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Abstract

We consider a probabilistic model for the Steiner Tree problem. Under this model the
problem is defined in a 2-stage setting over a first-stage complete weighted graph having its
vertices associated with a probability of presence (independently each from another) in the
second stage. A first-stage feasible solution on the input graph might become infeasible in the
second stage, when certain vertices of the graph fail. Therefore, a well defined modification
strategy is devised for modifying the remainders of a first-stage solution to render it second-
stage feasible. The objective is to minimize the expected weight of the second-stage solution
over the distribution of all possible second-stage materializable subgraphs of the input graph.
We recognize two complementary computational problems in this setting, one being the
a priori computation of first-stage decisions given a particular modification strategy, and
the second being the cost-efficient modification of a first-stage feasible solution. We prove
that both these problems are NP-hard for the Steiner Tree problem under this setting.
We design and analyze probabilistically an efficient modification strategy, and derive tight
approximation results for both aforementioned problems. We show that our techniques can
be extended to the case of the more general Steiner Forest problem in the same probabilistic
setting.

Keywords: Steiner Tree, Forest, Approximation, Graph, Complexity

1 Introduction

Given an edge-weighted graph G(V,E), with positive edge weights w : E → ℜ+, and a subset
of vertices T ⊆ V (called the “terminal” vertices) the Steiner Tree problem requires selecting
a subset of edges S ⊆ E of minimum total weight, that interconnect vertices of T (possibly
spanning also vertices other that the ones in T ). We study the Steiner Tree problem in a
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2-stage robust optimization setting, where we are uncertain of the availability of vertices in
V \ T , in that each such vertex is present with some probability independently of all other
vertices (this has also been called independent activation model in the literature). Vertices of T
are always present with probability 1. The input graph G is considered as a first-stage input,
while in the second stage a vertex-subgraph G′ of G materializes, in which a vertex v is present
with the specified probability. Our objective is to take some a priori (first-stage) decisions
regarding the layout of the tree, so as to be able to come up with a feasible tree for every
possibly materializable subgraph G′(V ′, E′) of G with V ′ ⊆ V , and minimize the expected total
weight of edges used over the distribution of all such subgraphs. We will mostly consider a
priori decisions that constitute a feasible solution of the problem on the first-stage input graph.
We refer to this solution as anticipatory solution. This is the probabilistic version of the Steiner
Tree problem that we consider.

Note that an anticipatory first-stage feasible solution for G may become infeasible in G′

(since certain vertices may be missing, along with incident edges). A brute-force way to cope
with this problem is to pre-compute a feasible and approximate (or maybe optimum) solution
for every possible subgraph of G that may materialize, and apply an appropriate solution when
the subgraph actually appears. In principle there need not be a constraint on the computa-
tional effort applied for taking a priori decisions, as long as they can support a fast response
strategy to the actually materialized data. In this light however, we require that such a re-
sponse should be of strictly lower complexity compared to the a priori computational effort. A
straightforward pattern for implementing this setting is for example to compute an optimum
anticipatory solution over G, and if this solution is not feasible for the materialized subgraph
G′, use a polynomial-time approximation algorithm to obtain a completely different feasible
solution for G′. On the other hand, a natural challenge is to design such an efficient response
strategy for modifying a priori decisions (called modification strategy), that can be supported by
polynomial-time computable a priori decisions. In our setting we recognize two complementary
computational problems:

• A priori optimization: Given a fixed modification strategy, find an efficient way of
taking a priori decisions, leading to optimization of the expected minimum weight.

• Modification: Given a feasible anticipatory solution, design a modification strategy that
can produce second-stage feasible solutions optimizing the expected minimum weight.

The first problem requires taking into account the existence of a specific modification strat-
egy when taking a priori decisions, so as to optimize the final (second-stage) outcome, while the
second problem amounts to designing a modification strategy for optimizing the second-stage
outcome, given “interesting” a priori decisions: such interesting decisions are feasible antici-
patory solutions for the first-stage graph G that are of optimum or approximately optimum
weight. Consideration of feasible anticipatory solutions is natural, especially when it is not
known in advance whether a transition from first to second stage will actually occur and when.
Therefore one might be interested that his/her operational design is for example optimal for as
long as first-stage input data remain valid.

The problem model we consider finds natural application in networks, where uncertain avail-
ability of intermediate nodes requires fast adjustments of traffic forwarding, as for example in
enhancing fault-tolerance in wireless multi-hop communication networks. Certain high-fidelity
nodes in such networks are responsible for collecting messages from other nodes, and forward-
ing them through multiple hops to their destination. These high-fidelity nodes are expected to
be always present, and their interconnection through a minimum weight tree (possibly span-
ning also other nodes) provides a virtual backbone to the network, functioning at low energy
consumption (see e.g. [15] for such graph models regarding energy consumption). When inter-
mediate nodes of the backbone fail, it is essential that the backbone is reconstructed efficiently
to operate in low energy.

2



In this paper we show that both problems of a priori optimization and modification are
NP-hard (Section 3). We design a modification strategy and derive an analytic expression of
the expected value of second-stage solutions it produces (Section 4). Subsequently we derive
non-trivial polynomial-time approximation results for metric graphs (Section 5) and generalize
our results to the case of the more general Steiner Forest problem on 2-stage probabilistic metric
graphs (Section 6). We show that the analysis of the proposed modification strategy is tight
(Section 7). Finally we consider implementation of modification strategies by usage of known
approximation algorithms (Section 8) and conclude. Followingly we discuss related work, and
introduce formal problem definitions and notation (Section 2).

