LETTER Communicated by André Longtin

Characterization of Subthreshold Voltage Fluctuations in
Neuronal Membranes

M. Rudolph

Michael Rudolph@iaf.cnrs-giffr

A. Destexhe

Alain.Destexhe@iaf.cnrs-gif.ff

Unité de Neuroscience Intégratives et Computationnelles, CNRS,
91198 Gif-sur-Yuvette, France

Synaptic noise due to intense network activity can have a significant im-
pact on the electrophysiological properties of individual neurons. This
is the case for the cerebral cortex, where ongoing activity leads to strong
barrages of synaptic inputs, which act as the main source of synaptic
noise affecting on neuronal dynamics. Here, we characterize the sub-
threshold behavior of neuronal models in which synaptic noise is repre-
sented by either additive or multiplicative noise, described by Ornstein-
Uhlenbeck processes. We derive and solve the Fokker-Planck equation
for this system, which describes the time evolution of the probability
density function for the membrane potential. We obtain an analytic ex-
pression for the membrane potential distribution at steady state and com-
pare this expression with the subthreshold activity obtained in Hodgkin-
Huxley-type models with stochastic synaptic inputs. The differences be-
tween multiplicative and additive noise models suggest that multiplica-
tive noise is adequate to describe the high-conductance states similar to in
vivo conditions. Because the steady-state membrane potential distribu-
tion is easily obtained experimentally, this approach provides a possible
method to estimate the mean and variance of synaptic conductances in real
neurons.

1 Introduction

The investigation of dynamical systems in the presence of noise has re-
ceived increasing attention. Phenomena like stochastic resonance (Benzi,
Suter, & Vulpiani, 1981; Nicolis, 1982; for a review, see Gammaitoni, Hanggi,
Jung, & Marchesoni, 1998) or noise-induced phase transitions (Horsthemke
& Lefever, 1984; Van den Broeck, Parrondo, & Toral, 1994) show that in
stochastic systems, qualitatively new behaviors can emerge, which in some
cases can convey advantageous properties to the system. Especially in neu-
ral systems, which are found among the most natural examples of highly
nonlinear excitable systems embedded in a noisy environment (Erdi, 1994;
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Traynelis & Jaramillo, 1998; Longtin, 2000; Volgushev & Eysel, 2000; White,
Rubinstein, & Kay, 2000), noise can have a profound impact on the dynamics
on both the subthreshold level (Levitan, Segundo, Moore, & Perkel, 1968;
Bernander, Douglas, Martin, & Koch, 1991; Rapp, Yarom, & Segev, 1992;
Poznanski & Peiris, 1996; Doiron, Longtin, Berman, & Maler, 2000; Hillen-
brand, 2002) and the superthreshold response (Poliakov, Powers, Sawczuk,
& Binder, 1996; Gammaitoni et al., 1998; H6 & Destexhe, 2000; Tiesinga,
José, & Sejnowski, 2000; Salinas & Sejnowski, 2000; Burkitt & Clark, 2001;
Rudolph & Destexhe, 2001a, 2001b; Rudolph, H, & Destexhe, 2001).

Here we focus on neurons in the mammalian neocortex. In the cortical
network, the ongoing spontaneous neuronal discharge activity in vivo acts
as the main source of noise impinging on the behavior of individual neu-
rons. Due to a very dense synaptic connectivity within this network, with
each neuron receiving several thousand synaptic inputs from other neurons
(Szentagothai, 1965; Cragg, 1967; Gruner, Hirsch, & Sotelo, 1974; DeFelipe
& Farifias, 1992), and high sustained firing rates up to 20 Hz on average for
each neuron in awake animals (Hubel, 1959; Evarts, 1964; Steriade, 1978;
Matsumura, Cope, & Fetz, 1988; Holmes & Woody, 1989; Steriade, Timo-
feev, & Grenier, 2001), cortical neurons are subject to a tremendous synaptic
background noise (Calvin & Stevens, 1968; Contreras, Timofeev, & Steriade,
1996; Kohn, 1997; Nowak, Sanchez-Vives, & McCormick, 1997; Paré, Shink,
Gaudreau, Destexhe, & Lang, 1998; Azouz & Gray, 1999; Lampl, Reichova,
& Ferster, 1999). Intracellular recordings in conjunction with models of re-
constructed cortical neurons show that the release at individual synaptic
terminals during periods of intense spontaneous network activity can be
described in leading order by a Poisson process (Cox & Lewis, 1966) with
an average frequency of about 1 and 5 Hz for excitatory and inhibitory
synapses, respectively (Destexhe & Paré, 1999). As it was shown in a num-
ber of experimental (Barrett, 1975; Holmes & Woody, 1989; Baranyi, Szente,
& Woody, 1993a, 1993b; Borg-Graham, Monier, & Frégnac, 1998; Paré et al.,
1998; Destexhe & Paré, 1999) and theoretical studies (Bernander et al., 1991;
Rapp et al., 1992; Destexhe & Paré, 1999), this continuous strong barrage
of synaptic inputs in vivo creates a highly fluctuating intracellular activity,
characterized by a more depolarized membrane potential (V,), persistent
Vi fluctuations with higher amplitude, and a smaller membrane time con-
stant (high-conductance state) compared to states without network activity
(in vitro states).

