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Abstract. On a complete weighted graph that changes dynamically bg edg
weight updates, we consider the problem of maintainingieffity a minimum
value b, such that the set of edges with weights less thamduces a2-vertex
connected graph (in the undirected case) and a stronglyecteuh graph (in the
directed case) on the same vertex set. These problems fitidegjgm in mini-
mizing power consumption of wireless networks. We desigyrechic algorithm

of O(na(n) log n) complexity per edge weight update for the first problem, and
a dynamic algorithm for the second one, whose experimentlsis shows its
appropriateness for use in practice.
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1 Introduction

We consider the following two problems on a complete weidlyeaphk’,: determine
the minimum weight valué (referred to as thbottleneckvalue) such that there is a set
of edges{e € K,,|w(e) < b} (abottleneck subgraphnducing:

— a2-vertex connectediconnectefispanning subgraph on the initial set of vertices,
when the input graph is undirected,

— astrongly connected spanning subgraph on the initial setrtites, when the input
graph is directed.

These problems find direct application in minimizing enecgnsumption of wireless
adhoc networks [1, 2] and are solvable in polynomial time @}l known greedy algo-
rithms. In this work we consider their dynamic versions, véhwe have to re-evaluate
the bottleneck valué efficiently after an edge weight has been updated. Our tésget
to develop algorithms that re-evaluate less time than the time required to solve the
problem from scratch.

Our work falls in the field of dynamic graph algorithms. A dymia graph algorithm
maintains a graph property when the underlying graph chebgedge insertions and
deletions (or equivalently edge weight decreases anddses}. Dynamic maintenance
of graph connectivity properties has been extensivel\t@éti (see e.g. [3]). Dynamic
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network optimization problems include minimum cost spagrtree (MST) [4], short-
est paths tree [5], and all-pairs shortest paths. Dynaraitsttive closure (which is
related to strong connectivity) on digraphs has recenty ggogress [6].

We design dynamic algorithms for the biconnectivity (see®) and strong connec-
tivity (section 3) bottleneck. In section 4 we present soxgeeimental results for our
algorithms and conclude. Throughout the paper graphs pregented with their edge
set and set operations over graphs are with respect to tihgdr gets, unless otherwise
stated. Subgraphs are also edge-induced unless othetatisg.s

2 Biconnectivity

A graph is biconnected if removal dfvertex (along with its incident edges) does not
disconnect the graph. Alternative characterization st&ora Menger’s theorem: the
graph is biconnected iff there a2e(internally) vertex-disjoint paths connecting every
pair of vertices. It is known that a bottleneck biconnectdoigsaph (if it exists) can be
found in linear time with respect to the input graph’s edg@s\ve review here a simple
static algorithm for obtaining the biconnectivity bottésrk. This algorithm, although of
superlinear complexity, it will be useful for our purposes.

A Static Algorithm. The algorithm "grows” a bottleneck biconnected subgraph of
complete weighted graph,, by first finding a minimum weight spanning tree (MST)
of K,,, and subsequently augmenting it with additional edgesdortriect it:

1. Find a MSTT of K,,, and setB =T

2. foreach (u,v) € K,, — B in order of non-decreasing weigto:

3. if wandv not in the same biconnected component, ingerv) in B.
4. return maxeep w(e).

This algorithm is referred to with- bi connect . The final subgraplB produced
by b- bi connect is sparse, i.e|B| = O(n). Indeed, the MSTI" contains exactly
n — 1 trivial biconnected components (the MST edges), and siach edge insertion
in a second phase always merges at least two different béodedt components into
one, at mos(n) insertions take place. The algorithm is implemented usigin-
cremental algorithm of [8] for maintaining the biconnectamponents under edge
insertions: each insertion incué¥«(n)) amortized time and a query of whether two
vertices are in the same biconnected component also ii2rén)) time. o denotes
the inverse of Ackermann’s function. A simple implemergatofb- bi connect in-
cursO(n? logn) complexity (due to sorting the edges). We introduce a défimit

Definition 1. A Bottleneck Spanning Biconnect(BSB) of a weighted (not necessarily
biconnected) graply is an edge subgrapB C G, such that for every edde:, v) ¢ B
there are two internally vertex-disjoint paths#connecting: to v, and for every edge
e on these pathsi(e) < w(u,v).

We show that ifG is biconnected, a BSB C G contains a bottleneck biconnected
subgraph of7. If G is biconnectedB is also biconnected (otherwise the definition is
contradicted). LeG have biconnectivity bottlenedk Let BT C B contain edges with



weight > b and assume thaf — BT is not biconnected. Then there are some edges
B~ C (G — B), with weight< b, such tha{ B — B*) U B~ is biconnected. Edges in
B~ weigh less than edges B, thus there is at least one edge B~ C (G— B) with

w(e) weighing less than some edge on one of the two vertex-digjaths biconnecting
the endpoints of in B: a contradiction to the BSB definition.

