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ON THE GAP BETWEEN DETERMINISTIC AND STOCHASTIC 
ORDINARY DIFFERENTIAL EQUATIONS 

BY HECTOR J. SUSSMANN 

Rutgers University 

We consider stochastic differential equations dx _f(x) dt + g(x) dw, 
where x is a vector in n-dimensional space, and w is an arbitrary process 
with continuous sample paths. We show that the stochastic equation can 
be solved by simply solving, for each sample path of the process w, the 
corresponding nonstochastic ordinary differential equation. The precise 
requirements on the vector fields f and g are: (i) that g be continuously 
differentiable and (ii) that the entries of f and the partial derivatives of the 
entries of g be locally Lipschitzian. For the particular case of a Wiener 
process w, the solutions obtained this way turn out to be the solutions in 
the sense of Stratonovich. 

1. Introduction. The purpose of this paper is to present, some results which 
bridge the gap between the theory of deterministic ordinary differential equations 
driven by a scalar input, and that of stochastic equations driven by processes 
such as white noise. 

We consider an equation 

( 1 ) dx = f(x) + u(t)g(x) 

where the state variable x ranges over n-dimensional Euclidean space R"', and 
where f and g are vector fields in R"]. The "input" u is a real-valued function 
defined on some interval [0, T]. If f and g satisfy some reasonable technical 
hypotheses (e.g., a Lipschitz condition), then for every "nice" input u and every 
initial state x0 there exists an ; > 0 such that, on the interval [0, e], there is a 
unique solution t -* x(t) of (1) for which the initial condition x(O) = xo holds. 
iff and g satisfy some extra conditions (e.g., linear growth) then the solution 
x(t) is actually defined for all t e [0, T]. 

The most obvious stochastic version of equation (1) is obtained by regarding 
(1) as an "equation which depends on a random parameter." That is, we assume 
that the input is a stochastic process, and that the initial state is a random vari- 
able. The solution should then be a stochastic process. More precisely, we are 
given a probability space 

together with a process U = {U(t), t e [0, T]}, where each U(t) is a random vari- 
able on J'. If an initial condition (i.e., a random variable X0) is specified, then 
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20 HECTOR J. SUSSMANN 

the "stochastic initial value problem" 

(2) dX = f(X) + U(t)g(X), X(O) = X0 

can be regarded, heuristically, as an initial value problem which depends on the 
random parameter a) e Q. For each t e Q, the problem 

(2w) dX (t, w) = f(X(t, w)) + U(t, w)g(X(t, w)), X(O w9) = Xo(w) 

is an ordinary initial value problem which corresponds to an equation of the 
same type as (1). The solution is, therefore, a function t -- X(t, w) which also 
depends on w, i.e., a family of random variables X = {X(t): t e [0, T]j parame- 
trized by t. (More generally, there may be explosions, in which case the func- 
tion t -> X(t, w) will only be defined up to a measurable explosion time T(w), 
and therefore the random variable X(t) will be defined on a subset E(t) of Q.) 

The preceding heuristics can be transformed into rigorous mathematics if the 
input process U is not too irregular. For instance, it suffices to assume that, for 
almost every wc e Q, the sample path t -- U(t, w) is a bounded measurable func- 
tion. Unfortunately, one wants to solve equation (2) for inputs that are much 
more singular. In fact, one wants to consider inputs that are so singular the 
"function" t -* U(t, w) only exists in some generalized sense (e.g., as the distri- 
butional derivative of some nondifferentiable continuous function). In this case, 
(2oj) will only make sense formally, and our heuristics cannot be made rigorous 
in a direct way. If a theory is to be developed for such inputs, it is clear that 
we must either (A) develop a theory of "solutions" of (1) for a class W' of 
"generalized inputs" u which is so large that (2w) has a solution for almost all 
W, in all cases of interest; or (B) develop a theory of solutions of (2) in which 
one can solve (2) without having to solve (2w) for each w. 

The most important type of input U to which such a theory should apply is 
white noise. For such an input, there actually exist at least two nonequivalent 
theories, due to Ito and Stratonovich, respectively. Both theories follow pro- 
cedure (B). 

In this paper, we show that procedure (A) can be pursued. The class v of inputs 
u for which a satisfactory theory of solutions of (1) can be developed is, simply, 
the class of all derivatives of continuous functions. Therefore, we succeed in 
developing a theory of solutions of (2) when the input U is given by U = dW/dt, 
where W is an arbitrary process with continuous sample paths. In our opinion, the 
approach presented here is aesthetically superior to the traditional one and, in 
addition, it has the following advantages: 

(i) Extra generality, since W can be any process with continuous sample 
paths, and 

(ii) Simplicity, since most proofs are quite elementary. 

Our definition of solution is "natural." Let us rewrite equation (1) in the 
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form 

(3) dx = f(x) dt + g(x) dw, 

where w = [0, T] -* R is a primitive of u. Our definition satisfies: (a) if w is 
continuously differentiable, then our concept of solution is identical with the 
ordinary one; and (b) the solutions of (3) depend continuously on w, relative to 
the topology of uniform convergence. 

Since the C1 functions on [0, T] are dense in the space of all continuous func- 
tions on [0, T], it is clear that conditions (a) and (b) uniquely determine what 
the definition should be. What is surprising is that the ordinary existence and 
uniqueness theory is valid, i.e., that solutions exist for arbitrary continuous w and 
arbitrary initial states x0. This allows us to develop a theory of solutions of 
stochastic equations 

(4) dX = f(X) dt + g(X) dW 

following the "most natural approach" sketched above. Moreover, our defini- 
tion of solution is such that the ordinary rules of calculus are obeyed (since they 
are obeyed when w is C1). Therefore, it is reasonable to expect (and easy to 
prove) that the solutions in our sense of equation (4) coincide with the Stratonovich 
solutions, when W is a Wiener process. As an illustration of the usefulness of 
our approach, we give a completely trivial proof of a result of Wong and Zakai 
[11] on the approximation of solutions of (4) (with W a Wiener process) by 
solutions of 

dX = f(X) dt + g(X) dWm, 

where the Wm are more regular processes which converge to W as m >-* o. 
In the last section of this paper, we give a simple example which shows that 

the theory presented here does not carry over in a simple way to equations of 
the form 

dX = f(X) dt ? T I gi(X) d W 

in which several inputs are involved. The reason for this is related to the 
"anomalies" that are known to occur when attempting to extend the Wong- 
Zakai result to the case k > 1 (cf. McShane [5]). It seems to us that the search 
for an appropriate extension of our results to k > 1 will require the use of sub- 
stantially new methods and that, if such' an extension is found, it will lead to 
significant progress in our understanding of the above mentioned anomalies. 

REMARK. For n = 1, a construction similar to ours is given in Lamperti [3] 
(cf. also Elliott [1]). An announcement of our results has appeared in [9]. Re- 
lated results appear in [8]. 