Related Work The Steiner Tree problem is a well known NP-hard (even in metric graphs)
network design problem (see Garey & Johnson [8] problem [ND12]). It is a special case of the
Steiner Forest problem, which requires selecting a subset of edges of minimum total weight,
that connects simultaneously given pairs of vertices (when all pairs share a vertex in common,
an instance of the Steiner Tree problem is obtained). The primal-dual algorithm by Agrawal
et al. [1] (see also [9, 29]) achieves a factor 2 approximation of the optimum weight for both
problems. For the Steiner Tree problem in particular, the algorithm described in [25] achieves
factor 1.55 approximation in general weighted graphs, and 1.28 on metric graphs with edge
weights 1, 2. In metric graphs the simple heuristic of computing a minimum spanning tree on
the subgraph induced by terminal vertices is a factor 2 approximation algorithm [29].

Acquisition, validation and pertinence of input data are tackled in almost any operations
research application. Although several well established theoretical models exist for problems
arising in real world, direct application of these models may be difficult or even impossible
due to incompleteness of data, or due to their questionable validity. Occasionally, one may be
asked to produce an optimal operational design even before a complete deterministic picture
of input data is provided, but only based on estimations and statistical measures. There are
several applications where it might be impossible to obtain a current snapshot of the required
information, since this information may be subject to constant high-rate change.

Several optimization frameworks have been introduced by the operations research commu-
nity for handling these deficiencies, the most well developed being Stochastic Programming
(see [5, 6, 22] for basics, [23] for latest news, bibliography, and related software and [10, 11,
12, 24, 26, 27, 28] for recent hardness results and approximation algorithms) and Robust Dis-
crete Optimization (see [2, 7, 14, 16, 17] for details). These frameworks constitute a means of
structuring uncertainty of input, and taking its existence into account during the optimization
process. Robustness of the designed solution from both feasibility and cost perspectives in the
presence of uncertainty is the main purpose of devising these frameworks during an operational
design process.

Our work is mostly related to the framework of Probabilistic Combinatorial Optimization,
introduced in [13, 3], where modification strategies as the one described previously are ana-
lyzed probabilistically, so that the expected value of their outcome can be computed efficiently
(this ensures that the problem of taking a priori decisions for a particular strategy belongs
to class NPO). Several network design problems have been treated in the probabilistic com-
binatorial optimization framework, including minimum coloring [21], maximum independent
set [19], longest path [18], and minimum spanning tree [4]. Apart from probabilistic analysis of
modification strategies, results in [21, 19] also include derivation of approximability properties.

2 Definitions and Preliminaries

We deal with a 2-stage stochastic optimization model involving a first-stage complete weighted
graph G(V,E) on n vertices, with edge weights given by a function w : E → ℜ+. We are
given a set of terminal vertices T ⊆ V , and each vertex v ∈ V is associated to a real value
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in [0, 1] given by a function π : V → [0, 1], with π(vi) = pi and π(vi) = 1 for all vi ∈ T .
We assume that in second stage a subgraph G′(V ′, E′) of G materializes as the outcome of
n independent Bernoulli trials, one per vertex v ∈ V : v ∈ V ′ with probability π(v). Then
E′ = {(u, v) ∈ E|u ∈ V ′, v ∈ V ′}.

Assume a subset of edges S ⊆ E constituting a priori first-stage decisions (anticipatory
solution), and let S1 ⊆ S ∩ E′ denote the subset that remains valid in G′. Let M denote an
efficient algorithm, called modification strategy, that will augment S1 into a feasible Steiner Tree
for the set of terminals T on G′. We denote the expected weight of the second-stage outcome
by Eπ(G,S, M). Let opt(G′, T ) refer to the weight of the optimum Steiner Tree for T on G′ for
every subgraph G′(V ′, E′) of G such that T ⊆ V ′. The expected minimum weight over the
distribution of subgraphs of G is:

E∗
π(G) =

∑

V ′⊆V

Pr[V ′]opt(G′, T ) (1)

where Pr[V ′] =
∏

v∈V ′ π(v)
∏

∈V \V ′(1−π(v)) is the distribution describing probability of occur-
rence of a specific subset of V in second stage. Under these definitions we study the following
two problems:

• A priori optimization of probabilistic steiner tree(M): Given a fixed modification
strategy M, find an algorithm for taking a priori decisions S ⊆ E, that optimize Eπ(G,S, M).

• Modification for probabilistic steiner tree: Given a feasible optimum or approxi-
mate anticipatory solution S, find a modification strategy M for modifying the valid remain-
ders S1 of these decisions on G′ towards a feasible solution S′ for G′, so that Eπ(G,S, M)
is optimized.

In what follows we show that both these problems are NP-hard, and we will study ap-
proximation techniques. The approximation ratio is defined as Eπ(G,S, M)/E∗

π(G). Given an
edge subset S that is a tree and two vertices vi, vj spanned by S, we will refer to the unique
path connecting vi to vj in S with [vi · · · vj]S , and denote the sum of weight of its edges by
w([vi · · · vj]S). In analysis developed within subsequent sections we are going to make use of
the following lemmas:

Lemma 1 Given an edge-weighted a priori input graph G, an arbitrary subgraph G′ of G (in-
duced by a subset of vertices of G) and a set of terminal vertices T that exist also in G′, if
opt(G,T ), opt(G′, T ) are the values of the optimum Steiner trees connecting T on G and G′

respectively, we have opt(G′, T ) ≥ opt(G,T ).

