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Abstract. We consider labeled Traveling Salesman Problems, defined
upon a complete graph of n vertices with colored edges. The objective is
to find a tour of maximum (or minimum) number of colors. We derive
results regarding hardness of approximation, and analyze approxima-
tion algorithms for both versions of the problem. For the maximization
version we give a 1

2
-approximation algorithm and show that it is APX-

hard. For the minimization version, we show that it is not approximable
within n1−ǫ for every ǫ > 0. When every color appears in the graph at
most r times and r is an increasing function of n the problem is not
O(r1−ǫ)-approximable. For fixed constant r we analyze a polynomial-
time (r+Hr)/2-approximation algorithm (Hr is the r-th harmonic num-
ber), and prove APX-hardness. Analysis of the studied algorithms is
shown to be tight.

1 Introduction

We consider labeled versions of the Traveling Salesman Problem (TSP), de-
fined upon a complete graph Kn of n vertices along with an edge-labeling (or
coloring) function L : E(Kn) → {c1, . . . , cq}. The objective is to find a hamilto-
nian tour T of Kn optimizing (either maximizing or minimizing) |L(T )|, where
L(T ) = {L(e) : e ∈ T }. We refer to the corresponding problems with MaxLTSP

and MinLTSP respectively. The color frequency of a MinLTSP instance is the
maximum number of equi-colored edges. We use MinLTSP(r) to refer to the
class of MinLTSP instances with fixed color frequency r.

Labeled network optimization over colored graphs has seen extended study
[17, 18, 3, 5, 12, 2, 4, 14, 10, 11, 15]. Minimization of used colors models naturally
the need for using links with common properties, whereas the maximization case
can be viewed as a maximum covering problem with a certain network struc-
ture (in our case such a structure is a hamiltonian cycle). If for example every
color represents a technology consulted by a different vendor, then we wish to
use as few colors as possible, so as to diminish incompatibilities among different
technologies. For the maximization case, consider the situation of designing a
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metropolitan peripheral ring road, where every color represents a different sub-
urban area that a certain link would traverse. In order to maximize the number
of suburban areas that such a peripheral ring covers, we seek a tour of a maxi-
mum number of colors. It was shown in [4] that both MaxLTSP and MinLTSP

are NP-hard.

Contribution We present approximation algorithms and hardness results for
MaxLTSP and MinLTSP. In section 2 we provide a 1

2 -approximation local
improvement algorithm for the MaxLTSP problem and show that the problem
is APX-hard. In section 3 we show that MinLTSP is not approximable within
a factor n1−ǫ for every ǫ > 0 or within a factor O(r1−ǫ) when color frequency
r is an increasing function of n (paragraph 3.1). For the case of fixed constant
r, we analyze a simple greedy algorithm with approximation ratio (r + Hr)/2,
where Hr =

∑r

i=1
1
i

is the r-th harmonic number (paragraph 3.2). For r = 2
MinLTSP(2) is shown to be APX-hard. We conclude with open problems.

Related Work Identification of conditions for the existence of single-colored or
multi-colored cycles on colored graphs was first treated in [6]. A great amount
of work that followed concerned identification of such conditions and bounds
on the number of colors [4, 1, 7, 9]. The optimization problems that we consider
here were shown to be NP-hard in [4]. To the best of our knowledge no further
theoretical development prior our work exists with respect to MaxLTSP and
MinLTSP. An experimental study of MinLTSP appeared in [19]. TSP under
categorization [17, 18] generalizes several TSP problems, and is also a weighted
generalization of MinLTSP. For metric edge weights and at most q colors ap-
pearing in the graph a 2q approximation is achieved in [17, 18].

