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Abstract

The aim of this chapter is to introduce tools from bifurcation theory which
will be necessary in the following sections for the study of neural field equations
(NFE) set in the primary visual cortex. In a first step, we deal with elementary
bifurcations in low dimensions such as saddle-node, transcritical, pitchfork and
Hopf bifurcations. NFEs are dynamical systems defined on Banach spaces and
thus are infinite dimensional. Bifurcation analysis for infinite dimensional systems
is subtle and can lead to difficult problems. If it is possible, the idea is to locally
reduce the problem to a finite dimensional one. This reduction is called the center
manifold theory and it will be the main theoretical result of this chapter. The
center manifold theory requires some functional analysis tools which will be recalled,
especially the notions of linear operator, spectrum, resolvent, projectors etc... We
also present some extensions of the center manifold theorem for paramter-dependent
and equivarient differential equations. Directly related to the center manifold theory
is the normal form theory which is a canonical way to write differential equations.
We conclude this chapter with an overview of bifurcations with symmetry and
give as a result the Equivariant Branching Lemma. Most of the theorems of this
chapter are taken from the excellent book of Haragus-Iooss [4] (center manifolds
and normal forms). The last part on the Equivariant Branching Lemma is taken
from the very interesting (but difficult) book of Chossat-Lauterbach [2]. One other
complementary reference is the book of Golubitsky-Stewart-Schaeffer [3]. For an
elementary review on functional analysis the book of Brezis is recommanded [1].

1 Elementary bifurcation

Definition 1.1. In dynamical systems, a bifurcation occurs when a small smooth change
made to the parameter values (the bifurcation parameters) of a system causes a sudden
“qualitative” or topological change in its behaviour. Generally, at a bifurcation, the local
stability properties of equilibria, periodic orbits or other invariant sets changes.
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1.1 Bifurcation of dimension 1

In this section, we consider scalar differential equations of the form

du

dt
= f(u, µ). (1.1.1)

Here the unknown u is a real-valued function of the time t, and the vector field f is real-
valued depending, besides u, upon a parameter µ. The parameter µ is the bifurcation
parameter. We suppose that equation (1.1.1) is well-defined and satisfies the hypotheses
of the Cauchy-Lipschitz theorem, such that for each initial condition there exists a unique
solution of equation (1.1.1). Furthermore we assume that the vector field is of class Ck,
k ≥ 2, in a neighborhood of (0, 0) satisfying:

f(0, 0) = 0,
∂f

∂u
(0, 0) = 0. (1.1.2)

The first condition shows that u = 0 is an equilibrium of equation (1.1.1) at µ = 0. We
are interested in local bifurcations that occur in the neighborhood of this equilibrium
when we vary the parameter µ. The second condition is a necessary, but not sufficient,
condition for the appearance of local bifurcations at µ = 0.

Remark 1.1. Suppose that the second condition is not satified: ∂f/∂u(0, 0) 6= 0. A
direct application of the implicit function theorem shows that the equation f(u, µ) = 0
possesses a unique solution u = u(µ) in a neighborhood of 0, for small enough µ. In
particular u = 0 is the only equilibrium of equation (1.1.1) in a neighborhood of 0 when
µ = 0, and the same property holds for µ small enough. Futhermore, the dynamics of
(1.1.1) in a neighborhood of 0 is qualitatively the same for all sufficiently small values of
the parameter µ: no bifurcation occurs for small values of µ.

1.1.1 Saddle-node bifurcation

Theorem 1.1 (Saddle-node bifurcation). Assume that the vector field f is of class Ck,
k ≥ 2, in a neighborhood of (0, 0) and satisfies:

∂f

∂µ
(0, 0) =: a 6= 0,

∂2f

∂u2
(0, 0) =: 2b 6= 0. (1.1.3)

The following properties hold in neighborhood of 0 in R for small enough µ:

(i) if ab < 0 (resp. ab > 0) the differential equation has no equilibria for µ < 0 (resp.
for µ > 0),

(ii) if ab < 0 (resp. ab > 0) the differential equation possesses two equilibria u±(ε),
ε =

√
|µ| for µ > 0 (resp. µ < 0), with opposite stabilities. Furthermore, the map

ε→ u±(ε) is of class Ck−2 in a neighborhood of 0 in R, and u±(ε) = O(ε).

Then for equation (1.1.1), a saddle-node bifurcation occurs at µ = 0.

A direct consequence of conditions (1.1.3) is that f has the expansion:

f(u, µ) = aµ+ bu2 + o(|µ|+ u2) as (u, µ)→ (0, 0)
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Exercice 1.1. Consider the truncated equation

du

dt
= aµ+ bu2.

Plot bifurcation diagrams in the (u, µ)-plane of this truncated equation for different values
of a and b.