Proof. Every feasible solution for T on G′ is also feasible on G. 2

Lemma 2 E∗(G) > opt(G).

Proof. Since T is present in any of the sets V ′ ⊆ V realized in the second stage, an optimal
Steiner tree of G has value smaller than, or equal to, the value of an optimal Steiner tree of any
second-stage induced subgraph G′ of G, i.e., opt(G) 6 opt(G′), for any G′ ⊆ G. Using it in (1),
we get:

E∗(G) =
∑

V ′⊆V

Pr
[

V ′
]

opt
(

G′
)

>
∑

V ′⊆V

Pr
[

V ′
]

opt (G) = opt(G)
∑

V ′⊆V

Pr
[

V ′
]

= opt(G) (2)

which concludes the proof. 2
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3 Complexity

In this section we prove NP-hardness results for both problems of a priori optimization and
modification for the probabilistic steiner tree problem, by reduction from the deterministic
Steiner Tree problem.

Proposition 1 A priori optimization of the probabilistic steiner tree problem is NP-
hard for every modification strategy.

Proof. The proof stems from NP-hardness of the Steiner Tree problem: by setting π(v) = 1
for all v ∈ V yields a deterministic Steiner Tree instance. 2

As mentioned previously regarding the modification problem, our focus is on feasible anticipa-
tory solutions on the first-stage graph G. For this particular case we show that:

Proposition 2 The problem of modifying the remainders of an arbitrary anticipatory solution
towards optimizing the expected second-stage weight is NP-hard, even in the case that the first-
stage complete graph has edge-weights in {1, 2}.

Proof. The reduction is from steiner tree in complete graphs with edge-weights 1 and 2.
Consider a complete graph H(VH , EH) with edge-weights in {1, 2} and an arbitrary subset of
vertices TH ⊆ VH , the terminals that have to be spanned by a minimum-weight tree Ŝ.

We will build a probabilistic Steiner tree instance out of H. Extend H into a complete graph
G(V,E) with V = VH ∪{v, x, y} and E being the natural extension of EH with additional edges
so that G is complete. We set w(v, u) = 1 for every u ∈ VH ∪ {x, y}, w(x, u) = 2 for every
u ∈ VH ∪{y} and w(y, u) = 2 for every u ∈ VH ∪{x}. Finally, we extend the set of terminals TH

into T = TH ∪{x, y}. Let all vertices of G be present with probability 1 apart from v for which
the presence-probability is p, for some p ∈ (0, 1). We so have a probabilistic Steiner tree instance
and suppose that we are given an an anticipatory solution S⋆ which is optimum for G. Notice
that this solution is a star graph centered at v, with each u ∈ T connected to v through an edge
(v, u) of weight 1. The weight of this solution is |T |, while every other feasible solution in G
has weight strictly greater than |T |. If M is a modification strategy, S′ is the modified solution
in second stage produced by M, then we want M to be such so that the following expression is
minimized:

Eπ(G,S⋆, M) = (1 − p)w(S′) + pw(S⋆) (3)

Let us assume that a graph G (instance of probabilistic steiner tree) as the one
described just above is given together with an optimal anticipatory Steiner tree S∗ of G. Assume
also that there exists a polynomial time algorithm that, if v is present, it returns S∗ itself, while,
if v is not present, it modifies S∗ in order to return a Steiner tree S′ for G′ in such a way that (3)
is minimized. Note that in order that this happens, its first term and in particular w(S′) has to
be minimum. Notice also that, in the case of absence of v from G, the anticipatory solution S⋆

is completely destroyed, i.e., S1 = ∅. Hence, in second-stage every modification strategy M will
have to reconnect the terminals of T from scratch on G′. The cases that can occur for S′ are
the four ones illustrated in Figure 1, where a triangle denotes a tree spanning some terminals
in H.

If S′ is as in Figures 1(a) or 1(b) (let us refer to Figure 1(a), the case of Figure 1(b) being
completely analogous), i.e., if x is linked to y that is linked to some vertex of a Steiner tree S of
H (both of these edges have, by construction, weight 2) then, obviously, S is an minimum-weight
Steiner tree for H, found in polynomial time since S′ did so.

Suppose now that S′ is as in Figure 1(c), i.e., both x and y are linked to two trees S1 and
S2 of H, respectively, and these trees are also linked by an edge (i, j) ∈ EH , then, obviously,
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x y
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i j
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Sx1 Sx2 Sxk
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(d)

Figure 1: The four possible cases for S′.
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S = S1 ∪ S2 ∪ {(i, j)} is a Steiner tree of H and on the hypothesis that w(S′) is minimum, so
is the weight of S for H.

Finally, suppose that S′ is as in Figure 1(d), i.e., x is linked to some trees Sx1, Sx2 , . . . , Sxk
,

vertex y is linked to some trees Sy1, Sy2 , . . . , Syl
of H and x and y are also linked by edge (x, y).

