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Abstract. We study social cost losses in Facility Location games, where
n selfish agents install facilities over a network and connect to them, so
as to forward their local demand (expressed by a non-negative weight per
agent). Agents using the same facility share fairly its installation cost, but
every agent pays individually a (weighted) connection cost to the chosen
location. We study the Price of Stability (PoS) of pure Nash equilibria
and the Price of Anarchy of strong equilibria (SPoA), that generalize
pure equilibria by being resilient to coalitional deviations. For unweighted
agents on metric networks we prove upper and lower bounds on PoS,
while an O(ln n) upper bound implied by previous work is tight for non-
metric networks. We also prove a constant upper bound for the SPoA
of metric networks when strong equilibria exist. For the weighted game
on general networks we prove existence of e-approximate (e = 2.718 . . .)
strong equilibria and an upper bound of O(ln W ) on SPoA (W is the sum
of agents’ weights), which becomes tight Θ(ln n) for unweighted agents.

1 Introduction

We study Facility Location games played by n selfish agents residing on the
nodes of a network. Eash agent chooses strategically a certain network location
to connect and forward its local demand to (expressed by a non-negative weight
wi for agent i), so as to minimize its individual facility installation and (weighted)
connection costs to the chosen location. We use Shapley (fair) cost-sharing [1] for
facility installation costs; agents connecting to the same location v share facility
installation cost at v, so that each pays an amount proportional to the fraction
of total demand that it forwards to v. This game models Content Distribution
Network creation, and distributed selfish caching [2]. We study the social cost
(sum of individual agents’ costs) of stable network infrastructures, represented
by pure Nash equilibria and strong equilibria of the game. Strong equilibria -
introduced by Aumann in [3] - extend pure equilibria by being resilient to pure
coalitional deviations: no subset of agents can deviate so that all of its members
are better off. We prove bounds on the Price of Stability (PoS) of pure equilibria,
i.e. the cost of the cheapest equilibrium relative to the socially optimum cost [1],
and on the Price of Anarchy of strong equilibria (SPoA), the cost of the most
expensive strong equilibrium relative to the socially optimum cost [4].
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Anshelevich et al. [1] first studied the Price of Stability for network design
games with fair cost sharing. In these games n agents wish to connect node pairs
in a network, by sharing fairly installation costs of links and paying individu-
ally link delays. The authors showed that for unweighted agents these games
are potential games (see [5]), hence they have pure equilibria. They proved log-
arthmic (in n) upper bounds on the PoS. Research thereafter was focused on
games without non-shareable delays. For weighted agents it was shown in [6] that
pure equilibria do not always exist. The authors studied approximate equilibria.
Albers [7] recently considered strong equilibria: though they do not always exist,
she showed that O(ln W )-approximate equilibria do exist (W is the sum of the
agents’ weights). She proved polylogarithmic upper and lower bounds on the
PoS and the SPoA in the weighted and the unweighted case. However, strong
equilibria in the context of (single-sink) unweighted network design games with
fair cost sharing were first studied in [8]. The authors gave topological character-
izations for the existence of strong equilibria and proved that SPoA = Θ(log n).
The Facility Location game is a special case of the model studied in [1], that is
interesting on its own right: it finds numerous applications and exhibits intrigu-
ing characteristics. It emboddies non-shareable delays explicitly and in a sense
specializes single-sink network design considered in [6, 8]: augment the network
with a node t and set links (v, t) to have fairly shareable cost equal to the facility
opening cost at v. The original network links have a delay cost only. Then every
agent needs to choose at most two edges from the node it resides on, to t.

Results For unweighted agents on metric networks we prove constant upper
and lower bounds on the PoS, by analyzing the social cost increase caused by
an iterative best response procedure. Strong equilibria do not always exist, but
their SPoA is constant upper-bounded when they do. For weighted agents on
general networks we prove that α-approximate strong equilibria exist for α ≥ e =
2.718 . . . (no subset deviation causes factor α improvement to all of its members),
and that their SPoA is at most α(1+lnW ). This becomes Θ(lnn) for unweighted
agents on general networks. See [9] for additional results, omitted proofs and
technical details. Refer to [2, 10, 11] for related work on facility location game
models. [2] is similar to ours, but does not incorporate fair cost-sharing of facility
costs. [11] specializes the model of [1], but does not incorporate delays.