To characterize the consequences of the sustained and intense back-
ground activity found in the cortical network in vivo on the neuronal dy-
namics and cellular response, various models of cortical neurons with com-
ponents describing synaptic noise were constructed. These models cover a
broad range of complexity, ranging from (leaky) integrate-and-fire neuron
models (Lapicque, 1907) with gaussian white noise (Lansky & Lanskad, 1987;
Bindman, Meyer, & Prince, 1988; Tuckwell, 1988; Lansky & Rospars, 1995;
Doiron et al., 2000; van Rossum, 2001; Brunel, Chance, Fourcaud, & Abbott,
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2001), to stochastic membrane equations (Tuckwell & Walsh, 1983; Tuck-
well, Wan, & Wong, 1984; Manwani & Koch, 1999a, 1999b; Tuckwell, Wan,
& Rospars, 2002), up to biophysical-faithful models of single neurons in
which synaptic background activity is incorporated by the random release
at individual synaptic terminals according to Poisson processes (Bernan-
der et al., 1991; Rapp et al.,, 1992; Lansky & Rodriguez, 1999; Manwani &
Koch, 1999a, 1999b; Tiesinga et al., 2000; Rudolph & Destexhe, 2001a, 2001b;
Rudolph et al., 2001; Tuckwell et al., 2002). As it was shown in Ricciardiand
Sacerdote (1979), under point-like excitatory and inhibitory synaptic inputs
Poisson-distributed in time, the neuron’s membrane potential undergoes a
continuous random walk. The latter is described by a temporally homoge-
neous Markov process obeying the governing Fokker-Planck equation for a
dynamical random process of the Ornstein-Uhlenbeck (OU) type. Hence, the
OU process, which describes low-pass filtered gaussian white noise and was
originally introduced as a model of Brownian motion (Uhlenbeck & Orn-
stein, 1930; Wang & Uhlenbeck, 1945), belongs to the most prominent models
for synaptic noise (Ricciardi & Sacerdote, 1979; Hanggi & Jung, 1994).

Recently it was shown (Destexhe, Rudolph, Fellous, & Sejnowski, 2001),
using detailed biophysical models of cortical neurons subject to stochas-
tic synaptic inputs, that the total conductance resulting from a sum of
thousands of synaptic inputs has a power spectrum that approximates a
Lorentzian (see Figure 1D; it is Lorentzian if the synaptic conductance de-
cays as exp[—t/t]), whose high-frequency limit follows a 1/f? behavior,
where f denotes frequency. The gaussian nature of the OU process and
its Lorentzian spectrum qualitatively match the behavior of the conduc-
tances underlying synaptic noise for higher frequencies, thus providing an
effective stochastic representation that captures the amplitude of the con-
ductances, their standard deviation, and spectral structure. Moreover, the
use of this effective representation in neocortical slices (Destexhe et al., 2001;
Fellous, Rudolph, Destexhe, & Sejnowski, in press) successfully recreated
the cellular properties typically found in the intact and activated brain. This
further motivates the use of the OU process as a valid description of synaptic
noise.

