Mathematical Neuroscience
A personal perspective

Olivier Faugeras

INRIA

October 25, 2022
Outline

Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
Hierarchy and Complexity in the CNS

Mathematical Neuroscience

Introduction
How different are the viewpoints of biologists, physicists, and mathematicians?

- Induction and deduction
- Biologists make observations, measurements, run computational models on data. More induction than deduction.
- Physicists develop computational models, make simulations - do not provide proofs - discover what happens with reasonable certainty. More deduction than induction.
- Mathematicians attempt to provide rigorous proofs - sometimes of results that are "known" by another community - tough when most results bear upon situations considered easy (if not trivial) by the physicists or the biologists. Emphasis on deduction.
Predictive mathematical models for Neuroscience

- The goal of mathematical neuroscience is to develop predictive, falsifiable, pieces of mathematics (Karl Popper).
- In neuroscience and in biology more generally all (mathematical) models are (at least partially) wrong.
- Mathematics rigorously proves facts helping to circumscribe the domain of validity of models.
Example: The work of Hodgkin and Huxley

One of the most famous mathematical models is that of Hodgkin and Huxley (1952), Nobel prize in physiology (1961).

It has been falsified: some of its predictions are incorrect (Hodgkin and Huxley (1952), Jane Cronin (1987, p.66)).

It is valid for a large number of experimental conditions.
Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
The flow of electric current through the surface membrane of a giant nerve fibre

From Hodgkin Huxley (1952)
The equations

\[I = C_m \frac{dV_m}{dt} + \bar{g}_K n^4 (V_m - V_K) + \bar{g}_{Na} m^3 h (V_m - V_{Na}) + \bar{g}_l (V_m - V_l), \]

\[\frac{dn}{dt} = \alpha_n(V_m)(1-n) - \beta_n(V_m)n \]

\[\frac{dm}{dt} = \alpha_m(V_m)(1-m) - \beta_m(V_m)m \]

\[\frac{dh}{dt} = \alpha_h(V_m)(1-h) - \beta_h(V_m)h \]

\(n, m \) are activation variables

\(h \) is an inactivation variable

They also wrote the action potential propagation equation
The action potential

Mathematical Neuroscience

Hodgkin Huxley

E_{Na}

V increases

Na^+ enters cell

V_{rest}

E_K

Na^+ channels activate: $m \uparrow$

Na^+ channels inactivate: $h \downarrow$

K^+ channels activate: $n \uparrow$

Na^+ deactivates: $m \downarrow$

Na^+ deinactivates: $h \uparrow$

K^+ deactivates: $n \downarrow$
This model and variations thereof have been immensely successful in predicting neurons behaviours (Izhikevitch (2005))
Today's view: ions and gates

Inside
- Na⁺ (5-15 mM)
- K⁺ (140 mM)
- Cl⁻ (4 mM)
- Ca²⁺ (0.1 μM)
- A⁻ (147 mM)

Outside
- Na⁺ (145 mM)
- K⁺ (5 mM)
- Cl⁻ (110 mM)
- Ca²⁺ (2.5-5 mM)
- A⁻ (25 mM)

Equilibrium Potentials

\[
\begin{align*}
\text{Na}^+ & \quad 62 \log \frac{145}{5} = 90 \text{ mV} \\
& \quad 62 \log \frac{145}{15} = 61 \text{ mV} \\
\text{K}^+ & \quad 62 \log \frac{5}{140} = -90 \text{ mV} \\
\text{Cl}^- & \quad -62 \log \frac{110}{4} = -89 \text{ mV} \\
\text{Ca}^{2+} & \quad 31 \log \frac{2.5}{10^{-4}} = 136 \text{ mV} \\
& \quad 31 \log \frac{5}{10^{-4}} = 146 \text{ mV}
\end{align*}
\]

From Izhikevich 2005
Ion channels

From Izhikevich 2005
A sodium channel is a molecule with 4 gates, 3 activation and 1 inactivation
The channel conductance is simply the product $g_{Na} = \bar{g}_{Na} m^3 h$
Ion channels

Markov chain formalism

\[\begin{align*}
 \alpha_m(V) & \quad m & \quad \beta_m(V) \\
 \alpha_h(V) & \quad h & \quad \beta_h(V)
\end{align*} \]

Inactivation gate in the open state (top) or closed state (bottom)

Three, two, one, or none of the activation gates closed (left to right)

From A. Destexhe et al. (1994)
Propagation of the action potential along the axon

The theory of a cable consisting of a resistive core rounded by a membrane offering capacitance and variable resistance to currents is of central importance in neuron physiology.