The recent literature on labeled network optimization problems includes sev-
eral interesting results from both perspectives of hardness and approximation
algorithms. In [10] the authors investigate weighted generalizations of labeled
minimum spanning tree and shortest paths problems, where each label is also
associated with a positive weight and the objective generalizes to minimization
of the weighted sum of different labels used. They analyze approximation al-
gorithms and prove inapproximability results for both problems. NP-hardness
of finding paths with the fewest different colors was shown in [4]. The labeled
minimum spanning tree problem was introduced in [5]. In [12] a greedy approx-
imation algorithm is analyzed, and in [2] bounded color frequency is considered.
The labeled perfect matching problems were studied in [14, 15], while Maffioli et
al. worked on a labeled matroid problem [13]. Complexity of approximation of
bottleneck labeled problems is studied in [11].

2 MaxLTSP: Constant factor Approximation

A simple greedy algorithm yields a 1/3 approximation of MaxLTSP (see full
version).We analyze a 1

2 -approximation algorithm based on local search. The
algorithm grows iteratively by local improvements a subset S ⊆ E of edges, such
that (i) each label of L(S) appears at most once in S and (ii) S does not induce



vertices of degree three or more, or a cycle of length less than n. We call S a
labeled valid subset of edges. Finding a labeled valid subset S of maximum size
is clearly equivalent to MaxLTSP.

Given a labeled valid subset S of (Kn,L), a 1-improvement of S is a labeled
valid subset S ∪ {e1} where e1 /∈ S, whereas a 2-improvement of S is a labeled
valid subset (S \ {e}) ∪ {e1, e2} where e ∈ S and e1, e2 /∈ S \ {e}. An 1- or
2-improvement of S is a labeled valid subset S′ such that |S′| = |S| + 1. An 1-
improvement can be viewed as a particular 2-improvement but we separate the
two cases for ease of presentation. The local improvement algorithm - denoted by
locim - initializes S = ∅ and performs iteratively either an 1- or a 2-improvement
on the current S as long as such an improvement exists. This algorithm works
clearly in polynomial-time. We denote by S the solution returned by locim and
by S∗ an optimal solution.

We introduce further notations. Given e ∈ S, let ℓ(e) be the edge of S∗ with
the same label if such an edge exists. Formally, ℓ : S → S∗ ∪ {⊥} is defined by:

ℓ(e) =

{

⊥ if L(e) /∈ L(S∗)
e∗ ∈ S∗ such that L(e∗) = L(e) otherwise.

For e = [i, j] ∈ S, let N(e) be the edges of S∗ incident to i or j.

N(e) = {[k, l] ∈ S∗ | {k, l} ∩ {i, j} 6= ∅}

N(e) is partitionned into N1(e) and N0(e) as follows: e∗ ∈ N1(e) iff (S\{e})∪{e∗}
is a labeled valid subset, and N0(e) = N(e)\N1(e). In particular, N0(e) contains
the edges e∗ ∈ S∗ of N(e) such that (S \ {e})∪ {e∗} is not labeled valid subset.
Finally, for e∗ = [k, l] ∈ S∗, let N−1(e∗) be the edges of S incident to k or l.

N−1(e∗) = {[i, j] ∈ S | {k, l} ∩ {i, j} 6= ∅}

Property 1. Let e = [i, j] ∈ S and e∗ = [i, k] ∈ N1(e) with k 6= j. Either S has
two edges incident to i, or S ∪ {e∗} contains a cycle passing through e and e∗.

Property 1 holds at the end of the algorithm since otherwise S ∪ {e∗} would be
an 1-improvement of S.

Property 2. Let e = [i, j] ∈ S and e∗1, e
∗
2 ∈ N1(e). Either both e∗1 and e∗2 are

adjacent to i (or to j) or there is a cycle in S ∪ {e∗1, e
∗
2} passing through e∗1, e∗2.