Definitions The network will be a complete graph G(V, E), having each edge
(u, v) associated to a non-negative cost d(u, v). We consider a set A of n agents;
agent i resides on ui ∈ V and has a non-negative demand weight wi. The strategy
space of agent i is V : i chooses a location v ∈ V to receive service from. Opening
a facility at node v ∈ V costs βv. Denote a strategy profile (configuration)
by s = (s1, . . . , sn), si ∈ V . We define Ws(v) =

∑

i:si=v wi. The cost ci(s)

experienced by agent i in s is ci(s) = wi

(

d(ui, si) +
βsi

Ws(si)

)

. Agent i pays a

fraction wi

Ws(si)
of the facility installation cost at si. We denote facility locations

specified in s by Fs ⊆ V . The social cost c(s) is:

c(s) =
∑

i

ci(s) =
∑

i

wid(ui, si) +
∑

i

wiβsi

Ws(si)
=

∑

i

wid(ui, si) +
∑

v∈Fs

βv



We use W (I) for the sum of weights of agents in the set I. cI(s) is the social cost
of agents in I, and cv(s) is the social cost of agents connected to v ∈ V under s.

The unweighted Facility Location game is a potential game [5] specializing the
network design games of [1], and therefore has pure Nash equilibria reachable by
iterative best response performed by the players. For unweighted agents the PoA
of pure equilibria can be n, while the PoS upper bound of H(n) (n-th harmonic
number) from [1] is tight for non-metric networks [9].

Definition 1. For α ≥ 1, a strategy profile s is an α-approximate strong equilib-
rium if no subset of agents can perform a pure deviation, and each of its members
be better off by a factor more than α. If α = 1, s is a strong equilibrium [3, 8].

2 Unweighted Agents on Metric Networks

We analyze evolution of an equilibrium through iterative best response executed
by the agents, when the initial configuration is the social optimum. The following
lemma charges any specific agent i a bounded amount of social cost increase
during the algorithm’s execution.

Lemma 1. Let As∗(v) be the subset of agents that are connected to v in s∗. For
any i ∈ As∗(v) that deviates from v during iterative best response let Ai

s∗(v) ⊆
As∗(v) be the subset of agents that have not yet deviated from v exactly before
the first deviation of i. Then we can charge i with a total increase contribution
to the social cost at most βv/|Ai

s∗(v)|, throughout the algorithm’s execution.

Proof. For simplicity let |Ai
s∗(v)| = ki(v). Clearly i ∈ Ai

s∗(v). Let us analyze
contribution of i to social cost increase during its first deviation. By deviating i
reduces its individual cost from ci(v) = xi(v)+ βv

ki(v) to ci(v
′) = xi(v

′)+ βv′

λi(v′) by

joining another facility node v′. xi(v) and xi(v
′) is the connection cost payed by i

before and after its first deviation. λi(v
′) is the number of agents sharing facility

cost at v′, including i. Since ci(v
′) < ci(v), we get xi(v

′)− xi(v) ≤ βv

ki(v) −
βv′

λi(v′) .

Let ∆sci(v) be the social cost difference caused by i. There are four cases:

1. ki(v) > 1, λi(v
′) > 1: Then ∆sci(v) = xi(v

′) − xi(v) ≤ βv

ki(v) −
βv′

λi(v′) .

2. ki(v) = 1, λi(v
′) > 1: Then ∆sci(v) = −βv + xi(v

′) − xi(v) ≤ − βv′

λi(v′) .

3. ki(v) > 1, λi(v
′) = 1: Then ∆sci(v) = βv′ + xi(v

′) − xi(v) ≤ βv

ki(v) .

4. ki(v) = 1, λi(v
′) = 1: Then ∆sci(v) = βv′ − βv + xi(v

′) − xi(v) ≤ 0.

Clearly the above hold in general for any agent deviating from any node v to
any node v′. Now we implement a charging procedure along with iterative best
response. Give all agents an initial label l(i) = i, before executing iterative best
response. The current label l(i) of i will denote the agent to which an increase
caused by i is charged. Initialize ∆scl(i) = 0. For every facility node v ∈ Fs∗ and
every i ∈ As∗(v) initialize λl(i) = λi to a distinct value from {1, 2, . . . , |As∗(v)|}.
Charging is implemented by relabeling deviating agents in the following manner.