In a series of papers J. Evans studied the class of equations:

\[
\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2} + g^0(V, W^1, \cdots, W^n)
\]

\[
\frac{\partial W^i}{\partial t} = g^i(V, W^1, \cdots, W^n) \quad i = 1, \cdots, n
\]

\(W^i(x, t)\) are the conductances of various ion channels

Diffusion equation with a nonlinear source term
Propagation of the action potential along the axon

The existence, uniqueness and continuous dependence on initial values of the solutions J. Evans and N. Shenk 1970

Stability of the resting state and travelling pulse solutions were proved in three papers published in 1972 and one in 1975, all in the Indiana University Mathematics Journal. J. Evans 1972,1975
Impact

Physiology: Huge

Mathematics: Important in dynamic system analysis
J. Guckenheimer and I.S. Labouriau, Bulletin of Mathematical Biology, 1993

Type ”bifurcations Hodgkin-Huxley” in Google Scholar
A bit of history

Ion channels are stochastic

How much does channel noise matter?

It took long to come up with a mathematically precise analysis of the Hodgkin-Huxley model when considered at several scales

Austin’s work

Linear axon $I = [-1, 1]$

Axon state: $v : I \rightarrow \mathbb{R}$ Lipschitz and in $H^1_0(I)$

All ion channels are identical

Finite set E of channel states

Channel driving/reversal potential v_ξ, $\xi \in E$

Channel at position x goes $\xi \rightarrow \zeta$ at rate $\alpha_{\xi, \zeta}$
Austin’s work

N stochastic models

$\left\lceil 2N \right\rceil - 2$ channels at positions $\frac{1}{N} \left(\mathbb{Z} \cap N I^0 \right)$, $I^0 = (-1, 1)$

Ion channel conductance $\frac{1}{N} c_\xi$

$\Xi_t^{(N)} \in E^{\mathbb{Z} \cap N I^0}$ state of all channels at time t

$p_\xi(x)$ proportion of those channels in state ξ in a neighbourhood of x
The deterministic Hodgkin-Huxley equations

Regularity
A continuous function $v : [0, T] \rightarrow H^1_0(I)$ and a family $(p_\xi)_{\xi \in E}$ of continuous functions $p_\xi : [0, T] \rightarrow \text{Lip}(I, [0, 1]))$ is a solution of the deterministic Hodgkin-Huxley equation if

$$\frac{d}{dt}v \in L^2_{H^{-1}(I)}[0, T],$$

$$\frac{d}{dt}p_\xi \in L^\infty_C(I)[0, T] \quad \forall \xi \in E$$
The deterministic Hodgkin-Huxley equations

The equations

\[
\frac{d}{dt} \mathbf{v}_t = \Delta \mathbf{v}_t + \sum_{\xi \in E} c_{\xi} p_{\xi,t}(v_{\xi} - \mathbf{v}_t) \quad \forall t \in [0, T]
\]

\[
\frac{d}{dt} p_{\xi,t} = \sum_{\zeta \in E \setminus \{\xi\}} \alpha_{\zeta,\xi}(\mathbf{v}_t) p_{\zeta,t} - \alpha_{\xi,\zeta}(\mathbf{v}_t) p_{\xi,t} \quad \forall \xi \in E, \forall t \in [0, T]
\]

with some initial and boundary conditions:

\[
\mathbf{v}_0 = v_0 \quad p_{\xi,0} = p_{\xi,0} \quad \mathbf{v}_t(\pm 1) = 0 \quad \forall t \in [0, T]
\]
The stochastic Hodgkin-Huxley equations

