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Abstract
This paper briefly describes three well-established frameworks for handling uncertainty

in optimization problems. Our focus is mainly on combinatorial optimization and on the
development of approximation algorithms under the discussed frameworks. In particular,
we give a brief overview of Stochastic Programming, Robust Optimization, and Probabilistic
Combinatorial Optimization, and list approximation results from the wealth of recent
literature on combinatorial problems under these disciplines.

1 Introduction

Acquisition and validation of input data is one of the most challenging issues in almost every
real-world application of operations research techniques. Although several well established
theoretical models exist for problems arising in practical applications, direct application of
theoretical developments may be difficult or even impossible due to incompleteness of data
or due to their questionable validity. Occasionally one may be asked to produce an optimal
operational design even before a complete deterministic picture of input data is provided,
but only based on estimations and statistical measures. There are several applications where
it might be impossible to obtain a current snapshot of the required information, since this
information may be subject to constant high-rate change.

Such a situation may arise when one has to deal with market prices and values of needed
products. Consider for example the case where we have to purchase certain components in
order to build an infrastructure so as to service a community of customers. We may not be
able to decide the exact set of customers, because customers wait to see that an infrastructure
exists, and subsequently decide whether they are interested in the offered service or not. When
service is requested by a set of customers, we will have to extend the existing infrastructure,
so as to suit their needs. There are two deficiencies that have to be dealt with in such a
situation:

• Optimization under Uncertainty: the pre-built infrastructure must be optimized
subject to estimations on the customers’ needs.

∗I owe a great part of my understanding of the subject to collaboration and long discussions with Gerasimos
G. Pollatos and Vangelis Th. Paschos, and Vassilis Zissimopoulos. I retain full responsibility of any errors
found in this manuscript.
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• Market Trends: Components needed for extending the infrastructure when the exact
set of customers is known may become more expensive in presence of such complete
information.

Different optimization frameworks have been proposed by the operations research com-
munity for handling these deficiencies. These frameworks constitute a means of structuring
uncertainty and taking its existence into account during the optimization process. In this
short survey we discuss three well-established approaches and give a short survey of the exist-
ing bibliography related to applications on combinatorial optimization problems. Our focus
is mostly on the computational perspective as pertains to computational hardness results and
approximation algorithms.

In the following sections we give an (incomplete) overview of three frameworks for handling
uncertainty in combinatorial optimization, namely Stochastic Programming, Robust Discrete
Optimization, and Probabilistic Optimization. Note that robustness of the designed solution
from both feasibility and cost perspectives in the presence of uncertainty is the main purpose
of devising these frameworks during an operational design process.

For exposition purposes, we will assume a general covering discrete optimization problem:
a universe of requirements U and a family F ⊆ 2U of subsets of U are given, each A ∈ F
having an associated cost c(A). We have to select a minimum total cost subset S ⊆ F which
covers the requirements, i.e.

⋃
A∈S = U . Given this general problem model we discuss next

various structures of uncertainty as modeled under the aforementioned frameworks.

2 Stochastic Programming

Stochastic Programming was introduced in the seminal work of G. W. Dantzig [Dan51], and
since then it has grown into an important discipline of operations research, that integrates
tools from linear programming, stochastic processes, statistics, and probability. For a detailed
introduction into the subject, the reader is referred to [BL97]. For latest news, bibliography,
and software related to Stochastic Programming the reader is referred to [sto].

Stochastic Programming aims at structuring uncertainty through usage of probability and
statistics. That is, although input data may not be present initially during the design process,
it is assumed that we can have a statistical estimation of it, or a probability distribution over
the possible input. In this short note we discuss two of the most widely used models of
Stochastic Programming, namely the 2-stage model with recourse and the multi-stage model.
These two models can be applied in a variety of settings, from which we present the explicit
scenarios, the black box, and the independent decisions settings. Descriptions of the 2-stage
and multi-stage models are given under the explicit scenarios setting, and the other two
settings are discussed next.