2. Basic definitions. If v e RI, we write jvj to denote the Euclidean norm of 
v, i.e., jvj = (L=1 vil2)1. If M is a square matrix, then IMI denotes the matrix 
norm of M, i.e., 

{MI = sup {lMxl: x e RI, IXI = 11. 
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If 5b is a scalar-, or vector-, or matrix-valued function defined on an open subset 
of R", we say that 5b is Lipschitzian on a set S c ]RI if there is a constant C such 
that J1b(x) - 0(y)J < Cjx - yj for all x, y in S. We call 0 uniformly Lipschitzian 
if 0 is Lipschitzian on RI", and locally Lipschitzian if it is Lipschitzian on every 
compact subset of the domain of 05. We say that 5b satisfies a linear growth con- 
dition if there is a constant C such that 10(x)l < C(1 + jxj) for all x. 

If f is a vector field in RI which is of class C', then Df denotes the matrix 

Df (afi) 
axi i, j 

of the partial derivatives of the components of f. It is clear that, if Df is uni- 
formly bounded, then f satisfies a linear growth condition, but the converse is 
not true. 

We may consider vector fields f and g on an open subset U of RI", and a closed 
interval [a, b] of the real line. We use CO([a, b]) to denote the space of all con- 
tinuous real-valued functions on [a, b], and C0([a, b], R"n) to denote the space of 
Rn-valued continuous functions. Both spaces are given the topology of uniform 
convergence. 

Let to e [a, b], xo e U be given. Let w e C0([a, b]). 

DEFINITION 1. A curve r: t -* x(t), a ? t < b, x(t) e U, is said to be a solu- 
tion of the initial value problem 

(ip,)dx flx) dt ? g(x) dOi 
(ivpW) x(to) = xO 

if there exists a neighborhood -4' of w in C0([a, b]) and a continuous map F: 
CO([a, b], Rn) such that (writing E. instead of 17(w)): 

(i) for each w e _4'- which is of class C1, the curve IF is a solution in the 
ordinary sense of 

dx - flX) + dw (t)g(x) 

(ivp,) X(to) = xO 
and 

(ii) r =i 

Having defined what is meant by a solution of (ivp) on a closed bounded 
interval I = [a, b], we define the concept of solution for arbitrary intervals I in 
an obvious way. We say that the curve r: I -> Q is a solution of (ivp,) if, for 
every closed bounded I' c I such that to e I', the restriction of - to I' is a solu- 
tion of (ivpw). 

3. The main theorem. 

THEOREM 1. Assume that 

(i) U is an open subset of Rn, 
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(ii) f, g are vector fields on U, 
(iii) f is locally Lipschitzian, 
(iv) g is of class C1 and its partial derivatives are locally Lipschitzian. 

Let I be an interval of the real line, and let to e I, xo e U. Let w be a real-valued 
continuous function on I. Then 

(1) There exists an interval I', containing to in its interior, and a curve t -x(t), 
t e r c I, which is a solution of (ivpw). 

(2) If I' is any such interval, then the solution of (ivpw) which is defined on I' ? I 
is unique. 

THEOREM 2. With the same hypotheses as in Theorem 1 assume, in addition, that 
U = RX, that f satisfies a lineargrowth condition, and that Dg is uniformly bounded. 

Then, for every choice of I, to, xo, w, there is a solution of (ivp,) defined on the 
whole interval I. 

Moreover, the solution depends continuously on to, xo and w. 

REMARK. The assumption that Dg is uniformly bounded implies, in particular, 
that g satisfies a linear growth condition. Theorem 2 is not true if the require- 
ment that Dg be bounded is eliminated, even if g is required to grow linearly 
(cf. Section 8). 

PROOF OF THEOREMS 1 AND 2. First, it is clear that both the existence and 
uniqueness results follow for arbitrary I if they are true for all compact I. More- 
over, it clearly suffices to assume that to- 0. From now on, it is assumed that 
I is compact, and that to = 0. 

The uniqueness is trivial. Indeed, if : t -> xl(t) and T2: t -> x2(t) are solu- 
tions of (ivpy) on I = [a, b], for a continuous w: [a, b] R, then there are 
neighborhoods _4j, _4/ of w in C0(I, R), and continuous maps F', P1 from -tj, 
,4/ to C0(I, R1) such that, for i = 1, 2, F2,j and that, whenever iv- e .l 
is of class C', then pri is a solution of (ivp,). Since the C' functions are dense 
in -xfr' n -2, it follows that l =- f_2, i. e., i = r2. 

We now prove existence. We shall first prove the existence result of Theorem 
2, and then use it to deduce the result of Theorem 1. 

We begin by proving the existence of solutions in a special case. We assume 
that 

(I) g is a constant vector field, i.e., there exists a vector v e RX, v - 
(vl, *.., vn), such that g(x) = v for all x, 

(II) f is locally Lipschitzian, and 
(III) there exists a smooth real-valued function 0 on RI such that 

(i) E 0 fi ax- 

(ii) z-l 
I I and 
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(iii) for each T > 0 there is a constant CT such that 

If(X)I < CT(1 + IxJ) whenever I0(x)l < T. 
Let w: [a, b] -> R be a continuous function, and assume that 0 e [a, b]. We 

construct the solution t -+ x(t, x, w) of dx = fix) dt + g(x) dw, x(O) = x? by the 
method of successive approximations. We let, for t e [ab], x,(t) = X 

( ) Xk+l(t) = X + 50f(Xk(r)) dZ + [w(t) - w(O)]v 
It is understood that the Xk also depend on x? and w. We now show that 

The limit limk-- xk(t) exists for all t e [a, b] , and for all 
(*) x e RI , w e C?[a, b] . Moreover, the convergence is uniform 

in t, x, w, as long as x? remains within a compact set 

K c Rn and w within a bounded set B of C0[a, b] . 

To prove (*), let A1 > 0 be such that 2Iw(t)l < A1 for t e [a, b], w e B. Let 

A2 = sup {I0(x)l: x e K}. 
We claim that 

(**) 10(xk(t))l < A1 + A2 

for all t e [a, b], all k, all w e B and all x? e K. 
To prove this, fix k, t with k > 0, t # 0 and put 

()= x ? 5 Lf(xk1(s) ? I (w(t) - w(0))v] ds. 

Then d(0) = x, Q(t) = xk(t). Moreover, e is a C' function, and 

()=f(xk-l(z)) 
? 

1W)-W01 
dr) - [W(t)-w(0)]v 

Let h(z) = /(t(z)). Then 

d () = [(grad v5)(d(z))] (r) 

- 
=1 dr ax Mr)) 

- ?in~l Lgi~e~r) + w(t) - w(0) Vi 

- w(t) - w(0) 
t 

because of assumptions (III)(i), (ii). Now A(xk(t)) = h(t) so 

55 -~) h(O) + 0 Idh (r) dr dh 
5(Xk(t))= h(O) ? t-w(O)d 

= h(0) ? w(t) - w(0) 
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Therefore 
q0(xk(t))j ? l(x + Al 

< Al + A2 

if x e K. This completes the proof of (**) if k # 0, t # 0. If k = 0 or if t = 0, 
then xk(t) = x? so (**) holds as well. So (**) has been established in all cases. 