For an agent i that deviates from node v to node v′ set kl(i)(v) to the number
of agents connected to v exactly before deviation of i. If kl(i)(v) = λl(i)(v) no
relabeling is needed. Otherwise there must be some j 6= i connected to v such
that λl(j)(v) = kl(i)(v). In this case exchange labels of i and j. Subsequently add
the increase caused by deviation of i to ∆scl(i)(v). Finally, set λl(i)(v

′) equal to
the number of agents connected to v′ right after i has joined v′.

By the previous definitions it follows that if kl(i)(v) 6= λl(i)(v), then it is
always kl(i)(v) > λl(i)(v), i.e. i has joined v before some agent j with λl(j)(v) =
kl(i)(v), but leaves v before i leaves. By exchanging labels of i,j we add the
increase caused by i to the agent that previously labeled j. Possible increases in
1.,2.,3.,4., imply that any agent is charged by the end of iterative best response
at most βv

|Ai
s∗

(v)|
for some i. Initializing λi(v) = ki(v) in s∗ charges exactly i. ⊓⊔

Note: In the following we assume an order of agents, so that agents of the same
facility in the initial configuration best-respond consecutively.

Theorem 1. The Price of Stability for the unweighted metric Facility Location
game is upper bounded by a constant, strictly less than 2.36.

Proof. Let ∆sci denote the increase contributed by agent i to the social optimum
c(s∗), during iterative best response initialized at s∗. Assume an order of agents,
such that agents i ∈ As∗(v) “best-respond” consecutively, for each v ∈ Fs∗ .
Define cv(s

∗) = βv+
∑

i:s∗

i
=v d(ui, v). Then c(s∗) =

∑

v∈Fs∗
cv(s

∗). We will upper

bound the PoS by maxv∈Fs∗

cv(s∗)+
∑

i:s∗
i
=v

∆sci

cv(s∗) . We focus on the first deviation

of i ∈ As∗(v), for any facility v ∈ Fs∗ . Let v′ be the node that i deviates to,
and δx∗

i = d(ui, v
′) − d(ui, v). We also use x∗

i = d(ui, v) for convenience. Let
λi be the number of agents serviced at v′ right after deviation of i. The new
cost of i right after its first deviation is: d(ui, v) + δx∗

i + βv′

λi
. For a second agent

j ∈ As∗(v) deviating from v to some node v′′ after i, we have:

d(uj , v) + δx∗
j +

βv′′

λj
≤ d(uj , v

′) +
βv′

λi
(1)

Substitute d(uj , v
′) in (1) by triangle inequality: d(uj , v

′) ≤ d(uj , v) + d(ui, v) +

d(ui, v
′). Also, by lemma 1 δx∗

i + βv′

λi
≤ βv

k∗

i

, where k∗
i = |Ai

s∗(v)| (Ai
s∗(v) is

defined as in lemma 1). Thus:

d(ui, v) ≥ 1

2

(

δx∗
j − δx∗

i +
βv′′

λj
− βv′

λi

)

≥ 1

2

(

δx∗
j +

βv′′

λj
− βv

k∗
i

)

(2)

The latter has to hold for every pair of distinct agents i, j ∈ As∗(v), hence:

d(ui, v) ≥ max
{

0,
1

2

(

max
j:s∗

j
=v

(

δx∗
j +

βv′′

λj

)

− βv

k∗
i

)}

(3)

We use (3) for the connection cost of agents in As∗(v) under s∗, and consider two
complementary cases: either some agents never deviate from v, or all of them do.



Let ns∗(v) = |As∗(v)|. We only analyze the first case here (the second is similar
- see [9]). If r agents never deviate from v, then trivially in (3) we set v′′ = v,
δx∗

j = 0, and λj = r, whereas k∗
i ≥ r + 1. The cost cv(s

∗) is:

cv(s
∗) ≥ βv +

βv

2

ns∗ (v)
∑

k=r+1

(1

r
− 1

k

)

= βv +
βv

2

(ns∗(v) − r

r
−H(ns∗(v))+H(r)

)

(4)

By lemma 1 it is
∑

i:s∗

i
=v ∆sci ≤ H(ns∗(v)) − H(r). Using equality in (4) for

cv(s
∗), and cv(s) = cv(s

∗)+
∑

i:s∗

i
=v ∆sci, we obtain the following ratio. Simplify

using γ + lnm ≤ H(m) ≤ 1 + lnm (γ > 0.5 is Euler’s constant):