Lemma 1. Algorithmb- bi connect produces a BSB of its input graph.

Proof. It is an MST property that for every edde,v) ¢ T there is au — v path in

T with w(e) < w(u,v) for all edgese in the path. Since: is not biconnected te

in T, it must be the case that a set of edge®in- T' picked prior to examination of
(u,v) biconnected: to v. Examination of edges in non-decreasing weight order gives
the result. O

The dynamic algorithm. The complete weighted graghy,, is encoded in aparsifica-
tion tree[3] in the following way. For eacl € K, the tree has a leaf node, which
represents the grapgh(z.) of n vertices and of a single edge Each internal node
has two children, say andz, and it represents the gragi(z) = G(y) U G(z). The
root noder of the tree represents the complete weighted gGiph) = K,,. Since at
some level of the tree there might be an odd number of nodessttone of the nodes
in the upper level may eventually have three children. Insthguel we consider nodes
with two children, without affecting generality.

Let z be a node of the sparsification tree and: be its children. Store at the
edge subgrapti'(z) C G(z), which is the output ob- bi connect when executed
onC(y)UC(z). For leaf nodes., setC(x.) = G(x.). Itis shown thaC(r) is a sparse
bottleneck biconnected subgraph®fr) = K,,:

Lemma 2. (Monotonicity of BSBs) Let G = G1 U G2 be an arbitrary edge partition
of a weighted (not necessarily biconnected) gréhtandC; C G, Cy C G2, be BSBs
of G1, G2 respectively. Thefi; U Cs is a BSB of5.

Proof. For every edgee = (u,v) € G — C; U C, there exist two vertex-disjoint
paths, either inCy or in Cs, connectingu to v, and for every edge’ of these paths
w(e’) < w(e), by definition. O

This implies thatC'(r), being the output db- bi connect is a BSB ofG(r), and
clearly a bottleneck biconnected subgraphigf, by lemma 1. Consider updating the
weight of an edge. The dynamic algorithm is as follows: let be the leaf node that
containse. Starting fromz. and following the path from:. towards the root of the
sparsification tree recompud&(x) for all nodesz on the path. The@(r) is a novel
bottleneck biconnected subgraphfof,.

Theorem 1. The biconnectivity bottleneck can be maintaine@ima(n) log n) time
per edge weight update.

Proof. The sparsification tree is 6¥(log n) height. Algorithmb- bi connect outputs
edges sorted in order of non-decreasing weight. Thus n=rgening the BSB edges
stored at a nodes'’s children provides them in order of noredesing weightUnion-find



data structures are used for computing the MST, while aug¢gtien towards biconnec-
tivity is performed using the incremental algorithm of [§jnce at mos©O(n) edges
are merge-scanned for each tree node, the result follows. a

The sparsification tree ha3(n?) nodes, and finding’(x) for each noder incurs
O(na(n)) complexity. Bottom-up construction incutgn>«(n)) complexity. Further-
more, the dynamic algorithm is @ (n?) space, since each node stof@@:) edges.
One intriguing question is whether lower complexity can beieved per edge update.
In the context of maintaining explicitly a bottleneck bicmtted subgraph the proposed
algorithm is optimal up to polylogarithic factathere is a complete graph with appro-
priately set edge weights and an infinite sequence of updaies that the bottleneck
biconnected subgraph is sparse and unique and each updatesat to change by
O(n) edgesWe omit a formal proof of this due to lack of space.

3 Strong Connectivity

For the strong connectivity bottleneck we design a lazy dyinaversion of a well

known static algorithm. A lazy algorithm encodes the exiecudf a static algorithm in
an appropriate data structure, and when an update of thedapaioccurs, it efficiently
invalidates encoded information relevant to the updatetigroof the input data. The
static algorithm is then executed to complete a partialtgmiu The lazy algorithmic
approach does not generally improve on complexity, but dapsove on running time
in practice. There are partial arguments against existehieproved complexity dy-
namic algorithms for strong connectivity [9]. Such a lazgaithm is the only known
alternative for dynamic shortest paths [5, 10].

We assume a complete weighted digrdph with arc weightsw(a) > 0. For each
arca = (u,v), t(a) = u is the tail vertex ofa, while h(a) = v is its head ver-
tex. Weakly/strongly connected componars abbreviated to WCC/SCC. For a vertex
subsetS let6(S) = {a € K,|h(a) € S,t(a) € S} (exactly the “in” cut-set of5).