Property 2 holds at the end of the algorithm since otherwise (S \ {e})∪ {e∗1, e
∗
2}

would be a 2-improvement of S. In order to prove the 1
2 approximation factor for

locim we use charging/discharging arguments based on the following function
g : S → R:

g(e) =

{

|N0(e)|/4 + |N1(e)|/2 + 1 − |N−1(ℓ(e))|/4 if ℓ(e) 6=⊥
|N0(e)|/4 + |N1(e)|/2 otherwise

For simplicity the proof of the 1/2-approximation is cut into two propositions.
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(a) |N1(e)| ≥ 3
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i je = (i, j)

l(e) = e∗1

(b) |N−1(ℓ(e))| = 1, ℓ(e) ∈
N1(e)

Fig. 1: Cases studied in proof of proposition 1

Proposition 1. ∀e ∈ S, g(e) ≤ 2.

Proof. Let e = [i, j] be an edge of S. We study two cases, when e ∈ S ∩ S∗

and when e ∈ S \ S∗. If e ∈ S ∩ S∗ then ℓ(e) = e. Observe that |N−1(e)| ≥
|N1(e)|, since otherwise an 1- or 2-improvement would be possible. Since |N(e)| =
|N0(e)| + |N1(e)| ≤ 4 we obtain g(e) ≤ (|N0(e)| + |N1(e)|)/4 + 1 ≤ 2.
Suppose now that e ∈ S\S∗. Let us first show that |N1(e)| ≤ 2. By contradiction,
suppose that {e∗1, e

∗
2, e

∗
3} ⊆ N1(e) and w.l.o.g., assume that e∗1 and e∗2 are incident

to i (see Fig. 1a for an illustration).
The pairs e∗1, e

∗
3 and e∗2, e

∗
3 cannot be simultaneously adjacent since otherwise

{e∗1, e
∗
2, e

∗
3} would form a triangle. Then e∗1, e

∗
3 is a matching. Property 2 implies

that (S \ {e})∪{e∗1, e
∗
3} contains a cycle. This cycle must be (Pe \ {e})∪{e∗1, e

∗
3}

where Pe is the path containing e in S (see Fig. 1a: e∗1 = [i, v2] and e∗3 = [j, v1].
Note that e∗2 6= [i, v1] since e∗2 ∈ N1(e)). Then (S \ {e}) ∪ {e∗2, e

∗
3} would be a

2-improvement of S, a contradiction.

• If ℓ(e) =⊥ or |N−1(ℓ(e))| ≥ 2, we deduce from |N1(e)| ≤ 2 that g(e) ≤ 2.
• If ℓ(e) 6=⊥ and |N−1(ℓ(e))| = 1, then |N1(e)| ≤ 1. Otherwise, let {e∗1, e

∗
2} ⊆

N1(e). We have ℓ(e) 6= e∗1 and ℓ(e) 6= e∗2 since otherwise (S \ {e}) ∪ {e∗1, e
∗
2}

is a 2-improvement of S, see Fig. 1b for an illustration.
In this case, we deduce that (S \ {e}) ∪ {ℓ(e), e∗2} or (S \ {e})∪ {ℓ(e), e∗1} is
a 2-improvement of S, a contradiction. Hence, |N1(e)| ≤ 1 and g(e) ≤ 2.

• If ℓ(e) 6=⊥ and |N−1(ℓ(e))| = 0, then |N1(e)| = 0. Hence, g(e) ≤ 2.

�

We apply a discharging method to establish a relationship between g and |S∗|.

Proposition 2.
∑

e∈S g(e) ≥ |S∗|.

Proof. Let f : S × S∗ → R be defined as:

f(e, e∗) =































1/4 if e∗ ∈ N0(e) and ℓ(e) 6= e∗

1/2 if e∗ ∈ N1(e) and ℓ(e) 6= e∗

1 − |N−1(e∗)|/4 if e∗ /∈ N(e) and ℓ(e) = e∗

5/4 − |N−1(e∗)|/4 if e∗ ∈ N0(e) and ℓ(e) = e∗

3/2 − |N−1(e∗)|/4 if e∗ ∈ N1(e) and ℓ(e) = e∗

0 otherwise
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Fig. 2: The case where N−1(e∗) = {e1, e2}.

