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Abstract. In this short note we summarize our results on development
and analysis of approximation and dynamic algorithms for set covering
and network optimization problems. The results include probabilistic
analysis of set covering algorithms, development and analysis of dynamic
algorithms for graph optimization problems, game-theoretic analysis of
a file-sharing network model, and approximation algorithms for Steiner
tree/forest network optimization under uncertainty.

1 Introduction

Set covering and network optimization problems lay in the heart of the reserach
field known as Combinatorial Optimization. In particular, set covering is a well
known special case of the general integer linear programming problem, while
it also serves as a general model for network optimization problems. Network
optimization has received special attention mainly due to the vast evolution of
telecommunication and computer networks, along with the variety of applica-
tions built upon them.

Many of the problems found in the aforementioned broad categories are
well known to be NP -hard. The natural way to cope with the current lack
of computational resources for finding an optimum solution is to try to develop
polynomial-time approximation algorithms (see [1]). Network models used in
modern applications ranging from telecommunications to VLSI design are rec-
ognized to be highly dynamic structures, changing at high rates. The need for
efficient response (which essentially involves solution of a problem with respect
to the current structure of the network) to such dynamic changes has led to
the development of the field of dynamic graph algorithms [2]. Network optimiza-
tion under uncertainty is a conceptually related line of research, that has seen
extended progress in the last few years, and aims at preplanning cost-robust
network designs in the presence of uncertainty of requirements.

Another characteristic of networks that has recently caught attention of re-
search in recent years is their social nature. In many important applications a
network is formed by a set of users/agents that want to maximize their indi-
vidual profit by their participation to it. Game-theoretic network analysis aims
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at analyzing the incentives of selfish agents for participating in a network, and
their impact on the network’s efficiency.

Our work is concerned with all the aforementioned matters. In this short
note we give a summary of the results described in the dissertation [3], and have
appeared in [4–11]. The rest of this article is structured as follows. In section 2
we summarize our results regarding probabilistic analysis of approximation al-
gorithms for set covering. In section 3 we describe dynamic algorithms for graph
optimization problems on both, undirected and directed graphs. In section 4.1
we describe our results on game-theoretic analysis of a file-sharing network op-
timization problem. Section 4.2 includes our results regarding approximation
algorithms for Steiner tree/forest problems in the presence of uncertainty of
input.

2 Random Set Covering

A well known heuristic for the Set Covering Problem (SCP) is the greedy al-
gorithm, independently studied by L. Lóvasz [12], D. Johnson [13], and V.
Chvátal [14]. On an SCP instance of a basic set X and family F ⊆ 2X , |X| = m,
F = |n|, the greedy algorithm selects iteratively a subset A ∈ F that covers
the most out of the still uncovered basic elements of X. The greedy algorithm
is O(log m)-approximate for the problem. This result holds in the worst case. It
is natural to assume that worst case instances are not typical instances occur-
ing in real-world applications. Therefore, study of the average case behavior of
algorithms on typical instances is also of great interest in practical applications.
One way to develop average case analysis is by assuming that the instances of
a problem are generated via a probabilistic distribution. Although the assumed
distribution may not depict the reality convincingly, still, it can serve for gener-
ating benchmarks for validation of heuristic algorithms.

Three probabilistic models have been previously studied in the literature for
the set covering problem. None of these models defines costs of X subsets in F ,
therefore it is assumed that all subsets have a cost of 1. The most general of these
models is the constant density independent model with parameters (m, p): each
element of the 0/1 incidence matrix of the instance is determined to be 1 with
probability p. As m grows infinitely the density p of the matrix remains constant.
Less general models include the incremental model studied in [15, 16] and the
probabilistic version of Karp’s model studied in [17]. In [16, 17] convergence of
the sequence of random variables {optm} (value of optimum solution) is studied
in the independent model and it is shown to be Θ(log m). Moreover, in [16] two
asymptotically optimum randomized polynomial-time algorithms are analyzed
for the SCP in the incremental and independent models respectively.