Then it is easy to see that S′ can be transformed, as in Figure 2, into a Steiner tree S′′ of G′

with at most the same weight by keeping, say, the edge linking y to Syl
, then linking: Syi

to
Syi−1 for i = l down to 2, Sy1 to Sxk

and Sxj
to Sxj−1 for j = k down to 2. The weight of

the so obtained Steiner tree S′′ is not greater than the one of S′ since any edge incident to x
or to y has weight 2 and edge-weights in EH are in {1, 2}. But then this is exactly the case of
Figure 1(a); hence a minimum-weight Steiner tree of H is polynomially built.

2

2x y

Sx1 Sx2 Sxk
Sy1 Sy2 Syl

Figure 2: A Steiner tree S′′ of total weight at most equal to the weight of S′.

So, on the hypothesis that the problem of modifying the remainders of an arbitrary an an-
ticipatory feasible solution towards optimizing the expected second-stage weight is polynomial,
the tractability of Steiner tree on complete graphs with edge weights 1 and 2 can be derived, a
contradiction with the NP-hardness of this latter problem. Henceforth, the former one is also
NP-hard. 2

4 A Depth-First-Search Modification Strategy

In this paragraph we design and analyze probabilistically a modification strategy (also referred
to as DFS) for an anticipatory solution S. When the subgraph G′ materializes, the modification
strategy DFS reconnects the valid remainders of the anticipatory tree using edges from E′, so as
to render it feasible for G′. We explain the strategy followed for reconnecting an anticipatory
tree S that has been disconnected in G′.

Consider the first-stage tree solution S, and let S1 ⊆ S denote its valid remainders on the
materialized second-stage subgraph G′. The strategy orders the vertices in V (S) using a Depth-
First-Search, starting from an arbitrary leaf-vertex the tree. Vertices of S are inserted in an
ordered list L in order of visitation by DFS in the following way: if vi and vi+1 are two distinct
vertices visited by DFS consecutively for the first time, but no (vi, vi+1) edge exists in S, then
they are appended to L along with the parent vertex u of vi+1, in the order vi, u, vi+1. Thus
L may contain some vertices more than once (in fact, as many times as their children in S).
However, |L| = O(|S|).

When the actual second-stage subgraph G′ materializes, the modifying algorithm sets S′ =
S1. Then it removes from L every copy of vertex v ∈ V \V ′ thus producing the list L′. It scans
L′ in order and for every two consecutive vertices vi, vj it inserts in S′ an edge (vi, vj) if i < j
and vi, vj are not already connected in S′. We illustrate the functionality of the modification
algorithm over a particular tree by an example.

Example Figure 3(a) depicts an anticipatory tree solution numbered according to DFS vis-

7



9

1

2

3

4

5

6

7

8

10

(a) An anticipatory solution.
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(b) The modified tree in absence
of vertices v2, v7. Dashed edges
were added by the modification
strategy.

Figure 3: Functionality of the modification strategy over a particular tree.

itation starting from a leaf-vertex. The corresponding ordered list produced in this way is
L = {1, 2, 3, 4, 2, 5, 6, 2, 7, 8, 7, 9, 10}. Assuming that vertices 2 and 7 are absent from the vertex
set of the actually materialized subgraph, all occurrences of these vertices are dropped from L
and L′ = {1, 3, 4, 5, 6, 8, 9, 10} emerges. The modifying algorithm scans L′ in order and adds
edges (1, 3), (4, 5), (6, 8), (8, 9), so as to reconnect the remainders of the anticipatory tree, as
shown in Figure 3(b).
We prove the following:

Proposition 3 The DFS modification strategy produces a connected second-stage tree solution
out of an anticipatory tree solution.

Proof. For every vertex vj in L′ there is an appearance of vj in L′ after a vertex vi with
i < j, so that vj is connected to vi by the end of execution of DFS. This holds for all vertices,
apart from the one appearing first in L′. This implies that all vertices are connected into one
component by the end of execution of DFS for S. Furthermore the emerging construction cannot
contain cycles for two reasons: S did not have cycles and in order for a cycle to occur in the
modified solution S′, insertion of at least one edge (vi, vj) is required while its endpoints have
been already connected. This cannot happen by functionality of the modifying algorithm. 2

The complexity of the modification strategy is almost linear in the number of vertices of G.
Indeed, a depth-first search over an anticipatory tree S is of O(|S|) complexity, while by using
UNION-FIND disjoint sets representation for maintaining connected components during the scan
of L′, an O(|S|α(|S|)) = O(nα(n)) time is spent.

Theorem 1 Given an arbitrary feasible anticipatory solution S, the expected weight of a mod-
ified solution S′ produced by modification strategy DFS is:

Eπ(G,S, DFS) =
∑

(vi,vj)∈S

pipjw(vi, vj) +

+
∑

(vi,vj)∈E(V (S))\S

w(vi, vj)pipj ×
∏

vl∈[vi,vj ]L:

i<j , vi,vj 6∈[vi,vj ]L

(1 − pl)

where V (S) is the set of vertices incident to edges of S, and E(V (S)) is the set of all edges
induced by vertices in V (S). Furthermore, [vi, vj ]L the sublist of L starting at vi and ending in
vj not including these two vertices. For all sublists not satisfying the specified restrictions we
define the product to be 0.
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Proof. The stated expression consists of two terms, the first one expressing the expected weight
of surviving edges in the materialized subgraph (that is the expected weight of S1), while the
second expresses the expected weight of edges added to S1 by the modification strategy, so
that S1 is augmented into a feasible tree S′ for G′. The first term is justified by the fact
that (vi, vj) ∈ S survives in S1 if and only if both its endpoints survive. This happens with
probability pipj, since these two events are independent.

