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Introduction

Predictive mathematical models for Neuroscience

I The goal of mathematical
neuroscience is to develop
predictive, falsifiable theories
(Karl Popper).

I One of the most famous
ones is found in the work of
H. Wilson and J. Cowan
(1972-1973)
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Introduction

Work of H. Wilson and J. Cowan

Neural masses (Biophysical Journal 1972) Neural fields (Kybernetik 1973)
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Introduction

The neural mass equations

E (t) (resp. I (t)) average membrane potential of excitatory (resp.
inhibitory) cells at t,

τ
dE

dt
= −E + JeeSE (E (t))− JieSI (I (t)) + IEext(t)

τ ′
dI

dt
= −I + JeiSE (E (t))− JiiSI (I (t)) + I Iext(t)

The celebrated Wilson and Cowan equations
This is the voltage-based neural mass model
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NF Equations

History

I Starts with the work of Wilson and Cowan, 1973, and Amari,
1977,

I Followed by many attempts by theoreticians and
mathematicians to characterize the solutions, i.e. Bressloff,
Coombes, Ermentrout and their followers Atay, Chow,
Faugeras, beim Graben, Guo, Gutkin, Hutt, Laing, Pinto,
Potthast, Troy, Veltz. . . .
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NF Equations

Functional analysis framework

I Functional spaces: Banach, Hilbert, Sobolev . . .

I Fixed point theorems

I Spectral Theory

I Bifurcation Theory
...
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NF Equations

Functional analytic setting

{
V̇(X, t) = −V(X, t) + [J(t) · S(λV)] (X) + Iext(X, t)
V(·, 0) = V0(·)

I V and V0 are p-dimensional vector functions defined on a set
Ω, an open bounded/unbounded piece of R2,3, or a more
complicated space. They represent the average membrane
potential of the neural field.

I They both belong to some functional space F
I J(t) is a linear operator F → F (connectivity kernel). It

describes the intensity of the projections from masses at X′ to
masses at X.

[J(t) ·U] (X) =

∫
Ω
J(X, X′, t)U(X′)) dX′
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NF Equations

Functional analytic setting

V̇(X, t) = −V(X, t) + [J(t) · S(λV)] (X) + Iext(X, t)

I S is a sigmoidal function (regular and bounded),

I λ determines its stiffness.

I X, in Ω, represents space, features, . . .
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NF Equations

Choice of F

Three criteria

1. The problem should be well-posed

2. Its biological relevance

3. Allow numerical computations

I Hilbert space: F = L2(Ω,Rp)

I More spatial regularity can be imposed
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NF Equations

Choice of J

I If J(·, ·, t) ∈ L2(Ω×Ω,Rp×p) for all t > 0 then J(t) defines a
continuous linear operator from F to F
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NF Equations

Cauchy problem
I ODE defined on F{

dV
dt = −V + R(t,V)
V(0) = V0 ∈ F

where
R(t,V) = J(t) · S(λV) + Iext(t)

Proposition (O.F, F. Grimbert, J.-J. Slotine, SIAM J. Appl. Math., 2008)

If

1. J is in C
(
R+;L2 (Ω× Ω,Rp×p)

)
and ‖J‖F ≤ J, t ≥ 0

2. Iext ∈ C (R+;F)

then ∀V0 ∈ F there is a unique solution V, defined on R+ and
continuously differentiable of the Cauchy problem

Related work: R. Potthast, P. beim Graben, Mathematical Methods in the

Applied Sciences, 2009
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NF Equations

Boundedness, absolute stability

I If ‖Iext(t)‖F ≤ Iext for all t ≥ 0 the solution is bounded for all
V0 ∈ F .

I If λρ(Js) < 1, Js = (J + J∗) /2, every solution is globally
asymptotically stable, in particular unique

O.F., R. Veltz, F. Grimbert, Neural Computation, 2009
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NF Equations

Geometry of persistent states

I Assume Iext and J do not depend upon time

I Study the equilibrium states: bumps, persistent states,
stationary solutions

Solve:
V = J · S(λV) + Iext := F (V, λ)

Questions:

I How many?

I Manifold of solutions when varying the parameters
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NF Equations

Geometry of persistent states

Define Bλ = {V | F (V, λ) = 0}, note Vf
λ the solutions.