2.1 2-Stage and Multi-stage Models

In the 2-stage with recourse model the design process extends into two stages. Uncertainty
is present in the first stage, while the actual input data materialize in the second stage.
However, we are required to build an initial infrastructure (as discussed in the introduction)
in a first stage, and extend this infrastructure appropriately in the second stage. Let us give
two illustrative examples using the prototype problem used previously.
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The first case we consider is unstable market trends. Although we have an initial first-
stage estimation of c0(A) for every A ∈ F we do not know for certain how these prices evolve
in a second stage. This is often parallelized in the stochastic programming literature with
known prices of today and uncertain prices of tomorrow. However, we are able to know, say
by statistical measures of previous experience, that the prices of tomorrow evolve into one
of k explicitly given scenarios with some probability pr, r = 1 . . . k. This means that each
A ∈ F will cost cr(A) in second stage with probability pr, r = 1 . . . k. Now we wish to build
an initial infrastructure which can be extended in second stage in such a way so that the
expected cost over both stages is minimized.

This situation can be modeled by an integer linear program as follows. Let xr(A) ∈ {0, 1},
A ∈ F , r = 0 . . . k be decision variables that state whether component A ∈ F is purchased
in first stage or in some second-stage materialized scenario (as part of first-stage extension).
Then we have to solve the following ILP:

minZ =
∑
A∈F

c0(A)x0(A) +
k∑

r=1

pr

∑
A∈F

cr(A)xr(A)

so that:
∑

A∈F :u∈A

(x0(A) + xr(A)) ≥ 1 ∀u ∈ U , r = 1 . . . k

The single type of constraints of this ILP states that each requirement u ∈ U is covered by
some component purchased either in the first or in the second stage.

Now let us proceed with a different example. Consider the case where we know in first
stage that our requirements will be from a universe U but we are uncertain of the exact
requirements. We are also aware of the today’s costs c0(A) for every A ∈ F . For the second
stage we know that our requirements will form as a subset Ur ⊆ U out of k possible such
subsets with probability pr, r = 1 . . . k, but by the time we know the exact subset Ur the
prices of the components in F will have inflated by a factor σr ≥ 1, r = 1 . . . k (because when
a requirements set materializes, the whole market will try to make the best out of it). This
situation can be formed by the following ILP:

minZ =
∑
A∈F

c0(A)x0(A) +
k∑

r=1

prσr

∑
A∈F

c0(A)xr(A)

so that:
∑

A∈F :u∈Ur

(x0(A) + xr(A)) ≥ 1 ∀u ∈ Ur, r = 1 . . . k

In this ILP there is a single type of constraints per realized subset of requirements, stating
that each requirement from each such subset must be covered either in first stage or in second
stage for the corresponding subset Ur.

The two presented cases differ in the following sense. While the first encodes robustness
from an expected cost view the second one also encodes feasibility aspects (since the exact
subset of requirements is not known in advance, there is a set of constraints for each different
scenario of requirements). In the recent literature there has been a soft distinction of these
two cases, stating that the first encodes data stochasticity, while the second encodes demand
stochasticity. We will also see this distinction in the rest of our discussion.
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The multi-stage model is the natural extension of the 2-stage model. In this model each
stage is associated with a set of scenarios of input data and a probability distribution defined
over this set. Note that if each stage is associated with a set of k scenarios and there are l
stages, then there can be kl possible courses of realizations over the sequence of stages. The
objective function that must be optimized is a complicated expectation defined over a tree
structure of input data. Dynamic programming techniques are naturally employed over such
a structure but with limited success, since the size of the instance can grow exponentially
large (see [BL97] for an exposition of such techniques).

2.2 Black Box and Independent Decisions Settings

In the Black Box setting neither the scenarios nor their distribution of occurence are given
explicitly. The distribution is unknown, but it is assumed that we can sample it. That
is we can query for a scenario, and the probability that a specific scenario is returned is its
occurence probability. Furthermore, in the case of demand-stochasticity, the sampled scenario
is accompanied by a corresponding inflation factor of second-stage costs. This model, apart
from being more general than the explicit scenarios model in that it eliminates the need for
an explicitly given distribution, it also encodes the possibility of exponentially or infinitely
many scenarios.