The second term emerges by inspection of the functionality of the modification strategy DFS.
When G′ materializes, missing vertices (in V \ V ′) are dropped from the ordered list encoding
L and the modified list L′ emerges. The modification strategy scans L′ and for every pair of
consecutive vertices vi, vj it connects them using an edge (vi, vj) if and only if i < j and vi is
not connected to vj already.

Vertices vi, vj ∈ L both survive in L′ with probability pipj. Vertices vi and vj are not
connected to each other if all vertices between vi and vj in L are missing from L′, and this
happens with probability

∏

vl∈[vi,vj ]L
(1 − pl). Furthermore, neither vi nor vj should appear as

intermediates in the sublist [vi, vj ]L, otherwise they should also be missing, and would not be
encountered by the modification strategy. Finally, the sublist [vi, vj ]L should not be empty,
otherwise a surviving edge (vi, vj) is implied, rendering vj connected to vi. 2

Clearly the expression given in Theorem 1 is computable in polynomial-time. Thus:

Corollary 1 The problem of a priori optimization for probabilistic steiner tree(DFS)
belongs to the class NPO.

Unfortunately, Theorem 1 does not derive a compact characterization for the optimal antic-
ipatory solution for probabilistic steiner tree(DFS). For instance, in [19, 20] probabilistic
models as the one used here are studied for max independent set and min vertex cover,
respectively, under a modification strategy consisting of taking the restriction of an anticipa-
tory solution as solution for the second-stage graph. Under such a strategy, it is shown that
an optimal anticipatory solution in a graph is the solution optimizing the total weight of an
independent set, or a vertex cover, where the weight of a vertex vi is either its own probability
pi, if the graph is unweighted or the product piwi if the graph is weighted and the weight of vi

is wi. Here, the form of the functional provided by Theorem 1 does not imply solution of, say,
some well-defined particular version of steiner tree (where the weight of an edge could be
its initial weight multiplied by the probabilities of its endpoints), or something else of the same
order as could be the case if the second term in E(G,S, DFS) did not exist. This is due to this
second term where the “modified weights” assigned to the edges of G depend on the structure
of the anticipatory solution chosen and of the present subgraph of G.

5 Approximation on Metric Graphs

In this paragraph we derive approximation results for the probabilistic steiner tree prob-
lem on metric graphs. We show that the probabilistic steiner tree problem is easily
approximable within a factor of 2 regardless of modification strategy. We then turn to show
that the previously introduced modification strategy can in fact modify a variety of first-stage
feasible solutions so that an approximation of the expected minimum weight is obtained. We
apply these results in the next section to the probabilistic steiner forest problem on
metric graphs, so as to obtain approximation results. We show at first that:

Proposition 4 There is a polynomial-time 2 factor approximation algorithm for the proba-

bilistic steiner tree problem on metric graphs, that is independent of the chosen modification
strategy.
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Figure 4: Three cases that may happen for edge (vs, vt) with respect to vi, vj (proof of Lemma 4).

Proof. This algorithm is the well known minimum spanning tree heuristic used for metric
graphs (see e.g. [29]), which returns as a feasible first-stage solution S the minimum spanning
tree of the subgraph induced by the terminal vertices. Notice that for the probabilistic

steiner tree problem, such a tree remains connected and feasible also in the second-stage
materialized subgraph G′, since terminal vertices are present with probability 1.

It remains to show that it is also 2-approximate to E⋆
π(G). Indeed, if opt(G), opt(G′) denote

the optimum Steiner Tree values for the first-stage graph G and the second-stage materialized
subgraph G′, respectively, by Lemma 4, opt(G′) ≥ opt(G) for every possible G′ containing the
set T of terminal vertices. Then, using also Lemma 2:

w(S) ≤ 2opt(G) ≤ 2E⋆
π(G)

which concludes the proof. 2

We now turn to show that the proposed modification algorithm DFS is in fact able to modify
every α-approximate anticipatory solution, so as to produce a feasible solution that is at most
2α-approximate to the expected minimum weight. The heart of our results is the following
theorem:

Theorem 2 If S′ is a modified feasible solution produced by DFS modification strategy for the
probabilistic steiner tree problem on a metric graph, given an anticipatory feasible solution
S, then w(S′) ≤ 2w(S).

In the following we denote by Sm the subset of edges added by the modification strategy to
S1. We prove first some lemmas that will be combined towards the proof of the theorem.

Lemma 3 For every edge (vi, vj) ∈ Sm we have w(vi, vj) ≤ w([vi . . . vj]S).

Proof. Immediate by the triangle inequality holding for the weight function w : E → ℜ+. 2

According to Lemma 3 we can express the weight of the modified tree S′ as follows:

w(S′) = w(S1) + w(Sm) ≤
∑

e∈S1

w(e) +
∑

(vi,vj)∈Sm

w([vi . . . vj]S) (4)

Lemma 4 For every three distinct edges (vi, vj), (vk, vl), (vq, vr) in Sm the paths [vi · · · vj ]S,
[vk · · · vl]S, [vq · · · vr]S, do not share an edge in common.

