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Neuronal Signal

Spikes
The elementary unit of the neu-
ronal signal are stereotyped mem-
brane potential electrical im-
plulses.

Subthreshold behaviour
Small oscillations of the neuron’s
membrane potential are important
features in some types of neuron
for the robustness of rythmic pat-
terns in the brain
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Neuro-Computationnal properties of neurons

Different points of view

In the neuroscience world, two points of view share the battlefield:
I Biologists consider that the main phenomena occuring in the

spiking process are ion exchanges and channel dynamics.
I Many theoreticians consider this mechanism in terms of

input-output processes.

Dynamical System point of view
In this talk we consider that the different behaviours of cortical neu-
rons are strongly linked with the intrinsic non-linear dynamics of each
individual neuron.
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Neuro-Computationnal properties of neurons

A simple dynamical system analysis

I The resting state corresponds to a stable equilibrium. Tonic
spiking state corresponds to a limit cycle attractor

I Neurons are excitables because the equilibrium is near a
bifurcation
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Neuro-Computationnal properties of neurons

Neurons from our point view
I Neurons are dynamical systems
I Phase plane analysis and bifurcations explain the

neurocomputationnal behaviour of the neurons
I A good neuronal model must reproduce electrophysiology

AND the bifurcation dynamics of neurons
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Neuro-Computationnal properties of neurons

Excitabilité
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Neuro-Computationnal properties of neurons

La naissance des cycles

Comment les cycles naissent?
Il y a 2 façons de faire naître un cycle:

I La bifurcation de Hopf (déjà étudiée)
I La saddle-node on invariant cycle (SNIC): mécanisme courant

pour passer d’un point fixe à un cycle: une branche de cycle
limite émerge d’un point de saddle-node au travers d’une
orbite homocline.

I L’excitabilité de type 3 correspond à la présence d’un point
fixe stable quel que soit la valeur du courant d’entrée.
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Neuro-Computationnal properties of neurons

Correspondance entre Bifurcations et Excitabilité

Rinzel et Ermentrout (1989) on fait le lien entre les deux types
d’excitabilité et les deux bifurcations ci-dessus:

I Une bifurcation SNIC correspond à un phénomène
d’excitabilité de type I

I Une bifurcation de Hopf correspond à un phénomène
d’excitabilité de type II

I L’excitabilité de type 3 correspond à l’absence de bifurcation.

Attention:
La réciproque n’est bien sûr pas correcte.
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Neuro-Computationnal properties of neurons

Coexistance des Type 1 and 2
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Neuro-Computationnal properties of neurons

Spikes dans le modèle de Fitzhugh-Nagumo

I Présence d’un cycle via le théorème de Poincaré-Bendixon
I Quel type d’excitabilité?
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Neurons & Dyn. Syst.

Bifurcations and electrophysiological properties

(Ref: Izhikevich 2006: Dynamical Systems in Neuroscience)
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Neurons & Dyn. Syst.

Problem
I Can we find a computationnaly simple phenomenological

neuron model reproducing the main biological features of
cortical neurons?

I Can we relate other neuronal behaviors to more complex
bifurcations?
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Bidimensional spiking neuron models
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Neurons, Dynamical Systems and Integrate-and-fire
models
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Neuron and Dynamical Systems
The main excitability properties can be linked with bifurcations of
dynamical systems for

I Continuous dynamical systems: detailed neuron models and
their reductions (Rinzel, Ermentrout, Guckenheimer, . . . ).

I Discrete dynamical systems: map-based models (Caselles,
Rulkov, . . . )

Hybrid dynamical systems
Integrate-and-fire neuron models combine:

I A continuous dynamical system (ordinary differential
equations) accounting for input integration

I A discrete dynamical system (map iteration) accounting for
spike emission.
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Classical Integrate-and-Fire Neurons

Izhikevich (2003){
v̇ = v2 − w + I
ẇ = a(bv − w)

Brette & Gerstner (2005){
v̇ = ev − v − w + I
ẇ = a(bv − w)
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Model

A General class of models
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Model