The Independent Decisions setting describes demand-stochasticity in the following man-
ner. In our prototypical covering problem each requirement in the universe U is associated
with a probability of occurence independently of all other members of U . The set of second-
stage realized requirements is given by a coin-flip for each requirement in U . This model
encodes exponentially many scenarios (in fact all subsets of U). A single inflation factor is
associated with all possible subsets of requirements to be materialized in second stage, and
the probabilities associated with elements of U are explicitly given.

2.3 Recent Approximation Results

Recent years have seen an important development of approximation results for stochastic
programming, particularly regarding network design problems. The most important results
concern generalized techniques for deriving approximation algorithms for Stochastic Program-
ming problems, even for the more general black box and independent decisions settings. For
these more general settings and for network design problems in particular, an interesting
technique has developed which we discuss in a separate paragraph.

A recent work of Shmoys and Swamy [SS04] presents an algorithmic scheme for deriving
approximation algorithms for the 2-stage demand-stochastic black box version of general
covering integer programs. Their main result is a general 2ρ + ε approximation algorithm
for every ε > 0, given a ρ-approximation algorithm for the deterministic problem. Their
technique involves using an FPRAS for solving linear programs. Applications of this result
are exhibited in [SS04] on stochastic versions of the set cover, vertex cover, facility location,
multicut (on trees) and multicommodity flow problems. In [SS05b] the authors consider the
multistage stochastic versions of integer covering programs under a bounded number of stages
and scenarios revealed by black box setting. Their technique consists of using an FPRAS for
solving a linear program along with the Sampled Average method. See [SS05a] for a survey
of their results.

Among the first works concerning development of specialized approximation algorithms for
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several problems in a stochastic programming setting is the one of Immorlica et al. [IKMM04].
The authors consider 2-stage stochastic versions of the min-cost flow, bin packing, vertex
cover, and Steiner tree problems. They show that stochastic min-cost flow can be solved
exactly by means of linear programming. Stochastic bin-packing is shown to be solvable at a
value arbitrarily close to the optimal through a PTAS. The stochastic element in its definition
was the elements that need to be packed. Stochastic 2-stage vertex cover is considered in the
explicit scenarios and independent decisions settings, with edges of the underlying graph being
the stochastic elements of the problem’s definition. A 4- and a 6.3-approximation algorithm
is designed for each case respectively. Finally for the stochastic steiner tree problem, in the
explicit scenarios model an O(log n) approximation algorithm is given. We note that in the
stochastic steiner tree problem we are given a root vertex, and each second-stage scenario
consists of a subset of vertices requiring connection to the root. Therefore we speak of a
rooted stochastic steiner tree problem.

In another work by Ravi et al. [RS04], 2-stage stochastic versions of the shortest path, bin
packing, facility location, vertex cover, and set cover problems are considered. Two versions
of the shortest path problem were considered, one involving stochastic sink (with second-
stage inflation of edge costs) and one involving stochastic sink and edge costs. The first case
was shown to be O(1)-approximable while an O(log2 n log m) approximation was given for
the second case. The bin-packing problem considered here differed from the one considered
in [IKMM04] in that the stochastic element was the sizes of objects to be packed. An APTAS
was given for this case. The stochastic version of facility location involved stochastic client set
and second-stage facility costs. An 8-approximation LP-rounding algorithm was given. For
vertex cover it was shown that an extension of the well-known primal-dual algorithm yields
a 2 approximation factor, for the explicit scenarios model. Finally for the explicit scenarios
stochastic set cover with each scenario consisting of a subset of ground elements requiring
coverage and stochastic second-stage subset costs, a simple extension of the well-known greedy
algorithm for set cover yields an O(log n log k) approximation (for k scenarios).