Proof. By functionality of the modification strategy we have that i < j, k < l, q < r.
Furthermore, if we assume without loss of generality that the vertex pairs were encountered in
the order 〈i, j〉, 〈k, l〉, 〈q, r〉 during scanning of L′, then we deduce that j < l < r. If the paths
intersect in some common edge (vs, vt), then it must be s, t ≤ j (Figure 4 depicts all possible
cases), thus s, t < l and s, t < r. In this case edge (vs, vt) must have been scanned at least three
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vi

vj

vs

vt

vk

vl

Figure 5: Case s, t > i examined in the proof of Lemma 5: (vs, vt) ∈ [vi · · · vj]S ∩ [vk · · · vl]S and
suppose that (vs, vt) ∈ S1. Then obviously vs, vt survive in L′ and appear as intermediates in
the two pairs 〈vi, vj〉 and 〈vk, vl〉.

times during depth-first search: once before visitation of each of the vertices vj , vl, vr. But this
contradicts the fact that a depth-first search scans each edge of a graph exactly twice. 2

The following lemma will help us to complete the proof of the theorem:

Lemma 5 Consider two edges (vi, vj), (vk, vl) in Sm. For every edge (vs, vt) with (vs, vt) ∈
[vi · · · vj]S ∩ [vk · · · vl]S it holds (vs, vt) 6∈ S1.

Proof. The proof is by contradiction. Suppose that (vs, vt) ∈ [vi · · · vj]S ∩ [vk · · · vl]S and
(vs, vt) ∈ S1. Without loss of generality we assume that the modification strategy encountered
first the pair 〈vi, vj〉 and afterwards the pair 〈vk, vl〉 in L′. It must be i < j, k < l and j < l (vj

may coincide with vk). Since (vs, vt) ∈ [vi · · · vj]S ∩ [vk · · · vl]S , then we must have s, t ≤ j and,
consequently, s, t < l. Furthermore, it must hold either that (i) s, t > k or that (ii) s, t > i,
otherwise it should be s, t < i and, given that s, t ≤ j also, we would deduce that (vs, vt) would
have been scanned twice during DFS, once before visitation of vi and once before visitation
of vj . In this case it could not have been scanned again right before visitation of vl. Now,
(i) cannot hold because k ≥ j and s, t < j. If (ii) holds, i.e., s, t > i, it is implied that the
modification strategy did not encounter in L′ vertices vk, vl and vi, vj consecutively (Figure 5),
which is a contradiction. 2

The proof of Theorem 2 can now be completed as follows:

Proof. Relation (4) can be written:

w(S′) ≤
∑

e∈S1

w(e) +
∑

(vi,vj)∈Sm

w([vi . . . vj]S)

=
∑

e∈S1

w(e) +
∑

(vi,vj)∈Sm

∑

e∈[vi...vj ]S

w(e)

=
∑

e∈S1

w(e) +
∑

(vi,vj)∈Sm

(

∑

e∈[vi...vj ]S :e∈S1

w(e) +
∑

e∈[vi...vj ]S :e 6∈S1

w(e)
)

(5)

By Lemmas 4 and 5 the following are implied:
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∑

(vi,vj)∈Sm

∑

e∈[vi...vj ]S :e∈S1

w(e) ≤
∑

e∈S1

w(e) (6)

∑

(vi,vj)∈Sm

∑

e∈[vi...vj ]S :e 6∈S1

w(e) ≤ 2
∑

e∈S\S1

w(e) (7)

By replacing the relations (6) and (7) in the expression (5) we obtain:

w(S′) ≤ 2
∑

e∈S1

w(e) + 2
∑

e∈S\S1

w(e) ≤ 2w(S) (8)

which concludes the proof. 2

Theorem 2 leads to the following result regarding modification and the variety of anticipatory
feasible solutions that DFS can handle effectively:

Corollary 2 There is an O(nα(n)) time modification strategy that can modify an anticipatory
feasible and α-approximate solution for the probabilistic steiner tree problem on metric
graphs, to yield a 2α-approximate solution of the minimum expected weight. This leads to factor
2 approximation for an optimum anticipatory solution and to factor 3.1 approximation for an
anticipatory solution given by the algorithm of [25].

Proof. By Theorem 2 for an α-approximate anticipatory solution S we get w(S′) ≤ 2αopt(G),
where opt(G) denotes the optimum solution value on G. Using Lemma 1 we obtain w(S′) ≤
2αopt(G′). Taking expectation over the distribution of materializable subgraphs G′ and using
Lemma 2, yields the stated result: Eπ(G,S, DFS) ≤ 2αE⋆(G). 2

6 An Application: Probabilistic Steiner Forests

In this section we show that the DFS modification strategy can be extended for the case of the
more general probabilistic steiner forest problem on metric graphs. The Steiner Forest
problem concerns connecting simultaneously pairs of terminal vertices (and not necessarily
interconnecting all terminals), while minimizing the total weight of used edges. Therefore
a feasible solution to the problem is generally a collection of trees. Given such a feasible
anticipatory solution F , we consider the probabilistic steiner forest(DFS) problem, where
DFS is executed independently on each tree of the anticipatory feasible forest, so as to reconnect
it on the actually materialized subgraph G′. The resulting forest F ′ is obviously feasible on
G′, since it connects the same pairs of terminals that F did on G. Furthermore, both F and
F ′ consist of the same number of trees (because DFS is executed on each disconnected tree of
S independently in the second stage). We note that, NP-hardness results regarding a priori
optimization, and modification, trivially carry to the case of probabilistic steiner forest.