Free (subthreshold) dynamics of the neuron
{

dv
dt = F (v)− w + I
dw
dt = a(b v − w)

where
I v models the membrane potential of the neuron
I w is an adaptation variable.
I F is a real function
I a is the time scale of the adaptation variable with respect to

the membrane potential
I b is the coupling strength.
I I is the (constant) input.
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Model

Technical assumptions on F :

Assumptions:
1. Regularity: F is at least three times continuously differentiable
2. Convexity: F is strictly convex
3. Shape of F :  lim

x→−∞
F ′(x) ≤ 0

lim
x→+∞

F ′(x) = +∞
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Model

Spiking Mechanism
Assumption 4 (Spikes)

F (v) = R(v) v1+ε for some ε > 0 and R(v) is lowerbounded when
v →∞.

Under these asumptions:
I The membrane potential blows up in finite time.
I A spike is emitted at the time t∗ when the membrane

potential blows up (or when it reaches a cutoff value).
I At this time, the membrane potential and the adaptation

variable are reset: {
v(t∗) = vr

w(t∗) = w(t∗−) + d

where vr is the reset membrane potential and d > 0 is an
adaptation parameter.Jonathan Touboul NeuroMathComp - INRIA/ENS Paris

Nonlinear Neuron models and Bifurcations



Neurons General class of neuron Oscillators Networks Neural Masses

Model

Spiking Mechanism
Assumption 4 (Spikes)

F (v) = R(v) v1+ε for some ε > 0 and R(v) is lowerbounded when
v →∞.

Under these asumptions:
I The membrane potential blows up in finite time.
I A spike is emitted at the time t∗ when the membrane

potential blows up (or when it reaches a cutoff value).
I At this time, the membrane potential and the adaptation

variable are reset: {
v(t∗) = vr

w(t∗) = w(t∗−) + d

where vr is the reset membrane potential and d > 0 is an
adaptation parameter.Jonathan Touboul NeuroMathComp - INRIA/ENS Paris

Nonlinear Neuron models and Bifurcations



Neurons General class of neuron Oscillators Networks Neural Masses

Model

Spiking Mechanism
Assumption 4 (Spikes)

F (v) = R(v) v1+ε for some ε > 0 and R(v) is lowerbounded when
v →∞.

Under these asumptions:
I The membrane potential blows up in finite time.
I A spike is emitted at the time t∗ when the membrane

potential blows up (or when it reaches a cutoff value).
I At this time, the membrane potential and the adaptation

variable are reset: {
v(t∗) = vr

w(t∗) = w(t∗−) + d

where vr is the reset membrane potential and d > 0 is an
adaptation parameter.Jonathan Touboul NeuroMathComp - INRIA/ENS Paris

Nonlinear Neuron models and Bifurcations



Neurons General class of neuron Oscillators Networks Neural Masses

Model

Interspike Behavior,
Mathematical Analysis
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Model

Bifurcations of the subthreshold system:
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Model

Neuronal Behaviors
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Model

Electrophysiological classes

J.T., Romain Brette, Biol. Cybern. 2008.
Jonathan Touboul NeuroMathComp - INRIA/ENS Paris
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Model

Problem: no subthreshold oscillations

I present in the the inferior olive nucleus, stellate cells in the
enthorhinal cortex and dorsal root ganglia (DRG) neuron

I facilitate the generation of spike oscillations and shape specific
forms of rhythmic activity vulnerable to the noise.
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Model

Solution

Bautin bifurcation
I Bautin bifurcation possible
I Occurs in the quartic model for instance: F (v) = v4 + 2a v .
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Model

Behaviors of the Quartic Model

J.T., SIAM Appl. Math. 2008.
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Spikes

Spike Dynamics
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Spikes

Dynamical objects
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Spikes

The Adaptation map
We define:

I D the set of w s.t. the solution starting from (vr ,w) spikes.
I Φ : D 7→ R the function such that Φ(w) is the after-spike

adaptation value.
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Spikes

A single case is considered

No fixed point

In this defense I only consider the case where I > ISN(b), i.e. the
system has no fixed point

What if not?
The other cases are more intricate and fully treated in the manuscript.
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Spikes

Mathematical study of Φ

I We define a Markov partition of the
dynamics.