However, the complexity of the resulting stochastic equations allows us
to address only specific problems analytically (e.g., statistical characteris-
tics like mean and variance of the membrane potential; see Manwani &
Koch, 1999a, 1999b; Tuckwell et al., 2002), whereas numerical methods (for
a review, see Werner & Drummond, 1997) or approximations (e.g., mean-
field approximation; see Van den Broeck, Parrondo, Armero, & Hernandez-
Machado, 1994; Ibaries, Garcfa-Ojalvo, Toral, & Sancho, 1999; Genovese &
Mufioz, 1999) remain the standard tools. In addition, the particular mathe-
matical form of noise terms and their incorporation into stochastic neuron
models (i.e., the nature of the coupling of the noise to the neural system)
are still the subject of controversy. Experimental results show that synaptic
transmission underlies a voltage-dependent, and thus state-dependent, ki-
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netics (Regehr & Stevens, 2001). This suggests that the synaptic current has
to be described, according to Ohm's law, by a (possibly voltage-dependent)
conductance term coupling multiplicatively to the state variable. In the case
of random synaptic inputs, this would translate into a noisy conductance
term with multiplicative coupling to the membrane potential (multiplicative
noise). Atleading order, however, the resulting noisy synaptic current can be
described by a stochastic variable. In this case, the noise term due to synaptic
background activity enters the equations governing the membrane potential
time course in an additive way (additive noise; see, e.g., Kohn, 1997). Repre-
senting synaptic noise using an additive term yields a simpler mathematical
description of stochastic neural systems and, thus, is the most commonly
used model of synaptic noise dating back to the 1960s (Stein, 1967; for a
recent study of additive noise described by an OU process, see Brunel et al.,
2001). On the other hand, multiplicative noise appears to be more closely
linked to biophysical dynamics. It is still debated to which extent the lat-
ter can faithfully reproduce neuronal dynamics in the presence of synaptic
background activity (for a comparison between both noise couplings, see,
e.g., Tiesinga et al., 2000).

In this article, we analyze neuronal models subject to both additive and
multiplicative synaptic noise, with the aim of deriving an analytic descrip-
tion of the statistical properties of the membrane potential. The motivation
for this approach is to understand the integrative properties of neurons in
the presence of noise, as well as to provide methods to analyze experimental
data. We compare models with additive (current-based) or multiplicative
(conductance-based) synaptic noise described by Ornstein-Uhlenbeck pro-
cesses (see appendix A). Using the It6-Stratonovich calculus (van Kampen,
1981; Gardiner, 2002) and the Fokker-Planck approach (Risken, 1984), the re-
sulting stochastic Langevin equation (Genovese & Murioz, 1999) is solved,
yielding an analytic expression for the steady-state membrane potential
distribution in the presence of noise (see appendix B). The expressions ob-
tained for additive and multiplicative noise are compared with numerical
solutions of neuronal models with voltage-dependent currents for gener-
ating action potentials (Hodgkin-Huxley equations, see Hodgkin & Hux-
ley, 1952). We provide a detailed comparison of additive (current-based)
or multiplicative (conductance-based) models and delineate which models
are most appropriate representations of the subthreshold dynamics in the
presence of synaptic noise. We discuss possible applications for analyzing
membrane potential distributions from experimental data.

2 Models of Cortical Neurons

Cortical neurons were described by the passive membrane equation,

dv (1) 1
CmT = —8L V() —Ep) — ; Isyn(t), 21
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where V(t) denotes the membrane potential, C,, the specific membrane ca-
pacity, a the membrane area, g7, and Ej, the leak conductance and reversal
potential, respectively (Destexhe et al., 2001). The total synaptic current due
to synaptic background activity Iy, (t) was decomposed into a sum of three
terms: two multiplicative noise terms, which describe noisy excitatory and
inhibitory conductance components coupling multiplicatively to the mem-
brane potential, g.(t) (V(t) — E.) and g;(t) (V(t) — E;), respectively, as well
as an additive noise term, which describes a noisy current I(¢) (Stein, 1967;
Ricciardi & Sacerdote, 1979):

Iyn(t) = &) (V(t) — Eo) + &i(H) (V(H) — Ep) — I(D). 22

Here, g.(t) and g;(#) denote stochastic variables describing time-dependent
excitatory and inhibitory conductances, respectively, and E, and E; are their
respective reversal potentials.