The complexity of this extended version of DFS is still O(nα(n)), because if the anticipatory
forest F consists of k trees Si, i = 1 . . . k, then at most O(|Si|α(|Si|)) time is spent per tree.
Since |Si| = O(n) and

∑k
i=1 |Si| = |F | = O(n) the complexity is as stated. We obtain the

following result regarding modification:

Theorem 3 There is an O(nα(n)) time modification strategy for the probabilistic steiner

forest problem on metric graphs that, when applied to an α-approximate anticipatory solution,
produces feasible solutions that are 2α-approximate to the optimum expected cost.

Proof. Assume an anticipatory feasible forest F and a modified solution F ′, each consisting
of k trees Si, S′

i, i = 1 . . . k respectively. Then:
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w(F ) =

k
∑

i=1

w(Si), w(F ′) =

k
∑

i=1

w(S′
i)

By Theorem 2 we have that w(S′
i) ≤ 2w(Si), thus: w(F ′) ≤ 2w(F ). Let opt(G) and opt(G′)

be the weights of an optimum Steiner forest on G and G′ respectively for the given terminal
pairs, and w(F ) ≤ αopt(G). We have opt(G) ≤ opt(G′) for every possible subgraph G′ of G, by
a similar version of Lemma 1 for the Steiner forest problem. Thus w(F ′) ≤ 2αopt(G′). Taking
expectation the distribution of materializable second-stage subgraphs G′ and using Lemma 2,
yields Eπ(G,F, DFS) ≤ 2αE⋆

π(G). 2

Corollary 3 There is a polynomial-time a priori approximation algorithm for the probabilis-

tic steiner forest(DFS) on metric graphs (the algorithm of [1]) yielding factor 4 approxi-
mation of the expected minimum weight. Furthermore, there is an O(nα(n)) time modification
strategy that can modify an optimum anticipatory solution for the probabilistic steiner

forest problem, so as to yield factor 2 approximation of the expected minimum weight.

Notably, for the probabilistic steiner forest problem on metric graphs, a trivial
polynomial-time a priori approximation algorithm, that is independent of chosen modifica-
tion strategy (as the one exhibited by Proposition 4 for probabilistic steiner tree) is not
applicable. This makes the probabilistic steiner forest(DFS) model extremely useful in
practice, if not a unique choice. We also note that in both cases mentioned in the corollary as
much as in cases considered earlier for probabilistic steiner tree, the proposed modifica-
tion strategy is faster than the algorithm used for a priori decisions, and is far more efficient
than the trivial practices discussed in the introduction: in fact, any approximation algorithm
used for taking a priori decisions (including the one of [1, 9]) will incur Ω(n2) complexity.

7 Tightness of Analysis

In this section we show that the result proved in Theorem 2 is in fact tight, i.e., given an
arbitrary anticipatory feasible and ρ-approximate solution S, the modification strategy DFS

produces a second-stage modified solution S′ that can have expected weight arbitrarily close to
2ρE⋆

π(G).
Consider a complete graph Kn+1 on n + 1 vertices numbered by 1, 2, . . . , n + 1. Assume

w.l.o.g. that n ≥ 6 is even and that edge (1, 3) and edges (i, i+1), i = 3, . . . , n−1 have weight 2,
while the other edges of Kn+1 have weight 1. Assume, finally, that only vertex 2 is non-terminal
and its presence probability is p2. It is easy to see that, in this graph, opt(Kn+1) = n + 1 and
such a tree is realized in several ways and, in particular, by a star S with center 2, or by a path
linking somehow the terminals (for example, using edges (1, 3), (i, i + 2), for i odd from 1 to
n + 1, edge (n − 2, n + 1), edges (j, j − 2), for j even going from n − 2 down to 4 and, finally,
edge (4, n)). Obviously,

E∗(Kn+1) = p2(n + 1) + (1 − p2)(n + 1) = n + 1 (9)

Assume now that the anticipatory solution computed is just S (of weight n + 1) and that
the DFS ordering of S has produced the original numbering of Kn+1, i.e., 1 is the leftmost leaf,
2 the star’s center and 3, . . . n + 1 the rest of leaves. If 2 is absent, then the completion of the
tree will produce the path (1, 3, 4, . . . , n + 1) with weight 2n. So, the value of E(Kn+1, S, DFS)
will be:

E(Kn+1, S, DFS) = p2(n + 1) + (1 − p2)2n = 2n − p2n + p2 (10)
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In Figure 6 an illustration of the discussion just above is provided for n = 6. The thick edges
of K7 in Figure 6(a) are the ones with weight 2. It is assumed that vertices 1, 3, 4, 5, 6, 7 are
terminals. In Figure 6(b), an optimal Steiner tree of K7 is shown using non-terminal vertex 2.
It is assumed that this tree is also the anticipatory solution. Its vertices’ numbers represent also
their DFS ordering. In Figure 6(c) is shown the DFS completion of S when 2 is absent. Finally,
in Figure 6(d), the optimal Steiner tree of K7 using only terminals built as described above is
shown. Dividing (9) by (10) we get a ratio that for small enough values of p2 tends to 2.

1

2

3 4 5 6
7

(a)

1

2

3 4 5 6 7

(b)

1 3 4 5 6 7
(c)

1
3 4

5 6
7

(d)

Figure 6: On the tightness of ratio 2ρ.