I In the spiking zone,
w(t) = W (v(t)) where the
function W is the solution of the
differential equation:{

dW
dv = a (b v−w)

F (v)−w+I

W (v0) = w0

I The map Φ is defined by
lim

v→∞
W (v) + d .

Jonathan Touboul NeuroMathComp - INRIA/ENS Paris
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Spikes

Well-posedness of the model
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Spikes

Adaptation variable at the times of the spikes

In order for this sytem to be well posed, the value of the adaptation
at the times of the spike must be well defined.
Result

I We show that the adaptation variable at the times of the
spikes is well defined in the quartic and the exponential models

I And in the quadratic models it blows up!
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Spikes

Sketch of the proof
I Any spiking trajectory will enter a region stable under the

dynamics included in {w < bv} and where F (v)−w + I never
vanishes.

I Therefore the membrane potential will blow up in this zone
(v̇ ≥ F (v)− bv + I + Gronwall).

I Moreover, the orbit satisfies the equation dW
dv = a (b v−W )

F (v)−W+I and
w is increasing hence

a (b v −W0)

F (v)− b v + I
≥ dW

dv
≥ a (b v −W )

F (v)−W0 + I

I Gronwall’s lemma leads to the conclusion: the adaptation
value is bounded at the times of the spikes if and only if v

F (v)
is integrable.

Jonathan Touboul NeuroMathComp - INRIA/ENS Paris
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Spikes

Consequences

Classical Models
Izhikevich model is ill-posed, the Quartic and the Exponential well-
posed.

I Izhikevich model has a strict voltage threshold, the cutoff θ.
I The adaptation value at the times of the spike reads W (θ)

and diverges when θ →∞.
I Therefore spike patterns depend on the cutoff value, and in a

very sensitive way.
I It has important consequences on numerical simulations.
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Spikes

Sensitivity to cutoff of Izhikevich model

J.T., Submitted to Neural Computation
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Spikes

Spike Dynamics
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Spikes

Well-posedness assumption

Assumption 5 (Well-posedness)

F (v) = R(v) v2+ε for some ε > 0 and R(v) is lowerbounded when
v →∞.

Mathematical remark
In this case the map Φ corresponds to a generalization of a Poincaré
map.
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Spikes

Spiking signature

The spike pattern fired is directly linked with the sequence of reset
value of the adaptation, called the adaptation sequence(
Φn(w0)

)
n≥0.
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Spikes

Description of the adaptation map
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Spikes

Regular Spiking
I Regular spiking corresponds to the convergence of the

sequence Φn(w) to the fixed point of Φ noted wfp.
I wfp ≤ w∗ ⇔ spike frequency adaptation.
I wfp ≥ w∗ ⇔ initial bursting.
I Theorem: If Φ(w∗) ≤ w∗, the system presents regular spiking

with spike frequency adaptation.
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Spikes

Regular Bursting:
I Bursts correspond to cycles in the sequence.
I Simple conditions on the values of Φ account for the existence

of cycles, e.g. cycles of period three (hence cycles of any
period).
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Spikes

Bifurcations with respect to vr :

The parameter vr sharpens the map Φ.
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Plausibility of chaos?

It has been observed in the Purkinje cell a period doubling route to
chaos in vivo and in vitro, by varying the temperature (which could
result in varying vr ). It is also observed in the Hogkin Huxley’s
model with temperature.
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Spikes

Electrophysiological Classes

J.T., Romain Brette, Submitted at SIAM Appl. Dyn. Syst.
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Spikes

Contributions

1. We introduced a unified framework allowing to study and
compare planar spiking neuron models.

2. We proved that Izhikevich model differred from other models
because of the necessary presence of a strict voltage threshold.

3. We studied the interplay between continuous and discrete
nonlinear dynamics resulting in producing different spike
patterns.

4. Our study provides classifications in the parameter space of
different electrophysiological behaviors.
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Weakly coupled neural oscillators

Oscillations
I Oscillations is one of the most prominent brain activity type
I Responsible of repetitive activity such as locomotion, feeding,

breathing, epileptic seizures, . . .
I We aim at understanding how the spikes of one neuron affects

the timing of the others.