The conductances g.(#) and g;(f) follow an OU process (Uhlenbeck &
Ornstein, 1930; Wang & Uhlenbeck, 1945; see also section A.1), obeying

Agie.iy (t 1
g[T}() = “en (Sie.iy (D — e.0) + v Die,iy e,y (1), (2.3)

where g ;0 are the mean (static) excitatory and inhibitory conductances,
T{c.j) are their corresponding time constants, and Dy, ;) are the corresponding
noise diffusion coefficients. Similarly, the additive current I(¢) is described
by a single-variable OU process,

dl(t 1
=2 - = 0 - 1)+ VD&, 24)

where Iy denotes the mean synaptic current, 7; the current noise time con-
stant, and Dj the corresponding noise diffusion coefficient. &, ; () as well
as &(t) denote independent gaussian white noise processes of zero mean
(Ee.in(®)) = 0 and unit standard deviation (€5 (DE(e.in(t)) = 8¢t — t)
for excitatory and inhibitory conductances, as well as the noisy current, re-
spectively. White noise is obtained for vanishing time constants, whereas a
time constant larger than zero yields “colored” gaussian noise for the cor-
responding process. The noise diffusion coefficients D, ; and Dy are related
to the standard deviation oy, ;; and o7 of the respective stochastic variables
by U[%,’l-} = %D[e,i} T(e,;y and 012 = %Dm, respectively (see Gillespie, 1996).
We note that the general form of the total synaptic current I, (t), equation
2.2, contains both additive (current) and multiplicative (conductance) noise,
which are commonly used as models to describe synaptic noise. As we will
outline below, the explicit solution of this general model will allow us to
investigate the effect of both noise couplings on the neuronal dynamics and
to draw conclusions about their differences in more analytic terms.



2582 M. Rudolph and A. Destexhe

Introducing the new variables g i () = gie.iy () — (e.ijo and f(t) =I(t) —
Iy yields for equation 2.1 the one-dimensional Langevin equation with
two independent multiplicative and one additive Ornstein-Uhlenbeck noise
terms,

av(t ~ ~ =
% = fV(®) + he(V(D) ge(t) + hi(V (D) Zi(t) + hr I(), (2.5)

where g ;) (#) and I(t) denote now stochastic variables with zero mean for
excitatory conductance, inhibitory conductance, and the noisy current de-
scribed by Ornstein-Uhlenbeck processes,

Agre n(t 1 .

8t d’t’() = 8te.it ) + VDiey §e.y (), (2.62)
dl(t 1.
% = -2l VD £((#), (2.6b)

respectively. In equation 2.5, f(V (t)) denotes the V (t)-dependent driftterm,

8e0

__8L _ry_ _
fV) = c (V(t) — Ep) C V() —Ep)
_ 80 _ry g do
Coa V) —E)+ c.a 2.7)

hi iy (V(t)) voltage-dependent excitatory and inhibitory conductances noise
terms, and /i the current noise term:

1
hie,iy (V (1) = T V() = Ee.ip), (2.8a)
= —— 2.8b
1= o (2.8b)

respectively, which are nonanticipating functions of the membrane potential
V).

Equation 2.5 describes the subthreshold membrane potential dynamics
in the presence of independent multiplicative and additive colored noise
sources due to synaptic background activity. The stochastic terms prevent
a direct analytic solution of this differential equation. However, the It6-
Stratonovich stochastic calculus (e.g., van Kampen, 1981; Gardiner, 2002)
allows us to deduce the Fokker-Planck equation corresponding to the Lange-
vin equation 2.5 and to describe the steady-state membrane potential prob-
ability distribution in the asymptotic limit + — oo (details about the mathe-
matical approach can be found in appendixes A and B). Briefly, in order to
solve the Langevin equation 2.5, a set of differential rules (It6 rules) for the in-
tegrated OU process (see sections A.1 and A.2) is deduced (see section A.3).
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Using the It6 rules, we obtain It6’s formula for the Langevin equation 2.5 in
question (see section B.1). This formula describes the change of an arbitrary
function for infinitesimal changes in its (stochastic) arguments. Averaging
over Itd’s formula finally yields the Fokker-Planck equation corresponding
to equation 2.5 (see section B.2). For a general introduction to this approach,
see Gardiner (2002).

3 The Steady-State Membrane Potential Probability Distribution

The Fokker-Planck equation, B.15,
dp(V, 1) = —av(f (V) p(V, 1)
+ v (he(V (1) dv (he (VD) ae(H) p(V, 1))
+ dv (i (V (1) o0v (hi(V (D) eei(H)p (V, 1))

+ 12 ar(t) (33 p(V, 1)), 3.1)
where
2 t
2apein(t) = ojoipn Tein (1 —exp|—
Tie,i ]}
+ (@i (D) = oin s (3.2)
2tin " o

describes the time evolution of the probability p(V, ) that the stochastic
process, determined by the passive membrane equation 2.1, takes the value
V(t) at time t. We are interested in the steady-state probability distribution:
t — oo. In this limit, (8;0(V,t)) — 0. To obtain explicit expressions for

aye.in(t), defined in equation 3.2, inthe limitt — oo, we make use of the fact
that for t — oo, the ratio ;57 > 1. This leads to the assumption that in the
steady state, the Varlables aye.in(t) take a form corresponding to a Wiener
process:

t
2ain(t) 7 Ué,i,” T(e,iT) (1 —exp [— ])