In [GRS04] the rooted stochastic steiner tree problem is considered in the 2-stage model
under an explicit scenarios setting, with stochastic terminals set. An LP-rounding algorithm
based on the LP-relaxation of the flow formulation for steiner tree yields a 40 approxima-
tion factor. The same work also exhibits approximation results through LP-rounding for
generic stochastic network design problems in the 2-stage explicit scenarios model. For an
LP-rounding algorithm with logarithmic approximation factor regarding the 2-stage stochas-
tic minimum spanning tree problem with stochastic edge costs see [DRS05]. In the same
paper it is also shown that the logarithmic ratio is the best possible for stochastic minimum
spanning tree.

2.4 Cost Sharing and Boosted Sampling for Stochastic Network Design

Usage of the notion of cost-shares from coalitional game theory has recently yielded a success-
ful technique for development of approximation algorithms for the multi-commodity Rent-
or-Buy network design problem [GKR03]. This technique was later combined with sam-
pling [GPRS04], thus resulting in the generic Boosted Sampling framework for approximating
stochastic network design problems. The idea of using cost-shares can be briefly summa-
rized in proving the existence of efficient (see [GPRS04] for a definition of efficiency) sharing
of the cost of the produced solution among constraints involved in the problem’s definition
(informally, among clients requiring connection over the network).

5



The achievements of [GPRS04] include a 3.55 approximation for the rooted 2-stage stochas-
tic steiner tree, a 8.45 approximation for stochastic 2-stage facility location, and an 8 approx-
imation for 2-stage stochastic vertex cover, all of them in the black box model. Furthermore,
in the independent decisions model an 8 approximation is shown for the stochastic steiner
forest (where independent decisions concern pairs of vertices requiring connection), 6 approx-
imation for the stochastic facility location, and a 3 approximation for the stochastic vertex
cover problems.

The boosted sampling framework was later taken further by an extension for multi-stage
stochastic network design [GPRS05]. Results of this work include steiner tree, facility location,
and vertex cover. For k stages the approximation factors achieved are respectively 2k, 3(2k−
1), and 2

3(4k − 1). In this paper a new condition describing the efficiency of cost-shares
is introduced, regarding manipulation of multiple stages. Another work based on boosted
sampling is due to Gupta and Pál [GP05], regarding a 12.6 approximation algorithm for the
unrooted 2-stage stochastic steiner tree problem. Further developments on cost-sharing are
introduced in this paper, so that the need for a given root could be overcome.

It should be noted that, the cost-sharing technique provided a very deep understanding
of the sensitivity of the primal-dual algorithm introduced in [AKR95] for the general steiner
forest problem. A recent work by Becchetti et al. [BKLP05] provides more simple and efficient
cost-shares with respect to this algorithm, thus yielding improved approximation for the multi-
commodity rent-or-buy problem, and in effect for the stochastic steiner forest problem in the
independent decisions model.

3 Robust Discrete Optimization

Although as mentioned previously all uncertainty-handling frameworks are targeted to pro-
duction of robust solutions with respect to optimality and feasibility, a relatively more recent
framework called robust optimization has been proposed as an alternative to Stochastic Pro-
gramming in the sense that it avoids certain shortcomings of the latter. These shortcomings
are discussed in [KY97] in detail and we summarize them here in the following two points:

1. Stochastic Programming requires some statistic knowledge (in terms of distribution
estimations) of the input data, which in many cases may be as difficult to acquire
as obtaining the actual input data itself. In any case however, acquisition of statistical
estimates may be a very time-consuming and error-prone process in lack of an adequately
large sample space.

2. Optimization of expectations is a practice of questionable validity in processes involving
only a small number of “trials” of the same design operation, because the benefits of
an optimum expected value can only be visible in the long term of a large number
of trials, especially if a large variance value is involved. Under this light, and given
that several operational research activities are commonly judged by their outcomes, a
large deviation from the expected value may be disappointing. Therefore other more
conservative objectives should be devised.

