Innía

The problem

- We consider M classification (or regression) tasks, one for each client
- Data $\mathcal{S}_m = \{(\mathbf{x}_m^{(i)}, y_m^{(i)})\}_{i=1}^{n_m}$ at client m is drawn from a local distribution \mathcal{D}_m over $\mathcal{X} \times \mathcal{Y}$
- Client $m \in [M]$ wants to learn hypothesis $h_m \in \mathcal{H}_m$ mapping input $\mathbf{x} \in \mathcal{X}$ to a probability distribution over the set \mathcal{Y} :

 $\underset{h_{m} \in \mathcal{H}}{\operatorname{minimize}} \mathcal{L}_{\mathcal{D}_{m}}(h_{m}) \triangleq \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{m}}\left[l\left(h_{m}\left(\mathbf{x}\right), y\right)\right]$

- FedAvg minimizes $\mathbb{E}_{(\mathbf{x},y)\sim\bar{\mathcal{D}}}[l(h(\mathbf{x}),y)]$, where $\bar{\mathcal{D}} = \sum_{m=1}^{M} \frac{n_m}{n} \cdot \mathcal{D}_t$ (asymptotically in the total number of samples)
- In many applications, e.g., language modeling, clients' local datasets differ both in size and distribution (*statistical heterogeneity*)
- Clients may differ in their storage and computational capabilities (system heterogeneity)

Our algorithm: kNN-Per

- . Clients train a global model h_S using a federated learning algorithm, e.g., FedAvg
- 2. Each client creates its local datastore for kNN inference (samples embedded through h_S)
- 3. The global model and the local kNN are interpolated:

$$_{m,\lambda_{m}}(\mathbf{x}) = \lambda_{m} \cdot h_{\mathcal{S}_{m}}^{(k)}(\mathbf{x}) + (1 - \lambda_{m}) \cdot h_{\mathcal{S}}(\mathbf{x})$$

Personalized Federated Learning through Local Memorization

Giovanni Neglia¹ Othmane Marfoq^{1, 2}

¹Inria, Université Côte d'Azur

Main assumption

Figure: Effect of the global model quality on the test accuracy of kNN-Per with λ tuned per client.

Generalization bound

Under proper assumptions, there exists $c \in \mathbb{R}$, such that

$$\mathbb{E}_{\mathcal{N} \otimes_{m=1}^{M} \mathcal{D}_{m}^{n_{m}}} \left[\mathcal{L}_{\mathcal{D}_{m}} \left(h_{m,\lambda_{m}} \right) \right] \leq \left(1 + \lambda_{m} \right) \mathcal{L}_{\mathcal{D}_{m}} \left(h_{m}^{*} \right) + c \left(1 - \lambda_{m} \right)$$

$$+\lambda_m \left(1 + \operatorname{disc}_{\mathcal{H}}\left(\bar{\mathcal{D}}, \mathcal{D}_m\right)\right) \cdot \mathcal{O}\left(\frac{\sqrt{p}}{\sqrt{p}}\right) + \lambda_m \cdot$$

where $d_{\mathcal{H}}$ is the the VC dimension of the hypothesis class $\mathcal{H}, \bar{\mathcal{D}} = \sum_{m=1}^{M} \frac{n_m}{n} \cdot \mathcal{D}_m$ and disc_{\mathcal{H}} is the label discrepancy associated to the hypothesis class \mathcal{H} .

Average performance and fairness of personalized model

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0 / 57.5	83.4 / 68.9	84.3 / 69.4	83.7 / 69.4	84.3 / 71.3	85.3 / 72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6/41.1	72.8 / 59.6	75.2/62.3	73.3/61.5	80.0 / 66.5	77.7/65.2	78.9/68.1	83.0 / 71.4
CIFAR-100	31.5 / 19.8	47.4/36.0	51.4/41.1	47.2 / 36.2	52.0/41.4	53.2 / 41.7	51.7/41.1	55.0 / 43.6
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4 / 45.4

Table: Test accuracy: average across clients / bottom decile.

Adding compression techniques

Figure: Test accuracy on CIFAR-10 dataset when the kNN mechanism is implemented through **ProtoNN** for different values of projection dimension and number of prototypes (expressed as a fraction of the local dataset).

Laetitia Kameni²

Richard Vidal²

²Accenture Labs

n) disc{\mathcal{H}} $\left(\bar{\mathcal{D}}, \mathcal{D}_{m}\right) + (1 - \lambda_{m}) \tilde{\mathcal{O}}\left(\sqrt{\frac{d_{\mathcal{H}}}{n}}\right)$ $\cdot \tilde{\mathcal{O}}\left(\sqrt{\frac{d_{\mathcal{H}}}{n}} \cdot \frac{\sqrt{p}}{\sqrt{p}}\right)$

Figure: Accuracy vs capacity (local datastore size). The capacity is normalized with respect to the initial size of the client's dataset partition. Smaller values of α correspond to more heterogeneous data distributions across clients.

Robustness to distribution shift

Figure: Test accuracy when a distribution shift happens at time step $t_0 = 50$ for different datastore management strategies.

- differential privacy techniques
- kNN's choice can be adapted to client's capabilities

Effect of local datastore size and data heterogeneity

Conclusions

• **kNN-Per** offers a simple and effective way to address statistical heterogeneity in FL • kNN-Per has a limited leakage of private information and can be easily combined with

• kNN-Per partially addresses system heterogeneity as data-store's size and approximate

• kNN-Per adapts to data distribution shifts over time by updating the local datastore