Now let T = Al + A2, and let A3 = CT. Then 

##) I fl(Xk(t))I < A3(1 + IXk(t)j) 

for all x e K, all w e B, and all t, k (because of (III)(iii)). Let A4 = sup {1 l: x e K}. 
Then (6) and (#) imply that 

(#66) IXk+l(t)l < A4 + Alvj + A3 St (1 + IXk(r) ) dr . 
Let c = max(jal, Ibl) 

A5 = max (A4+ AlIvI + A3C A3) 

Then (###) implies that 

lXk+l(t)l < A5 + A5 % Xk(7)j dTr 

From this it follows by induction on k that 

|x (tl< A5Ej A5 jjtlj Xk(t)l ? U1 Aj!t 

(in the first step, we use the fact that xo(t) = e K and therefore Ix,(t)l ? A5). 
It follows that 

Xk(t)I < A5 eA51tI te [a, b], x eK, weB. 

Therefore, if we let A6 = A eAl5c we find that, for all k 

1xk(t)l < A6, te[a,b], xe K, w e B. 

Let J be the compact set {x: jxj < A6}. Then f satisfies a Lipschitz condition 
on J with constant A7. So 

lXk+l(t) - Xk(t)| = 150 [f(xk(Z)) - f(xk-(r))I drI 
? A7 % iXk(T) - Xk-l(r) dr 

since Xk(r), Xk-l(r) belong to J. 
This formula implies by induction that 

IXk+1(t) - Xk(t)? 2A6A7 k |t|k 

(using, in the first step, the estimate 1xl(t) - xo(t)l < 2A6). 
Since the constants A6, A7 only depend on K and B, it follows that the sequence 

of numbers {xk(t)} is Cauchy, and that this happens uniformly in t, x e K and 
w e B. So (*) is proved. 

For each k, let Lk: Rn x C?[a, b] -, C?([a, b], ]R') be the map which, to each 
X e Rn and each w e C?[a, b], assigns the curve t -> xk(t). Then Lk is continuous. 
It follows from (*) that the Lk have a limit L as k -> oo, and that Lk converges 
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to L uniformly on bounded subsets of Rn X CX'([a, b]). Therefore L is continuous. 
Now let w e C'([a, b]), and let x e R]. We claim that L(x, w) is a solution of 

dx = f(x) dt + g(x) dw 

in the sense of our definition. Indeed, if fv' is a C' function on [a, b], then 

[1w(t) - =(O)]v (Ct d (r)dr v. 

Therefore, the successive approximations t --> L w )(t) satisfy 

Lk+l(g, 0)(t) = x + So Kf(xk(0)) + d- ()9(Xk(kZ)) d-r 

So the Lk(?, i) are the ordinary successive appoximations that are used to 
construct the solutions of 

(,=) f(x) + dt g(x). 
dt dt 

It follows that, for every xc, the function L(x, W) is the solution of (,B) which 
has the value x when t = 0. Since the map w -> L(xc, w) is continuous, it fol- 
lows that, for each xc, w, the curve L(xc, w) is a solution of dx = f(x) dt + g(x) dw 
in the sense of our definition. Since L also depends continuously on x, it is 
clear that the last assertion of Theorem 2 follows, if the special assumptions (I), 
(II) and (III) hold. We now prove Theorem 2 in the general case. The idea is 
to reduce it to the special situation considered above. In order to do this, it is 
convenient to introduce some notations. 

If X is a locally Lipschitz vector field on R-, we use $1x to denote the flow 
of X. Precisely, let x e JR" and let t -y T(t) denote the integral curve of X for 
which r(O) = x. We write $DX(t)x for r(t). In general, Ox is a local one-parame- 
ter group, i.e., 

(a) the domain of definition Qx C JR x Rm of the map (t, x) -* (Dx(t)x is an 
open set which contains {0} x Rm, 

(b) (Dx(t)[(Dx(r)x] = (Dx(t + r)x whenever both sides are defined, and 

(c) (DX(O)x = x. 

By definition, X is complete if Qx = R X R", i.e., if -the integral curves are 
defined for all t. If X satisfies a linear growth condition then it is complete. If 
X is C' then the map F: (t, x) -> $x(t)x is C'. The time derivative of F is given by 

_F = Xo F. 
at 

The matrix D F = (aFf/&xk),?.i j3?n is determined as follows: for a given x, 
the matrix function t -- (Dx F)(t, xO) is the solution A(t) of the equation 

dA (t) = (DxX)((Dx(t)xo)A(t) 
dt 

for which A(0) =- identity. 
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In particular,, let us apply this with m = n, X = g. Define 

F(t, x) = 09~(t)x . 

Then F is a C1 map from R x En' onto RI (because g is complete and C'). 
Now define a vector fieldf on R x RI' as follows: 

f(t, x,) = (0, [(D.F)(t, x0)]-'(F(t, x0)). 
Also, put 

=(1, 0, 0.,) 
For (t, x) e Rn+', let F*(t, x) denote the Jacobian matrix of F at (t, x). Then 

F*(t, x)#(t, x) = g(F(t, x)) and 

F*(t, x)f(t, x) = f(F(t, x)). 

Therefore, the following holds: 

(A) If t -> w(t), a < t < b, is a C1 real-valued function, and if 

t -> t(t) e R-+1 
is a solution of 

-d t (t) = f~tt)) + dwt (OUMO2()) dt dt 

then the curve 
t - F(t(t)) c- Rn 

is a solution of dx = f dt + g dw. 

Let us assume for the moment that the conclusions of the theorem we are 
trying to prove hold forf, g on RI'+'. We claim that it follows that they hold 
for f, g on Rn. Since we assume that the conclusion holds for f, g, there is a 
continuous map 

L: R"+l X C?([a, b]) -> C?([a, b], R"+l) 

which is such that, whenever w is C1, then L(d01 w) is a solution in the ordinary 
sense of dd =f(e) dt + #(e) dw, with initial condition d(O) = d,. Define L': 
R-+1 x C?([a, b]) -> C?([a, b], RI) by L'(t%, w) = F o (L($o, w)) (recall that L(5,, w) 
is a curve). Since F is continuous, it is clear that L' is continuous. Now define 
L: R- X C?([a, b]) -> C?([a, b], Rn) by L(xo, w) = L'((O, x0), w). It is clear that 
L is continuous. If w e C1, then (A) implies that L'((0, x0), w) is a solution of 
dx = f(x) dt + g(x) dw in the ordinary sense. The initial condition satisfied by 
this solution is, obviously, x(O) = x0. So L is a continuous extension to all of 
Rn x C?([a, b]) of the map which, to each (xo, w) in Rn x Cl([a, b]), assigns the 
solution of dx = f(x) dt + g(x) dw with initial condition x(O) = x,. 