Proposition ( R. Veltz and O.F., SIAM J.
Applied Dynamical Systems, 2010)

1.
∥∥Vf

λ − Vf
0

∥∥
F ≤ B(λ)

2. If |Bλ| is finite then it must be odd
(Leray–Schauder degree theory)

3. Let 0 ≤ a < b.
B = ∪λ∈[a,b]Bλ × {λ} contains a
connected component which
intersects Ba × {a} and Bb × {b}
(Leray–Schauder Theorem)
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Visual orientation

Visual Orientation sensitivity or how symmetries make
things more complicated

I V1 is organized as a set of
orientation sensitive columns
and hypercolumns (D. Hubel
and T. Wiesel, 1974)

I Periodic preferred
orientation (PO) map

From E.R. Kandel et al., Principles of

Neuroscience, 5th Edition, 2013.
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Neural field model

d

dt
V (x, t) = −V (x, t) +

∫
Ω
J(x, y)S(σV (y, t))dy

with

J(x, y) = Jloc(‖x−y‖)+εJLR(x, y) ε << 1 weaker strength of LR connections

Jloc is ”Mexican-hat”-like (local excitation, remote inhibition)
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Bifurcation analysis of the homogeneous model (ε = 0)

I Solve in a square Ω with
periodic boundary conditions
(Ω is a torus)

I Emergence of Turing
patterns S. Coombes, P. beim
Graben, R. Potthast, Tutorial on
neural field theory. In: Coombes
S, beim Graben P, Potthast R,
Wright J, editors. Neural fields.
Berlin: Springer; 2014

I Stripes always unstable

I Spots stable on a very short
interval

I Two subcritical secondary
branches recover stability
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Visual orientation

Symmetries

I Because of the translation
invariance, solutions ”live”
on a torus

I Assume that the spatial
period matches that of the
PO map T. Kenet et al.,

Nature, 2003

I Black lines: hypercolumns

I White lines: fundamental
domain Ω0

I Pinwheels are clockwise or
counterclockwise

Set Ω
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Visual orientation

Long range connections

JLR(x, y) = Gσθ(θ(x)− θ(y))J0

(
χ,Ro

−2θ(x)(x− y)
)

θ is the PO map. χ controls the anisotropy.

From E.R. Kandel et al., Principles of

Neuroscience, 5th Edition, 2013. From P. Bressloff et al., Philos Trans R

Soc Lond B, 2001
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Symmetries of the PO map

I Action of the rotations on the PO map:

θ(Rp
Φ0
x) = θ(x) + εΦ0/2 mod π/2 Φ0 = π/2

ε = 1 if p is counterclockwise, -1 otherwise
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Symmetries

I Form Ω with (2N + 1)2

copies of Ω0

I Symmetries are
D4 o (Z/2N Z)2

I The PO map reduces it to
one of the 17 wallpaper
groups Evgraf Fedorov, 1891. D.

Schattschneider, Am Math Mon,

1978

I Further constraints from the
PO map reduces it to pmm
(or cmm)
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Visual orientation

Remaining symmetries when ε 6= 0

I As shown in R. Veltz, P. Chossat, O.F., 2015 the symmetry group
Γ of the NF equations is p4m or p4 meaning:

I Write

F (V , λ)
def
= − d

dt
V (x, t)− V (x, t) + [J · S(λV )] (x, t)

I The neural field equation F is equivariant w.r.t Γ

γ · F (V , λ) = F (γ · V , λ)

I When the long range connections are turned on the system
undergoes spontaneous symmetry breaking



Neural Fields

Visual orientation

Dynamics with the long-range connections active

I Unperturbed torus T0
def
= {V0(·+ x)}, x ∈ Ω

I A torus, flow-invariant manifold TLR, persists as long as the
perturbations are small (ε << 1) enough (P. Chossat and R.

Lauterbach, Methods in equivariant bifurcations and dynamical systems,

2000)
I Questions:

I How many steady-states do actually persist?
I What are the observed phase portraits?

I Topology of the torus is an important constraint

I Analysis of the perturbed torus is done by identifying
V0(·+ x) and x
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Proposition (R. Veltz, P. Chossat,
O.F., 2015)

Let us assume that there is a
finite number of equilibria on the
perturbed torus which are all
non-degenerate when
ε 6= 0, χ ≥ 0. There are at least
8 equilibria on the perturbed
torus, four of which are saddles
and the other four are
nodes/foci.