For all e ∈ S it is
∑

{e∗∈S∗} f(e, e∗) = g(e). Because of the following:

∑

{e∈S}

g(e) =
∑

{e∗∈S∗}

∑

{e∈S}

f(e, e∗)

it is enough to show that
∑

{e∈S} f(e, e∗) ≥ 1 for all e∗ ∈ S∗. For an edge

e∗ ∈ S∗, we study two cases: L(e∗) ∈ L(S) and L(e∗) /∈ L(S). If L(e∗) ∈ L(S)
then there is e0 ∈ S such that ℓ(e0) = e∗. We distinguish two possibilities:

• e∗ ∈ N(e0): it is possible that e0 = e∗ if e∗ ∈ N1(e0). Then
∑

{e∈S} f(e, e∗) ≥

f(e0, e
∗) +

∑

{e∈(N−1(e∗))\{e0}}
f(e, e∗) ≥ 5

4 − |N−1(e∗)|
4 + |N−1(e∗)|−1

4 = 1

• e∗ /∈ N(e0): then
∑

{e∈S} f(e, e∗) ≥ f(e0, e
∗) +

∑

{e∈N−1(e∗)} f(e, e∗) ≥ 1 −
|N−1(e∗)|

4 + |N−1(e∗)|
4 = 1.

Now consider L(e∗) /∈ L(S). Then |N−1(e∗)| ≥ 2, otherwise S ∪ {e∗} would be
an 1-improvement. We examine the following situations:

• N−1(e∗) = {e1, e2}: By Property 1 e1 and e2 are adjacent, or there is a cycle
passing through e∗, e1 and e2. In this case e∗ ∈ N1(e1) and e∗ ∈ N1(e2) (see
Fig. 2). Thus

∑

{e∈S} f(e, e∗) ≥ f(e1, e
∗) + f(e2, e

∗) = 1
2 + 1

2 = 1.

• N−1(e∗) = {e1, e2, e3}: Then, e∗ ∈ N1(e1) ∪ N1(e2) where e1 and e2 are
assumed adjacent. In the worst case e3 is the ending edge of a path in S
containing both e1 and e2. Assuming that e2 is between e1 and e3 in this
path we obtain e∗ ∈ N1(e2). In conclusion, we deduce

∑

{e∈S} f(e, e∗) ≥
∑3

i=1 f(ei, e
∗) ≥ 1

2 + 2 1
4 = 1.

• N−1(e∗) = {e1, e2, e3, e4}: then
∑

{e∈S} f(e, e∗) ≥
∑4

i=1 f(ei, e
∗) ≥ 4 1

4 = 1.
⊓⊔

Theorem 1. locim is a 1/2-approximation algorithm and this ratio is tight.

Proof. By propositions 1 and 2, we have 2|S| ≥
∑

e∈S g(e) ≥ |S∗|. Fig. 3 gives
an example with approximation ratio 6

10 achieved by locim. This example can
be generalized to asymptotic 1

2 (to appear in the full version). ⊓⊔

Theorem 2. MaxLTSP is APX-hard.

Proof. (Sketch) We construct an L-reduction from the maximum hamiltonian
path problem on graphs with distances 1 and 2 (complete proof appears in the
full version). ⊓⊔
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Fig. 3: A critical instance: undrawn edges have label c1. locim returns the horizontal
path (colors c1 to c6). An optimum contains the other edges, using colors c1 to c10.

3 MinLTSP: Hardness and Approximation

We show that the MinLTSP is generally inapproximable, unless P = NP:
MinLTSP(r) where r is any increasing function of n is not r1−ǫ approximable
for any ǫ > 0. We focus subsequently on fixed color frequency r, and show that
a simple greedy algorithm exhibits a tight non-trivial approximation ratio equal
to (r + Hr)/2, where Hr is the harmonic number of order r. Finally we consider
the simple case of r = 2, for which the algorithm’s approximation ratio becomes
7
4 , and show that MinLTSP(2) is APX-hard.