Proof. Since a 6= 0, we apply the implicit function theorem which implies the existence of
unique solution µ = g(u) for u close to 0 of the equation f(u, µ) = 0, where g is of class
Ck, k ≥ 2 in a neighborhood of the origin with g(0) = 0. Its Taylor extansion is given by

µ = − b
a
u2 + o(u2).

Consequently, if abµ > 0 equation (1.1.1) has no equilibria, one equilibrium u = 0 if
µ = 0 and a pair of equilibria u±(µ) = ±

√
−aµ/b + o(

√
|µ|) if abµ < 0. Finally, in the

case abµ < 0, we have:

∂f

∂u
(u±(µ), µ) = 2bu±(µ) + o(

√
|µ|)

then the equilibrium u−(µ) is attractive, asymptotically stable when b > 0 and repelling,
unstable when b < 0; wheres, the equilibrium u+(µ) has opposite stability properties.

1.1.2 Pitchfork bifurcation

Theorem 1.2 (Pitchfork bifurcation). Assume that the vector field f is of class Ck,
k ≥ 3, in a neighborhood of (0, 0), that it is satisfies conditions (1.1.2), and that it is odd
with repsect to u:

f(−u, µ) = −f(u, µ) (1.1.4)

Furthermore assume that:

∂2f

∂µ∂u
(0, 0) =: a 6= 0,

∂3f

∂u3
(0, 0) =: 6b 6= 0. (1.1.5)

The following properties hold in neighborhood of 0 in R for small enough µ:

(i) if ab < 0 (resp. ab > 0) the differential equation has one trivial equilibrium u = 0
for µ < 0 (resp. for µ > 0). This equilibrium is stable when b < 0 and unstable
when b > 0.

(ii) if ab < 0 (resp. ab > 0) the differential equation possesses the trivial equilibrium
u = 0 and two nontrivial equilibria u±(ε), ε =

√
|µ| for µ > 0 (resp. µ < 0),

which are symmetric, u+(ε) = −u−(ε). The map ε → u±(ε) is of class Ck−3 in
a neighborhood of 0 in R, and u±(ε) = O(ε). The nontrivial equilibria are stable
when b < 0 and unstable when b > 0, whereas the trivial equilibrium has opposite
stability.

Then for equation (1.1.1), a pitchfork bifurcation occurs at µ = 0.
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A direct consequence of conditions (1.1.2), (1.1.4) and (1.1.5) is that f has the Taylor
expansion:

f(u, µ) = uh(u2, µ) h(u2, µ) = aµ+ bu2 + o(|µ|+ u2) as (u, µ)→ (0, 0)

where h is of class C(k−1)/2 in a neighborhood of (0, 0).

Exercice 1.2. Consider the truncated equation

du

dt
= aµu+ bu3.

� Plot bifurcation diagrams in the (u, µ)-plane of this truncated equationfor different
values of a and b.

� Prove the theorem.

1.1.3 Transcritical bifurcation

Theorem 1.3 (Transcritical bifurcation). Assume that the vector field f is of class Ck,
k ≥ 2, in a neighborhood of (0, 0), that it is satisfies conditions (1.1.2), and also:

∂2f

∂µ∂u
(0, 0) =: a 6= 0,

∂2f

∂u2
(0, 0) =: 2b 6= 0. (1.1.6)

The following properties hold in neighborhood of 0 in R for small enough µ:

(i) the differential equation possesses the trivial equilibrium u = 0 and the nontrivial
equilibrium u0(µ) where the map µ→ u0(µ) is of class Ck−2 in a neighborhood of 0
in R, and u0(µ) = O(µ).

(ii) if aµ < 0 (resp. aµ > 0) the trivial equilibrium u = 0 is stable (resp. unstable)
whereas the nontrivial equilibrium u0(µ) is unstbale (resp. stable).

Then for equation (1.1.1), a transcritical bifurcation occurs at µ = 0.

A direct consequence of conditions (1.1.2) and (1.1.6) is that f has the Taylor expan-
sion:

f(u, µ) = aµu+ bu2 + o(u|µ|+ u2) as (u, µ)→ (0, 0)

Exercice 1.3. Consider the truncated equation

du

dt
= aµu+ bu2.

� Plot bifurcation diagrams in the (u, µ)-plane of this truncated equationfor different
values of a and b.

