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Abstract

This work concerns average case analysis of simple solutions for random set covering (SC )
instances. Simple solutions are constructed via an O(nm) algorithm. At first an analytical
upper bound on the expected solution size is provided. The bound in combination with
previous results yields an absolute asymptotic approximation result of o(log m) order. An
upper bound on the variance of simple solution values is calculated. Sensitivity analysis
performed on simple solutions for random SC instances shows that they are highly robust,
in the sense of maintaining their feasibility against augmentation of the input data with
additional random constraints.
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1 Introduction

Given a ground set X, |X| = m, and a family F of subsets of X, |F| = n, the uniform cost Set
Covering Problem (SC ) involves finding a minimum cardinality set S ⊆ F , such that:

⋃

A∈S A =
X. The SC is well known to be NP-hard. The problem is not approximable within a constant
factor. Recently Feige [2] has shown that, (1−o(1)) log m is the lowest achievable approximation
ratio, unless NP has slightly superpolynomial time algorithms. Many approximation algorithms
have appeared [8] for the SC and several special cases of it.

Perhaps the most widely celebrated algorithm for solving the SC is the O(log m) approxi-
mation greedy algorithm, of O(nm2) complexity, independently studied by Lóvasz [6] and John-
son [5]. The greedy algorithm’s performance has proved to be satisfactory in comparison to
several other well elaborated heuristics [7]. The greedy algorithm achieves an O(log m) approxi-
mation for both, uniform cost and weighted SC problems [1]. The tightest known so far analysis
of the greedy algorithm was developed in [9].

Random instances of SC have largely been used throughout the literature as testbed for
experimentations and evaluation of novel heuristics. Previous theoretical work on random in-
stances was carried out in [11], where several asymptotic results of strong and weak convergence
were presented, in a spirit of exposing the advantages incurred by the distribution of the input
data.

In this work we present an algorithm for random SC, and study the expected solution values
and their variance, thus concluding the analysis of [11]. Our analysis contributes to the under-
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standing of the random SC hardness and the advantages incurred by the input data distribution,
through experimentally testable theoretical results. Elaboration of previous results from [11]
leads to approximability properties. We also apply sensitivity analysis of simple coverings pro-
duced by the described algorithm, with respect to input data perturbation via augmentation
with additional random constraints.

Section 2 comments on the random instance model and discusses a simple O(nm) algo-
rithm for the random SC. Analysis is developed in section 3. Some experiments illustrating our
theoretical results are presented in section 4, and we finally conclude in section 5.

2 The random model and the simple algorithm

A random SC instance will be from now on denoted with (m, p), where m is the cardinality of
the ground set X = {x1, x2, . . . , xm}, |X| = m. The quantity p suggests probability measure in
(0, 1). A family F of n subsets of X is assumed, F = {A1, A2, . . . , An}, |F| = n, Aj ⊆ X. The
parameter n does not appear in the instance prescription, because it is determined upon m by
certain conditions explained below, that ensure non-triviality of an instance. The construction
of a random SC instance is done by letting a ground element xi belong to a subset Aj with
probability p (that is through a Bernoulli trial):

Pr[xi ∈ Aj ] = p, xi ∈ X, Aj ∈ F

Thus the instance is constructed by performing mn such independent Bernoulli Trials. In
deriving asymptotic results on the instance size, a discrimination between two models is made
in [12] concerning the generation of random instances of increasing size: the independent model,
where an entirely new instance is generated, and the incremental model where each instance of
greater dimensions is generated by an extension of an instance of smaller dimensions. In the
sequel we consider only the independent model.

At first a condition is needed, that establishes feasibility of random instances. Indeed, not
all random instances are feasible. The following theorem fortunately holds for all the interesting
instances, occurring in real world applications:

Theorem 1 ([11] Theorem 2.2) If the following condition is satisfied, then the corresponding
random SC instances are feasible almost everywhere (with probability 1):

lim
m→∞

n

log m
= ∞

In [11] a second condition is assumed to hold, namely that there exists α > 0, such that
n 6 mα: the number of subsets is polynomialy bounded by the number of ground elements. This
condition holds in most real world SC instances, and ensures that the instance is non trivial
with high probability: e.g. an exponential in m number of random subsets created through
independent Bernoulli trials, subsumes a high probability of existence of a subset A, A = X,
which makes the instance trivial. We will assume that these conditions are satisfied, and in the
sequel we will consider m to be the leading parameter of our analysis, assuming that n behaves
appropriately.