In [11] we investigate the performance of a simple O(nm) complexity deter-
ministic algorithm in the independent model. For the sequence of random vari-
ables {Sm} specifying the value of returned solutions we show that: E[Sm] ≤
1− log(pm)

log(1−p) + 1
p .



This result along with the convergence of the optimum solution value given
in [16] immediately implies that the simple deterministic algorithm is asymp-
totically optimum in expectation [3]. Furthermore, we show that the variance of
produced solution values is upper-bounded by a constant: V [Sm] < 1/p. This
analysis implies the first known probabilistic results for the well known greedy
algorithm in the independent model. If {Gm} is the sequence of random vari-
ables specifying the value of a greedy solution, then one can show that Gm ≤ Sm.
Hence we immediately deduce that the greedy algorithm is also asympotically
optimum in expectation. However, for the variance of greedy solution values, we
were able to show a slightly weaker result, namely that: limm→∞ V [Gm] ≤ 1

p .
These are the first average case results for the greedy algorithm in the most

general probabilistic model for the SCP. In [11] we also show that the indepen-
dent model provides robust feasible solutions, in the sense that it takes addition
of at least Ω(m) probabilistic constraints of density p (i.e. rows to the incidence
matrix) in expectation to render any feasible solution unfeasible. We believe
that the analysis of the greedy algorithm can be tightened further, so that it
can be shown that this algorithm is asymptotically optimum with probability
approaching 1 as m grows infinitely.

3 Dynamic Graph Algorithms

A dynamic graph algorithm maintains dynamically the solution to a graph prob-
lem as the underlying graph changes by edge insertions and deletions [2]. Algo-
rithms that handle both kinds of changes are called fully dynamic, while al-
gorithms that handle exclusively one kind are called incremental (for edge in-
sertions) or decremental (for edge deletions). The core of such an algorithm is
essentially a data structure encoding the underlying graph along with additional
information needed for the problem at hand, that provides operations for mod-
ifying the graph structure with edge insertions and deletions, and for querying
the current solution to the problem. The field of dynamic graph algorithms has
seen extended progress during the last twenty years.

Connectivity has been studied extensively for dynamic graphs [18, 19]. The
first fully dynamic algorithms for maintaining k-connected components of a dy-
namic graph have emerged by usage of the technique of sparsification [20]. For
2-vertex and 2-edge connectivity there exist almost optimal fully dynamic algo-
rithms [19]. Regarding optimization problems in the context of dynamic graphs,
the minimum cost spanning tree (MST) problem has a long history in the field
and the latest results are almost optimal [19].

For the case of directed graphs the results are scarce, and it has been a
common experience that development of dynamic algorithms for directed graphs
is a significantly more challenging matter. Problems that have dominated the
interest of the research community for the past fifteen years include dynamic
trnsitive closure [21], and dynamic single-source shortest paths [22–24].



In [10, 5] we considered a family of optimization problems with connectivity
constraints in the context of dynamic undirected graphs, and in [7, 6] the directed
minimum cost spanning tree for directed graphs.

3.1 Dynamic Bottleneck Optimization for Graph Connectivity

In its static version the problem of bottleneck optimization for k connectivity
requires the determination of a minimum value b over a weighted complete graph
Kn, so that all edges e ∈ Kn with cost c(e) ≤ b induce a k-connected edge
subgraph of Kn.

We refer to b as the bottleneck value. In the dynamic version of the problem
we want to update the bottleneck value efficiently subject to modification of an
edge’s cost. In [5, 10] we considered the k-edge-connectivity constraints for arbi-
trary constant k, and the 2-vertex-connectivity constraint. For these problems
we designed dynamic algorithms that can answer the optimum bottleck value in
O(1) time, and take care of an edge cost update in Õ(n) time1. For 2-vertex-
connectivity in particular, we show that there is a deterministic fully dynamic
algorithm with O(nα(n)) update complexity and a randomized fully dynamic al-
gorithm with high probability O(n) update complexity. The proposed techniques
combine efficiently through the technique of sparsification [20] greedy bottleneck
optimization procedures with the best known incremental algorithms from the
literature for maintaining the k-edge/vertex-connected components [18, 25–27]
and fully dynamic MST [19]. For the case of 2-vertex-connectivity we also use
the randomized linear-time MST algorithm of [28], in order to design randomized
linear-time updates.