� Prove the theorem.
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1.2 Bifurcation in dimension 2: Hopf bifurcation

In the remainder of this section we consider differential equations in R2,

du

dt
= F(u, µ). (1.2.1)

Here the unknown u is again a real-valued function that takes values in R2, and the
vector field F is real-valued depending, besides u, upon a parameter µ. The parameter µ
is the bifurcation parameter. We assume that the vector field is of class Ck, k ≥ 3, in a
neighborhood of (0, 0) satisfying:

F(0, 0) = 0 (1.2.2)

This condition ensures that u = 0 is an equilibrium of equation (1.2.1) at µ = 0. The
occurance of a bifurcation is in this case determined by the linearization of the vector
field at (0, 0):

L = DuF(0, 0)

which is a linear operator acting in R2. When L has eigenvalues on the imaginary axis,
bifurcations may occur at µ = 0. We focus in this section on the case where L has a pair
of complex conjugated purely imaginary eigenvalues. This is called the Hopf bifurcation
(or Andronov-Hopf bifurcation).

Hypothesis 1.1. Assume that the vector field is of class Ck, k ≥ 5, in a neighborhood of
(0, 0), that is satisfies (1.2.2), and the two eigenvalues of the linear operator L are ±iω
for some ω > 0.

We consider the eigenvector ζ associated to the eigenvalue iω of L,

Lζ = iωζ

If L∗ is the adjoint operator of L then we define ζ∗ as the eigenvector of L∗ satisfying:

L∗ζ∗ = −iωζ∗, 〈ζ, ζ∗〉 = 1

where 〈·, ·〉 denotes the Hermitian scalar product in C2.
Consider the Taylor extension of the vector field F in (1.2.1):

F(u, µ) =
∑

1≤r+q≤k

µqFrq(u
(r)) + o(|µ|+ ‖u‖k)

where Frq is the r-linear symmetric operator from (R2)
r

to R2,

Frq =
1

r!q!

∂q

∂µq
Dr
uF(0, 0)

We define the two coefficients

a = 〈F11ζ + 2F20(ζ,−L−1F01), ζ∗〉 (1.2.3)

b = 〈2F20

(
ζ̄ , (2iω − L)−1F20(ζ, ζ)

)
+2F20

(
ζ,−2L−1F20(ζ, ζ̄)

)
+3F30(ζ, ζ, ζ̄), ζ∗〉 (1.2.4)
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Hypothesis 1.2. We assume that the complex coefficients a and b have nonzero real
parts, ar 6= 0 and br 6= 0. The coefficient br = Re(b) is called the first Lyapunov coefficient.

Definition 1.2. 1. A non-constant solution to the differential equation (1.2.1) is pe-
riodic if it exists T > 0 such that u(t) = u(t+ T ). The image of the interval [0, T ]
under u in the state space R2 is called the periodic orbit.

2. A periodic orbit Γ on a plane is called a limit cycle if it is the α-limit set or ω-limit
set of some point z not on the periodic orbit, that is, the set of accumulation points
of either forward or backward trajectory through z, is exactly Γ. Asymptotically
stable and unstable periodic orbits are examples of limit cycles.

Theorem 1.4 (Hopf bifurcation). Assume that hypotheses 1.1 and 1.2 hold. Then, for
the differential equation (1.2.1) a supercritical (resp. subcritical) Hopf bifurcation occurs
at µ = 0 when br < 0 (resp. br > 0). More precisely, the following properties hold in a
neighborhood of 0 in R2 for small enough µ:

(i) If arbr < 0 (resp. arbr > 0) the differential equation has precisely one equilibrium
u(µ) for µ < 0 (resp. µ > 0) with u(0) = 0. This equilibrium is stable when br < 0
and unstable when br > 0.

(ii) If arbr < 0 (resp. arbr > 0) the differential equation possesses for µ > 0 (resp.
µ < 0) an equilibrium u(µ) and a unique periodic orbit u∗(µ) = O(

√
|u|), which

surrounds this equilibrium. The periodic orbit is stable when br < 0 and unstable
when br > 0, whereas the equilibrium has the opposite stability.

Proof. See section on normal forms.

Remark 1.2. The number of equilibria of the differential equation stays constant upon
varying µ in a neighborhood of 0. The dynamics of the bifurcation change at the bifur-
cation point µ = 0. Such bifurcations are called dynamic bifurcations, whereas those in
which the number of equilibria changes are also called steady bifurcations.

2 Center manifold

Center manifolds are fundamental for the study of dynamical systems near critical sit-
uations and in particular in bifurcation theory. Starting with an infinite-dimensional
problem, the center manifold theorem will reduce the study of small solutions, staying
sufficiently close to 0, to that of small solutions of a reduced system with finite dimen-
sion. The solutions on the center manifold are described by a finite-dimensional system
of ordinary differential equations, also called the reduced system.

2.1 Notations and definitions

Consider two (complex or real) Banach spaces X and Y . We shall use the following
notations:
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� Ck(Y ,X ) is the Banach space of k-times continuously differentiable functions F :
Y → X equiped with the norm on all derivatives up to order k,

‖F‖Ck = max
j=0,...,k

(
sup
y∈Y

(
‖DjF (y)‖L(Yj ,X )

))
� L(Y ,X ) is the Banach space of linear bounded operators L : Y → X , equiped with

operator norm:
‖L‖L(Y,X ) = sup

‖u‖Y=1

(‖Lu‖X )

if Y = X , we write L(Y) = L(Y ,X ).