The simple algorithm is described as algorithm 1. The parameter k0 depends on p and
m = |X|, and its value will be determined later. The algorithm picks k0 arbitrary subsets from
F and updates X with respect to their union. Any ground element not covered by these k0

subsets, is subsequently covered by an appropriately selected subset from F . The algorithm’s
complexity is O(nm) due to the O(nm) X update by the union of the first k0 subsets.
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Algorithm 1 The simple algorithm
simple(X,F , p)
1. S ← ∅
2. k0 ← k0(|X|, p)

3. store in S k0 arbitrary distinct subsets from F
4. F ← F − S

5. X ← X −
⋃

A∈S
A

6. while X 6= ∅
7. pick x ∈ X and A ∈ F : x ∈ A

8. S ← S ∪ A

9. F ← F − {A}
10. X ← X − {x}
11. return S

The simple algorithm is obviously deterministic. In what follows, we apply an average case
analysis of the algorithm’s behavior on the class of random SC instances. We shall prove that,
on average, the algorithm provides solutions with o(log m) absolute deviation from the optimum,
exhibiting O(1) variance. Furthermore, simple solutions remain feasible under augmentation of
the instance with ω(m) random constraints.

3 Analysis

In order to derive an upper bound on the expected size of the solution produced by the simple
algorithm, some definitions are introduced. Assuming that k0 6 m, the simple algorithm picks
at most m subsets from F . We divide the progress of the algorithm in steps. At each step
a subset is selected. Each of the first k0 steps corresponds to selection of an arbitrary subset,
whereas each of the subsequent steps (within the while loop) corresponds to selection of a subset
covering a specific ground element. Let k ∈ {1, . . . , m} denote the k-th selected subset (on the
k-th step). Although the algorithm may select less than m subsets, k is extended to the range
1 . . .m, assuming that if a feasible solution has been constructed before the k-th step, then no
subset is selected during this step and the subsequent ones. Some definitions follow:

• {Sm} is a sequence of random variables, Sm being the simple solution size, i.e. the number
of subsets used by the simple algorithm for covering a ground set of m elements.

• {optm} is a sequence of random variables, with optm being the optimum solution value of
a random SC instance (m, p).

• Let {Ck}, k ∈ {1, . . . , m} be a sequence of random variables with Ck being the number of
ground elements newly covered by the k-th subset entering the solution set. For k > Sm

we define Ck = 0.

• Let {Uk}, k ∈ {1, . . . , m} be a sequence of random variables with Uk denoting the number
of elements remaining uncovered after entrance of the k-th subset in the solution set. For
k > Sm we define Uk = 0.

• The indicator random variables aij , for i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, denote whether the
ground element xi ∈ X is covered by the subset Aj ∈ F . Obviously for a random SC
instance (m, p) Pr[aij = 1] = p.

By the description of the simple algorithm one can observe that:
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Uk 6 Uk−1, Uk +
k

∑

l=1

Cl = m

The following lemma determines such a value for k0 that E[Ck] > 1 for all k 6 k0:

Lemma 1 Consider a random SC instance (m, p). Then:

E[Uk0 ] <
1

p
, k0 = ⌊1 −

log(pm)

log(1 − p)
⌋

Proof. From the description of the simple algorithm, just before the k-th step, Uk−1 ground
elements remain uncovered, so that the following random sum of i.i.d. Bernoulli variables ex-
presses the number of ground elements to be covered at the k-th step:

Ck =

Uk−1
∑

r=1

airjk

For Uk we have Uk = Uk−1 − Ck. Observe that Uk−1 is pretty independent of airjk
(see [3],

chapter 12), so that because of the binomial distribution of the ground elements to subsets:

E[Ck] = pE[Uk−1], E[Uk] = (1 − p)E[Uk−1] (1)

Assuming U0 = m, E[U0] = m, one easily derives the closed forms:

E[Uk] = (1 − p)km (2)

E[Ck] = p(1 − p)k−1m (3)

