Bifurcations de codimension 1 des équilibres des systèmes dynamiques discrets

Olivier FAUGERAS

28 Octobre 2009

Introduction

Forme normale de la bifurcation pl

Forme normale de la bifurcation de clapet

Introduction

Forme normale de la bifurcation pli

Forme normale de la bifurcation de clapet

Introduction

Forme normale de la bifurcation pli

Forme normale de la bifurcation de clapet

Introduction

Forme normale de la bifurcation pli

Forme normale de la bifurcation de clapet

Conditions de bifurcation

On considère

$$x \to f(x, \alpha), x \in \mathbb{R}^n, \alpha \in \mathbb{R}$$
 f régulière

- La situation " $x = x_0$ est un point fixe hyperbolique pour $\alpha = \alpha_0$ " perdure pour de petites variations du paramètre α (voir leçon 2).
- Trois manières génériques de changer cette situation :
 - 1. Un multiplicateur simple positif μ_1 passe par 1 : c'est la bifurcation **pli**.
 - 2. Un multiplicateur simple négatif μ_1 passe par -1 : c'est la bifurcation de **clapet** (doublement de période).
 - 3. Un couple de multiplicateurs simples $\mu_{1,2}$ complexes conjugués traverse le cercle unité : c'est la bifurcation de **Neimark-Sacker**.

Conditions de bifurcation

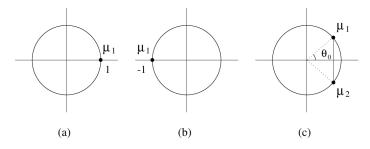


Figure tirée de Kuznetzov 1998.

Forme normale de la bifurcation de pli

Théorème

Tout système $x \to f(x, \alpha), \ x, \ \alpha \in \mathbb{R}$, f régulière ayant pour $\alpha = 0$ l'équilibre x = 0 avec $\lambda = f_x(0, 0) = 1$ et satisfaisant les deux conditions

- 1. $f_{xx}(0,0) \neq 0$.
- 2. $f_{\alpha}(0,0) \neq 0$.

est localement topologiquement équivalent au voisinage de l'origine à l'une des deux formes normales

$$\eta \to \beta + \eta \pm \eta^2$$

Forme normale de la bifurcation de pli

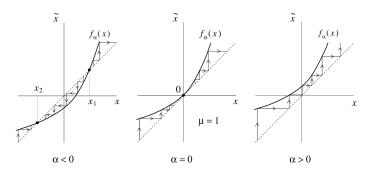


Figure tirée de Kuznetzov 1998.

Forme normale de la bifurcation de clapet

Théorème

Tout système $x \to f(x, \alpha), \ x, \ \alpha \in \mathbb{R}$, f régulière ayant pour $\alpha = 0$ l'équilibre x = 0 avec $\lambda = f_x(0, 0) = -1$ et satisfaisant les deux conditions

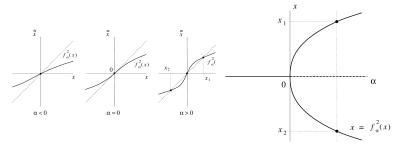
- 1. $\frac{1}{2}f_{xx}(0,0)^2 + \frac{1}{3}f_{xxx}(0,0) \neq 0$.
- 2. $f_{X\alpha}(0,0) \neq 0$.

est localement topologiquement équivalent au voisinage de l'origine à l'une des deux formes normales

$$\eta \to (-1+\beta)\eta \pm \eta^3$$

Forme normale de la bifurcation de clapet

Second itéré de *f* au voisinage d'une bifurcation de clapet.



Figures tirées de Kuznetzov 1998.

Forme normale de la bifurcation de clapet

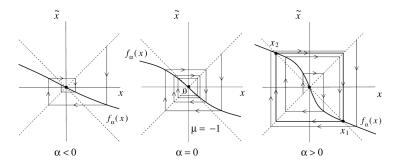


Figure tirée de Kuznetzov 1998.

Forme normale de la bifurcation de Neimark-Sacker Théorème

Supposons que le système $x \to f(x,\alpha), x \in \mathbb{R}^2, \alpha \in \mathbb{R}$, f régulière admette pour $|\alpha|$ suffisamment petit le point fixe x=0 pour $\alpha=0$ avec les multiplicateurs $\mu_{1,2}=r(\alpha)e^{\pm i\varphi(\alpha)}$, où r(0)=1 et $\varphi(0)=\theta_0$. Si les deux conditions

- 1. $r'(0) \neq 0$
- 2. $e^{ik\theta_0} \neq 1$ pour k = 1, 2, 3, 4,

alors il est possible de transformer l'équation du système par un changement inversible de coordonnée et de paramètre en

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rightarrow (1+\beta) \begin{pmatrix} \cos\theta(\beta) & -\sin\theta(\beta) \\ \sin\theta(\beta) & \cos\theta(\beta) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$\pm (y_1^2 + y_2^2) \begin{pmatrix} \cos\theta(\beta) & -\sin\theta(\beta) \\ \sin\theta(\beta) & \cos\theta(\beta) \end{pmatrix} \begin{pmatrix} a(\beta) & -b(\beta) \\ b(\beta) & a(\beta) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

On a
$$\theta(0)=\theta_0$$
, $a(0)=\operatorname{Re}\left(e^{-i\theta_0}c_1(0)\right)$ avec

$$c_1(0) = \frac{g_{21}(0)}{2} + \frac{|g_{02}|^2}{2(\mu_0^2 - \overline{\mu}_0)} + \frac{|g_{11}(0)|^2}{1 - \overline{\mu}_0} + g_{20}(0)g_{11}(0)\frac{1 - 2\mu_0}{2(\mu_0^2 - \mu_0)}$$

et
$$\mu_0 = e^{i\theta_0}$$

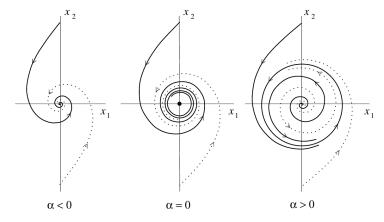


Figure tirée de Kuznetzov 1998.