8 Approximation Algorithms as Modification Strategies

In this section we consider usage of known approximation algorithms for the Steiner Tree prob-
lem as components of a modification strategy. We refer to the emerging modification strategy as
REAPX (for re-approximation). Following our convention we are going to study probabilistic

steiner tree(REAPX). Throughout this section we consider arbitrarily weighted input graphs.
Let S be an anticipatory feasible first-stage solution for the Steiner Tree problem over the

initial weighted graph G(V,E), produced by a ρ-approximation algorithm. Let V ′ ⊆ V be
the realized vertex subset of G in second-stage, and S1 ⊆ S be the surviving portion of the
anticipatory Steiner tree S. Obviously, S1 is generally a forest; denote by Ci, i = 1, . . . , q its
trees (any of its trees can also be a single vertex). The REAPX strategy first constructs S1 by
discarding absent vertices from S. Then, it contracts and replaces by a single vertex ui each
tree Ci, i = 1, . . . , t, that spans at least a terminal vertex from T . Due to contractions several
pairs of vertices may be connected through multiple edges. REAPX retains and considers the
least weighted edge in this case. Let G1(V1, E1) be the resulting graph after contractions and
proper removal of multiple edges. Let T1 denote the set of terminal vertices where vertices of T
that were contracted are substituted in T1 by the single vertex to which they were contracted.

REAPX runs a ρ′-approximation algorithm A for the Steiner Tree problem with terminals set
T1 on G1. Denote by S̄ this tree and assume that it is represented as a list of edges. Then, it
“unfolds” contracted vertices thus obtaining a feasible tree for T on G1 with edge set S′ ⊃ S̄,
also containing edges of contracted trees.

Noticeably, the REAPX strategy does not always incur an asymptotic advantage in compar-
ison to re-evaluating a Steiner tree on G′ from scratch, but it exploits remaining parts of an
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anticipatory Steiner tree, potentially offering some practical time-savings. We show that:

Lemma 6 opt(G′′) ≤ opt(G′).

Proof. Notice that a Steiner tree on G′ spanning the initial terminal set T is also feasible
for the terminal set T1 over G1, because for each v ∈ T1, either v ∈ T , or v has emerged by
contraction of a subset of vertices intersecting T . Since opt(G1) is the value of an optimal
Steiner tree in G1, the result follows. 2

Theorem 4 Let A be a ρ′-approximation algorithm for the Steiner Tree problem called by REAPX

in its second stage. Then an anticipatory feasible and ρ-approximate Steiner tree S on G, yields
a ρ + ρ′-approximation for probabilistic steiner tree(REAPX).

Proof. Obviously, w(S1) ≤ w(S) ≤ ρopt(G). Furthermore, as already discussed, opt(G) ≤
opt(G′) because every feasible tree for G′ is also feasible for G. Execution of the ρ′-approxima-
tion algorithm A on G1 returns an edge set S̄ with total weight w(S̄) ≤ ρ′opt(G1) ≤ ρ′opt(G′),
by Lemma 6. Then, the returned Steiner tree S′ = S1 ∪ S̄ in G′ has total weight at most:

w(S′) ≤ w(S1) + w(S̄) ≤ ρopt(G) + ρ′opt(G′) ≤ (ρ + ρ′)opt(G′) (11)

Taking expectation over all possible materializable subgraphs G′ and using Lemma 2, yields the
stated result. 2

Note that, from Theorem 4, if S is computed optimally, then the ratio derived from Theo-
rem 4 is ρ′+1. This is a case where the REAPX strategy implies an asymptotic practical advantage
with respect to re-evaluation of a Steiner tree on the second-stage graph from scratch. Also,
several other approximation results can be derived depending on the specification of A. For
instance:

• For metric graphs with edge weights 1, 2 if S is the solution computed by the algorithm
in [25], ratios 2.56 and 3.28 are derived when the algorithms of [25] and [1] are used
respectively in implementing REAPX.

• if S is the solution computed by the algorithm in [1], ratios are 3.28 and 4 are derived by
using the algorithms of [25] (for metric graphs with edge weights 1, 2) and [1] (for general
graphs) respectively.

9 Conclusions

In this paper we have treated the probabilistic steiner tree problem under the framework
of 2-stage probabilistic combinatorial optimization. We have shown that both problems, of a
priori optimization, and modification of arbitrary anticipatory feasible solutions are NP-hard.
Subsequently we proposed a fast modification strategy (DFS) for reconstructing a second-stage
tree and shown that problem of optimizing the expectation of the second-stage cost by selecting
an appropriate first-stage anticipatory solution is in NPO under the proposed modification
strategy. For metric graphs we have shown that the modification strategy at most doubles the
weight of an anticipatory solution and thus obtained approximation results that we could extend
to the case of the more general probabilistic steiner forest problem. We have shown that
our analysis is tight.

Notably, another way for estimating the approximation quality of an anticipatory solution S
for probabilistic steiner tree(M), for any modification strategy M, is by using the approxi-
mation ratio Eπ(G,S, M)/Eπ(G,S∗, M) where S∗ is an optimal anticipatory solution. Notice that,
by (1), E∗

π(G) is a lower bound for Eπ(G,S∗, M) (since solutions produced by any modification
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strategy are at least optimal on the materialized subgraph). Therefore, all of our approximation
results remain valid for this approximation ratio too.

Study of the general edge-costs case given an optimum anticipatory solution (possibly by
devising a novel modification strategy) is a matter of future work. We are also investigating the
properties of a different probabilistic model for steiner tree, involving probabilistic terminal
vertices when all other vertices of the graph are present with probability 1.
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