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Introduction

How different are the viewpoints of biologists, physicists,
and mathematicians?

▶ Induction and deduction

▶ Biologists make observations, measurements, run
computational models on data. More induction than
deduction.

▶ Physicists develop computational models, make simulations -
do not provide proofs - discover what happens with reasonable
certainty. More deduction than induction.

▶ Mathematicians attempt to provide rigorous proofs -
sometimes of results that are ”known” by another community
- tough when most results bear upon situations considered
easy (if not trivial) by the physicists or the biologists.
Emphasis on deduction.
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Predictive mathematical models for Neuroscience

▶ The goal of mathematical
neuroscience is to develop
predictive, falsifiable, pieces
of mathematics (Karl
Popper).

▶ In neuroscience and in
biology more generally all
(mathematical) models are
(at least partially) wrong

▶ Mathematics rigorously
proves facts helping to
circumscribe the domain of
validity of models
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Introduction

Example: The work of Hodgkin and Huxley

▶ One of the most famous mathematical models is that of
Hodgkin and Huxley (1952), Nobel prize in physiology (1961)

▶ It has been falsified: some of its predictions are incorrect
(Hodgkin and Huxley (1952), Jane Cronin (1987, p.66)).

▶ It is valid for a large number of experimental conditions.
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Hodgkin Huxley

The flow of electric current through the surface membrane
of a giant nerve fibre

From Hodgkin
Huxley (1952)
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Hodgkin Huxley

The equations

n, m are activation variables
h is an inactivation variable

They also wrote the action potential propagation equation
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Hodgkin Huxley

The action potential
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Hodgkin Huxley

Neurons behaviours

This model and variations thereof have been immensely successful
in predicting neurons behaviours (Izhikevitch (2005))
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Hodgkin Huxley

Today’s view: ions and gates

From Izhikevich 2005
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Hodgkin Huxley

Ion channels

From Izhikevich 2005
A sodium channel is a molecule with 4 gates, 3 activation and 1
inactivation
The channel conductance is simply the product gNa = ḡNam

3h
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Hodgkin Huxley

Ion channels
Markov chain formalism

Inactivation gate in the open state (top) or closed
state (bottom)

Three, two, one, or none of the activation gates

closed (left to right)
From A. Destexhe et al. (1994)
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Hodgkin Huxley

Propagation of the action potential along the axon

The theory of a cable consisting of a resistive core rounded by a
membrane offering capacitance and variable resistance to currents
is of central importance in neuron physiology

In a series of papers J. Evans studied the class of equations:

∂V

∂t
=

∂2V

∂x2
+ g0(V ,W 1, · · · ,W n)

∂W i

∂t
= g i (V ,W 1, · · · ,W n) i = 1, · · · , n

W i (x , t) are the conductances of various ion channels

Diffusion equation with a nonlinear source term
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Hodgkin Huxley

Propagation of the action potential along the axon

The existence, uniqueness and continuous dependence on initial
values of the solutions J. Evans and N. Shenk 1970

Stability of the resting state and travelling pulse solutions were
proved in three papers published in 1972 and one in 1975, all in
the Indiana University Mathematics Journal. J. Evans 1972,1975
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Hodgkin Huxley

Impact

Physiology: Huge

Mathematics: Important in dynamic system analysis
J. Guckenheimer and Ricardo A. Oliva, SIAM J. Applied
Dynamical Systems, 2002
J. Guckenheimer and I.S. Labouriau, Bulletin of Mathematical
Biology, 1993

Type ”bifurcations Hodgkin-Huxley” in Google Scholar
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Deriving the H-H model ab initio

A bit of history

Ion channels are stochastic

How much does channel noise matter?