The complexity results were shown to be tight in the worst case. Edge con-
nectivity constraints were much easier to handle than vertex-connectivity. A
challenging open question that we are currently working on concerns the 3-
vertex-connectivity constraint under dynamic bottleneck optimization.

3.2 Dynamic Directed Minimum Cost Spanning Tree

The directed minimum spanning tree (DMST) problem is defined over a directed
weighted graph G(V,E) with edge weights given by a cost function c : E → <+,
as a maximal acyclic subset of edges T ⊆ E of G(V,E), such that each vertex
v ∈ V has at most one incoming edge in T , and c(T ) =

∑
e∈T c(e) is minimum

over all such maximal subsets.
The DMST definition is essentially reminiscent of the definition of a mini-

mum cost spanning tree on undirected graphs, differing only by an additional
constraint stating that each vertex has at most one incoming edge in the DMST.
This constraint gives the DMST a directional property: it is a tree “blossom-
ing” out of its root, towards the other vertices of the digraph. If G is strongly
connected, the definition implies indeed such a directed tree (also called arbores-
cence) on which, the root is the only vertex with no incoming edge. If G is
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not strongly connected the resulting structure might be a collection of arbores-
cences, also called a branching [29, 30]. A single polynomial time algorithm, due
to Jack Edmonds is known for this problem [29]. Improved O(min{m log n, n2})
complexity implementation for a digraph of n vertices and m edges is given
in [30]. The complexity was further improved to O(m + n log n), by the heavily
idiosyncratic implementation of [31]. Further improvements achieved for sparse
digraphs are described in [32].

The DMST has been a wide open problem for the field of dynamic graph
algorithms in constrast to the almost optimal results obtained for the MST on
undirected graphs [19]. In our work we design a fully dynamic algorithm for
this problem, and analyze its complexity in the output complexity model [7, 6].
The output complexity model has seen extended use in the analysis of dynamic
graph algorithms [22] and measures the complexity of updating the output of
the algorithm per edge operation as a function of the number of constituents
of the output that are affected by the operation (i.e. need to be updated). The
algorithm proposed in [7, 6] has an output complexity O(n+ ||δ||+ |δ| log |δ|) per
edge operation on general graphs, where δ denotes roughly the set of vertices that
are affected by the operation, while ||δ|| is the number of edges incoming to these
vertices. It is interesting to note that the complexity of the algorithm reduces to
O(log n) if the underlying dynamic graph remains acyclic in between dynamic
edge operations. A partial hardness result derived in [7, 6] states that verification
time of a DMST is O(n2) in the worst case for general graphs, while a DMST
may change entirely after an edge operation. However, full determination of the
problem’s dynamic complexity is still a challenging open question. Experiments
with the proposed algorithm have shown a speedup factor of more than 2 on
dense graphs, when comparing it against the naive strategy of re-evaluating the
DMST from scratch when needed, while for the case of sparse graphs the speedup
was significantly larger [7]. The proposed algorithm also finds application in
dynamic bottleneck optimization for strong connectivity.

4 Network Optimization

Network optimization constitutes a core area of combinatorial optimization. Our
work concerns two well-studied network optimization problems, namely the Ob-
ject Placement problem and the Steiner Tree/Forest problems. Recent trends
in network optimization subsume game-theoretic analysis for deciding the im-
pact of selfish behavior on voluntarily formed networks and optimization under
uncertainty. We treat the Object Placement problem under the first framework
and the Steiner Tree/Forest problem under the second framework.