PoS ≤
1 + 1

2

(

ns∗ (v)−r
r + H(ns∗(v)) − H(r)

)

1 + 1
2

(

ns∗ (v)−r
r − H(ns∗(v)) + H(r)

) ≤ 1.5 + ns∗(v)
r + ln ns∗ (v)

r

0.5 + ns∗(v)
r − ln ns∗ (v)

r

Let y = ns∗ (v)
r . The upper bound can be numerically maximized to < 2.36. ⊓⊔

Lower Bound Take 2n agents; n on a singe node v, the rest on a separate node
each (black nodes in Fig. 1(a)). Facility costs are 1. In the social optimum s∗,
n agents on v are serviced by v. The rest are equipartitioned to v∗l , l = 1 . . . k,
k =

√
n. We analyze a single facility v∗l , henceforth denoted by v∗ (same for the

rest). By abusing notation, cv∗(s) is the cost of v∗-agents at equilibrium. Then:

PoS = lim
n→∞

1 + kcv∗(s)

1 + kcv∗(s∗)
≥ lim

n→∞

cv∗(s)

(1/
√

n + cv∗(s∗))
(5)

In the least expensive equilibrium s, agents from each facility v∗ of s∗ miss-
connect to v in s. For some constant p ∈ (0, 1), only r = ⌈(1 − p)k⌉ of these
agents increase the social cost significantly, by increasing their connection cost.
Follow iterative best response of these r agents starting from s∗. Assume λ ≥ n
agents “play” v before r agents of v∗ deviate to v. Set the i-th deviating agent to
increase its connection cost x∗

i by δx∗
i = 1

k−i+1 − 1
λ+i − ǫ, i = 1 . . . r; it decreases

ci by ǫ. By (1),(2), and because all r agents deviate to v (hence βv′′

λj
− βv′

λi
= 0

in (2)), it is x∗
i = d(ui, v

∗) = max{0, 1
2 (max δx∗

j − δx∗
i )}, max δx∗

j = δx∗
r . For the

rest k − r agents set x∗
j = 0, d(uj , v) = 1

k−r+1 . Summing up as in (4) yields:

cv∗(s∗) = 1 +
1

2

[ r

k − r + 1
− ∆H(k, k − r)

]

− 1

2

r

n + r
+

1

2
∆H(λ + r, λ) (6)

where ∆H(n, m) = H(n)−H(m). Then
∑r

i=1 δx∗
i = ∆H(k, k−r)−∆H(λ+r, λ),

and we can set cv∗(s) = cv∗(s∗)− 1 + k−r
k−r+1 +

∑r
i=1 δx∗

i in (5). Simplify ∆H by
logarithmic bounds and substitute r = ⌈(1 − p)k⌉ appropriately. Then limits of
numerator and denominator in (5) exist (see [9] for details); the resulting simpli-
fied fraction can be maximized numerically to > 1.45 for p ≃ 0.18. Experimental
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Fig. 1: Lower bounds: (a) unweighted metric PoS, (b) unweighted non-metric SPoA.

evidence showed that PoS > 1.77. It is easy to verify that any configuration
other than s∗ and s is more expensive [9].

Strong equilibria do not always exist, even for unweighted agents on metric
networks. We prove the following (see [9] for the proof, and for existence of
2.36-approximate strong equilibria with constant strong Price of Anarchy):

Theorem 2. When strong equilibria exist in the unweighted metric Facility Lo-
cation game, their Price of Anarchy is at most a constant.

3 Approximate Strong Equilibria for Weighted Agents

The existence of pure equilibria for weighted agents is an open issue. We reduce
the logarithmic approximation factor known for general network design [7, 6] to
a constant. Our result is more general, as it concerns strong equilibria. We make
use of the following remark.

Remark 1. If an instance of the Facility Location game does not have strong
equilibria, then there is at least one cycle of deviations of particular coalitions
that results in a circular sequence of configurations {sj}k

j=1 with s1 = sk.