Mathematical Theory
It is therefore important to develop t he theory of coupled oscillators.
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Living around a cycle
Stability properties of the perturbations around a cycle
Floquet theory of linear ODEs with periodic coefficients.

Phase Parametrization

I Consider the dynamical system Ẋ = F (X ) and assume it has a
T -periodic limit cycle Γ which is orbitally asymptotically stable.

I Γ can be parametrized by the time modulo the period T which
defines a phase θ ∈ [0,T [ along the limit cycle, and denote
Θ(x) the phase of x ∈ Γ.

I When a cycle is asymptotically stable, it is possible to define a
phase Θ(y) for y in a neighborhood of Γ, since there exists
x ∈ Γ such that ‖X (t, y)− X (t, x)‖ → 0 when t →∞, and
Θ(y) := Θ(x)

Jonathan Touboul NeuroMathComp - INRIA/ENS Paris

Nonlinear Neuron models and Bifurcations



Neurons General class of neuron Oscillators Networks Neural Masses

Isochrons
Phase Parametrization

I The set of points that have the same phase are called
isochrons of the limit cycles, denoted N(x)

I The isochrons are local sections: if y ∈ N(x), X (T , y) ∈ N(x).
I In practice, isochron can be computed numerically.
I Isochrons form a partition of the neighborhood of Γ
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Isochrons for Morris-Lecar Model
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Phase Transition Curve
Weak coupling: We consider the forced oscillator
Ẋ = F (X ) + εs(t). It can be remapped in terms of phase as:

θ̇ = 1 + εQ(θ) · s(x)

where · is the scalar product. Q(θ) is the linear response curve, or
phase response curve (PRC).
Example: SNIC oscillator: Q(θ) = 1− cos(θ)2, Hopf oscillator:
Q(θ) = sin(θ −Ψ) where Ψ is a constant phase shift
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Networks of weak coupled oscillators

Ẋi = Fi (Xi ) + ε

n∑
j=1

gij(Xi ,Xj)

can be mapped in terms of phase onto:

θ̇i = 1 + εQi (θi )
N∑

j=1

gij(γ(θi ), γ(θj)).

Interest
Allows studying the dynamics of complex oscillators in terms of sim-
ple ODE.
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Modeling

Cortical Column modeling
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Modeling

Coritical column models

Assumptions
I Individual spikes do not constitute the cortical column signal
I BUT the signal of a cortical column arises from the mean

firing rate of the neurons projecting towards the different
cortical areas it is connected to.

I Two main cortical populations contribute to the phenomenon
under investigation: Pyramidal neurons and inhibitory
interneurons
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Modeling

Jansen and Rit’s model of EEG signal
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Modeling

Jansen and Rit’s model of EEG signal
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Modeling

Wendling & Chauvel’s model
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Modeling

Block Diagram

Two Main processes
I Synaptic integration:

modelled as linear
I the nonlinear voltage

to firing rate
transformation S
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Modeling

Block Diagram
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Two Main processes

I Synaptic integration:
modelled as linear

I the nonlinear voltage
to firing rate
transformation S
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Modeling

Block Diagram

Two Main processes
I Synaptic integration:

modelled as linear
I the nonlinear voltage

to firing rate
transformation S
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Modeling

Resulting Equations


ÿ0(t) = A aSi (y1(t)− y2(t))− 2 a ẏ0(t)− a2 y0(t)
ÿ1(t) = A a {p(t) + J2Si (J1y0(t))} − 2 a ẏ1(t)− a2 y1(t)
ÿ2(t) = B b J4Si (J3y0(t))− 2 b ẏ2(t)− b2 y2(t).

Conclusion
We are led to study properties of a nonlinear dynamical system. The
first thing to do for understanding the behavior of the system, we
study the bifurcations of the system

Jonathan Touboul NeuroMathComp - INRIA/ENS Paris

Nonlinear Neuron models and Bifurcations



Neurons General class of neuron Oscillators Networks Neural Masses

Bifurcations & Behaviors

Theoretical Aspects
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Bifurcations & Behaviors

What do we want to do?