This shows that the theorem for f, g follows if we prove it forf, g. In order 
to prove it forf, g, we will show that f and g satisfy conditions (I), (II) and 
(III). First, it is clear that g is a constant vector field. To prove that f is locally 
Lipschitzian, it suffices to show that the entries of (DF)-' and those of j o F are 
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locally Lipschitzian (since a product of locally Lipschitzian functions is locally 
Lipschitzian). Since f is itself locally Lipschitzian, and F is C', then f o F is lo- 
cally Lipschitzian. So we must show that (D, F)-' is locally Lipschitzian. Now, 
the inverse of a matrix-valued locally Lipschitzian function M on ERn is necessarily 
Lipschitzian, as long as M(x) is invertible for all x (reason: M(y)-l -M(x)-l = 
M(y)-'[M(x) - M(y)]M(x)-l. If M(x) is invertible for all x then on each com- 
pact set K, the function x - IM(x)-li is continuous and therefore bounded. So, 
if IM(x)-'1 < C, for x e K, and [M(x) - M(y)I < C2lx - y for x, y E K, it fol- 
lows that IM(x)-l -M(y)-'1 < C,2C2lx - yl). So it suffices to show that DXF 
is locally Lipschitzian. Now (&/&t)[(D, F)(t, x)] = (Dg)(F(t, x)) . (D. F)(t, x) and 
(DF)(O, x) = 1,, (where 1,, is the n X n identity matrix). So 

(') (DxF)(t, x) = l + ctO (Dg)(F(z, x)) * (D.F)(r, x) dr . 

Now let K (-- R"' be a compact set of the form K1 x K2, where K, c P is a 
compact interval which contains 0, and K2 is a compact subset of Rn. Since F is 
C1, and Dg is locally Lipschitzian, it follows that (Dg) o F is locally Lipschitzian, 
so that there exists a constant C, such that 

I(Dg)(F(r, x)) - (Dg)(F(r, y))I < ClIx - 

whenever x, y e K2, r e Kl. Let C2 = sup {Hr: r e K1}. Then, if t e K1, and 
x, y e K2, we have: 

I (D,, F) Q, x) -(D o F) , y) I 
= s [(Dg)(F(z, x)) - (Dg)(F(r, y))] * (DF)(r, x) dr 

+ 0 (Dg)(F(r, y))[(D F)(z, x) -(DF)(z, y)] dzI 
?C1C2C Ix - yI + C4 5 I(DF)(r, x) -(DF)(x, y)I dr 

where 
C3= sup { (Dx F( .)) I: (zr, $) e K} and 

C4 = sup {I(Dg)(F(z, t))I: (T, a) e K} . 

Gronwall's inequality then implies that I(DF)(t, x) - (DF)(t, y)I < C5Ix - y, 
where C, = eC4C2ClC2C3* 

It follows from (') that I (D, F)(t, x) - (D F)(z, x) I < C3C4It - rj. Therefore, 
if (t, x) e K, (r, y) e K, we have 

j(DF)(t, x) - (D.F)(r, y)l I C6jIx - y+ It - z] 

where C, = max (C3, C4, C,). 
This shows that DF is locally Lipschitz and therefore that f is locally 

Lipschitz. 
We must now prove that (III) is satisfied. We take 0(t, x) = t. It is clear 

that (i) and (ii) hold. To prove (iii), we must show that for each T > 0 there 
is a constant CT such that If(t, x)j < CT(l + Ixj) whenever Itj ? T. So let T be 
chosen. Since g satisfies a linear growth condition, there exists E1 such that 
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g(x)l < E1(l + lxi) for all x. Then we can use 

F(t, x) = x + I g(F(z, x)) dr 

to conclude that, if Itl < T. then 

F(t, x)l < [xl + E1T + E1l S F(r, x)l dr. 

By Gronwall's inequality, 

F(t, x)l < (lxi + ElT)eEiT 
< E2(1 + lXI) 

if E2eElT max(1,ElT). 
Since / satisfies a linear growth condition, we have 

f(x) I ? E3(1 + x() 

and therefore, if Itl < T, 

If(F(t, x))l < E4(1 + Jx(), if E4 - E3(1 + E2) 

We now show that (DXF)-' is bounded on [-T, T] X RT. We know that, 
for a given x, (D F)(t, x) is the value at t of the solution A(r) of 

dA (r) = (Dg)(F(r, x))A(r) 
dr 

that satisfies A(O) = L, But then (DxF)(t, x)-l is the value at t of the solution 
B(z) of 

dB ( = -B(r) . (Dg)(F(r, x)) 

for which B(O) = i%. So 

[(DXF)(t, x)]-' = 1 n- [(DXF)(z, x)]-'(Dg)(F(z, x)) dr 

Gronwall's inequality gives, for jtl ? T. 

[(Dx F)(t, x)]-l < eEsT9 
where 

E5 = sup { (Dg)(x) I: x e Rn} . 

Since f(t, x) = (0, [(D F)(t, x)]-lf(F(t, x))), it follows that 

If(t, x)l < E4eE5T(1 + |X|) 

whenever Iti < T. So, if we let CT E4eE5T, we find that (III) holds. 
This completes the proof of Theorem 2. We now prove Theorem 1. Let 

r: U -> JR be a C- function which vanishes in the complement of a compact 
subset of U, and which is equal to one in a neighborhood V of x0. Define f, g 
by f(x) = r(x)A(x), "(x) = r(x) g(x) for x e U, f(x) = g(x) = 0 for x V U. It is 
then clear that ! and g satisfy all the assumptions of Theorem 2, so there is a 



30 HECTOR J. SUSSMANN 

solution : t -> x(t) of 
dx = f(x) dt + -(x) dw 

x(0) = xO 
defined on [a, b]. 

Since x, e V, there are a', b' with a < a' < 0 < b' < b such that x(t) e V for 
a' < t < b'. Moreover, f and g _ g on V. 

Then the restriction r of r to [a', b'] is a solution of dx = f(x) dt + g(x) dw, 
x(O) = x0, because of the following trivial result, which we state explicitly for 
future reference. 

LEMMA 3. Let Up U2 be open subsets of ]R, and let fi, gi (i = 1, 2) be vector 
fields on U%. Assume that w is a continuous real function on an interval I, and that 
the U, n U -valued curve t -> r(t), t e I is a solution of 

dx = f1(x) dt + g1(x) dw, X(to) = X0g 

Moreover, assume that f2 Jf and g2= g on some open set U _ U1 n U2 that 
contains r(t) for all t e I. Then r is a solution of 

dx = f2(x) dt + g2(x) dw, X(to) = X0. 

The proof of the lemma is a straightforward application of the definition of 
"solution." 

COROLLARY 4. With the same assumptions as in Theorem 1, assume that 0 e I= 
(a, b) and that a solution r: t -> x(t) of (ivp.) exists on an interval (c, d) c (a, b), 
with 0 e (c, d) and d < b. If the image of (c, d) under r is contained in a compact 
subset of U, then there exists s > 0 such that r extends to a solution of (ivp.) de- 
fined on (c, d + s). 