A static algorithm. A contractionalgorithm, also used for calculating a minimum
weight directed minimum spanning forest [11,12] is disedssA contraction opera-
tion applies to a directed cycle of vertices and replacexyitée by a single vertex
(called thecontraction vertex maintaining all arcs incident to cycle vertices if one
their endpoints do not belong in the cycle. The algorithnsiodiows:

1. H—0
2. while K, is not a single vertego:

(@) pick a vertex with §(v) N H = ) andd(v) # 0.

(b) leta® — arg min,es(,) w(a) and inser™ in H.

(c) if adirected cycle has occurrethntractthe cycle into a single vertex.
3. return maxqem w(a)

This algorithm is referred to with- st r _connect . One can easily verify that it
produces a bottleneck strongly connecféd At mostO(n) contractions take place,
hence H| = O(n). Every contraction vertex in some iteration correspona@s$€C of
H having emerged in that iteration, as a directed cycle batwgegaller SCCs. Hence



a contraction vertex corresponds to a set of vertices ofitialigraph, having formed
a SCC with respect to the curreHt of some iteration. We refer to these setsaatve
sets The vertices of the initial graph are trivial SCCs and #iwactive sets. In each
iteration ofb- st r _connect an active sef5 (represented with a contraction vertex)
is associated with aniquearc, which is denoted with(S). Accordingly letS(a) be
the active set which caused insertionaoh H. Implementation ob- st r _connect

is discussed in [13, 12, 11], and for a complete digraph itsexity isO(n?).

Data Structure. A natural tree data structure, namely #hetive Sets Tre€AST), en-
codes the contractions performedlpyst r .connect . Its vertices are referred to as
'nodes’ in order to distinguish them from the digraph’s iegs. The AST is defined as
follows:

— Each contraction vertex (also an active set) is represemitbca single AST node
S. Each initial digraph vertex is also represented with a 'trivial' node denoted
with {v}.

— An AST nodeS storesa(S), children(S), parent(S).

— If S'is not trivial children(S) holds pointers to AST nodes representing contrac-
tion vertices which formed a directed cycle and were coito the vertex rep-
resented bys.

— parent(S) is a pointer to an AST nod& which represents a vertex to which
the vertex represented b was contracted. I is not contractegharent(S) =
{t(a(9))}.

These definitions imply a tree data structure, i.e. the A®Eabsearent(S) is
unique: theS-vertex was either contracted to a unique vertex, or not, hickv case
a(S), hence{t(a(5))} is unique. The AST ha®(n) nodes. From each node the
active setS can be constructed by a breadth first search (BFS) startimg $rtowards
its trivial descendants. Implicit access to active sugerses is given by following a
path fromS towards the AST roofl’s will denote the AST-subtree rooted at nosieA
straightforward augmentationbf st r _connect can provide the AST along witH':
each time an arc incoming to some vertex (with AST node rgmtasions) is selected,
seta(S) andparent(S) = {t(a(S))}. When a directed cycle is contracted place a new
AST nodeS, and make it the parent node of the cycle’s nodes, while gpjately
settingchildren(S).

3.1 The dynamic algorithm

Let H be a bottleneck strongly connected subgraph. Then, inagé#se weight of
an arc at a value less than the current bottleriegkif the arc does not belong in the
maintained bottleneck subgraph, the optimum bottleneckigffected. This is the case
also when decreasing the weight of an arc at a value greatetlle current bottleneck.
The overall structure of the dynamic algorithm is the foliog:

increasga, w’ (a)) decreaséa, w'(a))

1. ifa € Handw'(a) > bdo: 1. if w'(a) < bandareplaces)’ € H do:
2. invalidate part off relevant taa 2. invalidate part off relevant toa’
3.  updatew(a) tow’(a) 3. updatew(a) tow’(a)

4, update data structures 4, update data structures

5.  executéd- str_connect 5. executé- st r _connect

ol



We discuss the important parts of the two operations, naingblidating part of H
with respect to an ara (for increase, the replacement tegperformed bydecrease
which decides whether ¢ H should replace some arc &f, and usage and update of
data structures. Note thatcreaseanddecreasediffer only in thereplacement test

Invalidating H. Invalidation of part of H with respect to an are € H, consists of
removing fromH a(R) for all R 2 S, and deleting the corresponding AST nodes
for all R > S. Deletion of the AST nodes results in a re-arrangement ofABE. In
particular, starting fron$(«) and following a path towards the AST root, the following
operations are performed:

1. RemoveR from the AST andi(R) from H.
2. All childrenC of R change their parent: sptrent(C) = {¢t(a(R))} and add” to
children({t(a(C))}).