3.1 Hardness of MinLTSP

Without restrictions on color frequency, any algorithm for MinLTSP will triv-
ially achieve an approximation factor of n. We show that this ratio is optimal,
unless P=NP, by reduction from the hamiltonian s − t-path problem which is
defined as follows: given a graph G = (V, E) with two specified vertices s, t ∈ V ,
decide whether G has a hamiltonian path from s to t. See [8] (problem [GT39]) for
this problem’s NP-completeness. The restriction of the hamiltonian s − t-path
problem on graphs where vertices s, t are of degree 1 remains NP-complete.
In the following let OPT (·) be the optimum solution value to some problem
instance.

Theorem 3. For all ε > 0, MinLTSP is not n1−ε-approximable unless P=NP,
where n is the number of vertices.

Proof. Let ε > 0 and let G = (V, E) be an instance of the hamiltonian s− t-path
problem on a graph with two specified vertices s, t ∈ V having degree 1 in G. Let
p = ⌈ 1

ε
⌉ − 1. We construct the following instance I of MinLTSP: take a graph

consisting of np copies of G, where the i-th copy is denoted by Gi = (Vi, Ei)
and si, ti are the corresponding copies of vertices s, t. Set L(e) = c0 for every
e ∈ ∪np

i=1Ei, L([ti, si+1]) = c0 for all i = 1, . . . , np − 1, and L([tnp , s1]) = c0.
Complete this graph by taking a new color per remaining edge. This construction
can obviously be done in polynomial time, and the resulting graph has np+1

vertices.
If G has a hamiltonian s − t-path, then OPT (I) = 1. Otherwise, G has no

hamiltonian path for any pair of vertices since vertices s, t ∈ V have a degree 1
in G. Hence OPT (I) ≥ np +1, because for each copy Gi either the restriction of
an optimal tour T ∗ (with value OPT (I)) in copy Gi is a hamiltonian path, and



Algorithm 1: Greedy Tour

Let T ← ∅;
Let K ← {c1, . . . , cq};
while T is not a tour do

Consider cj ∈ K maximizing |E′| such that E′ ⊆ L−1(cj) and T ∪E′ is valid;
T ← T ∪E′;
K ← K \ {cj};

end

return T ;

T ∗ uses a new color (distinct of c0) or T ∗ uses at least two new colors linking Gi

to the other copies. Since |V (Knp+1)| = np+1, we deduce that it is NP-complete

to distinguish between OPT (I) = 1 and OPT (I) ≥ |V (Knp+1)|1−
1

p+1 + 1 >
|V (Knp+1)|1−ε. �

The hamiltonian s− t-path problem is also NP-complete in graphs of maximum
degree 3 (problem [GT39] in [8]). Thus, applying the reduction given in Theorem
3 to this restriction, we deduce that the color frequency r of I is upper bounded
by (3n+2

2 )np = O(np+1). Thus, when r grows with n we obtain:

Corollary 1. There exists c > 0 such that for all ε > 0, MinLTSP is not
c r1−ε-approximable where r is the color frequency, unless P=NP.

3.2 The Case of Fixed Color Frequency

We describe and analyze a greedy approximation algorithm (referred to as Greedy
Tour - algorithm 1) for the MinLTSP(r), for fixed r = O(1). In the description
of the algorithm Greedy Tour we use the notion of a valid subset of edges which
do not induce vertices of degree three or more and also do not induce a cycle of
length less than n. The algorithm augments iteratively a valid subset of edges
by a chosen subset E′, until a feasible tour of the input graph is formed. It
initializes the set of colors K and iteratively identifies the color that offers the
largest set of edges that is valid with respect to the current (partial) tour T and
adds it to the tour, while also eliminating the selected color from the current set
of colors. For constant r ≥ 1 Greedy Tour is of polynomially bounded complexity
proportional to O(nr+1). We introduce some definitions and notations that we
use in the analysis of Greedy Tour. Let T ∗ denote an optimum tour and T be a
tour produced by Greedy Tour.