PROOF. Let K be a compact subset of U which contains the image of W. Let 
r: U -> R be a C- function which equals one in an open set V that contains K, 
and which vanishes in the complement of a compact subset of U. As in the last 
part of the proof of Theorems 1 and 2, define f, g byf(x) = r(x)f(x), g(x) = 

r(x) g(x) for x e U, f(x) = g(x) = 0 for x V U. Thenf, g satisfy all the hypotheses 
of Theorem 2. Therefore, there exists a solution f of 

dx = f(x) dt + g(x) dw 

x(0) = XO 
defined on (a, b). 

The restriction r' of f to (c, d) is also a solution of dx = f dt + - dw, x(o) = x0. 
Moreover, f f and g g on a neighborhood of the set {r'(t): c < t < d}. 
Therefore, by Lemma 3, r' is a solution of dx = f dt + g dw, x(o) x0. Since 
r is also a solution of this initial value problem, it follows that r--. Now 
,(t) e K for c < t < d. Since r is continuous, there exists an - > 0 such that 
(t) e V for c < t < d + A. But f f and g- _g on V. Therefore the restriction 

of r to c < t < d + s is also a solution of dx =fdt + gdw, x(O) = x, com- 
pleting the proof. 
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Now let f, g be vector fields on the open set U c R". Let xo E RI", let I be an 
interval, to E I, and let w: I -> PR be continuous. 

Assume that f, g satisfy the hypotheses of Theorem 1. Then there exists an 
interval J c I such that to is in the interior of J relative to I, and that there is a 
unique solution x, of dx = f dt + g dw, x(to) = xo, defined on J. By the unique- 
ness of solutions, there is a maximal interval Jmax with that property, and if J is 
any other interval, then the restriction of xj max to J is xi. 

DEFINITION 2. The function xi.,x is the maximal solution of dx = f dt + g dw, 
x(to) = Xo 

4. Stochastic differential equations. We now consider a stochastic differential 
equation 

(st) dX = f(X) dt + g(X) dW, Xto =X. 

Precisely, we assume that: 

(a) A probability space 9= (Q. X, P) is given (i.e., E is a a-algebra of sub- 
sets of Q, and P a probability measure on Q); 

(j3) An interval I c R, and a process W = {Wt: t E II are specified; 
(r) W has continuous sample paths (i.e., for almost every w e Q, the function 

t -> Wt(w) is continuous); 
(a) X is a random variable on 9. 

DEFINITION 3. A solution of (st) is a family {Xt: t E II of random variables 
such that, for almost every w E Q for which w.: t Wt((w) is continuous, the 
curve t -+ Xt(w) is a solution of 

(st.) dx = f(x) dt ? g(x) dw., x(to) = X(w) 

in the sense of Definition 1. 

THEOREM 5. If (a), (a), (r), (a) above hold, and if f and g are vector fields that 
satisfy the hypotheses of Theorem 2, then there is one and only one solution of (st). 

REMARK. The assertion that only one solution exists means that, if {Xt, t E I}, 
{Yt, t E I}, then there is a set A such that P(A) = 1 and that for all w e A, and 
all t E I, X,(w) equals Y,(w). 

PROOF OF THEOREM 5. The uniquehess is trivial. Indeed, if {Xt} and {YJ} are 
two solutions, then there is a set A c Q such that P(A) = 1 and that the follow- 
ing are true for w E A: 

(i) w. is continuous; 
(ii) t > Xt(w) and t -- Yt(w) are solutions of (st.). 
But then, by the uniqueness part of Theorem 2, the functions t -> Xt(w) and 

t -+ Yt(w) coincide for w E A. This clearly establishes the uniqueness. 
The proof of existence is almost trivial. Let A be such that P(A) -1 and that 

w. is continuous for all w E A. For each w E A, define the function x, to be the 
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solution of (st.) (which, by Theorem 2, exists and is unique). Now put X,(w) - 
x,(t). It is then clear that {X,: t e I} satisfies all the desired properties, except 
for the fact that it is not completely obvious that the X, are random variables 
(i.e., X-measurable). So we must prove that the X, are measurable. This is 
most easily done by tracing through the steps of the proof of Theorem 2. Sup- 
pose first that f and g satisfy the very special conditions (I), (II), (III) that are 
described in the proof of Theorem 2. Then, for each w e A, the function x,, is 
constructed by successive approximations: 

x,(t) = limka X,,k(t) 

where 
X<,,oft) = X(a.) 

X,wk+l(t) = X(() + %f(xok( r)) dr + [Wo(t) - wj(O)]v 

It is clear from these formulas that all the functions w -- xw,k(t) are X-measur- 
able. Therefore w -+ x,(t) is X-measurable, and our proof is complete. 

In the general case, we let f, g, F be as in the proof of Theorem 2. Let 
X'(@) = (0, X(w)). Let x<,, be the solution of dx = fdt + # dw., with initial con- 
dition x,(O) = X'(w). Then x,(t) = F(x,,(t)). We already know that, for each t, 
w -, ,,(t) is measurable. Hence w -> x,(t) is also measurable, and our proof is 
complete. 

COROLLARY 6. Let the hypotheses of Theorem 5 be satisfied. For each random 
variable Y, let Xy denote the smallest a-algebra with respect to which Y is measur- 
able. For each t e I, let it be the a-algebra generated by {Xr-Wt: T between to 
and t}. Let .iVt be the a-algebra generated by JVt and Zk. Then X, is JV-measur- 
able for each t. 

PROOF. The solutions of (st) do not change if the process {W,} is replaced by 
{ W,'}, where W,' - W,-Wto. Therefore we might as well assume that Wto=0. 
Now assume, for simplicity, that t > to (the case t < to is similar). Let I = [to, t], 
? = St, P the restriction of P to ? and W = {I W: r e I} where, for each 
r e I, W, = W,. Then all the conditions of Theorem 5 hold for the probability 
space = (Q. ?, P), the input process W, and the initial condition X. So there 
is a unique solution {X-} of dX = f(X) dt + g(X) dW, X, 0= X, defined for to _ 
T ? t. It follows easily from the definition of the terms involved that Xf = X 
for i" e I. But, by definition, X, is 5-measurable. Hence X, is i-measurable, 
and our proof is complete. 

We now consider the more general case in which no linear growth assumptions 
are made on f, g. In this case, the solution Xt(w) is going to be defined, for each 
w, on some interval T1(w) < t < T2(w), which can depend on w. For simplicity, 
we shall only consider the case when to e I, the interior of I. (The cases to 
min I, to = max I are similar). 

DEFINITION 4. Let 97= (Q, X, P) be a probability space, I an interval (not 
necessarily bounded or closed), to e I, and let T1, T2 be measurable functions 
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on Q (the values + oo being allowed) such that, for almost all w e Q, T,(w) e I, 
T2(w) E IS and T1(w) < to < T2(w) (here I is the closure of I). Let X be a random 
variable on 3_. A solution of dX = f(X) dt + g(X) dW, Xto = X, defined between 
T, and T2 is a function (t, w) Xt(w) defined on the set E = {(t, w): T1(w) < 
t < T2(w)} such that 

(a) for each t, the function X,: w -+ Xt(w) (which is defined on the measur- 
able set Et = {w: T1(w) < t < T2(w)}) is measurable, and 

(b) for each w, the function t -+ Xt(w) (defined on the interval I. = it e I, 
T1(w) < t < T2(W)}) is a solution of dx = f(x) dt + g(x) dw., x(to) = X(@) (where 
w,(t) = Wt(w)). 