Given such a sequence {sj}k
j=1, we denote the coalition that deviates from

sj to form sj+1 by Ij . Such a deviation causes a cost decrease of agents in Ij

and possibly a cost increase of agents in A \ Ij . Recall that A is the set of all
agents. We define two quantities, the weighted improvement impr(Ij) for agents
in Ij and the weighted damage dam(Ij) caused by agents in Ij respectively:

impr(Ij) =
∏

i∈Ij

(

ci(s
j)

ci(sj+1)

)wi

dam(Ij) =
∏

i∈A\Ij

(

ci(s
j+1)

ci(sj)

)wi

We derive an approximation factor that eliminates cycles.



Lemma 2. Let {sj}k
j=1 with s1 = sk be a cycle of configurations in a Facility

Location game instance, caused by consecutive deviations of coalitions. The game
instance has an α-approximate strong equilibrium if for all such sequences α ≥
dammax({sj}k

j=1), where dammax({sj}k
j=1) = max

j=1...k−1
dam(Ij)

1/W (Ij).

Proof. If there is no α-approximate strong equilibrium we know that there is at

least one cycle {sj}k
j=1 such that ∀j ∈ {1, . . . , k − 1}∀i ∈ Ij : ci(s

j)
ci(sj+1) > α.

Because s1 = sk we have that
∏k−1

j=1
ci(s

j)
ci(sj+1) = 1 for every agent i. Then:

1 =

n
∏

i=1





k−1
∏

j=1

ci(s
j)

ci(sj+1)





wi

=

k−1
∏

j=1

impr(Ij)

dam(Ij)
>

k−1
∏

j=1

αW (Ij )

(

dam(Ij)1/W (Ij)
)W (Ij)

It follows that dammax({sj}k
j=1) > α. The lemma follows by contradiction. ⊓⊔

We derive an approximation factor as an upper bound of dammax({sj}k
j=1) for

any cycle.

Theorem 3. For every α ≥ e there exist α-approximate strong equilibria in the
Facility Location game.

Proof. We prove that dammax({sj}k
j=1) < e for every cycle {sj}k

j=1 of configura-
tions and the result follows from Lemma 2. Let Ij(v) be the set of agents going
to v in sj , but not in sj+1, and Aj(v) be the set of agents going to v in both sj

and sj+1. Note that Ij =
⋃

v∈V Ij(v), therefore:

dammax({sj}k
j=1) = max

j









∏

v∈V





∏

i∈Aj(v)

(

ci(s
j+1)

ci(sj)

)wi





W (Ij(v))

W (Ij(v))









1
W (Ij )

⇒

dammax({sj}k
j=1) ≤ max

j,v





∏

i∈Aj(v)

(

ci(s
j+1)

ci(sj)

)wi





1
W (Ij (v))

Hence, we need only consider what happens at the worst case node. For an agent
i in Aj(v) we get that:

ci(s
j+1)

ci(sj)
=

wi

(

d(ui, v) + βv

W
sj+1 (v)

)

wi

(

d(ui, v) + βv

W (Ij(v))+W (Aj(v))

) ≤ 1 +
W (Ij(v))

W (Aj(v))

It follows that:

dammax({sj}k
j=1) ≤ max

j,v

(

1 +
W (Ij(v))

W (Aj(v))

)

W (Aj (v))

W (Ij(v))

< lim
r→∞

(

1 +
1

r

)r

= e

⊓⊔



Corollary 1. The Facility Location game with non-uniform agent demands has
α-approximate pure strategy Nash equilibria for every α ≥ e.

For the SPoA of α-approximate strong equilibria we show [9]:

Theorem 4. The Price of Anarchy of α-approximate strong equilibria, for the
Facility Location game is upper bounded tightly by αH(n) for unweighted and by
α(1 + lnW ) for weighted agents, where W is the sum of weights.

Fig. 1(b) shows a tight (non-metric) example for wi = 1. Facility opening costs
are 1 and agents reside on vopt. A single facility at veq is the most expensive
α-approximate strong equilibrium, of cost αH(n): no coalition has incentive to
deviate to vopt, the sole optimum facility location of social cost 1, for ǫ = n−2 → 0

Open Problems Existence of pure equilibria for the weighted game merits
further investigation. Extending our (unweighted) metric analysis of the PoS for
weights (or proving a non-constant lower bound) appears to be quite challenging.
This seems to apply for the lower bounding of the weighted SPoA on general
networks as well. Lower bounding techniques of [7] do not seem applicable.
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