Proof:
Application of the Poincaré–Hopf
theorem: n − 2s = χ, n = f + s,
χ = 0, hence f = s. Looking at
rotations: f = 4
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Example of dynamics
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Visual orientation

Examples of cortical activations
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Final Remarks

I Generalizes B. Ermentrout and J. Cowan, Biol Cybern, 1979 and P.

Bressloff et al., Philos Trans R Soc Lond B, 2001

I Group theory is underutilized in neuroscience



Neural Fields

Stochastic Neural Fields

Introduction

Mathematical study of the NF equations

Visual orientation

Stochastic Neural Fields

Consciousness

Conclusion



Neural Fields

Stochastic Neural Fields

Taking noise into account

I Neurons are intrinsically noisy:
I Ion channels and thermal noise
I Synaptic noise
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Stochastic Neural Fields

Noisy neural field equation

dV (t, x) =[
−V (t, x) +

∫
Rn

J(x , y)S(V (t, y)) dy

]
dt+σ(V (t, x)) dW (t, x)

I S , σ are globally Lipschitz, S is bounded
I (W (t, x))x∈Rn, t≥0 is a stochastic process
I What do we mean by ”a solution”?
I Must involve an object of the form∫

σ(V (t, x)) dW (t, x)

This approach has been used ”empirically” by Bressloff and
Webber (2012), Bressloff and Wilkerson (2012), Kilpatrick and
Ermentrout (2013)
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Stochastic Neural Fields

Walsh stochastic integral (1986)

I Cleanly defines a white noise Ẇ on R+ ×Rn,

I a white noise process W := (Wt(A))t≥0,A∈B(Rn),

I and a set of functions, PW , that can be integrated against the
white noise process W
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Stochastic Neural Fields

Spatial smoothing

I Informally we may think of the object Ẇ (t, x) as a random
distribution, hence

I any solution of the stochastic neural field equation is
distribution valued in the x-direction

I For ϕ ∈ L2(Rn) define the (Gaussian) random field

W ϕ(t, x) :=

∫ t

0

∫
Rn

ϕ(x − y)W (ds dy)

I Easy to verify that ϕ(x − ·) ∈ PW
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Stochastic Neural Fields

Time and space regularity of W ϕ

I The time regularity is the same as that of a Brownian path

I Hölder continuity in space can be enforced by imposing a
(very) weak regularity on ϕ:

Condition (C1):
∃Cϕ such that

‖ϕ− τ z(ϕ)‖L2(Rn) ≤ Cϕ|z |α, ∀z ∈ Rn

for some α ∈ (0, 1] where τ z(ϕ)(x) = ϕ(x + z)

I Then for all t ≥ 0 x →W ϕ(t, x) has an η-Hölder continuous
modification for all η ∈ (0, α).
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Stochastic Neural Fields

The SNF equation driven by spatially smoothed space-time
white noise

∂tV (t, x) = −V (t, x)+∫
Rn

J(x , y)S(V (t, y)) dy + σ(V (t, x))
∂

∂t
W ϕ(t, x)

I By a solution we mean a real-valued random field
(V (t, x))t≥0, x∈Rn

V (t, x) = e−tV0(x)+

∫ t

0
e−(t−s)

∫
Rn

J(x , y)S(V (s, y)) dy ds+∫ t

0

∫
Rn

e−(t−s)σ(V (s, x))ϕ(x − y)W (ds dy)
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Stochastic Neural Fields

Sufficient conditions on J for the existence of a solution
Condition (C2):

∀x ∈ Rn (y → J(x , y)) ∈ L1(Rn), and sup
x∈Rn

‖J(x , ·)‖L1(Rn) ≤ CJ

Theorem (Existence, uniqueness: O.F., J. Inglis, Journal of
Mathematical Biology, 2015)

If x → V0(x) is Borel measurable almost surely and

sup
x∈Rn

E
[
|V0(x)|2

]
<∞

If the NF kernel J satisfies the condition (C2), then there exists an
almost surely unique predictable random field (V (t, x))t≥0, x∈Rn

which is a solution of the SNF equation in the sense of the above
definition and such that

sup
t∈[0,T ], x∈Rn

E
[
|V (t, x)|2

]
<∞ for any T > 0
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Stochastic Neural Fields

Spatio-temporal regularity of the solution
Condition (C3):

∃KJ s.t. ‖J(x1, ·)−J(x2, ·)‖L1(Rn) ≤ KJ |x1−x2|α, ∀x1, x2 ∈ Rn

α ∈ (0, 1].