A solution {Xj} defined between T1 and T2 is said to be an extension of a solu- 
tion {Xt'} defined between T1' and T2' if T, (w) < T1'(w), T2'(W) < T2(W) for almost 
all w, and if Xt'(w) = Xt(w) for T1'(w) < t < T2'(w). 

We say that {Xj} is a strict extension of {X1'} if either P(T1(w) < T1'(w)) > 0 
or P(T2(w) > T2'(w)) > 0. We say that {Xt} is a maximal solution if there is no 
solution which strictly extends it. 

THEOREM 7. Assume that 

(a) f and g are vector fields on an open subset U of ]RE, which satisfy the condi- 
tions of Theorem 1. 

Assume that a probability space r= (Q, ?, P) is given, as well as a random 
variable K on 5, a process W = {W,: t e I} (where I C R is an interval), and 
an "initial time" to e I. Finally, assume that W has continuous sample paths. Then 
there exist measurable functions T1, T2: ? > I such that T1(w) < to < T2(w) for 
almost all w, with the property that 

(1) There is a unique maximal solution {XJ} of dX = f(X) dt + g(X) dW, Xto 
defined between T1 and T2; 

(2) If {Xt'} is another solution defined between T1' and T' then T, < T,', T2' < T 
and {Xt} extends {X0'}; 

(3) For almost all w, either 

(i) T2(w) sup I or 
(ii) {Xt(w): to ? t < T2(w)} is not contained in a compact subset of U. 

Also, either T1(w) = inf I or {Xt(w): T1(w) < t < to} is not contained in a com- 
pact K _ U. 

PROOF. Let A be such that P(A) = 1 and that we,, is continuous for w C A. 
For each GO e A, let J.,, c I be the interval on which the maximal solution x< of 
dx = f(x) dt + g(x) dw., x(to) = X(@) is defined. Put T1(w) = infJ., T2(w) = 
sup J., Xt(w) = x,(t) for T1(w) < t < T2(w). We will show later that T1 and T2 
are measurable. Assuming this, it is clear that {XM} is a solution of (st) defined 
between T1 and T2. Moreover, it is also clear that, if {X1'} is any other solution 
defined between T1' and T2', then {XJ} is an extension of {X,'}, so {Xt} is maximal. 
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This applies in particular if {X1'} is maximal, so {Xj} is unique. If W e A, and if 
T2(w) < sup I, then the set {Xt((o): to ? t < T2(w)} cannot be contained in a 
campact subset of Q for, if it were, then the solution x< would be extendable 
to an interval (T1(w), T2(Go) + s), contradicting the fact that x<, is maximal 
(cf. Corollary 4). A similar reasoning shows that either T1(w) = inf I or the 
set {Xt(w): T1(w) < t < to} is not contained in a compact set. So all the con- 
clusions have been established, except for the measurability of T1 and T2. 
We prove that T2 is measurable (the proof for T1 is similar). Take a sequence 
{Km m = 1, 2, * .} of compact sets such that K_ c interior of Km+l Km c Us 
and Um=1 Km = U. For each m, choose a C-m function 9m which equals 1 on a 
neighborhood of K,,, and which vanishes in the complement of a compact subset 
of U. Define fm: RI' -> Rn by fm(x) = VM(X) f(x) for x e U, fm(x) = 0 for x 0 U. 
Define gm similarly. Now fm and gm satisfy the hypotheses of Theorem 2, so 
that for each w there is a solution x.,m of dx = fa dt + gm dw,, x(to) = T(w), 
defined for all t e I. Let T2m(w) be the supremum of those t e I, t > to such that 
x m(r) e Km for to < r < t. Since fm= f fm+, g. =_ g g,+, in a neighbor- 
hood of Km. it follows from Lemma 3 that xm(t) = x,,(t) - Xm.'(t) for to < t < 
T2m(oj). It is clear that T2m(w) < T2m+1(w), and therefore T2(w) - limm,0 T2m((O) 
exists. We show that T2(0) = T2(wo). First, we observe that the solution t -+ x,(t) 
clearly exists for to < t < T2(0), so that T2(w) ? T2(w). If p2(wo) < T2(0), then 
we would be able to find an m such that the compact {x,(t): to _ t <_ T2(00 

is contained in Km. But then there would be an e > 0 such that {x,,(t): to < t < 
T2(w) + e} is contained in Km+,. Since f _ fm+i and g _ gm+i near Km+,, the 
functions x,, and xlm+l coincide on {t: to < t ? 2T2(wo) + el. Hence, in particu- 
lar, x.m,'+l(t) e Km+, for to t < T2(w) + A, and therefore T2m+1 (W) _ T2(W) + e. 

This is a contradiction (since T2(w) supm s 2m(W)). So T2 T2. Therefore 
T2= limmOO T2m. The measurability of T2 will follow, if we prove that the T2m 

are measurable. Now T2m(w) > t if and only if xm(T) e Km for all T such that 
to ? T ? t. Since x,,,m is continuous, and Km closed, we conclude that Tm(w) ? t 
if and only if xm(zr) e Km for every rational r e [to, t). For each a, the set 
{Wa) X/m(T) e Km} is measurable, since T Xjm(T) is a random variable. So {w: 
T2mn(w) > t} is a countable intersection of measurable sets, and hence measurable. 
This shows that T2m is measurable. As explained before, the measurability of 
T2 follows, and the measurability of T1 is proved in the same way. The proof 
is now complete. I 

DEFINITION 5. With f, g, etc., as in the statement of Theorem 7, the family 
{Xt} of (not necessarily everywhere defined) random variables described in the 
statement is called the maximal solution of dX = f(X) dt + g(X) dW, Xto = X. 
The functions T1, T2 are the past and future explosion times of the solution (but 
observe that, if T2(w) = t, this implies that an explosion occurs at time t if 
t < sup I, but not necessarily if t = sup I). 

5. Equations driven by white noise. We now study the particular case when 
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the input W is a Wiener process. That is, we assume that the joint distribution 
of Wt, *, Wtk is Gaussian for all k and all t1, ., tk, and that the covariance 
is Cov (Wt-W, W - W0) = I[a, t] n [s, t]I for s < t, a < T (here "III" de- 
notes the length of the interval I). In this case there are at least two nonequiva- 
lent ways of defining what is meant by a "solution" of 

(st) dX = f(X) dt + g(X) dW. 

Both ways proceed by replacing (st) by its equivalent integral form: 

(ist) X(t) = X(to) + Stf(X(Tr)) dTr + so g(X(r)) dW(zr) 

Then X is defined to be a solution of (st) iff X satisfies (ist). For this to make 
sense, one has to define what the integrals mean. Here the two ways differ. 
The first one, due to It6, uses It6's definition of stochastic integrals, which has 
several advantages, but leads to some strange formulae, since the usual rules of 
calculus are not obeyed (and, consequently, identities such as s W dW = W2/2 
are not true). 