Definition 1. (Blocks) For j = 1, . . . , r, the j-block with respect to the exe-
cution of Greedy Tour is the subset of iterations during which it was |E′| ≥ j.
Let Tj be the subset of edges selected by Greedy Tour during the j-block and
Vj = V (Tj) be the set of vertices that are endpoints of edges in Tj.

Definition 2. (Color Degree) For a color c ∈ L(T ∗) define its color degree
fj(c) in Vj to be fj(c) =

∑

v∈Vj
dGc

(v), where Gc = (V,L−1(c)∩T ∗) and dGc
(v)

is the degree of v in graph Gc.
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Fig. 4: Graphical illustration of definitions: if c1, c2 ∈ Lj(T
∗), apart from vertices x, y, z,

the remaining endpoints of paths are black terminals. Inner vertices are white terminals

(drawn white), while vertices outside the paths are optional vertices.

For j ∈ {2, . . . , r} let Lj(T
∗) be the set of colors that appear at least j times

in T ∗: Lj(T
∗) = {c ∈ L(T ∗) : |L−1(c) ∩ T ∗| ≥ j}. In general Tj contains k ≥ 0

paths (in case k = 0, Tj is a tour). We consider p vertices {v1, . . . , vp} ⊆ Vj of
degree 1 in Tj (i.e. they are endpoints of paths), such that each such vertex is
adjacent to two edges of T ∗ that have colors in Lj(T

∗). We refer to vertices of
{v1, . . . vp} as black terminals. We refer to vertices in Vj \ {v1, . . . , vp} as white
terminals and to vertices in V \Vj as optional (see Fig. 4 for an illustration). We
also assume the existence of q ≥ 0 path endpoints of Tj adjacent to one edge of
T ∗ with color in Lj(T

∗). Clearly p + q ≤ 2k.
We consider a partition of Lj(T

∗): L∗
j,in and L∗

j,out. A color c ∈ Lj(T
∗)

belongs in L∗
j,out if there is an edge with this color incident to a black terminal

of Vj . Then L∗
j,in = Lj(T

∗) \ L∗
j,out.

Lemma 1 (Color Degree Lemma). For any j = 2, . . . , r the following hold:

(i) If c ∈ L∗
j,in, then fj(c) ≥ |L−1(c) ∩ T ∗| + 1 − j.

(ii)
∑

c∈L∗

j,out

fj(c) ≥
∑

c∈L∗

j,out

(|L−1(c) ∩ T ∗| + 1 − j) + p.

Proof. (i): Except of the |L−1(c)∩T ∗| ≥ j edges of color c in T ∗, at most j − 1
valid ones (with respect to Tj) may be missing from Tj (and possibly collected
in Tj−1): if there are more than j − 1, then they should have been collected by
Greedy Tour in Tj . Then at least |L−1(c) ∩ T ∗| − (j − 1) edges of color c must
have one endpoint in Vj , and the result follows.
(ii): First we note an important fact for each color c ∈ L∗

j,out: exactly one of the
two edges incident to a black terminal (suppose one with color c) belongs to the
set of at most j−1 valid c-colored edges, that were not collected in Tj. Using the
same argument as in statement (i), we have that at least |L−1(c)∩T ∗| − (j − 1)
c-colored edges that are incident to at least one vertex of Vj .

The fact that we mentioned can help us tighten this bound even further, by
counting to the color degree the contribution of one edge belonging to the set of
at most j − 1 valid ones: an edge incident to a black terminal is also incident to
either an optional vertex, or a terminal (black or white). Take one black terminal
vi of the two edges [x, vi], [vi, y] of T ∗ incident to it and consider the following
cases:



– If x is a white or black terminal: then the color degree must be increased by
one, because this edge can be counted twice in the color degree. The same
fact also holds for y.