Te,i,l}

+

D[ "’[}i’—Uz ot
Te,i,I) o tedll

2
= Oein Ueil)- (3.3)

Here, relation A.12a with Dy, ; 5y = oé’ i1 Tle,i.y was used. The interpretation
of equation 3.3 is that, in the limit t — oo, the noise correlation times ;1
become infinitesimally small compared to the time in which the steady-
state probability distribution is obtained. In section 4, we will show that
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this assumption indeed yields a steady-state probability distribution that
closely matches that obtained from numerical simulations.

With equation 3.3, the Fokker-Planck equation 3.1 can be solved ana-
lytically, and we obtain the following steady-state probability distribution
p(V) for the membrane potential V(¢), described by the passive membrane
equation 2.1 with two independent multiplicative and one additive colored
(Ornstein-Uhlenbeck) noise sources:

p(V) =N exp ;—bl In[b> ViV + bol
2

2 — 2
+ bado — a1bn arctan M , (34

ba/4by by — b3 JAbabo — b2

where
1
ag = <. )2 2Cpa(grLEra+ g0 E.+ gioE)
+10Cpa+ o2t Eo+ o7 4 Ep),
1
a1 = (C )2 (Zcma(gLa+g60+g10)+U fe+U Ti),
1
by = T (o reE +o rlE -‘r-UI T7),
2 2 2
br=- (Cna)? (07 ©eEe + 0 T Ei),
m
1
by = . )2 (o re+o ), (3.5)

and N is a normalization factor defined by [*_ dV p(V) = 1.

Of particular interest are solutions of the stochastic passive membrane
equation 2.1 with either multiplicative or additive noise only. Performing
the limits [y — 0and o7 — 0inequation 3.4 yields, in general, the asymmet-
ric steady-state membrane potential distribution of the passive membrane
equation subject to two independent colored multiplicative noise sources
describing excitatory and inhibitory synaptic conductances:

(V_ e) +

Pmult(V) = N exp [Al ln[ (V—E) ]

(Cim )2 (Cm )2

021, (V—E) +0f 71 (V—E) (36)
—E)olto? T '

+ Aj arctan |:
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where
e 2aCpy (g0 + i0) +2*C gL + 02 7o + 07 T
1= 2(02 1, + 07 1) ’
2Cpa(agr (0l v (EL — E;) + of i (EL — E))
Ay = + (geo Uiz Ti — &io 082 T.) (E. — E}))

(Ee — Ei) Vo2 1,07 11 (02 7 + 07 1))

We note that due to the particular form of the membrane potential distribu-
tion pmut(V) and the dependence of the coefficients (see equations 3.5) on
the synaptic noise parameters, two different noise processes will, in general,
not yield equivalent distributions.

Similarly, carefully performing the limits g, j0 — 0, o ;; — 0 in equa-
tion 3.4 yields for the steady-state membrane potential distribution in the
presence of colored additive (current) noise the gaussian

V-V
Padd (V) = Nadd exp [— — |, (3.7)
2 oy
where Nagq = %HZTC: denotes the normalization constant and
(7] T
— I
V=F + —, 3.8)
8La

2
o7 T
= f— 3.9
oy ‘IZaZgLCm (3.9)

denote the mean voltage and voltage standard deviation, respectively.
Interestingly, the noise time constants 7, ; ; enter the expressions for the
steady-state membrane potential distribution, equations 3.6 and 3.7, only
in the combination oé’ i1y Tle,iny- This rather surprising result can be heuris-
tically understood by looking at the nature of the effective stochastic pro-
cesses. As it can be demonstrated in the framework of shot-noise processes,
correlated activity among multiple synaptic input channels has an impact
on the variance of the total conductance or current time course, which in
the effective model is described by oé’ ;- On the other hand, nonzero noise
time constants (which are linked to the kinetics of synaptic conductances
or currents) result in an effective temporal correlation between individual
synaptic events. Here, larger time constants yield larger temporal overlap
between individual events, which contributes to a (temporal) correlation of
the synaptic events. The latter will effectively yield an effect comparable to
that of the correlation in the synaptic activity pattern, which is character-
ized by oy, 1, thus providing a heuristic explanation of the strict coupling
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between noise variance and time constant. This specific coupling also indi-
cates that white noise sources with different “effective” variance o[%,’ i Tledl)
could yield equivalent distributions. However, for more complex systems
or different couplings (as in the case of voltage-dependent NMDA currents),
this result will no longer hold.

