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The problem

= A (countable) set T of classification (or regression) tasks which represent the set of possible

clients.
* Data S; = {5§Z> = (xgz) ygz))}?’il at client ¢ is drawn from a local distribution D; over X' x Y.

)

= Client t wants to learn hypothesis hf € H ={h: X — YV}

minimize Lp,(ht) & Erx yyop, 1 (e (x),y)]- (1)

= Personalized models for each client are a necessity in many federated learning (FL) applications.

Our goal is to study personalized federated learning under the flexible assumption that the data
distribution of each client is a mixture of M underlying distributions.

An impossibility result
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Remark

The generative model in Assumption 1 extends some popular multi-task/personalized FL formulation
in the literature, including Clustered FL [2], Personalization via model interpolation [3], and Federated
MTL via task relationships [4].

Main contributions

Some assumptions on the local data distributions Dy, t € T, are needed for federated learning to
be beneficial, because

1. Federated learning with T clients is equivalent to T semi-supervised learning (SSL) problems.

2. With no assumption on data distributions, SSL is impossible [1].

= Flexible assumption for personalized FL (mixtures of components).

= Expectation-Maximization-like learning algorithms with convergence guarantees (both in
client-server and fully-decentralized settings).

= More general federated surrogate optimization framework.

= Higher accuracy and fairness than SOTA algorithms, even for clients not present at training
time.

Learning under a Mixture Model

Main Assumptions
There exist M underlying (indNependent) distributions D,,, 1 < m < M, such that fort € T, Dy is
mixture of the distributions {Dm}%:1 with weights 7 = [wfl, L ,wa} e AM je
&t M(T‘-Z‘k)a ((Xta yt) |Zt — m) ™~ ﬁma Vit € T? (2)

where M(r) is a multinomial (categorical) distribution with parameters .

We consider d-dimensional parametric models:

vm € [M], 36% € R% | (h%(x) y) — —log Dy(y|x) + ¢, (3)

M components

Proposition (informal). Let ©, 11 € arg ming 11 E¢wpr E(x y)p, [~ l0g Di(x, y|O, m)]. Then,
M
hi =Y #umh; , VteT. (4)
m=1
This Proposition suggests the following approach to solve Problem (1).

= First, estimate © and 7, 1 <t < T, by minimizing

T (47
log D¢(Sq1.7(0, 11 1 '
fo.1m) 2 PO T) 2 LSS0 pys)0,m) 5
t=11=1

= Second, use Eq. (4) to get the client predictor for the T clients present at training time.

Federated Expectation-Maximization
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Theorem

When clients use SGD as local solver with learning rate n = \;L—OF after a large enough number of

communication rounds K, FedEMSs iterates satisfy:

K K
1 2 1 1 1
LS |ver (1) co( L), Ly agermco(-L), e
K V@f(@ ) r=C\VE K n /(6% 1) < O T 7)
where the expectation is over the random batches samples, and

Apf(eF k) £ ¢ (@k,nk) _f (@k,nk“) > (). (10)

Surrogate Federated Optimization

= FedEM can be seen as a particular instance of a more general framework that we call federated
surrogate optimization.

= This framework minimizes an objective function Zle wt f (1, vi).
= Fach client ¢t € [T can compute a partial first order surrogate of f.

Experiments

= A natural approach to solve problem (5) is via the Expectation-Maximization algorithm (EM),
which alternates between two steps.

k+1 k (2)y . (2)

E-step: ¢ (zgz) =m) X T, - eXp (—l(h@;%(xt ), Y, )) ,  telT], me|M] i€eng (6)

k+1, (2
k+1 Z?il Clt+ <Z§ = m)

M-step: Ty = - , te|T], me|M]| (/)
t
I m . N
or+l c arg minz Z qf“(zéw = m)l(h@(ng)), y§z)), m € [M] (8)
IeR? =1 j=1

= While the E-step (6) and the II update (/) can be performed locally at each client, the ©
update (8) requires interaction with other clients.

= FedEM updates the local estimates of © through a solver which approximates the exact
minimization in (8) using only the local dataset ;.

Dataset Local FedAvg FedProx FedAvg+ Clustered FL  pFedMe FedEM (Ours)

FEMNIST ~ 71.0/57.5 78.6/63.9 78.9/64.0 75.3/53.0 73.5/55.1 74.9/57.6 79.9/64.8
EMNIST — 71.9/64.3 82.6/75.0 83.0/75.4 83.1/75.8 82.7/75.0 83.3/76.4 83.5/76.6
CIFARIO  70.2/48.7 78.2/72.4 78.0/70.8 82.3/70.6 78.6/71.2 81.7/73.6 84.3/78.1
CIFAR100  31.5/19.9 40.9/33.2 41.0/33.2 39.0/28.3 41.5/34.1 41.8/32.5 44.1/35.0
Shakespeare 32.0/16.6 46.7 /42.8 45.7/41.9 40.0 /25.5 16.6/42.7 41.2/36.8 46.7 /43.0
Synthetic  65.7/58.4 68.2/58.9 68.2/59.0 68.9 /60.2 69.1/59.0 69.2/61.2 74.7/66.7

Table 1:Test accuracy: average across clients / bottom decile.
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Figure 1:Effect of client sampling rate (left) and number of mixture components M (right) on test accuracy for CIFAR-
10.
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