– If x and y are optional vertices: then the color degree must be increased by at
least one, because each edge set {[x, vi]}∪Tj or {[vi, y]}∪Tj is valid (and was
subtracted from |L−1(c) ∩ T ∗| with the at most j − 1 valid ones). However,
if the both edges have the same color, the color degree only increases by one
unit since the set {[x, vi], [vi, y]} ∪ Tj is not valid.

Therefore we have an increase of one in the color degree of some colors in L∗
j,out

and, in fact, of p of them at least. Thus statement (ii) follows. �

Let y∗
i and yi be the number of colors appearing exactly i times in T ∗ and T

respectively. Then we show that:

Lemma 2. For j = 2, . . . , r:

r
∑

i=j

(i + 1 − j)y∗
i ≤

r
∑

i=j

2i yi

Proof. We prove the inequality by upper and lower bounding the quantity F ∗
j =

∑

c∈Lj(T∗) fj(c). A lower bound stems from Lemma 1:

F ∗
j ≥

r
∑

i=j

(i + 1 − j)y∗
i + p (1)

Assume now that Tj consists of k disjoint paths. Then |Vj | =
∑r

i=j iyi + k

and the number of internal vertices on all k paths of Tj is:
∑r

i=j iyi − k. Each
internal vertex of Vj may contribute at most twice to F ∗

j . Furthermore, each
black terminal of Tj , i.e. each vertex of {v1, . . . , vp}, also contributes twice by
definition. Assume that there are q endpoints of paths in Tj , each contributing
once to F ∗

j . Clearly p + q ≤ 2k. Then:

F ∗
j ≤ 2(

r
∑

i=j

iyi − k) + 2p + q ≤
r

∑

i=j

i2yi + p (2)

The result follows by combination of (1) and (2). �

We prove the approximation ratio of Greedy Tour by using Lemma 2:

Theorem 4. For any r ≥ 1 fixed, Greedy tour gives a r+Hr

2 −approximation for
MinLTSP(r) and the analysis is tight.

Proof. By summing up inequality of Lemma 2 with coefficient 1
2(j−1)j for j =

2, . . . , r, we obtain:

r
∑

j=2

r
∑

i=j

i + 1 − j

2j(j − 1)
y∗

i ≤
r

∑

j=2

r
∑

i=j

i

j(j − 1)
yi (3)

For the right-hand part of inequality (3) we have:



r
∑

j=2

r
∑

i=j

i

j(j − 1)
yi =

r
∑

i=2

i yi

i
∑

j=2

1

j(j − 1)
=

r
∑

i=2

i yi

i
∑

j=2

(
1

j − 1
−

1

j
)

=

r
∑

i=2

i yi(1 −
1

i
) =

r
∑

i=2

(i − 1)yi

For the left-hand part of inequality (3) we have:

r
∑

j=2

r
∑

i=j

i + 1 − j

2j(j − 1)
y∗

i =
r

∑

i=2

y∗
i

2

i
∑

j=2

i + 1 − j

j(j − 1)
(4)

But we also have:

i
∑

j=2

i + 1 − j

j(j − 1)
=

i
∑

j=2

(
i − (j − 1)

j − 1
−

i − j

j
) − (Hi − 1) = i − Hi (5)

where Hi =
∑i

k=1
1
k
. Therefore relation (4) becomes by (5):

r
∑

j=2

r
∑

i=j

i + 1 − j

2j(j − 1)
y∗

i =
r

∑

i=2

i − Hi

2
y∗

i (6)

By plugging the right-hand equality and (6) into inequality (3), we obtain:

r
∑

i=2

i − Hi

2
y∗

i ≤
r

∑

i=2

(i − 1)yi (7)

Denote by APX and OPT the number of colors used by Greedy Tour and by
the optimum solution respectively. Then

OPT =

r
∑

i=1

y∗
i , APX =

r
∑

i=1

yi, and

r
∑

i=1

iyi =

r
∑

i=1

iy∗
i = n (8)

where n = |T | = |T ∗| is the number of vertices of the graph. By (8) we can write
APX = n −

∑r

i=2(i − 1)yi, and using inequality (7), we deduce:

APX ≤
r

∑

i=1

iy∗
i −

r
∑

i=2

i − Hi

2
y∗

i =
r

∑

i=1

i + Hi

2
y∗

i

Finally, since i + Hi ≤ r + Hr when i ≤ r, we obtain:

APX ≤
r + Hr

2

r
∑

i=1

y∗
i =

r + Hr

2
OPT

Fig. 5 illustrates tightness for r = 2. Only colors appearing twice are drawn.
The optimal tour uses colors c1 to c4, whereas Greedy Tour takes c5 and com-
pletes the tour with 6 new colors appearing once. This yields factor 7

4 = 2+H2

2



c1

c1

c2c2

c3

c3

c4 c4

c5

c5

Fig. 5: Only colors appearing twice are represented. The others appears once.

approximation. A detailed example for r ≥ 3 is given in the full version of the
paper. ⊓⊔

We show next that MinLTSP(2) is as hard to approximate as the minimum
cost hamiltonian path problem on a complete metric graph with edge costs 1
and 2 (MinHPP1,2). MinHPP1,2 is NP-hard (problem [ND22] in [8]).

Theorem 5. A ρ-approximation for MinLTSP(2) can be polynomially trans-
formed into a (ρ + ε)-approximation for MinHPP1,2, for all ε > 0.

Proof. Let I be an instance of MinHPP1,2, with V (Kn) = {v1, . . . , vn}, and d :
E(Kn) → {1, 2}. We construct an instance I ′ of MinLTSP(2) on K2n as follows.
The vertex set of K2n is V (K2n) = {v1, . . . , vn} ∪ {v′1, . . . , v

′
n}. For every edge

e = [x, y] ∈ E(Kn) with d(x, y) = 1 we define two edges [x, y], [x′, y′] ∈ E(K2n)
with the same color L([x, y]) = L([x′, y′]) = ce. We complete the coloring of K2n

by adding a new color for each of the rest of the edges K2n.
Let P ∗ be an optimum hamiltonian path (with endpoints s and t) of Kn with

cost OPT (I). We build a tour T ′ of K2n by taking P ∗, the edges [x, x′], [y, y′]
and a copy of P ∗ on vertices {v′1, . . . , v

′
n}. We obtain |L(T ′)| = OPT (I)+2, and

deduce:

OPT (I ′) ≤ OPT (I) + 2 (9)

Now let T ′ be a feasible solution of I ′. Assume that n2 colors appear twice in T ′

(thus 2n−2n2 colors appear once in T ′). In Kn, the set of edges with these colors
corresponds to a collection of disjoint paths P1, . . . , Pk with edges of distance 1.
Then, by adding exactly n−1−n2 edges we obtain a hamiltonian path P of Kn

with cost at most:

d(P ) ≤ |L(T ′)| − 2 (10)

where d(P ) =
∑

e∈P d(e). Using inequalities (9) and (10), we deduce OPT (I ′) =
OPT (I)+2. Now, if T is a ρ-approximation for MinLTSP(2), we deduce d(P ) ≤
ρ OPT (I) + 2(ρ − 1) ≤ (ρ + ε)OPT (I) when n is large enough. �

Since the traveling salesman problem with distances 1 and 2 (MinTSP1,2) is
APX-hard, [16] (then, MinHPP1,2 is also APX-hard), we conclude by Theorem
5 that MinLTSP(2) is APX-hard. Moreover, MinLTSP(2) belongs to APX
because any feasible tour is 2-approximate.

Corollary 2. MinLTSP(2) is APX-complete.



4 Open questions and future work

Can we provide a better approximation algorithm for MinLTSP(r), when r is
a fixed small constant (e.g. r = 2)? Concerning MaxLTSP, local search using
k−improvements for fixed k ≥ 3 could exhibit better performance but its analysis
appears quite non-trivial. It would be also interesting to explore the complexity
of MaxLTSP(r) with bounded color frequency r.
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