The second way uses the Fisk-Stratonovich integral. Though this integral 
may be objectionable on the grounds that it fails to have some desirable proper- 
ties, it has a fundamental advantage: it obeys the rules of calculus. For this 
reason, it is natural to use here the Fisk-Stratonovich integral. We shall not 
repeat here how this integral is defined (cf. Fisk [2], Stratonovich [6]) but we 
shall state those properties of the integral that will be needed. They are: 

(1) S~tdW(t) = W(tl) - W(to) 

and 

(2) the fact that the rules of calculus hold. Precisely, suppose that 

Y9(t) = Yj(to) + Stofi(Y1(T), * * . , Yk(r)) d- 

+ 5gto 9(Y1(zr) . . ., Yk(r)) dW(T) 

(i.e., formally dY, = fj dt + gj dW) and that 

X(t) = h( Yl(t), .***, Yk(t))6 

Then 

X(t) = X(t0) + St k(Y1(t), * * * , Yk(z)) dT- + t l(Y1(Tr) , Yk(z)) dW(t) 

where 

k(yi, , Yk) =Lk3=1 (ah f) (yV . * Yk) 

1(Y19 , Yk) = 3=1 (av 9j) (Y1, .. , Yk) 

(formally: dX= j (ah/ay) dYj). 

THEOREM 8. Assume that all the conditions of Theorem 5 are satisfied and that, 
in addition, W is a Wiener process. Then the solution in the sense of Definition 3 
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of dX = f(X) dt + g(X) dW with initial condition X(tj) = X is precisely the same 
as the Stratonovich solution. 

PROOF. If f and g satisfy the special assumptions (I), (II), (III) of the proof 
of Theorems 1, 2 (so that, in particular, g(x) _ v is a constant), then the solu- 
tion in our sense of dX = f dt + g dW satisfies 

X(t) = X + S to f(X(r))d + [W(t) - W(to)] v 

Since s dW = W, we conclude that our X satisfies the equation in the 
Stratonovich sense. For general f and g, we use the fact that one can find f, g 
in Rn+' which satisfy the special assumptions (I), (II), (III), and a map 

F: Rn+1 '> Rn 

such that F * f = f, F * g = g and that F(O, x) = x. (This map is constructed 
in the proof of Theorems 1 and 2.) 

For co in the probability space, put X(w) = (0, X(w)). Then X = F o X. Let 
X, be the Stratonovich solution of dX = f(X) dt + g(X) dW, X(O) = X, and let X. 
be the Stratonovich solution of dX = f(X) dt + -(X) dW, Xk(O) = X,. Since the 
rules of calculus are obeyed, X, - F o X,. Our solution X of dX = f(X) dt + 
g(X) dW is constructed precisely as X = F o X, where X is the solution, in our 
sense, of dX = f(X) dt + '(X) dW (cf. the proof of Theorems 1, 2). As we have 
already pointed out X = X,. So X = XK, and our proof is complete. 

We leave it to the reader to state and prove an analogue of Theorem 8 for 
the case when f and g do not satisfy a linear growth condition, and therefore 
X may have explosions. 

6. Two applications. It has been shown by Wong and Zakai that the solution 
X of an equation 

(st) dX = f(X) dt + g(X) dW, X(to) = X 
driven by a Wiener process W is the limit, in an appropriate sense, of the solu- 
tions Xm of 

(Stm) dX = f(X) dt + g(X) dWm, X(to) = K, 

if the Wm are more regular processes which converge to W of m -* oo. Here 
we shall show how this result follows, trivially in our framework. Actually, 
there is no need to limit ourselves to a Wiener process W. 

Let W = {Wtltj, be a process with continuous sample paths, defined on the 
probability space 9S= (Q, Y, P). Let {Wm},=j be a sequence of processes de- 
fined on 9a= (Q, Y, P), with Wm = {Wtm}l1I. Assume that Wm converges to W 
in the sense that, for almost every a e Q, the function t -> Wtm(w) converges to 
t -+ Wt(w) as m -- oo, uniformly for t in any compact subinterval of I. Let f, g 
be vector fields on Rn, which satisfy the hypotheses of Theorem 2. Let K be a 
random variable on 9. For each m, let Xm be the solution of (str,). Let X be 
the solution of (st). Then 
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THEOREM 9. XI --> X as m -* oo, in the sense that, for almost every ow e Q, the 
functions t X,-((o) converge to t -- X,(() as m -> oo, uniformly on compact sub- 
intervals of I. 

PROOF. Just apply our definition of solution. 

REMARK. If W is a Wiener process, then we know that the solution in our 
sense coincides with Stratonovich solution (Theorem 8). Let the Wm be "regu- 
larized versions of W" (e.g., let {llm} be a sequence of partitions of I, such that 
mesh (HIm) -> 0 as m -> oo, and let the function t W,"(o) coincide with t -> 
W,(wo) at the partition points, and be linear on each partition interval). Then 
(stm) can be solved, for each m, in the ordinary sense (i.e., for each co e Q). 
Theorem 9 then shows that the Stratonovich solution of (st) is one that arises 
when W (which is a mathematical idealization) is regarded as the limit of the 
physically more realistic processes W-. As indicated by Wong and Zakai in 
[11], by Wong in [10], and by McShane in [5], this shows that the Stratonovich 
concept of a solution of (st) is the most adequate one for the purpose of model- 
ling "systems driven by white noise." 

As a second application, we improve upon a result of Stroock and Varadhan 
(cf. [7], Theorem 5.1 and Remark 5. 1). Let f, g satisfy the hypotheses of Theo- 
rem 2, let Q = C([a, b]) and let P be Wiener measure on Q. Let x0 e RI be fixed, 
and let X = {X,: t e [a, b]} be the Stratonovich solution of dX = f(X) dt + 
g(X) dW, Xa x0, where W = {W: t e [a, b]}, W,(w) = w(t). Consider the 
transformation T: C0([a, b], R) CO([a, b], RI) defined by T(w)(t) = X,(w). Let 
T be the restriction of T to C2([a, b], R). Stroock and Varadhan show that T is 
an extension of T with the property that all the elements of C2([a, b], R) are 
continuity points of T. (Their definition of "continuity point" need not be given 
here. However, this definition is so chosen that any point where T' is continuous 
in the ordinary sense is a continuity point.) 

Our results imply that T is actually continuous and that it is the only continuous 
extension of T to C0([a, b], R). 

7. Several inputs. For equations 

dx = f(x) dt + Y,=l gi(x) dwi(t) 

with k > 1, the results of the preceding sections are not valid. The implications 
of this fact are quite interesting, and will be pursued elsewhere. Here we will 
limit ourselves to some heuristic remarks, and to a simple example which will 
show what may happen when k > 1. 