Typical examples of membrane potential probability distributions re-
sembling those found in activated states of the cortical network in vivo are
shown in Figure 1 (gray traces in A, B, C), along with corresponding ana-
lytic distributions following from both additive and multiplicative synaptic
noise models (black solid and dashed lines, respectively). Parameters in
equations 3.6 and 3.7 were chosen to yield distributions that matched that
obtained from the numerical solution of the passive membrane equation
2.1 (see Figure 1A), as well as those obtained from numerical simulations
of a passive single-compartment model with thousands of excitatory and
inhibitory synapses releasing according to independent Poisson processes
(see Figure 1B) and of a detailed biophysical model of a morphologically
reconstructed cortical neuron (see Figure 1C; e.g., Destexhe & Paré, 1999;
Rudolph & Destexhe, 2001a, 2001b, 2003; Rudolph et al., 2001). The latter

0.16 = numerical |] 0.16¢ = 1-comp.
solution ] [ model
012 — 2dd. noisell S 0.12¢ — mult. noisqg|
— mult. noisq] [ ——add. noiself
5 0.08 1 & 0.08 1
0.04} 0.04t
6 0.01p R ] 6 0.011 . . . . . . ]
E ot o g
®o0tf . .~ 4 %9001 .
-80 -70 -60 -50 -80
C V (mV) D
0.16 — biophysical |]
model
~ 012 — mult. noisel] 1007t
= -— add. noise []
S 0.08 1 10
>
0.04} a
1 L
- 00if i i ’ ’ R = Lorentzian
S ol _ 2 ] 0.11 |— Poisson noise
= [ 7~ | 1-comp. model
Pooif 0 ] ( e ; .
-80 -70 -60 -50 0.1 1 10 100

V (mV) v(Hz)



Characterization of Subthreshold Voltage Fluctuations 2587

was shown to faithfully reproduce intracellular recordings obtained in vivo
(see Destexhe & Paré, 1999).

These results indicate that the effective description of synaptic noise in
terms of Ornstein-Uhlenbeck stochastic processes, along with the analytic
solution of the corresponding stochastic membrane equation 2.1, provides
a good description of the subthreshold activity of neuronal membranes in
the presence of multiple synaptic inputs with biophysically more realistic
kinetics (see Figures 1B and 1C). This motivates the use of equations 3.6 and
3.7 for characterizing synaptic activity in terms of conductance (or current)
mean and standard deviation as the cause of subthreshold membrane poten-
tial fluctuations. Deviations were, in general, small but larger for the current
noise description (see Figures 1B and 1C, bottom panels). Here, the error is
primarily caused by the deviation of the power spectral density of the total
conductance time course, stemming from a population of synaptic input
channels, from a Lorentzian behavior (see Figure 1D) as well as the spatial

Figure 1: Facing page. Membrane potential probability distributions p (V) for dif-
ferent models of synaptic noise. (A) Single-compartment model with two fluc-
tuating synaptic conductances described by Ornstein-Uhlenbeck processes (see
equation 2.1; for model parameter, see section 4). (B) Single-compartment model
(see section 4 and Destexhe, Rudolph, Fellous, & Sejnowski, 2001), where synap-
ticactivity was simulated by alarge number of randomly releasing synapses. The
4472 excitatory and 3801 inhibitory synapses were described by kinetic models
of AMPA and GABA, receptors (Destexhe et al., 1998), respectively, which re-
leased according to independent Poisson processes. (C) Compartmental model
of cortical pyramidal neuron (morphologically reconstructed) in which synaptic
activity was simulated by randomly-releasing synapses distributed in soma and
dendrites (see the details of this model in Destexhe & Paré, 1999; Rudolph &
Destexhe, 2003).Inall cases shown in A-C, the membrane potential distributions
(gray lines) closely matched the analytic solutions pmu1t(V) for multiplicative
and p,q4(V) for additive noise (black solid and dashed lines, respectively; pa-
rameters: g0 = 0.0121 uS, gy = 0.0573 uS, o, = 0.006 uS, o; = 0.0132 uS,
Iy = 0.228 nA, o7 = 0.165 nA (A); g0 = 0.0127 1S, gio = 0.0573 uS, o, = 0.0049
uS,0; = 0.0108 uS, Iy = 0.238nA, o7 = 0.137nA (B); g0 = 0.0148 uS, gio = 0.0702
uS, o, = 0.00696 uS, o; = 0.0153 uS, I = 0.222 nA, o; = 0.142 nA (C); in all
cases: 7, = 2.728 ms, t; = 10.49 ms, 7; = 2 ms). The deviation between numerical
and analytical distributions (absolute error shown in the bottom panels of A-C)
was in general larger when synaptic noise was described by additive (current)
noise (for discussion, see section 5. (D) Typical example of the power spectral
density S(v) of conductances obtained from the single-compartment model of
B (black). The latter yield nearly gaussian distributions, whose power spectral