Theorem (Regularity: O.F., J. Inglis, Journal of Mathematical Biology,
2015)

If x → V0(x) is Borel measurable almost surely and
supx∈Rn E

[
|V0(x)|2

]
<∞. Suppose moreover that ∃α ∈ (0, 1] s.t.

I J satisfies (C2) and (C3)

I ϕ satisfies (C1)

I x → V0(x) is α-Hölder continuous

Then (V (t, x))t≥0, x∈Rn has a modification such that
(t, x)→ V (t, x) is (η1, η2)-Hölder continuous, for any
η1 ∈ (0, 1/2) and η2 ∈ (0, α).
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Stochastic Neural Fields

Final remarks

I Probability Theory

I Stochastic calculus

I Large deviations

are important tools in mathematical neuroscience
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Consciousness

I In the late 80s, consciousness was a tolerated hobby for the
aging scientist

I ”consciousness” is loaded with fuzzy meanings

I Distinguish between at least three meanings, vigilance
(wakefulness), attention (focusing of mental resources),
conscious access (reportable)
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Consciousness

Three ingredients for making consciousness accessible to
experiments

I focusing on conscious access

I manipulating conscious
perception

I carefully recording
introspection

Thanks to the ”new” brain
”imaging” modalities, fMRI,
EEG, MEG, Optical Imaging From S. Dehaene, Consciousness and

the brain, 2014.
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Consciousness

Unconscious versus conscious

Virtually all the brain’s regions can participate in both conscious
and unconscious thought

I Unconscious meaning: unseen color word primes the
corresponding color Anthony Marcel, 1970

I Unconscious number comparisons: deciding whether a seen
digit is larger or less than 5 depends on whether you have
been primed with an invisible congruent/non-congruent digit

I Unconscious Attention: an invisible spot of light makes you
more accurate to responding to stimuli presented tn the same
area

...
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Consciousness

What is the unconscious?

Henri Poincaré Science and Hypothesis, 1902
The subliminal self is in no way inferior to the conscious self; it is
not purely automatic; it is capable of discernment; it has tact,
delicacy; . . .
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Consciousness

What is consciousness good for?

I Unconscious statistics versus conscious sampling: the brain
performs Bayesian inference

I Lasting thoughts: once a piece of information is conscious, it
stays fresh in our mind for as long as we care to attend to it
and remember it

I The human Turing machine: consciousness gives us the power
of a sophisticated serial computer

I A social sharing device
...
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Consciousness

The four signatures of consciousness

I: Sudden ignition of parietal and
prefrontal circuits

I Perception of masked words
(images)

I Making additional sounds
conscious

From S. Dehaene, Consciousness and

the brain, 2014.
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Consciousness

The four signatures of consciousness

II: Late slow wave: the P3 wave

I Masked digits

I Increase of delay between
digit and mask

I Sudden ignition of activity if
delay > 50ms, digit visible:

I Bifurcation in the dynamics
of the neural networks

From S. Dehaene, Consciousness and

the brain, 2014.
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Consciousness

The four signatures of consciousness

III: Late and sudden burst of
high-frequency oscillations (deep
electrodes)

I Masked image

I Increase of delay between
mask and face image

I Lasting burst of
high-frequency activity

From S. Dehaene, Consciousness and

the brain, 2014.
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Consciousness

The four signatures of consciousness

IV: Synchronization of
information exchanges across
distant brain regions

I Invisible faces/words

I Synchronization of many
distinct brain areas

From S. Dehaene, Consciousness and

the brain, 2014.
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Theorizing consciousness

I Awareness of a piece of information
def
= it has entered a

specific storage area which makes it available to the rest of
the brain

I Hippolite Taine’s ”theater of consciousness” (1870): “The
conscious mind is like a narrow stage that lets us hear only a
single actor”. But there are lots of invisible actors.

