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The problem

A (countable) set T of classification (or regression) tasks which represent the set of possible

clients.

Data St = {s
(i)
t , (x(i)

t , y
(i)
t )}nt

i=1 at client t is drawn from a local distribution Dt over X × Y .

Client t wants to learn hypothesis h∗
t ∈ H = {h : X 7→ Y}

minimize
ht∈H

LDt
(ht) , E(x,y)∼Dt

[l (ht (x) , y)] . (1)

Personalized models for each client are a necessity in many federated learning (FL) applications.

Our goal is to study personalized federated learning under the flexible assumption that the data

distribution of each client is a mixture of M underlying distributions.

An impossibility result

Some assumptions on the local data distributions Dt, t ∈ T , are needed for federated learning to

be beneficial, because

1. Federated learning with T clients is equivalent to T semi-supervised learning (SSL) problems.

2. With no assumption on data distributions, SSL is impossible [1].

Main Assumptions

There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤ M , such that for t ∈ T , Dt is

mixture of the distributions {D̃m}M
m=1 with weights π∗

t =
[
π∗

t1, . . . , π∗
tM

]
∈ ∆M , i.e.

zt ∼ M(π∗
t ), ((xt, yt) |zt = m) ∼ D̃m, ∀t ∈ T , (2)

where M(π) is a multinomial (categorical) distribution with parameters π.

We consider d-dimensional parametric models:

∀m ∈ [M ], ∃θ∗
m ∈ Rd, l

(
hθ∗

m
(x) , y

)
= − log D̃m(y|x) + c, (3)

Remark

The generative model in Assumption 1 extends some popular multi-task/personalized FL formulation

in the literature, including Clustered FL [2], Personalization via model interpolation [3], and Federated

MTL via task relationships [4].

Main contributions

Flexible assumption for personalized FL (mixtures of components).

Expectation-Maximization-like learning algorithms with convergence guarantees (both in

client-server and fully-decentralized settings).

More general federated surrogate optimization framework.

Higher accuracy and fairness than SOTA algorithms, even for clients not present at training

time.

Learning under a Mixture Model

Proposition (informal). Let Θ̆, Π̆ ∈ arg minΘ,Π Et∼DT E(x,y)∼Dt
[− log Dt(x, y|Θ, πt)]. Then,

h∗
t =

M∑
m=1

π̆tmh
θ̆m

, ∀t ∈ T . (4)

This Proposition suggests the following approach to solve Problem (1).

First, estimate Θ̆ and π̆t, 1 ≤ t ≤ T , by minimizing

f (Θ, Π) , −log Dt(S1:T |Θ, Π)
n

, −1
n

T∑
t=1

nt∑
i=1

log Dt(s
(i)
t |Θ, πt). (5)

Second, use Eq. (4) to get the client predictor for the T clients present at training time.

Federated Expectation-Maximization

A natural approach to solve problem (5) is via the Expectation-Maximization algorithm (EM),

which alternates between two steps.

E-step: qk+1
t (z(i)

t = m) ∝ πk
tm · exp

(
−l(hθk

m
(x(i)

t ), y
(i)
t )

)
, t ∈ [T ], m ∈ [M ], i ∈ [nt] (6)

M-step: πk+1
tm =

∑nt
i=1 qk+1

t (z(i)
t = m)

nt
, t ∈ [T ], m ∈ [M ] (7)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z(i)

t = m)l
(
hθ(x(i)

t ), y
(i)
t

)
, m ∈ [M ] (8)

While the E-step (6) and the Π update (7) can be performed locally at each client, the Θ
update (8) requires interaction with other clients.

FedEM updates the local estimates of Θ through a solver which approximates the exact

minimization in (8) using only the local dataset St.

Theorem

When clients use SGD as local solver with learning rate η = a0√
K
, after a large enough number of

communication rounds K , FedEM's iterates satisfy:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θk, Πk

)∥∥∥2

F
≤ O

(
1√
K

)
,

1
K

K∑
k=1

∆Πf (Θk, Πk) ≤ O
(

1
K3/4

)
, (9)

where the expectation is over the random batches samples, and

∆Πf (Θk, Πk) , f
(

Θk, Πk
)

− f
(

Θk, Πk+1
)

≥ 0. (10)

Surrogate Federated Optimization

FedEM can be seen as a particular instance of a more general framework that we call federated

surrogate optimization.

This framework minimizes an objective function
∑T

t=1 ωtft (u, vt).
Each client t ∈ [T ] can compute a partial first order surrogate of ft.

Experiments

Dataset Local FedAvg FedProx FedAvg+ Clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8
EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6
CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1
CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0
Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0
Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

Table 1:Test accuracy: average across clients / bottom decile.

Figure 1:Effect of client sampling rate (left) and number of mixture components M (right) on test accuracy for CIFAR-

10.
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