density (gray) matched the Lorentzian function S(v) = 1+sz; T:V)z (D is the diffu-

sion coefficient, t the noise time constant) expected for OU noise, for frequencies
larger than ~ 1 Hz.
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distribution of synaptic input channels (as for the case shown in Figure 1C).
In contrast, deviations between the numerical solution of the passive mem-
brane equation 2.1 and the corresponding analytic solutions (see Figure 1A)
must primarily be attributed to statistical errors in the numerical solution
(for discussion, see the next section).

4 Computational Models and Numerical Solutions

To assess the validity of the analytic solutions given by equations 3.6 and
3.7 and to investigate the error due to the incorporation of negative con-
ductances as well as the impact of voltage-dependent membrane currents
for generating action potentials, we constructed and numerically solved
simplified single-compartment models of cortical neurons (Destexhe et al.,
2001), described by either the passive membrane equation 2.1 (passive model)
or the active membrane equation given by

av
Con d: - —8L(V(H = Ep) = Zli”f(t) - % syn(b) (41)
int

(active model), where >, . I, (f) denotes the sum over intrinsic voltage-
dependent currents, each of which was described by Hodgkin-Huxley mod-
els (Hodgkin & Huxley, 1952):

Lint(t) = g mHMh(N (V(t) — E).

Here, ¢ denotes the peak conductance density, E the reversal potential,
m(t) and h(t) activation and inactivation variables for corresponding active
currents, respectively. The present model included two voltage-dependent
currents, a fast Na® current and a delayed-rectifier K current, for action
potential generation (Traub & Miles, 1991) with conductance densities of
84 mS/cm? and 7 mS/cm? (Huguenard, Hamill, & Prince, 1988), respec-
tively. The membrane area of the compartment was a = 34636 um?, and
passive parameters were g; = 0.0452 mS/cmz, Er = -80mV,C, =1
wF/em? (Destexhe & Paré, 1999).

In the active model, equation 4.1, the synaptic current I, (t) (see equa-
tion 2.2), was subject to the constraints gy, ;(f) > 0, Vt, which are equivalent
to a cutoff of unphysical negative excitatory and inhibitory conductances,
whereas in the passive model (see equation 2.1), cases with and without cut-
off were investigated. For both the active and passive models, two special
cases were considered: I(f) = 0, which yields multiplicative noise with the
corresponding analytic solution described by equation 3.6, and g(. ;j0(t) =0,
yielding additive noise with the analytic solution given by equation 3.7.
Standard background parameter values were chosen to obtain a sponta-
neous spiking activity of 3 to 4 Hz and an average membrane potential of
—65 mV with standard deviation around 4 to 5 mV characteristic for in vivo



Characterization of Subthreshold Voltage Fluctuations 2589

states of cortical neurons (Paré et al., 1998; Destexhe & Paré, 1999). For the
model with multiplicative noise, corresponding standard background pa-
rameters were E, = 0mV, E; = =75 mV, g0 = 0.0121 uS, gjo = 0.0573 uS,
o, = 0.012 uS, o; = 0.0264 uS, 7. = 2.728 ms, and 1; = 10.49 ms. For the
model with additive noise, standard values were Iy = 0.33 nA, o7 = 0.33
nA, and 7; = 2.0 ms. In most simulations, the synaptic background parame-
ters were changed in a range between 0% and 260% relative to the standard
values. This range covered the physiological range observed in vitro (aver-
age membrane voltage at rest V = —80 mV, membrane voltage fluctuations
with zero standard deviation oy, vanishing spontaneous firing rate v) and
invivo (V ~—-65mV,2mV < oy < 6mV,1Hz < v < 20 Hz).