� For a linear operator L : Y → X , we denote its range by imL:

imL = {Lu ∈ X | u ∈ Y} ⊂ X

and its kernel by kerL:

kerL = {u ∈ Y | Lu = 0} ⊂ Y

� Assume that Y ↪→ X with continuous embedding. For a linear operator L ∈
L(Y ,X ), we denote by ρ(L), or simply ρ, the resolvent set of L:

ρ = {λ ∈ C | λId− L : Y → X is bijective }.

The complement of the resolvent set is the spectrum σ(L), or simply σ,

σ = C \ {ρ}.

Remark 2.1. When L is real, both the resolvent set and the spectrum of L are symmetric
with respect to the real axis in the complex plane.

2.2 Local center manifold

Let X ,Y and Z be Banach spaces such that:

Z ↪→ Y ↪→ X

with continuous embeddings. We consider a differential equation in X of the form:

du

dt
= Lu+ R(u) (2.2.1)

in which we assume that the linear part L and the nonlinear part R are such that the
following holds.

Hypothesis 2.1 (Regularity). We assume that L and R in (2.2.1) have the following
properties:

(i) L ∈ L(Z,X ),
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(ii) for some k ≥ 2, there exists a neighborhood V ⊂ Z of 0 such that R ∈ Ck(V ,Y)
and

R(0) = 0, DR(0) = 0.

Hypothesis 2.2 (Spectral decomposition). Consider the spectrum σ of the linear oper-
ator L, and write:

σ = σ+ ∪ σ0 ∪ σ−
in which

σ+ = {λ ∈ σ | Reλ > 0}, σ0 = {λ ∈ σ | Reλ = 0}, σ− = {λ ∈ σ | Reλ < 0}

We assume that:

(i) there exists a positive constant γ such that

inf
λ∈σ+

(Reλ) > γ, sup
λ∈σ−

(Reλ) < −γ

(ii) the set σ0 consists of a finite number of eigenvalues with finite algebraic multiplici-
ties.

Hypothesis 2.3 (Resolvent estimates). Assume that there exist positive constants ω0 >
0, c > 0 and α ∈ [0, 1) such that for all ω ∈ R with |ω| ≥ ω0, we have that iω belongs to
the resolvent set of L and

‖(iωId− L)−1‖L(X ) ≤
c

|ω|
‖(iωId− L)−1‖L(Y,Z) ≤

c

|ω|1−α

As a consequence of hypothesis 2.2 (ii), we can define the spectral projection P0 ∈
L(X ), corresponding to σ0, by the Dunford formula:

P0 =
1

2πi

∫
Γ

(λId− L)−1dλ (2.2.2)

where Γ is a simple, oriented counterclockwise, Jordan curve surrounding σ0 and lying
entirely in {λ ∈ C | |Reλ| < γ}. Then

P2
0 = P0, P0Lu = LP0u ∀u ∈ Z,

and imP0 is finite-dimensional (σ0 consists of a finite number of eigenvalues with finite
algebraic multiplicities). In Particular, it satisfies imP0 ⊂ Z and P0 ∈ L(X ,Z). We
define a second projector Ph : X → X by

Ph = Id−P0

which also satisfies
P2
h = Ph, PhLu = LPhu ∀u ∈ Z,
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and
Ph ∈ L(X ) ∩ L(Y) ∩ L(Z).

We consider the spectral subspaces associated with these two projections:

E0 = imP0 = ker Ph ⊂ Z, Xh = imPh = ker P0 ⊂ X

which provides the decomposition:

X = Xh ⊕ E0.

We also denote
Zh = PhZ ⊂ Z, Yh = PhY ⊂ Y

and denote by L0 ∈ L(E0) and Lh ∈ L(Zh,Xh) the restrictions of L to E0 and Zh. The
spectrum of L0 is σ0 and the spectrum of Lh is σ+ ∪ σ−.

Theorem 2.1 (Center manifold theorem). Assume that hypotheses 2.1, 2.2 and 2.3 hold.
Then there exists a map Ψ ∈ Ck(E0,Zh), with

Ψ(0) = 0, DΨ(0) = 0,

and a neighborhood O of 0 in Z such that the manifold:

M0 = {u0 + Ψ(u0) | u0 ∈ E0} ⊂ Z

has the following properties:

(i) M0 is locally invariant: if u is a solution of equation (2.2.1) satisfying u(0) ∈
M0 ∩ O and u(t) ∈ O for all t ∈ [0, T ], then u(t) ∈M0 for all t ∈ [0, T ].