A correspondence catalogue between bifurcations and neuronal be-
haviors
We aim at relating neuronal behaviors and bifurcations properties of
the underlying dynamical system.
Main interest: genericity property.
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Bifurcations & Behaviors

Epileptic-related phenomena

Phenomena of interest
I Oscillatory activity (mostly alpha rhythms)
I Fast onset activity (seizure onset)
I Slow high amplitude epileptic spikes
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Bifurcations & Behaviors

Bifurcations

I Normal behavior is linked with the presence of a fixed point in
the system

I Oscillatory activity is linked with the presence of periodic
solutions (limit cycles).

More complex structures need more profound analysis of
mathematical structures.
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Bifurcations & Behaviors

Bistability

Conclusion
Bi-stability and Bi-rhythmicity can arise from cusp bifurcations of
fixed points (resp. cusps of limit cycle)
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Bifurcations & Behaviors

Alpha, Beta, Theta rhythms
Can be linked with the presence of Hopf bifurcation
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Bifurcations & Behaviors

Epileptic activity
Epileptic spikes correspond to low frequency, large amplitude,
oscillations that appear suddenly. A simple bifurcation giving rise to
large amplitude slow waves is the saddle homoclinic orbit, that can
arise from what is called Bogdanov-Takens bifurcation.
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Bifurcations & Behaviors

Conclusion

Codimension 2 bifurcations are of interest
The study of cortical models such as Jansen and Rit models can
be closely related to codimension two bifurcations of the underlying
dynamical system and allows to understand and predict conditions
that can lead to epileptic behaviors.
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Bifurcations & Behaviors

Application to Jansen and Rit’s model
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Bifurcations & Behaviors

Full study of codimension two bifurcations in Jansen and
Rit’s model (with respect to total connectivity and input)
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Bifurcations & Behaviors

Four different behavior zones
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Bifurcations & Behaviors

Dependency on the excitation and inhibition balance

So Far
We studied the possible behaviors and the bifurcations as the input
and the total connectivity varies. This corroborates for instance ob-
servations that neo-synaptogenesis, i.e. increased total connectivity,
favors the apparition of epileptic behavior.

What we want to do
Most anticonvulsant drugs act either on excitatory or inhibitory con-
nections (either acting on channels or on neutransmitter). Hence we
aim at addressing the effect of changing the balance of excitatory
and inhibitory connections: α2 controls the excitation and α4 the
inhibition
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Bifurcations & Behaviors

Dependency on the excitation and inhibition balance
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Bifurcations & Behaviors

Importance of Delays
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Bifurcations & Behaviors

What we are left explaining

What we can explain through bifurcation analysis
We explain the emergence of

I alpha, beta and theta activity
I rhythmic spikes
I importance of delays and of a safe balance between excitation

and inhibition

What we cannot explain
I Fast onset activity
I interictal spikes and bursts
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Noise

Bifurcations and Neural Mass Models

Bifurcations and Neural Mass Models
Cortical Column models
Bifurcations & Behaviors
Noise effects
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Noise

Interictal spikes and Bursts

Theoretical interpretation
The presence of a saddle-homoclinic bifurcation and noise in the
input directly generates the important interictal spikes, that are of
particular interest and that lacked models. Interictal spikes on which
rapid discharges (interictal bursts) are predictors of rapid discharge
(according to Patrick Chauvel) that was not modelled or interpreted
so far, and understanding it can improve seizure predictions.
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Noise

Interictal spikes and Bursts Simulations
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Noise

Fast Onset Activity

No cycle for FOA

In the analysis of JR’s (and WC’s) models, no rapid cycle appeared.
However, noise can explain this phenomenon.

Mathematical Interpretation
Close to the epileptic zone, we observe that the imaginary part of the
eigenvalues of the Jacobian matrix are characterized by a high value.
Therefore, convolution with noisy input will generate fast rhythms.
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Noise

Fast Onset Activity
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Fast Onset Activity
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Noise

A path towards seizures

Let us assume that, in an epileptic column, that a process results in
the regular increase of total input (that can for instance be
triggered by oscillatory activity). In that case, Jansen and Rit’s
model shows all the phases towards seizure. We can also model the
injection of anticonvulsant and the termination of the crisis.
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Noise

A path towards seizures
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