This process is precisely the reverse of the one followedHerconstruction of
the AST in the previous paragraph. It should also be noted$ha not entirely in-
validated: it only loses itparent(S) anda(S), but it is subject to processing from
b-str _connect when it is re-executed (i.e. it will be a SCC vertex set of tipe u
datedH). One can verify that this process rearranges the AST in auehy, thatS
becomes its new root. Furthermore the AST does not becomertiscted: all nodes
changing their parent are hanged under the suliite®y definition of contractions (a
more formal proof is omitted due to lack of space). Duringaiidation each AST node
is touched at most once. Hence invalidation i€X¢f,) complexity.

Replacement TestConsider an are ¢ H, decreasing its weight to’(a) < b. This
may cause the replacement of an afce H. This happens if an active sétwith
a(S) = da’ hasw'(a) < w(a’) anda € §(S). We care for thesarliest (lower lying in
the AST) such active se&t, which should replace itg(S).

Such an active set is identified by following a path fr¢f(a)} towards the AST
root and checking for each nodevisited whetherw(a(S)) > w(a). If no such nodes
is found the test fails. Otherwigec §(S) is tested: for this purposgis constructed by
a BFS onT’s as explained previously. If this test is positive also, tA&T information
related tou(S) = o’ is cancelled, data structures are updatedtarst r connect is
executed. Identifying a candidate active set and constigiitttakesO(n) time.

Notably, the strategy of re-executibgst r _connect from scratch per arc weight
decrease (below the current bottleneck) has no way of paifigrareplacement test
because active sets are not maintained.

Data Structures and Complexity. All known implementations ob- st r _connect
[13,11,12] handle contraction usinmion-finddisjoint set representations of SCCs
and WCCs ofH. For each (contracted) SC& unionable priority queues implement
5(S) [11]. For a complete digraph the achieved complexity israptn O(n?). These
data structures must be initialized so as to reflect the sfdieafter invalidation related
to some ar@. As explained previouslyy invalidation results in a tree rooted®ta) =

S, hence invalidated/ remains weakly connected (a single WCC). A single:) time
BFS of the AST can provide all the SCCs with respect to thestu#f set. Simply store
for eachS node of the AST its trivial descendants. Hence disjoint segisesentation of



Gain in Execution Time per Weight Update
Sequence Typ# Biconnectivity |Str0ng Connectivity|

Decrease Only 90% — 92%

Mixed O(n)vs.0(n*)|  62% — 65%

Increase Only 39% — 41%
Table 1. Summary of results.
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Fig. 1. The proposed dynamic algorithms against executing thie staes per edge update. Bi-
connectivity is examined on the left, while strong connégtion the right diagram.

the SCCs can be found ifi(n) time. A priority queue is then initialized for each such
SCC, by scanning the arcs incoming to its vertices in a tdtél(@?) time.

4 Experimental Evaluation

Both dynamic algorithms were evaluated experimentallyirssjae-execution of the
static ones per weight update. Implementations were growtaindard C++, using the
gcc 3. 3. 2 compiler.CPUtime was acquired by thget r usage() system call on
aP4 2.4CGHz, 512MB machine undeti nux Kernel 2.6.11. AverageCPU
time per weight update was measured over 100 sequences@@i€iD iveight updates,
of differing initial complete graphs of 100 to 1000 vertieesl edge weights drawn uni-
formly in 1...10000. A weight update was decided to béremeaseor decreasevith
3 probability. Weight increase raises the weight of a rangwselected edge belonging
in the maintained subgraph beyond the bottleneck valuéhile weight decrease was
performed on a randomly selected edge not belonging in thetaiaed subgraph and
below b. Hence the algorithms could not ignore an update (withoateting at all).
Table 1 summarizes the gain in execution time per weightigpda

The dynamic algorithm for the biconnectivity bottlenecksieanmpared against the
algorithm of [7] with O(n?) complexity per update on sequences of mixed weight in-
crease/decrease operations selected with proba@ilﬁﬂhe graph on the left of fig. 1
depicts the averag€PU time per operation taken by each strategy and confirms the
asymptotic superiority of our dynamic algorithm.



The dynamic algorithm for the strong connectivity bottlekhéandles weight in-
creases and decreases in an asymmetric manner, becauggdy®an additionate-
placement tedbr weight decreases, before invalidating the data stractor this rea-
son the algorithm was tested on three types of sequencesasesonly, decrease-only,
and mixed operations. Averag®U times per operation are compared on the right of
fig. 1 for each type of sequence against the average exetintienfb- st r connect
(it was roughly the same for all three sequence types, hanagerage is depicted). As
shown in table 1 an impressive stability of gain@®U time over all graph sizes is
evident. The discussed replacement test for weight dezmaaesrations amplifies the
performance of the algorithm and contributes to the avepAgexed sequences.
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