithms to design the overlay G, from the connectivity graph G...

Network Conditions Algorithm Complexity Guarantees
Edge-capacitated Undirected G, Prim’s Algorithm [80] O(|€.| + |V|log|V|) Optimal solution (Prop. 3.1)
Edge/Node-capacitated Euclidean G,. Christofides’ Algorithm [69]  O(|V|?log |V|) 3 N-approximation (Prop. 3.3,3.6)

Euclidean G..

Node-capacitated and undirected G,

Algorithm 1 (App. D)

O(|&:|IV|1og | V]) 6-approximation (Prop. 3.5)
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Numerical Experiments

We considered three real topologies from Rocketfuel engine (Exodus
and Ebone) and from The Internet Topology Zoo [48] (Géant), and two
synthetic topologies (AWS North-America and Gaia) built from the
geographical locations of AWS data centers.
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Code: https://github.com/omarfogq/communication-in-cross-silo-fl
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Numerical Experiments

Table 3: iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps access links capacities. One

local computation step (s = 1).

Cycle time (ms)

Ring’s training speed-up

Network name Silos | Links ) )
STAR | MATCHA MST | §-MBST | RING | vs STAR vs MATCHA
Gaia [36] il 55 (391228 (228)| 138| 138|118]| 2.65 1.54 (1.54)
AWS North America [91]| 22 | 231 [288 (124 (124)| 90 90| 81| 3.41 1.47 (1.47)
Géant [27] 40 | 61 |634452(106)|101| 101|109 4.85 3.46 (0.81)
Exodus [64] 79 | 147 912|593 (142)| 145| 145(103| 8.78 57l (1.37)
Ebone [64] 87 | 161 |902|580 (123)| 122| 122| 95| 8.83 6.09 (1.29)




Numerical Experiments

Table 3: iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps access links capacities. One

local computation step (s = 1).

T Silos Cycl(i time (ms) Ring’s training speed-up
MATCHA () | MST|3§-MBST vs STAR vs MATCHA (1)
Gaia [36] 11 228 (228)| 138 138|118} 2.65 1.54 (1.54)
AWS North America [91]| 22 124 (124)| 90 90| 81) 3.41 1.47 (1.47)
Géant [27] 40 452 (106) [101| 101|109y 4.85 3.46 (0.81)
Exodus [64] 79 593 (142)| 145| 145|103} 8.78 57l (1.37)
Ebone [64] 87 580 (123)| 122 122 8.83 6.09 (1.29)




Numerical Experiments

Table 3: iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps access links capacities. One

local computation step (s = 1).

Network name

Silos

Cycle time (ms)

MATCHA (+)

MST

0-MBST

ing’s training speed-up

vs STAR

vs MATCHA (1)

Gaia [36]

AWS North America [91]
Géant [27]

Exodus [64]

Ebone [64]

11
22
40
79
87

228 (228

)
124 (124)
452 (106)
593 (142)
580 (123)

138

90
101
145
122

138

90
101
145
122

2.65
3.41
4.85

1.54 (1.54)
1.47 (1.47)
3.46 (0.81)
5.71 (1.37)




Numerical Experiments

Table 3: iNaturalist training over different networks. 1 Gbps core links capacitiesf 10 Gbps access links capacitiesf One

local computation step (s = 1).

Cycle time (ms)

Ring’s training speed-up

Network name Silos | Links ) e
STAR | MATCHA MST | 5-MBST | RING | vs STAR vs MATCHA
Gaia [36] il 55 (391228 (228)| 138| 138|118]| 2.65 1.54 (1.54)
AWS North America [91]| 22 | 231 |288 124 (124)| 90 90| 81| 3.41 1.47 (1.47)
Géant [27] 40 | 61 |634(452(106)(101| 101|109| 4.85 3.46 (0.81)
Exodus [64] 79 | 147 912|593 (142)| 145| 145|103| 8.78 5.71 (1.37)
Ebone [64] 87 | 161 [902 580 (123)| 122| 122| 95| 8.83 6.09 (1.29)




Conclusion

* Synchronization theory & max-plus algebra to model and optimize
iteration time.

* In cross-silo setting, replacing server by peer-to-peer communication,
results in significant speed ups (X9).

e Counter-intuitively, sparser topologies may lead to faster convergence
even in the absence of congestion.
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