Starting from these remarks, the authors of [KY97] propose three different optimization
criterions, namely minmax, minmax-regret, and minmax relative regret, while also eliminating
the need for knowledge of distributions or statistical estimates. We illustrate these criterions
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using explicit scenarios in a one stage model of our prototypical covering problem. Suppose
that we know that costs of components from F can realize under one of k scenarios, thus the
actual cost of each A ∈ F may be one of cr(A), r = 1 . . . k.

Under the minmax rule we wish to optimize the following ILP:

minZ = max
r=1...k

( ∑
A∈F

cr(A)x(A)
)

so that:
∑

A∈F :u∈A

x(A) ≥ 1, ∀u ∈ U , r = 1 . . . k

Note that the max aggregator can be easily removed from the objective function by using a
standard linear transformation adding k linear constraints to the ILP. The set of constraints
simply states that each requirement in U must be covered regardless of cost scenarios. Al-
though we have considered a single stage of decision in this formulation (following closely the
formulations presented in [KY97]), the stated ILP can be easily extended to the 2-stage case,
where the first stage cost of A ∈ F is c0(A), while the second-stage cost takes one out of k
possible values (scenarios) cr(A), r = 1 . . . k:

minZ =
∑
A∈F

c0(A)x0(A) + max
r=1...k

( ∑
A∈F

cr(A)xr(A)
)

so that:
∑

A∈F :u∈A

(x0(A) + xr(A)) ≥ 1, ∀u ∈ U , r = 1 . . . k

Keeping the first formulation in mind, the minmax regret criterion would dictate optimization
of the following (in the one-stage model considered previously):

minZ = max
r=1...k

( ∑
A∈F

cr(A)x(A)− Z?
r

)
where Z?

r in this expression denotes the optimum value for the r-th scenario, r = 1 . . . k. This
criterion minimizes the maximum deviation from the optimum solution over all scenarios.
Accordingly, the relative minmax regret objective function is a natural extension of the min-
regret criterion:

minZ = max
r=1...k

(∑
A∈F cr(A)x(A)− Z?

r

Z?
r

)
All three optimization rules have been exhibited on our prototypical covering problem un-
der data uncertainty (that is, unknown costs of components available in F). Extensions to
2-stage or multistage models are quite straightforward. The presented models encode the
notion of data robustness. Only recently was the concept of demand robustness discussed and
employed [DGRS05], in the context of some network design problems. Demand robustness
is the counterpart of demand stochasticity in Stochastic Programming, differing only in the
optimization rule and in absence of distribution usage. The corresponding 2-stage covering
problem with stochastic demands is modeled under the demand robustness framework as
follows (using the minmax rule):

minZ =
∑
A∈F

c0(A)x0(A) + max
r=1...k

(
σr

∑
A∈F

c0(A)xr(A)
)

so that:
∑

A∈F :u∈A

(x0(A) + xr(A)) ≥ 1, ∀u ∈ Ur, r = 1 . . . k
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3.1 Recent Approximation Results

The literature on approximation algorithms for robust discrete optimization problems is rather
scarce. Some hardness results along with some approximation and exact pseudo-polynomial
time algorithms can be found in [KY97]. It is worth noting that several well known polynomial
time solvable problems become NP-hard in their data-robust version. Results regarding data-
robust versions of assignment, shortest path, minimum spanning tree, resource allocation,
scheduling, and knapsack problems are developed in [KY97]. Some polynomial-time solvable
cases are also discussed.

In a recent work by Aissi et al. [ABV05] the data-robust versions of shortest path, mini-
mum spanning tree, and knapsack problems are revisited under the cases of bounded number
of scenarios (by a constant) and unbounded number of scenarios. The authors examine both
cases of these problems under minmax and minmax regret robust optimization objectives and
give hardness and approximation results. In particular they show that all problems accept an
FPTAS in the case of bounded number of scenarios under the minmax rule. The knapsack
problem is inapproximable in all other cases, while the shortest path and minimum spanning
tree problems bare an FPTAS for bounded scenarios under the minmax regret rule also. It is
shown that these two problems are not approximable below 2 in all other cases. NP-hardness
results of [KY97] for these problems are strengthened in [ABV05].