4.1 Distributed Selfish Replication

We consider a voluntarily formed file-sharing network. The network consists of a
set of user-nodes N = {1, . . . n}, and each user j ∈ N has at his/her disposal an



integer amount of local storage Cj . Each user demands access to a set of unit-
sized objects (that can be files or services), denoted by Rj . Let O = ∪j∈NRj .
The frequency by which an object i ∈ Rj is going to be accessed by user j
is given to be fji. All objects are accessible from a distant server s. A node
j ∈ N can store some copies of the objects in Rj locally, in its local memory.
These objects can then be accessed at a transfer cost tl. Objects that are not
stored in local memory, must be retrieved from elsewhere. If such an object is
stored at another node j′ ∈ N , it can be retrieved at a transfer cost tr >> tl.
If an object of interest to j is not stored on any of the network’s nodes, then
this object can be retrieved from s at a maximum transfer cost ts >> tr. The
problem amounts to selecting which objects to replicate in local storage qhile
respecting the local storage capacity, and assign every 〈node,object〉 pair to the
nearest place from which the object can be retrieved, so as to minimize the total
incurred access cost. Let φj : Rj → N + s be such an assignment function, and
cjj′ denote the transfer cost from node j′ to node j. Then the total access cost
is: Z =

∑
j∈N

∑
i∈Rj

fjicjφj(i)

The model we have just described was originally proposed in [33] where it
was also shown that it can be solved optimally in polynomial-time. In [9, 8] we
considered the following remarks for the case of voluntarily formed file-sharing
networks:

– Mistreatment/Voluntary Participation: In an optimum solution the
local storage of some user j ∈ N might be used entirely towards serving the
demands of other overactive users, that generate the volume of access cost,
and not the demands of j. Under the assumption of voluntary participation
j will be dissatisfied, and may choose to leave the network. In fact, every
user that does not gain from his/her participation to the network as much
he/she would gain by managing its own local storage independently, has an
incentive to leave the network.

– System Stability: A mistreated user may choose, instead of leaving the
network, to modify the contents of its local storage, so as to repair his/her
poor service and decrease his/her own high access cost. In any case, a user
may choose to modify the locally stored objects, so as to decrease the access
cost he/she experiences.

Both these considerations state that the network’s performance may be un-
stable, while in the worst case the network may disintegrate as dissapointed users
choose to cancel their participation to it. In order to cope with these conditions,
we formulated the problem as a strategic game [34] among selfish agents that
want to minimize their access cost by participating in the network. Each node
of the network is an agent associated to strategy space defined by the subsets of
objects that this node may choose to replicate locally.

In [9, 8] we showed that this game admits pure strategy Nash equilibrium
solutions, by designing an algorithm that finds a placement of objects in the local
memories of the nodes in such a way, that no node has incentive to modify its
local contents (i.e. it will not decrease its own access cost by unilaterally deviating



from the placement). This solution guarantees system’s stability. Furthermore
we show that this algorithm guarantees voluntary participation, since it outputs
solutions in which every node experiences an access cost at most as much as
in the case it was managing its own local storage without participating in the
network.

In [9, 8] we also described a modified version of the proposed algorithm for
finding pure Nash equilibrium strategies that gurantee voluntary participation,
so as to give the chance to all nodes to minimize their individual access costs
as much as possible. For this modified version of the algorithm and for the case
where all nodes have equal local storage capacity and share a common Zipf-
like distribution of access frequency to objects, we have derived an approximate
expression for the relative gain of each node in comparison to the gain achievable
by the node when acting in isolation.

A distributed implementation of the algorithm is provided in [8], that is
efficient in terms of the amount of information exchanged among nodes of the
network during its execution: while a naive distributed implementation may
require transmission by every node of O(|O|) information amount, we propose
a simple scheme that requires only O(

∑
j∈N Cj) order of information exchange,

which is generally much less (also in practice) than the total number of required
objects bound.

In the context of our ongoing research on this problem, we have extended our
results to more general network models. We have shown existence of pure strat-
egy Nash equilibria for balanced hierarchically clustered networks with arbitrar-
ily many servers and have proven an upper bound for the price of anarchy [35]
(cost of most expensive equilibrium to cost of optimum object placement) and
a matching worst-case lower bound for the price of stability [36] (cost of least
expensive Nash equilibrium to cost of optimum object placement).