(ii) M0 contains the set of bounded solutions of (2.2.1) staying in O for all t ∈ R.

The manifold M0 is called a local center manifold of (2.2.1) and the map Ψ is referred
to as the reduction function.

Let u be a solution of (2.2.1) which belongs to M0, then u = u0 + Ψ(u0) and u0

satisfies:
du0

dt
= L0u0 + P0R(u0 + Ψ(u0)) (2.2.3)

The reduction function Ψ satisfies:

DΨ(u0)(L0u0 + P0R(u0 + Ψ(u0))) = LhΨ(u0) + PhR(u0 + Ψ(u0)) ∀u0 ∈ E0

2.3 Example

Consider

dx

dt
= xy

dy

dt
= −y − x2
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where (x, y) ∈ R2. We have

L =

[
0 0
0 −1

]
E0 is equal to the x-axis and E− is equal to the y-axis. There exists a center-manifold:

M0 = {x+ Ψ(x) | x ∈ R}

where Ψ : R→ R satisfies:

Ψ′(x)(xΨ(x)) = −Ψ(x)− x2, Ψ(0) = Ψ′(0) = 0

Setting Ψ(x) = c2x
2 + c3x

3 + o(x3) we get −c2x
2− x2 = 0 and −c3x

3 = 0. Consequently:

Ψ(x) = −x2 + o(x3)

The reduced system is
dx

dt
= −x3 + o(x4).

2.4 Parameter-dependent center manifold

We consider a parameter-dependent differential equation in X of the form

du

dt
= Lu+ R(u, µ) (2.4.1)

where L is a linear operator as in the previous section, and the nonlinear part R is defined
for (u, µ) in a neighborhood of (0, 0) ∈ Z × Rm. Here µ ∈ Rm is a paramter that we
assume to be small. More precisely we keep hypotheses 2.2 and 2.3 and replace hypothesis
2.1 by the following:

Hypothesis 2.4 (Regularity). We assume that L and R in (2.4.1) have the following
properties:

(i) L ∈ L(Z,X ),

(ii) for some k ≥ 2, there exists a neighborhood Vu ⊂ Z and Vµ ⊂ Rm of 0 such that
R ∈ Ck(Vu × Vµ,Y) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 2.2 (Parameter-dependent center manifold theorem). Assume that hypotheses
2.4, 2.2 and 2.3 hold. Then there exists a map Ψ ∈ Ck(E0 × Rm,Zh), with

Ψ(0, 0) = 0, DuΨ(0, 0) = 0,

and a neighborhood Ou ×Oµ of 0 in Z × Rm such that for µ ∈ Oµ the manifold:

M0(µ) = {u0 + Ψ(u0, µ) | u0 ∈ E0} ⊂ Z

has the following properties:
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(i) M0(µ) is locally invariant: if u is a solution of equation (2.4.1) satisfying u(0) ∈
M0(µ) ∩ Ou and u(t) ∈ Ou for all t ∈ [0, T ], then u(t) ∈M0(µ) for all t ∈ [0, T ].

(ii) M0(µ) contains the set of bounded solutions of (2.4.1) staying in Ou for all t ∈ R.

Let u be a solution of (2.4.1) which belongs to M0(µ), then u = u0 + Ψ(u0, µ) and u0

satisfies:
du0

dt
= L0u0 + P0R(u0 + Ψ(u0, µ), µ)

def
= f(u0, µ) (2.4.2)

where we observe that f(0, 0) = 0 and Du0f(0, 0) = L0 has spectrum σ0. The reduction
function Ψ satiafies:

Du0Ψ(u0, µ)f(u0, µ) = LhΨ(u0, µ) + PhR(u0 + Ψ(u0, µ), µ) ∀u0 ∈ E0

2.5 Equivariant systems

Hypothesis 2.5 (Equivariant equation). We assume that there exists a linear operator
T ∈ L(X ) ∩ L(Z), which communtes with vector field in equation (2.2.1):

TLu = LTu, TR(u) = R(Tu)

We also assume that the restriction T0 of T to E0 is an isometry.

Theorem 2.3 (Equivariant center manifold). Under the assumption of theorem 2.1, we
further assume that hypothesis 2.5 holds. Then one can find a reduction function Ψ which
commutes with T:

TΨu0 = Ψ(T0u0), ∀u0 ∈ E0

and such that the vector field in the reduced equation (2.2.3) commutes with T0.

Remark 2.2. Analogous results hold for the parameter-dependent equation (2.4.1).