Given \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\), a càdlàg adapted process \((V_t, \Xi_t)\) such that each sample path is such that \(V\) is a continuous mapping \([0, T] \rightarrow H^1_0(I)\) and \(\Xi_t \in E^Z \cap N I^0\) for all \(t \in [0, T]\) is said to be a solution of the stochastic Hodgkin-Huxley equations with initial conditions \(v_0, \Xi_0\) if the following conditions are satisfied:
The stochastic Hodgkin-Huxley equations

Regularity: The map $t \to \frac{d}{dt} V$ is in $L^2_{H^{-1}(I)}[0, T]$ a.s.

PDE:
\[
\frac{d}{dt} V_t = \Delta V_t + \frac{1}{N} \sum_{i \in \mathbb{Z} \cap N \setminus I^0} c_{\Xi_t(i)}(V_{\Xi_t(i)} - V_t(i/N))\delta_{i/N} \\
\forall t \in [0, T] \quad \mathbb{P} \text{ a.s.}
\]

Jump:
\[
\mathbb{P}(\Xi_{t+h}(i) = \zeta \mid \Xi_t(i) = \xi) = \\
\alpha_{\xi, \zeta}(V_t(i/N))h + o_h \quad \forall t \in [0, T], \ h \in (0, T-t]
\]
with some conditional independence condition to first order in h on \mathcal{F}_t of the coordinate processes $(\Xi_{t+h}(i))_{h>0}$
The stochastic Hodgkin-Huxley equations

Initial conditions

\[V_0 = \nu_0, \quad \Xi_0 = \Xi_0, \quad V_t(\pm 1) = 0 \quad \forall t \in [0, T] \]
Convergence result

Let $\varepsilon > 0$ and suppose given initial conditions $v_0, p_{\xi,0}$. Then for any N sufficiently large, there exists an initial condition Ξ_0 for the stochastic Hodgkin-Huxley equations so that there is some "high-probability" $\Omega_1 \subseteq \Omega$ with $\mathbb{P}(\Omega \setminus \Omega_1) < \varepsilon$ and such that

$$\sup_{0 \leq t \leq T} \| V_t - v_t \|_{H^1_0(I)} < \varepsilon$$

$$\sup_{0 \leq t \leq T} \| C_{\xi,N}(\Xi^{(N)}_t) - p_{\xi,t} \|_{H^{-1}(I)} < \varepsilon,$$

on Ω_1.

$C_{\xi,N}(\Xi)$ is the empirical measure for ξ:

$$C_{\xi,N}(\Xi) = \frac{1}{N} \sum_{i \in \mathbb{Z} \cap \mathbb{N} \setminus I^0, \Xi = \xi} \delta_{i/N}$$
In words

As $N \to \infty$ the stochastic ion-channel model of the axon gives a time-evolution of the potential difference along the axon that converges to that given by the deterministic model, uniformly up to a given finite time horizon, in probability.
Mathematical Neuroscience

Deriving the H-H model ab initio

Convergence result

Scales

Three scales: individual ions, ion channels, whole axon

Stochastic model is faithful at the second and third scales
It uses a simplified behaviour at the smallest (a continuum charge
distribution evolving in time according to a parabolic PDE): it
”averages away” the random behaviour at the smallest scale

The difference between the stochastic and deterministic models is
one of resolution: although neither model can “see” the individual
ions, the stochastic model can see single channels, whereas even
these are beyond the deterministic model.
Extension of the work

This work has been extended by Pakdaman, Thieullen and Wainrib, Pakdaman et al. (2010), in the space clamped case and by Riedler, Thieullen and Wainrib, Riedler et al. (2012), in the space extended case to describe the fluctuations of the stochastic model around the limit.

Two important innovations: use of Markov jump processes coupled to an ODE or PDE, piecewise deterministic Markov processes (PDMPs) M. Davis (1984), D. Vermes (1985).