Demand-robust versions of network design problems are considered for the first time
in [DGRS05]. The demand-robust versions of min-cut, min-multi-cut, steiner tree, vertex
cover, and facility location problems with explicitly given scenarios. The techniques used
in this work are based on LP-rounding, and yield approximation factors O(log k) for robust
min-cut (where k is the number of scenarios) and an exact algorithm on a tree, O(log(lm))
approximation for robust multi-cut (where we are requested to separate l vertex pairs), 30
for robust steiner tree, 4 for robust vertex cover, and 5 for robust facility location.

Let us note that the demand-robust steiner tree problem studied in [DGRS05] generalizes
the demand-robust shortest path problem. In both problems we are given a vertex (which
is the source for shortest path and the root for steiner tree), and a set of scenarios (each
scenario corresponds to a sink for shortest path, and to a set of clients to be connected to the
root for steiner tree). Hence the 30 approximation factor achieved for the robust steiner tree
also applies for the robust shortest path. A major result shown in [DGRS05] constitutes of
a lemma regarding the structure of 2-stage demand-robust problems, which gives a generic
lower bound useful in the development of approximation algorithms.

In a subsequent work [GGR06] combinatorial approximation algorithms were developed
for 2-stage demand-robust min-cut, shortest paths, and hitting set versions of these problems.
In particular a (1+

√
2) approximation factor is achieved for robust min-cut and a 7.1 approx-

imation combinatorial algorithm is designed for demand robust shortest paths. We should
note that the authors of [GGR06] make use of the structural lemma derived in [DGRS05] and
also exhibit the effect of another technique which provokes a separate treatment of the first
and second stages in the design of approximation algorithms for these problems.

4 Probabilistic Combinatorial Optimization

The framework of Probabilistic Combinatorial Optimization (PCOP) has developed indepen-
dently of the other two frameworks, although it shares some intuitive characteristics in com-
mon with them. Employment of probability distributions specifying the validity of input
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data is one aspect common to both PCOP and Stochastic Programming. A loose definition
of PCOP problems appears in [Ber88], and specifies that these problems are generalized forms
of known combinatorial optimization problems including probabilistic elements in the defini-
tion of input. The literature regarding the PCOP framework has been relatively scarce, as
opposed to the wealth of works in Stochastic Programming, which has formed a separate dis-
cipline of operations research. Revived interest in PCOP and some important contributions
are due to [Jai85] and [Ber88].

The PCOP framework as presented in [Ber88] appears to be a 2-stage framework also. In
particular one is confronted with a data set in a first stage, which has associated probability
distributions of validity. In a second stage the actual data set realizes. However, optimization
must be performed given the first-stage data set. Once the actual second-stage input realizes,
correctional actions must be taken so that the first-stage solution is adapted to the realized
data. Thus PCOP also includes some semi-online characteristics. The definition of the
optimization rule is however the most intriguing part of the framework, which distinguishes
it from the two previously discussed approaches.

Given a set of first-stage probabilistically valid input data we are required to optimize a
priori over this data so as to be able to efficiently modify this solution as needed to fit the
actually realized second-stage data. This solution has often been called an a priori solution
to the problem. Let D denote the first-stage probabilistically valid data set, and S(D) denote
the a priori solution on D. The PCOP problem is also defined with respect to a modification
strategy M which is going to modify the a priori solution so that it fits the second-stage
realized data. Let M(S(D), D) be the value of the solution output by M for an a priori
solution S(D) and a materialized valid data set D ⊆ D. The a priori optimization rule
requires that we obtain an a priori solution S(D) over D such that the expected outcome of
the modification strategy is minimized:

minZ = E[D, S(D),M] =
∑

D⊆D
Pr[D]M(S(D), D) (1)

A couple of points should be emphasized under this setting:

• The optimization rule (objective function) of a PCOP problem is defined with respect to
the chosen modification strategy M. A different modification strategy entails a different
PCOP problem.