2.6 Empty unstable spectrum

Theorem 2.4 (Center manifold for empty unstable spectrum). Under the assumptions
of theorem 2.1 and assume that σ+ = ∅. Then in addition to propertries of theorem 2.1,
the local center manifold M0 is locally attracting: any solution of equation (2.2.1) that
stays in O for all t > 0 tends exponentially towards a solution of (2.2.1) on M0.

3 Normal forms

The normal forms theory consists in finding a polynomial change of variable which im-
proves locally a nonlinear system, in order to recognize more easily its dynamics.
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3.1 Main theorem

We consider a paramter-dependent differential equations in Rn of the form

du

dt
= Lu+ R(u, µ) (3.1.1)

in which we assume that L and R satisfy the following hypothesis.

Hypothesis 3.1 (Regularity). Assume that L and R have the following properties:

(i) L is a linear map in Rn;

(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Rn and Vµ ⊂ Rm of 0 such that
R ∈ Ck(Vu × Vµ,Rn) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 3.1 (Normal form theorem). Assume that hypothesis 3.1 holds. Then for any
positive integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in Rn and Rm such
that for µ ∈ V2, there is a polynomial map Φµ : Rn → Rn of degree p with the following
properties:

(i) the coefficients of the monomials of degree q in Φµ are functions of µ of class Ck−q
and

Φ0(0) = 0, DuΦ0(0) = 0

(ii) for v ∈ V1, the polynomial change of variable

u = v + Φµ(v)

transforms equation (3.1.1) into the normal form:

dv

dt
= Lv + Nµ(v) + ρ(v, µ)

and the following properties hold:

(a) for any µ ∈ V2, Nµ is a polynomial map Rn → Rn of degree p, with coefficients
depending upon µ, such that the coefficients of the monomials of degree q are
of class Ck−q and

N0(0) = 0, DvN0(0) = 0

(b) the equality Nµ(etL
∗
v) = etL

∗
Nµ(v) holds for all (t, v) ∈ R× Rn and µ ∈ V2

(c) the map ρ belongs to Ck(V1 × V2,Rn) and

ρ(v, µ) = o(‖v‖p) ∀µ ∈ V2
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3.2 Hopf bifurcation

Consider an equation of the form (3.1.1) with a single parameter µ ∈ R and satisfying
the hypotheses in the center manifold theorem 2.2. Assume that the σ0 of the linear
operator L contains two purely imaginary eigenvalues ±iω, which are simple. Under these
assumptions, we have σ0 = {±iω} and E0 is two-dimensional spanned by the eigenvectors
ζ, ζ̄ associated with iω and −iω respectively. The center manifold theorem 2.2 gives

u = u0 + Ψ(u0, µ), u0 ∈ E0

and applying the normal form theorem 3.1 we find

u0 = v0 + Φµ(v0)

which gives:
u = v0 + Ψ̃(v0, µ), u0 ∈ E0 (3.2.1)

For v0(t) ∈ E0, we write

v0(t) = A(t)ζ + A(t)ζ, A(t) ∈ C

Lemma 3.1. The polynomial Nµ in theorem 3.1 is of the form:

Nµ(A,A) = (AQ(|A|2, µ), AQ(|A|2, µ))

where Q is a complex-valued polynomial in its argument, satisfying Q(0, 0) = 0 and of
the form:

Q(|A|2, µ) = aµ+ b|A|2 +O((|µ|+ |A|2)2)

We write the Taylor expansion of R and Ψ̃:

R(u, µ) =
∑

1≤q+l≤p

Rql(u
(q), µ(l)) + o((|µ|+ ‖u‖)p)

Ψ̃(v0, µ) =
∑

1≤q+l≤p

Ψ̃ql(v
(q)
0 , µ(l)) + o((|µ|+ ‖v0‖)p)

Ψ̃ql(v
(q)
0 , µ(l)) = µl

∑
q1+q2=q

Aq1A
q2

Ψq1q2l

We differentiate equation (3.2.1) and obtain:

Dv0Ψ̃(v0, µ)L0v0 − LΨ̃(v0, µ) + Nµ(v0) = Q(v0, µ)

where
Q(v0, µ) = Πp

(
R(v0 + Ψ̃(v0, µ), µ)−Dv0Ψ̃(v0, µ)Nµ(v0)

)
Here Πp represents the linear map that associates to map of class Cp the polynomial

of degree p in its Taylor expansion. We then replace the Taylor expansions of R and Ψ̃
and by identifying the terms of order O(µ), O(A2) and O(|A|2) we obtain:

−LΨ001 = R01

(2iω − L)Ψ200 = R20(ζ, ζ)

−LΨ110 = 2R20(ζ, ζ̄)
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Here the operators L and (2iω − L) are invertible so that Ψ001,Ψ200 and Ψ110 are
uniquely determined. Next we identify the terms of order O(µA) and O(A|A|2)

(iω − L)Ψ101 = −aζ + R11(ζ) + 2R20(ζ,Ψ001)

(iω − L)Ψ210 = −bζ + 2R20(ζ,Ψ110) + 2R20(ζ̄ ,Ψ200) + 3R30(ζ, ζ, ζ̄)

Since iω is a simple isolated eigenvalue of L, the range of (iω − L) is of codimension
one so we can solve these equations and determine Ψ101 and Ψ210, provided the right
hand sides satisfy one solvability condition. This solvability condition allows to compute
coefficients a and b.