Proof of functional central limit theorems.
Impact

Physiology: Significant, e.g. importance of fluctuations/noise on neural encoding
Introduction of a rigorous treatment of "noise" in neuroscience, e.g.:
the work of Stannat on stochastic nerve equations Stannat 2013, Sauer & Stannat 2015

Mathematics: Important, e.g. new theorems on PDMPs.
Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
Connectome

Diffusion Tensor Imaging (DTI) allows to recover bundles of myelinated axons in the brain at a resolution of about 1mm. Roughly 1000 axons in a bundle.
Ephaptic interaction between axons of the white matter tracts

Signals exchanged between different brain regions may not be faithfully transmitted along the white matter tracts through axons that can be modelled as passive electric cables

Nonsynaptic electrical interaction between adjacent nerve fibers

(Katz & Schmitt, 1940)
Two adjacent axons

Work of Hiba Sheheitli and Viktor K. Jirsa

J. Sheheitly and V.K. Jirsa (2020)

\[j_{\text{ion},i} = -g^i (v_i^m - (v_i^m)^3/3 - w_i) := f(v_i^m, w_i^m) \]

FitzHugh Nagumo model, reduction of the Hodgkin-Huxley model

\[r_e = 0, \text{ the two axons are uncoupled} \]
The resulting equations for N axons

$$4(R + 1) \sum_{s=1}^{N} \alpha_{ps} \frac{\partial^2 v_s}{\partial z^2} = \frac{\partial v_p}{\partial t} + f(v_p, w_p) - I_p,$$

$$\frac{\partial w_p}{\partial t} = \varepsilon(v_p + a - bw_p).$$

for $p = 1, \cdots, N$

v_s is the membrane potential of the sth neuron

$R = r_a/r_e$.
Results of numerical simulations

Figure 3. Numerical simulation of Equation 13. The color bar indicates the value of v, the x variable indicates the axon number. Each column corresponds to a simulation with a specific value of the parameter; snapshots show progress of time from top to bottom. (A) $R = 0.8$, axons number 30 and 20 are stimulated at $t = 0$ and $t = 10$, respectively, and the panel rows from top to bottom correspond to $t = 500, 1100, 1700, 2300, 2900$. (B) Same as in A but with axons number 25 and 24 stimulated. (C) Same as in B but with stimulation at $t = 0$ and $t = 11$. (D) same as in A but with $R = 0.4$, and panels show $t = 500, 1400, 2300, 3200, 4100$.
Results of numerical simulations

Figure 4. (A, B) same as in Figure 3A but with $R = 0.33$ and $R = 0.191$, respectively. (C, D) same as in Figure 3D but with $R = 0.19$ and $R = 0.15$, respectively.
Results of numerical simulations

Numerical simulation for $R = 0.05$. The panels from top to bottom correspond to $t = 500, 1100, 1700, 2300, 2900$.
What is next?

More physiological checking is required

More modelling is to be done (role of myeline, nodes of Ranvier, ion channels, noise)

Everything remains to be done from the mathematical point of view
Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
Forgotten glial cells

85 billion of neurons in the human brain

More than 100 billion of glial cells (between 1.2 and 1.6 times more, Herculano-Houzel 2009)

Three categories (review in Barres 2008):
1. microglia
2. oligodendrocytes: myeline
3. astrocytes

Glial- or neuronal-man?

Glutamate evokes calcium concentration rises in astrocytes (Cornell-Bell et al. 1990)

Ca$^{2+}$ signalling can propagate along astrocytic processes and even between glial cells as waves

Glial Ca$^{2+}$ waves might constitute an extraneuronal signalling system in the CNS

Increases in cytosolic (fluid that comprises cytoplasm) Ca$^{2+}$ concentration of astrocytes could regulate the release of neuroactive molecules

All this led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity, and cerebral blood flow
Glial- or neuronal-man?

Glial cells are electrically passive

Ca^{2+} could be an effective code for stimulus representation interpretation transformation transmission

Ca^{2+} signalling is stochastic

The role(s) of glial cells

Source of energy for neurons

Participate in the communication between all neural cells

Control synapse formation and creation of new neurons

Building up our behaviours

Y. Agid and P. Magistretti 2018
A (very) simple model (Stimberg, Goodman, Brette and De Pittà 2019)

Intracellular Ca\(^{2+}\) concentration is unanimously regarded as a prominent readout signal of astrocyte activity.

Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) from the astrocyte’s endoplasmic reticulum (ER) appears to be one of the main mechanisms.

Astrocytic CICR is triggered by the intracellular second messenger inositol 1,4,5-trisphosphate (IP3).

5. Rough endoplasmic reticulum
8. Smooth endoplasmic reticulum
11. Cytosol (fluid that contains organelles; with which, comprises cytoplasm)
A (very) simple model (Stimberg, Goodman, Brette and De Pittà 2019)

Two ordinary differential equations in the Hodgkin–Huxley form (Li and Rinzel 1994)

The first equation is a mass balance for Ca\(^{2+}\) (C) in terms of three fluxes \(J_r\), \(J_l\), \(J_p\)

CICR \((J_r)\), Ca\(^{2+}\) leak from the ER \((J_l)\), and Ca\(^{2+}\) uptake from the cytosol back to the ER by Ca\(^{2+}\)/ATPase pumps \((J_p)\)

\[
\frac{dC}{dt} = J_r + J_l - J_p
\]

The second equation is for the gating variable \((h)\) of de-inactivation of the channels that are responsible for CICR

\[
\frac{dh}{dt} = \frac{h_\infty - h}{\tau_h}
\]

\(J_r\), \(J_l\) and \(J_p\) are nonlinear functions of \(C\) and the IP3 \(I\).
A (very) simple model (Stimberg, Goodman, Brette and De Pittà 2019)

The IP3 I is governed by another mass balance equation (De Pittà et al. 2009)

$$\frac{dI}{dt} = J_\beta(\Gamma_A) + J_\delta - J_{3K} - J_{5P} + J_{ex}$$

J_δ, J_{3K}, J_{5P} and J_{ex} are nonlinear functions of C and I. Γ_A is the activated fraction of astrocytic metabotropic receptors which starts phospholipase C_β-mediated IP3 production.
A (very) simple model (Stimberg, Goodman, Brette and De Pittà 2019)

The fraction of activated astrocyte receptors Γ_A depends on the neurotransmitter concentration in the periastrocytic space Y_S

$$\frac{d\Gamma_A}{dt} = O_N Y_S (1 - \Gamma_A) - \Omega_N (1 - \zeta H_1(C, K_{KC})) \Gamma_A$$

Dynamics of the astrocyte’s state variables Γ_A, I, C, h are governed by ODEs akin to neuronal state variables, although on a longer time scale
A (very) simple model (Stimberg, Goodman, Brette and De Pittà 2019)
Which models?

![Diagram showing the evolution of astrocyte and astrocyte-neuron models from 1995 to 2014. An arrow starts from the model which was used as a reference for the model pointed by the arrowhead. Dark gray lines represent the models that were based on the models by De Young and Keizer (1992) and Li and Rinzel (1994). Light gray lines represent the models that were based on the model by Höfer et al. (2002).]

Fig. 16.2 Evolution of astrocyte and astrocyte-neuron models from 1995 to 2014. An arrow starts from the model which was used as a reference for the model pointed by the arrowhead. Dark gray lines represent the models that were based on the models by De Young and Keizer (1992) and Li and Rinzel (1994). Light gray lines represent the models that were based on the model by Höfer et al. (2002).
Where to go?

Read the books P. Bressloff (2014) and M. De Pittà, H. Berry (2019) and

Do the maths
Put things into networks
Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion
Topics I haven’t had time to cover

- Plasticity, Learning (astrocytes seem to be important there)
- Models of cortical areas: neural fields (a lot of geometry)
- Mean field models of populations of neurons
Miscellany

Unlike in, e.g., Physics, modelling is often unescapable for a mathematician in neuroscience: you usually can’t jump on an equation and go away to study it: you HAVE to learn the biology

Interacting with experimentalists is important but very difficult because of the cultural gap (unlike in Physics)

Interacting with computational neuroscientists is also important but also very difficult because of their blind trust in computer simulations from which they acquire a "reasonable certainty"