The main obstruction to the validity of our results for k > 1 is the noncom- 
mutativity of the vector fields gi. If the gi commute (i.e., if all the Lie brackets 
[gi, gj] = (Dgi) - gj-(Dgj)gi vanish), then a straightforward modification of 
our proofs for k = 1 will work in general. If the gi do not commute, new 
phenomena appear. Heuristically, one should think of each input ui = dwi/dt 
as representing an "infinite sequence" of "kicks" separated by infinitesimal time 
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intervals. The effect of these kicks on the state x is determined by the vector 
fields gi. The reason why our results fail is that the order in which the kicks 
are applied within each infinitesimal interval matters. The functions wi only 
measure the cumulative effect of the i-kicks. It is possible, for instance, for two 
"sequences uil, u 2 of kicks" to be such that their cumulative effect on any finite 
interval is the same, while the ordering of the kicks within infinitesimal intervals 
is different, in such a way that a visible "macroscopic effect" appears. The fol- 
lowing example illustrates this. Let A, B, be two n X n matrices such that 
AB - BA = C t 0. 

For x e Rn (written as a column), put g,(x) = Ax, g2(x) = Jlx. 
Let the interval [0, 1] be partitioned into n equal intervals Ij1 [(j - 1)/n, 

j/n], j = 1, n. Partition each Ij1 into four equal intervals I1, i= 1, 2, 3, 4. 
Define u,(t) to be equal to 4ni for t e j1>, to -4ni for t e Ij"1, and to zero for all 
other t. Similarly, let u2 be equal to 4ni for t e -3%, to -4ni for t e Ij4, and to 
zero for all other t. Let w, w2n be the indefinite integrals of U1, u2 (chosen so 
that wl"(0) = w2"(0) = 0). It is easy to see that wln and W2" converge to zero 
uniformly, as n -> oo. On the other hand, the solution xn of 

dx = g1(x) dwl" + g2(x) dw2", x(0) = x0 

has the limit 
x(t) = et[BA]x0 

as n -> oo. 

8. A counterexample. We show, by means of a counterexample, that the 
assumption that Dg is uniformly bounded cannot be replaced, in the statement 
of Theorem 2, by the weaker hypothesis that g grows linearly. 

Let a,, .. , a., . and bl, ... I b", b y . be sequences of real numbers such that 

(1) 0 < al 
(2) an < bn < a,+, for all n 

(3) ~~~~~~lim,,-, an = 0 

(4) ~ ~ 1(b" - a.) < oo and 

(5) a,,-b,,l > a,,+l -b. for all n . 

(For instance, let a, = 1, b_ = a. + 2-, a,+, = be + l/n.) 
Let t1, ., to, be a sequence of strictly positive numbers, such that 

E tn < 00 

Let 0: R lk-> be a Co function such that 0(x)= -1 for x < 0, q(x)= 1 
for x > 1, 0() - 0, and that 0 is strictly increasing for 0 < x < 1. 

Define g: R R as follows. For x < a, we let g(x) = 1. For b1 < x < a2, 
we let g(x) = -1. In general, for be < x < a_+l, we let g(x) = (-1)f. To 
complete the construction of g, we define it on the intervals a_ < x < b" by 
"interpolation," using 0. Precisely, we put g(x) = (-l)s0((x - a")/(bn - a,)) 
for an < x < b_ 
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Notice that g is Co and uniformly bounded (and hence, in particular, it satis- 
fies a linear growth condition) but that dg/dx is unbounded. 

Now define f: R -> R by f(x) = 1 - g(x)2. Then f is Ca, and uniformly 
bounded. Moreover, f vanishes everywhere except on the intervals an < x < bn. 

It is clear that f and g satisfy all the hypotheses of Theorem 2 except for the 
fact that dg/dx is unbounded. We now find a T > 0 and a continuous function 
w: [0, T] -> R such that the solution x(t) of dx = fix) dt + g(x) dw, x(0) = 0, 
is defined for 0 < x < T, but that lim, T x(t) = + oo . 

Define, inductively, 

To = ? 

T_ = Tni + t,. + (b. - an) 
so that 

Tn = 1 tk + 1 (bk -ak). 

It is clear that 0 < T1 < T2 < *.. < Tn < *.. and that 

T =liming T. 
exists and is finite. 

Now define a function u: [0, T) - R as follows. Let 0 < t < T. Then there 
is a unique n such that Tn, < t < Tn. We distinguish two cases: 

(1) Tnll< t< Tn-l + tn 

In this case we define 

u(t) = (-l)nfla. - bn-i 
n 

(2) Tni + tn t < T<n_ + tn + (bn an) = T,. 

In this case, we let u(t) = g(t - Tn1 - tn + an). 

We now study the solution x(t) of 

dx = f(x) + u(t) g(x). 

We show by induction on n that this solution is defined on [0, Tn] and that 
x(Tn) = bn (letting bo = 0). This conclusion is certainly true for n = 0. Assume 
that it is true for n -1. For Tni < t < Tni1 + tn, let t(t) = bni, + (an - 

bni1)(t - Tn-l)!tn. 

Then bni ?< (t) ? an, so that f($(t)) = 0, g($(t)) = (-l)n1. On the other 
hand, u(t) =(-l)n-l((an -bnl)Itn), so thatf(e(t)) + u(t)g(e(t)) (an - bn,)/tn. 
Therefore 

dt (t) = f(O(t)) + u(t)g(9(t)) 

for Tn1l< t < Tni1. Moreover, $(Tni_) = bnil and, by the inductive hypothesis, 
x(Tnl) exists and equals bnll Hence x(t) exists for Tni- < t < Tn, + tn and it 
is equal to t(t). In particular, x(Tn, + tn) exists and equals an. 
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Now let T.-1 + tn _ t < Tn . For such a t, put Y(at) t-T_ t an 
Then a. < Y(t) < bn. By the definition of u: 

u(t) = g(W)) 
Since an < 7)(t) < b_ we havef(l2(t)) = 1 - = 1 -gu(t)g(j(t)). Hence 

f(2(t)) + u(t)g(W(t)) = 1. So (dyj/dt)(t) = fly(t)) + u(t)g(y(t)). Since Y2(T n- + 

tj) = a., we conclude that x(t) exists for all t such that T.-1 + tn < t < T., and 
that x(t) = Y(t) for such t. Hence x(T.) exists and equals b.. The induction is 
complete. 

Since limrn' be b + -o, it follows easily that 

limber x(t) = + 00 

On the other hand, the function t -> x(t) is the solution of 

dx = f(x) dt + g(x) dw, x(0) = 0, 
where 

w(t) = u(s) ds for 0 < t < T. 

We now show that w is a continuous function on the closed interval [0, T], 
i.e., that 

limt IT w(t) = limtoT t u(s) ds 

exists and is finite. To see this, observe that 

w(T.) = w(T,-l) + (- 1 )n-(a.- bn.1) + (b - a.) 
Hence 

w(T.) = zk=0 (-1)k l(ak - bk-1) + ZknO (bk - ak) 

Since both series E (-1 )k1-(ak- bk-l) and E (b,-ak) converge-the former 
because it is an alternating series whose terms decrease in absolute value, by 
(5), and the latter because of (4)-it follows that liming w(T.) exists. The con- 
clusion that limt T w(t) exists follows easily. 
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