� If L has an adjoint L∗ acting on the dual space X ∗, the solvability condition is
that the right hand sides be orthogonal to the kernel of the adjoint (−iω − L∗) of
(iω − L). The kernel of (−iω − L∗) is just one-dimensional, spanned by ζ∗ ∈ X ∗
with 〈ζ, ζ∗〉 = 1. Here 〈·, ·〉 denotes the duality product between X and X ∗. We
find:

a = 〈R11(ζ) + 2R20(ζ,Ψ001), ζ∗〉
b = 〈2R20

(
ζ̄ ,Ψ200

)
+ 2R20 (ζ,Ψ110) + 3R30(ζ, ζ, ζ̄), ζ∗〉

� If the adjoint L∗ does not exist, we use a Fredholm alternative since both equations
have the form:

(iω − L)Ψ = R, with R ∈ X

We project with P0 and Ph on the subspaces E0 and Xh and we obtain

(iω − L0)P0Ψ = P0R

(iω − Lh)PhΨ = PhR

The operator (iω−Lh) is invertible, then the second equation has a unique solution.
The first equation is tw-dimensional, there is a solution Ψ0 provided the solvability
condition holds

〈R0, ζ
∗
0 〉 = 0

where ζ∗0 ∈ E0 is the eigenvector in the kernel of the adjoint (−iω−L∗0) in E0 chosen
such that 〈ζ, ζ∗0 〉 = 1. If P∗0 is the adjoint of P0 and setting ζ∗ = P∗0ζ

∗
0 the solvability

condition becomes 〈R, ζ∗〉 = 0 which leads to the same formula for a and b as above.

4 Equivariant bifurcation

4.1 The Euclidean group

In real n-dimensional affine space Rn we chose an origin O and a coordinate frame so
that any point P is determined by its coordinates (x1, . . . , xn). The distance between
P and Q is given by d(P,Q) =

√∑n
i=1(xi − yi)2. This gives Rn a Euclidean structure.

The Euclidean Group E(n) is the group of all linear or affine linear isometries acting on
Rn: all linear transformations which preserve the distances. It can be shown that any
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such transformation is a composition of an orthogonal transformation O, i.e. an isometry
which keeps the origin O fixed, and a translation by a vector e. e is a vector of Rn. The
group of isometries which keeps the origin O fixed is isomorphic to the real orthogonal
group O(n). Given any g ∈ E(n) we write g = (O, e) ∈ O(n)× Rn. The composition of
law is then:

g · g′ = (OO′,Oe + e′)

This shows that E(n) is the semi-product O(n) n Rn.

Throughout this section, by “symmetry group” we will mean a closed subgroup of the
n-dimensional Euclidean Group E(n).

4.2 Planar lattice

Name Holohedry Basis of L Basis of L∗

Hexagonal D6 `1 = ( 1√
3
, 1), `2 = ( 2√

3
, 0) k1 = (0, 1), k2 = (

√
3

2
,−1

2
)

Square D4 `1 = (1, 0), `2 = (0, 1) k1 = (1, 0), k2 = (0, 1)
Rhombic D2 `1 = (1,− cot θ), `2 = (0, cot θ) k1 = (1, 0), k2 = (cos θ, sin θ)

Rectangular D2 `1 = (1, 0), `2 = (0, c) k1 = (1, 0), k2 = (0, 1
c
)

Oblique Z2 |`1| 6= |`2|, `1 · `2 6= 0

Table 1: Lattices in two dimension. 0 < θ < π
2
, θ 6= π

3
and 0 < c < 1.

Let `1, `2 be a basis of R2. The set L = {m1`1 + m2`2 | (m1,m2) ∈ Z2} is a discrete
subgroup of R2. It is called a lattice group because the orbit of a point in R2, under the

action of L forms a periodic lattice of points in R2. We set L̃ = L(O). Denote by H

the largest subgroup of O(n) which keeps L̃ invariant. Then the symmetry group of L̃ is
generated by the semi-direct product H nL. The group H is called the holohedry of the
lattice. We define the dual lattice of lattice L by L∗ = {m1k1 + m2k2 | (m1,m2) ∈ Z2}
with `i · kj = δi,j. We summerize in table 1 the different holohedries of the plane.