It took long to come up with a mathematically precise analysis of
the Hodgkin-Huxley model when considered at several scales
T. Austin (2008) building on work by T.G. Kurtz (1971, 1981),
S.N. Ethier and T.G. Kurtz (1986), M.H.A. Davis (1984),
followed by M. Thieullen and collaborators K. Pakdaman et al.
(2010), A. Genadot and M. Thieullen (2012), M. Riedler et al.
(2012)
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Deriving the H-H model ab initio

Austin’s work

Linear axon I = [−1, 1]

Axon state: v : I → R Lipschitz and in H1
0 (I )

All ion channels are identical

Finite set E of channel states

Channel driving/reversal potential vξ, ξ ∈ E

Channel at position x goes ξ → ζ at rate αξ,ζ



Mathematical Neuroscience

Deriving the H-H model ab initio

Austin’s work

N stochastic models

⌈2N⌉ − 2 channels at positions 1
N

(
Z ∩ N I 0

)
, I o = (−1, 1)

Ion channel conductance 1
N cξ

Ξ
(N)
t ∈ EZ∩N I 0 state of all channels at time t

pξ(x) proportion of those channels in state ξ in a neighbourhood
of x
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Deriving the H-H model ab initio

The deterministic Hodgkin-Huxley equations

Regularity
A continuous function v : [0,T ] → H1

0 (I ) and a family (pξ)ξ∈E of
continuous functions pξ : [0,T ] → Lip(I , [0, 1])) is a solution of
the deterministic Hodgkin-Huxley equation if

d

dt
v ∈ L2H−1(I )[0,T ],

d

dt
pξ ∈ L∞C(I )[0,T ] ∀ξ ∈ E
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Deriving the H-H model ab initio

The deterministic Hodgkin-Huxley equations

The equations

d

dt
vt = ∆vt +

∑
ξ∈E

cξpξ,t(vξ − vt) ∀t ∈ [0,T ]

d

dt
pξ,t =

∑
ζ∈E\{ξ}

αζ,ξ(vt)pζ,t − αξ,ζ(vt)pξ,t ∀ξ ∈ E , ∀t ∈ [0,T ]

with some initial and boundary conditions:

v0 = v0 pξ,0 = pξ,0 vt(±1) = 0 ∀t ∈ [0,T ]
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Deriving the H-H model ab initio

The stochastic Hodgkin-Huxley equations

Given (Ω,F , (Ft)0≤t≤T ,P), a càdlàg adapted process (Vt ,Ξt)
such that each sample path is such that V is a continuous mapping
[0,T ] → H1

0 (I ) and Ξt ∈ EZ∩N I 0 for all t ∈ [0,T ] is said to be a
solution of the stochastic Hodgkin-Huxley equations with initial
conditions v0, Ξ0 if the following conditions are satisfied:
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Deriving the H-H model ab initio

The stochastic Hodgkin-Huxley equations
Regularity: The map t → d

dtV is in L2H−1(I )[0,T ] P a.s.

PDE:

d

dt
Vt = ∆Vt+

1

N

∑
i∈Z∩N I 0

cΞt(i)(vΞt(i)−Vt(i/N))δi/N

∀t ∈ [0,T ] P a.s.

Jump:

P(Ξt+h(i) = ζ |Ξt(i) = ξ) =

αξ,ζ(Vt(i/N))h+oh↓0(h) ∀t ∈ [0,T ], h ∈ (0,T−t]

with some conditional independence condition to first
order in h on Ft of the coordinate processes
(Ξt+h(i))h>0
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Deriving the H-H model ab initio

The stochastic Hodgkin-Huxley equations

Initial conditions

V0 = v0, Ξ0 = Ξ0, Vt(±1) = 0 ∀t ∈ [0,T ]
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Deriving the H-H model ab initio

Convergence result
Let ε > 0 and suppose given initial conditions v0, pξ,0. Then for
any N sufficiently large, there exists an initial condition Ξ0 for the
stochastic Hodgkin-Huxley equations so that there is some
”high-probability” Ω1 ⊆ Ω with P(Ω\Ω1) < ε and such that

sup
0≤t≤T

∥Vt − vt∥H1
0 (I )

< ε

sup
0≤t≤T

∥Cξ,N(Ξ
(N)
t )− pξ,t∥H−1(I ) < ε,

on Ω1.