• Although the design process of solving a PCOP problem is a kind of 2-stage procedure,
the robustness criterion of an optimum expectation pertains only to the second stage
outcome.

• Optimizing expression 1 essentially requires probabilistic analysis of the modification
strategy M over a distribution of input data.

We illustrate the framework using out prototypical covering problem. Assume that not all
components A ∈ F are going to be actually valid. However we have a probabilistic estimation
p(A) of the validity of each A ∈ F . Furthermore, once an a priori solution is constructed,
suppose that a modification strategy M is going to modify it so that it fits the second stage
data. A possible such strategy would be for example to include a component A ∈ F ′ (F ′

being the subset of valid components) which covers each uncovered requirement of U after
invalidation of some of our a priori choices. In order to assure that the problem is feasible
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we include in F for each u ∈ U a singleton component A(u) covering only u and set this
compoent’s probability of validity to p(A(u)) = 1.

There are two major computational challenges associated with a PCOP problem:

• Obtain a polynomial time computable expression for the objective function.

• Optimize the objective function.

It is clear by the general expression given above, that polynomial time evaluation of the
objective function given a modification strategy M and an a priori solution S(D) is not
straightforward. The stated expression is a sum over all possible subsets of the probabilistic
data set, hence some effort is needed to show that this expression can be evaluated efficiently.
Alternatively one may be tempted to prove that it is impossible to compute it unless all cases
of the sum are enumerated, in which case the problem is #P -complete.

Optimizing the objective function of a PCOP problem amounts to computing an appro-
priate a priori solution S, which results (after probabilistic analysis) in a minimum value of
the expectation in (1). From the perspective of approximation however, we need to have
an “optimum” value against which we can compare the obtained expectation value. Given
any subset of realized data D ⊆ D it is obvious that no modification strategy and a priori
solution combination can achieve a value less than the optimum value corresponding to D,
denoted with OPT (D). Hence the expectation of optima over all possible subsets is a natural
optimum against which we can compare the value of (1):

E?[D] =
∑

D⊆D
P (D)OPT (D)

This is often referred to as the re-optimization value, since it is achievable by a modification
strategy which ignores the a priori solution and re-optimizes for the particular subset of data
realized in second stage.

4.1 Results on Probabilistic Problems

Several well known combinatorial optimization problems have been treated under the PCOP
framework. Regarding network design problems the PCOP framework is applied over an
input graph each vertex of which is associated with a probability of survival. An alterna-
tive formulation concerns assignment of probabilities to the edges of the graph. The longest
path problem (which is known to be NP-hard in the deterministic setting) has been treated
in [MP99] under both settings. The authors propose a modification strategy for both cases
and show that evaluation of the corresponding functionals can be done in polynomial time.
They also present an exact algorithm finding the optimum solution for the case of metric
graphs. In [MP02] the probabilistic version of the maximum independent set problem is
considered under the a multitude of proposed modification strategies. Polynomial time com-
putable expressions are derived for the corresponding functionals and approximation results
are presented on bipartite graphs. Probabilistic versions of the minimum coloring problem
are treated in [MP03, CEMP05, MP06] where approximation results are derived for general,
bipartite, and split graphs.

Less recent results on PCOP problems include the minimum spanning tree problem [Ber88,
Ber90] and the travelling salesman facility location problem [Ber89]. For introductory material
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on PCOP the reader is referred to [Ber88, BJO90]. Noticeably no general approximation
technique has emerged under the PCOP framework, in contrast to the case of stochastic
programming. This is mainly due to the fact that PCOP concerns probabilistic analysis of a
modification strategy over a distribution of input data, given an a priori solution. Therefore
analysis is always heavily dependent on the characteristics of the modification strategy used,
as much as on the structure of the underlying deterministic problem studied under the PCOP
framework.
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