We identify an upper bound k0 on the step index k, so that E[Ck] > 1 for all k 6 k0. By
equation (3):

k0 = ⌊1 −
log(pm)

log(1 − p)
⌋ (4)

Now observe that k0 > − log(pm)/ log(1 − p). Thus we get an upper bound for E[Uk0 ], by
substituting − log(pm)/ log(1 − p) for k in equation (2) and this completes the proof.¤

3.1 Approximation

At this point we prove an analytical tight upper bound on the expected cardinality of solutions
constructed by the simple algorithm for random instances:

Theorem 2 Given a random SC instance (m, p), |X| = m, |F| = n, the simple algorithm
returns a solution S of cardinality Sm, E[Sm] being bounded by:

−
log(pm)

log(1 − p)
< E[Sm] <

1

p
+ 1 −

log(pm)

log(1 − p)

Proof. Observe that by the simple algorithm’s description, Sm = k0 + Uk0 > k0. Thus:

E[Sm] = k0 + E[Uk0 ] (5)

Substituting in equation (5) the values obtained from lemma 1 the result follows.¤
The central result of our work makes use of the following theorem:
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Theorem 3 ([11], Theorem 3.1) The sequence of random variables {optm} satisfies:

lim
m→∞

optm
log m

= −
1

log(1 − p)
almost everywhere (a.e.)

By combining theorems 2 and 3 it is shown:

Theorem 4 Random SC is on average approximated within a term of o(log m) from the opti-
mum almost everywhere.

Proof. The proof follows by theorem 2:

lim
m→∞

E[Sm]

log m
=

−1

log(1 − p)

By theorem 3: lim
m→∞

E[Sm] − optm
log m

= 0 a.e., thus E[Sm] = optm + o(log m) a.e.¤

The result of theorem 4 would be of diminished value if solutions built by the simple algorithm
exhibited large variance. This does not hold however. The following is proved:

Lemma 2 V [Uk] = E[Uk], for k 6 k0.

Proof. It is possible to calculate the variance of Uk, because Uk−1 is independent of airjk

(see [3], chapter 12):

Uk =

Uk−1
∑

r=1

(1 − airjk
) ⇒

V [Uk] = V [(1 − ai1jk
)]E[Uk−1] +

(

E[(1 − ai1jk
)]

)2
V [Uk−1] ⇒

V [Uk] = p(1 − p)E[Uk−1] + (1 − p)2V [Uk−1]

This is a recurrent relation, with a fortunate terminating condition: U1 is the number of
ground elements remaining uncovered after the first step (selection of the first subset), and is
binomially distributed. Thus V [U1] = p(1 − p)m. Lemma 1 and, in particular, equation (2)
gives E[Uk] for k 6 k0. The following closed form is thus obtained:

V [Uk] = p
k−1
∑

l=1

(1 − p)2(k−l)−1E[Ul] + (1 − p)2(k−1)V [U1]

Manipulation of this equation after substitution of E[Ul] and V [U1] yields V [Uk] = (1 −
p)km = E[Uk].¤

Theorem 5 For the class of random SC instances (m, p) the simple algorithm yields solution
values with O(1) variance.

Proof. The variance of produced solutions is first calculated:

V [Sm] = E[S2
m] − (E[Sm])2 (6)

Because Sm = k0 + Uk0 equation (6) becomes:

V [Sm] = E[(k0 + Uk0)
2] −

(

k0 + E[Uk0 ]
)2

⇒

V [Sm] = E[U2
k0

] −
(

E[Uk0 ]
)2

⇒ V [Sm] = V [Uk0 ] (7)

By lemmas 2 and 1 V [Sm] = E[Uk0 ] < 1/p.¤
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3.2 Sensitivity Analysis

In this section we perform sensitivity analysis on simple solutions with respect to increments of
the instance’s data. That is, examination of the possibility that an existent solution remains
feasible despite the instance’s augmentation with random constraints. The situation of the
instance’s input data being altered after a solution has been calculated is of interest in several
contexts such as in evaluation of reliability bounds [10]. Here we prove a theorem analogous to
the result of [4], where O(log m) element insertions in a SC instance do not alter the existent
solution’s approximation properties with respect to the optimum value of the novel instance.