Cξ,N(Ξ) is the empirical measure for ξ:

Cξ,N(Ξ) =
1

N

∑
i∈Z∩N I 0,Ξ=ξ

δi/N
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Deriving the H-H model ab initio

Convergence result

In words

As N → ∞ the stochastic ion-channel model of the axon gives a
time-evolution of the potential difference along the axon that
converges to that given by the deterministic model, uniformly up
to a given finite time horizon, in probability.
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Deriving the H-H model ab initio

Convergence result

Scales

Three scales: individual ions, ion channels, whole axon

Stochastic model is faithful at the second and third scales
It uses a simplified behaviour at the smallest (a continuum charge
distribution evolving in time according to a parabolic PDE): it
”averages away” the random behaviour at the smallest scale

The difference between the stochastic and deterministic models is
one of resolution: although neither model can “see” the individual
ions, the stochastic model can see single channels, whereas even
these are beyond the deterministic model.
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Deriving the H-H model ab initio

Extension of the work

This work has been extended by Pakdaman, Thieullen and
Wainrib, Pakdaman et al. (2010), in the space clamped case and
by Riedler, Thieullen and Wainrib, Riedler et al. (2012), in the
space extended case to describe the fluctuations of the stochastic
model around the limit.

Two important innovations: use of Markov jump processes coupled
to an ODE or PDE, piecewise deterministic Markov processes
(PDMPs) M. Davis (1984), D. Vermes (1985).

Proof of functional central limit theorems.
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Deriving the H-H model ab initio

Impact

Physiology: Significant, e.g. importance of fluctuations/noise on
neural encoding
Introduction of a rigorous treatment of ”noise” in neuroscience,
e.g.:
the work of Stannat on stochastic nerve equations Stannat 2013,
Sauer & Stannat 2015

Mathematics: Important, e.g. new theorems on PDMPs.
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Ephaptic interactions

Connectome
Diffusion Tensor Imaging (DTI) allows to recover bundles of
myelinated axons in the brain at a resolution of about 1mm
Roughly 1000 axons in a bundle
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Ephaptic interactions

Cross-talk between axons

Ephaptic interaction between axons of the white matter tracts

Signals exchanged between different brain regions may not be
faithfully transmitted along the white matter tracts through axons
that can be modelled as passive electric cables

Nonsynaptic electrical interaction between adjacent nerve fibers
(Katz & Schmitt, 1940)
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Ephaptic interactions

Two adjacent axons
Work of Hiba Sheheitli and Viktor K. Jirsa

J. Sheheitly and V.K. Jirsa (2020)

jion,i , i = 1, 2 is given by

jion,i = −g i (vmi − (vmi )3/3− wi ) := f (vmi ,wm
i )

FitzHugh Nagumo model, reduction of the Hodgkin-Huxley model

re = 0, the two axons are uncoupled
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Ephaptic interactions

The resulting equations for N axons

for p = 1, · · · ,N
vs is the membrane potential of the sth neuron
R = ra/re .
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Ephaptic interactions

Results of numerical simulations
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Ephaptic interactions

Results of numerical simulations
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Ephaptic interactions

Results of numerical simulations

Numerical simulation for R = 0.05. The panels from top to
bottom correspond to t = 500, 1100, 1700, 2300, 2900.
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Ephaptic interactions

What is next?

More physiological checking is required

More modelling is to be done (role of myeline, nodes of Ranvier,
ion channels, noise)

Everything remains to be done from the mathematical point of
view
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Glial cells

Forgotten glial cells

85 billion of neurons in the
human brain

More than 100 billion of glial
cells (between 1.2 and 1.6 times
more, Herculano-Houzel 2009)

Three categories (review in
Barres 2008):
1. microglia
2. oligodendrocytes: myeline
3. astrocytes

Y. Agid and P. Magistretti
(2018)
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Glial cells

Glial- or neuronal-man?

Glutamate evokes calcium concentration rises in astrocytes
(Cornell-Bell et al. 1990)

Ca2+ signalling can propagate along astrocytic processes and even
between glial cells as waves

Glial Ca2+ waves might constitute an extraneuronal signalling
system in the CNS

Increases in cytosolic (fluid that comprises cytoplasm) Ca2+

concentration of astrocytes could regulate the release of
neuroactive molecules

All this led to the idea that astrocytes are powerful regulators of
neuronal spiking, synaptic plasticity, and cerebral blood flow
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Glial cells

Glial- or neuronal-man?