I Raj Reddy et al.’s ”blackboard” (1973) of the HEARSAY
system
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Consciousness

Theorizing consciousness

I Bernard Baars’ ”global
workspace” (1989),

I Changeux and Dehaene’s
”global neuronal workspace”
(1998)

From S. Dehaene, Consciousness and

the brain, 2014.
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Mathematics and consciousness

I Graph G := (V ,E )

I Each vertex v ∈ V represents some brain areas (visual,
auditory, somatosensory, etc. . . )

I Its mathematical description is a set of (S)NF equations

I Each edge e ∈ E represents the connections between the
various brain areas.

I These can be anatomical (connectome) or functional

I They introduce delays (delayed (S)NF equations)
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Consciousness

Mathematical challenges

I Provide mathematical models of the four signatures of
consciousness

I e.g. bifurcations, metastable states, etc....

I Study rigorously how and when they can appear in the
solutions of the (delayed) (S)NF equations

I Provide mathematical models of the global neuronal
workspace
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Other challenges

I Computational, e.g. HBP, TVB (Jirsa et al) . . .

I Clinical (Naccache, Dehaene)
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Conclusion

I The “unreasonable effectiveness of mathematics” in Physics
E. Wigner, 1960) is not (yet) verified in neuroscience or in
biology in general.

I Conversely, there are few of the mathematical problems raised
by these disciplines that are studied by “professional”
mathematicians.
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Announcing a new Journal: Mathematical Neuroscience
and Applications

I It bifurcates from the Journal of Mathematical Neuroscience
(ends end of this year)

I Focuses on using mathematics as the primary tool for
elucidating the fundamental mechanisms responsible for
experimentally observed behaviours in neuroscience.

I Publishes work that uses advanced mathematical techniques
to illuminate these questions.

I Papers that introduce and help develop those new pieces of
mathematical theory which are likely to be relevant to future
studies of the nervous system are welcome.

I Diamond Open Access model: free Open Access, thanks to
the support of episciences.org
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Announcing a new Journal: Mathematical Neuroscience
and Applications

https://mna.episciences.org/
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Supplementary slides
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Mathematical state of the art: stochastic partial
differential equations (SPDEs)

I Functional approach: Da
Prato and Zabczyk (1992),
Prévôt and Röckner (2007)

I Solutions are random processes
that take their values in a Hilbert
space of functions

I Integration theory w.r.t. a
class of random measures:
Walsh (1986)

I Solutions are random fields in
both t and x

The two approaches are equivalent



Neural Fields

Conclusion

Walsh’s stochastic integral (1986)

I Centered Gaussian random field

Ẇ := (Ẇ (A))A∈B(R+×Rn),

I with covariance function

E
[
Ẇ (A)Ẇ (B)

]
= |A ∩ B|

I Ẇ is a white noise on R+ ×Rn

I White noise process W := (Wt(A))t≥0,A∈B(Rn)

Wt(A) := Ẇ ([0, t]× A), t ≥ 0
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I Define the norm

‖f ‖2
W = E

[∫ T

0

∫
Rn

|f (t, x)|2 dt dx
]
,

for any (random) function that is knowable at time t given
(Ws(A))s≤t,A∈B(Rn)

I PW is the set of all such functions f for which ‖f ‖W <∞
I It is the set of functions that can be integrated against the

white noise process W
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Theorem (Walsh 1986)

For all f ∈ PW , t ∈ [0, T ] and A ∈ B(Rn),∫ t

0

∫
A
f (s, x)W (ds dx)

can be well-defined. Moreover for all t ∈ (0, T ] and

A, B, ∈ B(Rn), E
[∫ t

0

∫
A f (s, x)W (ds dx)

]
= 0 and

E
[∫ t

0

∫
A
f (s, x)W (ds dx)

∫ t

0

∫
B
f (s, x)W (ds dx)

]
=

E
[∫ t

0

∫
A∩B

f (s, x)W (ds dx)

]
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Computational challenges
I Already partially addressed
I Bluebrain (Europe), Human Brain Project (Europe), The

Virtual Brain Project (Europe), Brain (USA)etc. . .

V. Jirsa, in S. Coombes et al., Neural Fields, Theory and Applications, 2014
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Testing in the clinic

I Epileptic seizures, e.g. TVB: V. Jirsa et al.

I Vegetative states, S. Dehaene et al.
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