4.3 Definitions

Definition 4.1. Given a closed subgroup G of E(n) and a Banach space Y, a linear
action of G on Y is a continuous homomorphism τ : G→ GL(Y) from G to the group of
invertible linear maps in Y. The map τ is called a representation of G in the space Y.

If ker(τ) = {0}, the image of G under τ is a group isomorphic to G and we call it the
transformation group associated with G. We denote by Γ this group.

Definition 4.2. If F : X → Y is a smooth operator (of class Ck, k ≥ 2), then F is
Γ-equivariant if for every γ ∈ Γ and every x ∈ X we have

F(γx) = γF(x)
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Definition 4.3. Let Σ be a subgroup of Γ. We denote by FixY(Σ) the subspace of Y
consisting of all points which are fixed under Σ:

FixY(Σ) = {y ∈ Y | σy = y for all σ ∈ Σ}

Definition 4.4. � The largest subgroup of Γ which fixes x ∈ X is the isotropy sub-
group (or stabilizer) of x, which we denote by Stab(x).

� For x ∈ X , the Γ-orbit of x is the set Γ · x: the image of x by the action of Γ.

Definition 4.5. Let N(Σ) be the normalizer of Σ in Γ:

N(Σ) = {γ ∈ Γ | γΣγ(−1) = Σ}

4.4 Equivariant Branching Lemma

We consider a paramter-dependent differential equation in X of the form

du

dt
= Lu+ R(u, µ) = F(u, µ) (4.4.1)

where L is a linear operator as in the previous section, and the nonlinear part R is defined
for (u, µ) in a neighborhood of (0, 0) ∈ Z × Rm. Here µ ∈ Rm is a paramter that we
assume to be small. We suppose that F is Γ-equivariant. If we apply the parameter-
dependent center manifold 2.3 theorem for equivariant differential equation (4.4.1), the
reduced equation on E0 has the general form:

du0

dt
= L0u0 + P0R(u0 + Ψ(u0, µ), µ)

def
= f(u0, µ)

with
γΨ(u0, µ) = Ψ(γu0, µ), ∀u0 ∈ E0 and ∀γ ∈ Γ

Since E0 is a real space of dimension n, we may regard f as a map f : Rn × Rm → Rn.
Moreover, Γ acts on Rn and f is equivariant for this action.

Suppose now that the action of Γ on Rn possesses an isotropy subgroup Σ with a
one-dimensonal fixed point space Fix(Σ). If we look for solutions in Fix(Σ), the reduced
equation on the center manifold restricts to a scalar equation.

Hypothesis 4.1. We suppose that Γ acts absolutely irreducibly on E0. As a consequence,
the linearization of f at the origin is a multiple of the identity and we have Duf(0, µ) =
c(µ)Id.

Theorem 4.1 (Steady-state Equivariant Branching Lemma). We suppose that the as-
sumptions of theorem 2.2 hold. Assume that the compact group Γ acts linearly and that
F is Γ-equivariant. We suppose that Γ acts absolutely irreducibly on E0. We also suppose
that L has 0 as an isolated eigenvalue with finite multiplicity. If Σ is an isotropy subgroup
of Γ with dim Fix(Σ) = 1 and if c′(0) 6= 0, then it exists a unique branche of solutions
with symmetry Σ.

Furthermore, for each isotropy subgroup Σ of Γ such that dim Fix(Σ) = 1 in E0, either
one of the following situations occurs (where f(u0, µ) is left hand side of equation (2.2.3)
in Fix(Σ)):

16



(i) Σ = Γ. If Dµf(0, 0) 6= 0, there exists one branch of solution u(µ). If in addition
D2
uuf(0, 0) 6= 0, then u2 = O(‖µ‖) ⇒ saddle-node bifurcation.

(ii) Σ < Γ and the normalizer N(Σ) acts trivially in Fix(Σ). Then f(u0, µ) = u0h(u0, µ)
and if D2

uµf(0, 0) 6= 0 there exists a branch of solution u(µ). If in addition D2
uuf(0, 0) 6=

0, then u = O(‖µ‖) ⇒ transcritical bifurcation.

(iii) Σ < Γ and the normalizer N(Σ) acts as −1 in Fix(Σ). Then f(u0, µ) = u0h(u0, µ)
with h an even function of u0. If D2

uµf(0, 0) 6= 0 there exists a branch of solution
±u(µ) such that if D3

uuuf(0, 0) 6= 0, then u2 = O(‖µ‖) ⇒ pitchfork bifurcation.

Remark 4.1. � If dim Fix(Σ) = 1, then Σ is a maximal isotropy subgroup.

� When Σ < Γ, the bifurcating solutions in Fix(Σ) have lower symmetry than the
basic solution u = 0. This effect is called spontaneous symmetry breaking.
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