Glial cells are electrically passive

Ca2+ could be an effective code
for stimulus
representation
interpretation
transformation
transmission

Ca2+ signalling is stochastic
Y. Agid and P. Magistretti
(2018)
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Glial cells

The role(s) of glial cells

Source of energy for neurons

Participate in the communication
between all neural cells

Control synapse formation and
creation of new neurons

Building up our behaviours
Y. Agid and P. Magistretti 2018
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Glial cells

A (very) simple model (Stimberg , Goodman, Brette and
De Pittà 2019)

Intracellular Ca2+ concentration is
unanimously regarded as a prominent
readout signal of astrocyte activity

Ca2+-induced Ca2+ release (CICR) from
the astrocyte’s endoplasmic reticulum
(ER) appears to be one of the main
mechanisms

Astrocytic CICR is triggered by the
intracellular second messenger inositol
1,4,5-trisphosphate (IP3)

5. Rough endoplasmic
reticulum
8. Smooth endoplasmic
reticulum

11. Cytosol (fluid that

contains organelles; with

which, comprises cytoplasm)
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Glial cells

A (very) simple model (Stimberg , Goodman, Brette and
De Pittà 2019)

Two ordinary differential equations in the Hodgkin–Huxley form (Li
and Rinzel 1994)
The first equation is a mass balance for Ca2+ (C) in terms of three
fluxes Jr , Jl , Jp
CICR (Jr ), Ca

2+ leak from the ER (Jl), and Ca2+ uptake from the
cytosol back to the ER by Ca2+/ATPase pumps (Jp)

dC

dt
= Jr + Jl − Jp

The second equation is for the gating variable (h) of
de-inactivation of the channels that are responsible for CICR

dh

dt
=

h∞ − h

τh
Jr , Jl and Jp are nonlinear functions of C and the IP3 I .
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Glial cells

A (very) simple model (Stimberg , Goodman, Brette and
De Pittà 2019)

The IP3 I is governed by another mass balance equation (De Pittà
et al. 2009)

dI

dt
= Jβ(ΓA) + Jδ − J3K − J5P + Jex

Jδ, J3K , J5P and Jex are nonlinear functions of C and I .
ΓA is the activated fraction of astrocytic metabotropic receptors
which starts phospholipase Cβ-mediated IP3 production
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Glial cells

A (very) simple model (Stimberg , Goodman, Brette and
De Pittà 2019)

The fraction of activated astrocyte receptors ΓA depends on the
neurotransmitter concentration in the periastrocytic space YS

dΓA
dt

= ONYS(1− ΓA)− ΩN(1− ζH1(C ,KKC ))ΓA

Dynamics of the astrocyte’s state variables ΓA, I , C , h are
governed by ODEs akin to neuronal state variables, although on a
longer time scale
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Glial cells

A (very) simple model (Stimberg , Goodman, Brette and
De Pittà 2019)
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Glial cells

Which models?

Tiina Manninen, Riikka Havela and Marja-Leena Linne, 2019
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Glial cells

Where to go?

Read the books P. Bressloff
(2014) and M. De Pittà, H.
Berry (2019) and

Do the maths
Put things into networks



Mathematical Neuroscience

Conclusion

Introduction

Hodgkin Huxley

Deriving the H-H model ab initio

Ephaptic interactions

Glial cells

Conclusion



Mathematical Neuroscience

Conclusion

Topics I haven’t had time to cover

▶ Plasticity, Learning (astrocytes seem to be important there)

▶ Models of cortical areas: neural fields (a lot of geometry)

▶ Mean field models of populations of neurons



Mathematical Neuroscience

Conclusion

Miscellany

Unlike in, e.g., Physics, modelling is often unescapable for a
mathematician in neuroscience: you usually can’t jump on an
equation and go away to study it: you HAVE to learn the biology

Interacting with experimentalists is important but very difficult
because of the cultural gap (unlike in Physics)

Interacting with computational neuroscientists is also important
but also very difficult because of their blind trust in computer
simulations from which they acquire a ”reasonable certainty”
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