4.2 Robust Steiner Tree

In [37] we investigate the Steiner Tree problem in the presence of input uncer-
tainty, under the model of Probabilistic Optimization [38, 39], along with some
extensions to the model of Robust Discrete Optimization [40]. We refer to the
problem as the Robust Steiner Tree problem, and it is extended in two stages as
follows. In the first stage we are given a complete weighted graph G0(V,E), with
a cost function c : E → <+ and a subset S ⊆ V of vertices that require connec-
tion via a Steiner Tree. Each vertex v ∈ V \ S has a probability p(v) ∈ [0, 1] of
survival in the second stage of the problem. In the second stage only a subset of
vertices V ′ of V \ S survives, giving rise to a complete subgraph G1 = G0[V ′]
of G0. If T0 is a first-stage Steiner tree connecting S, then a portion T ′0 ⊆ T0

survives in second stage. We want to devise an efficient modification algorithm
for rendering T ′0 a feasible Steiner tree T1 for S on G1. Given such a modification
algorithm A and a first-stage feasible solution T0, let c(A(G1, T0)) = c(T1). The
objective is to build a priori an appropriate first-stage solution so as to minimize
the expected second-stage cost:



Zexp(T0) =
∑

V ′⊆V \S

Pr[V ′]c(A(G0[V ′], T0))

This is the problem formulated precisely in the framework described in [38, 39].
In [37] we also considered the robust objective criterion proposed in [40]:

Zmax(T0) = max
V ′⊆V \S

c(A(G0[V ′], T0))

which eliminates the need for probabilities of survival over the set V \ S. It is
easy to see why a priori optimization of any of these objective functions is NP -
hard given any modification algorithm A: there is always the case that G1 = G0,
hence one must have found an optimum Steiner tree for S in the first stage,
which is NP -hard. In our work we also show by a reduction from Steiner tree
on a complete graph with edge costs in {1, 2} that it is NP -hard to repair an
arbitrary first-stage solution towards minimizing either Zexp or Zmax, even in
the case when the first-stage solution is optimum.

We have designed an O(nα(n)) complexity modification algorithm for which
we have shown that Zexp is computable in polynomial time O(n3) given a first
stage solution T0. This implies that the problem of a priori optimization of Zexp

for the proposed algorithm belongs in NPO, the class of optimization prob-
lems that have their corresponding decision problem in NP . If the cost function
c : E → <+ is metric, we can show that the proposed modification algorithm
produces a second-stage feasible Steiner tree T1 with cost at most 2c(T0), where
T0 is the first-stage feasible solution.

With simple arguments one can show that every α-approximate first-stage
Steiner tree, can a priori approximate both, Zexp and Zmax by a factor of 2α.
This immediately results in approximation factors of 2, 2.48 for metric edge
costs in {1, 2} and 3.01 for general metric edge costs [41]. There is a basic ob-
servation that makes these results extremely interesting: at first the proposed
modification algorithm is much faster than every known approximatin algorithm
for the Steiner tree problem. Hence the trivial practice of simply ignoring the
remainders of a first-stage solution and approximating the second-stage instance
form scratch is not as efficient. Furthermore, under this trivial practice and
given an optimum first-stage solution, every α-approximation algorithm used
from scratch in second stage incurs a 1 + α > 2 approximation factor of Zexp,
Zmax, as opposed to the 2-approximation achieved by the proposed approxi-
mation algorithm. Another remark is that, in metric graphs one could easily
produce a 2-approximation factor first-stage solution remaining feasible and ap-
proximate also in second-stage, by using the well known minimum spanning tree
heuristic [1]. However, the proposed modification algorithm is still able to re-
pair efficiently other first-stage solutions such as the optimum, a fact which is
interesting in its own right, since such a repair is NP -hard to achieve in general.

Another fact that makes the proposed modification algorithm interesting is
that it can be generalized in the case of the Robust Steiner Forest problem



(see [4]), where the MST heuristic is not applicable In this case and for metric
graphs, we can apply the algorithm to the remainders of each tree of a first-stage
Steiner forest, thus achieving a 2α-approximation of Zexp,Zmax, when the first
stage Steiner forest is α-approximate. This leads to approximation factors of
2 and 4, depending on whether an optimum first-stage solution was used or a
2-approximate one (by usage of the primal-dual algorithm for Steiner forest [42]).
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