The constraints of the SC correspond to the coverage of all ground elements. Augmentation
with new constraints essentially corresponds to introduction of new ground elements, and their
insertion to each of the subsets of F with the same probability p.

Theorem 6 A simple solution S for a random SC instance (m, p), |X| = m, remains feasible
under ω(m) element insertions on average.

Proof. Assume augmentation of X with still one ground element, and appropriate insertion
of the element in some subsets of F under independent Bernoulli trials of probability p. Let
S ⊆ F be a solution produced by the simple algorithm, with |S| = Sm = s. Furthermore, Tm is
a random variable that counts the number of new ground element insertions before the existent
solution becomes infeasible. If x is the newly inserted element:

Pr[x 6∈ (∪A∈SA)|Sm = s] = (1 − p)s ⇒

E[Tm|Sm = s] = (1 − p)−s

In order to estimate E[Tm], since 1 6 Sm 6 m, we have:

E[Tm] =

m
∑

s=1

(

E[Tm|Sm = s] Pr[Sm = s]
)

⇒

E[Tm] =
m

∑

s=1

(

(1 − p)−s Pr[Sm = s]
)

=
m

∑

s=1

mPr[Sm = s]

(1 − p)sm
⇒

E[Tm] = m
[

k0
∑

s=1

Pr[Sm = s]

(1 − p)sm
+

m
∑

s=k0+1

Pr[Sm = s]

(1 − p)sm

]

(8)

By lemma 1, for s > k0 + 1 we have:

(1 − p)sm 6 (1 − p)k0+1m = (1 − p)E[Uk0 ] ⇒ (1 − p)sm <
1 − p

p

On the other hand, for s 6 k0, (1 − p)sm = E[Uk] 6 m. So, expression 8 becomes:

E[Tm] > m
[

k0
∑

s=1

Pr[Sm = s]

m
+

p

1 − p

m
∑

s=k0+1

Pr[Sm = s]
]

⇒

E[Tm] > c
p

1 − p
m, c =

m
∑

s=k0+1

Pr[Sm = s] 6= 0

Thus E[Tm] has a strict lower bounding order of ω(m).¤
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Figure 1: Averages for simple solution values, variance, and average number of extra feasibility
preserving constraints.

4 Experimental Illustration

We present some experiments that are in perfect concordance with the theoretical results. Exper-
iments were conducted for instances with m ∈ {200, 600, 1000, 3000, 5000} and 0.05 6 p 6 1.0,
with a step of 10−2. For each parameter combination 1000 random instances were generated.
We report on average solution values and on the average number of extra feasibility preserving
random constraints added to each instance. The unbiased variance estimator of solutions pro-
duced by the simple algorithm is also depicted for the aforementioned classes of instances, and
is shown to be bounded by 1/p.

The upper two diagrams of fig. 1 depict average of solution values for instances (200, p)
and (5000, p), and the corresponding curves obtained by theorem 2. The curves upper bound
the averages produced by the experiments as was expected. The unbiased variance estimator
of experimental simple solution values is shown to be bounded by 1/p on the lower left dia-
gram, whereas the linear dependence on m of average number of feasibility preserving random
constraints is depicted on the lower right graph.

5 Conclusions

In this work we have developed the first (to the best of our knowledge) average case absolute
error bound in approximating the class of random set covering instances. The value of this
bound was further strengthened by the favorably low variance of solution values produced by
the simple algorithm. Simple solutions were also shown to be extremely robust with respect to
perturbation of input data incurred by augmentation of additional random constraints.

It appears that on average, the simple algorithm produces solutions with a small deviation
from the optimum. It is a matter of future work to show that the smarter greedy algorithm
performs even better (it does so in practice) by lessening or possibly eliminating the deviation.
Our results provide strong intuition that random SC instances may constitute a broad class of
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instances for which the greedy algorithm proves to be optimum on average. It was empirically
shown in [7] that random instances are the field of weak performance of several intelligent
heuristics, outperformed by the greedy algorithm. Although random instances seldom occur in
practice, they present a challenge for complex heuristics, whereas they are well approximated
by the greedy algorithm and, as this work intrigues, by the simple algorithm.

It seems that the analysis for the random set covering can extend to handle average case
analysis of maximum k-covers, where the target is to maximize the number of covered ground
elements when a solution consists of precisely k subsets.

References
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