First, we compared the steady-state membrane potential probability dis-
tribution for models with multiplicative and additive noise for two typical
situations: a noisy resting state resembling low-conductance in vitro condi-
tions (gie.jo = 0, Io = 0; oye.sy and o7 10% of standard values; see Figures 2A
and 3A) and anoisy depolarized state resembling in vivo conditions (Figures
2B and 3B). Close to rest, the analytic solution deviated markedly from the
numerical solution of the passive membrane equation (with negative con-
ductance cutoff) and the active membrane equation subject to multiplicative
noise (see Figure 2A, gray and black dashed lines, respectively), whereas
the error was comparably small for the passive model (see Figure 2A, solid
gray line) as well as for the active and passive membrane equation subject
to additive noise (see Figure 3A).

This strong deviation for multiplicative noise can be explained by the
nature of the OU process and the multiplicative coupling of the stochastic
conductance to the state variable V(¢). In the OU process, the conductance
Qte.iy (1) fluctuates around a static value gy, ;0 with a gaussian distribution of
standard deviation o, ;; (see Figure 4A). To allow for an analytic treatment,
no restrictions were imposed on g 110, o(c.; Or their relative amplitudes.
However, unless gy, ij0 > oye.;), the stochastic conductances may take nega-
tive values and thus enter physically not meaningful parameter regimes (see
Figure 4A, gray regions). These regimes, which were explicitly excluded in
the passive model with negative conductance cutoff and the active case (see
above), are especially pronounced in noisy low-conductance states where
Qie.i0 is small compared to oy, ;. The resulting rather sharp cutoff in gy, ;; (f)
(see Figure 4A, dashed line) is responsible for a cutoff in the resulting mem-
brane potential distribution (see Figure 4B, stars; see also Figure 2A, the gray
dashed line). Due to the presence of independent excitatory and inhibitory
stochastic conductances, two such cutoffs are present (at the hyperpolarized
tail due to excitatory conductance cutoff and at the depolarized tail due to
inhibitory conductance), leading to the typical deviation pattern shown in
Figure 4C.

Despite this deviation caused by the limitations of the analytic approach
(the explicit exclusion of negative conductances in equation 2.2 will lead to
discontinuities and no longer allow solving equation 2.1 analytically), er-
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Figure 2: Examples of membrane potential probability distributions for multi-
plicative synaptic noise (conductance noise) pmult(V). Analytic solutions (black
solid line) are compared to numerical solutions of the passive (gray solid line:
without negative conductance cutoff; gray dashed line, with negative conduc-
tance cutoff) and an active (black dashed line) model (for model parameters, see
section 4). (A) Low-conductance state around the resting potential, similar to in
vitro conditions. (B) High-conductance state similar to in vivo conditions. The
absolute error (bottom panels), defined as the difference between the numerical
solution and the analytic solution, is markedly reduced in the high-conductance
state. Model parameters were A g0 =0, gio = 0,0, = 0.0012 uSand o; = 0.00264
uS; B g0 = 0.0121 uS, o = 0.0573 S, 0, = 0.012 uS and o; = 0.0264 uS; for
both: 7, = 2.728 ms and t; = 10.49 ms.

rors in the numerical simulations contribute to deviations between the an-
alytic and numerical result. Numerical integration of (nonlinear, coupled)
stochastic differential equations crucially depends on the used integration
procedure and integration time step. Here, larger time steps will make it
more likely to encounter numerical instabilities. Moreover, although mem-
brane potential distributions were characterized by first- and second-order
moments only (i.e.,, mean and standard deviation, respectively), statistical
errors due to limited simulation length are unavoidable. For numerical sim-
ulations, we used a temporal resolution of 0.1 ms and a simulation period of
100 s for each parameter setup. Simulations were performed using the NEU-
RON simulation environment (Hines & Carnevale, 1997). We checked for
numerical stability by running, for specific parameter setups, simulations
with smaller integration time step (down to 0.01 ms) and longer integra-
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Figure 3: Examples of membrane potential probability distributions for addi-
tive synaptic noise (current noise) paqd (V). Analytic solutions (black solid) are
compared to the numerical solutions of the passive (gray solid line) and an
active (black dashed line) model (for model parameters, see section 4). (A) Low-
conductance state around the resting potential. (B) High-conductance state sim-
ilar to in vivo conditions. The absolute error (bottom panels) is defined as the
difference between the numerical solution and the analytic solution. The analytic
solution gives a good description of the noisy resting state, whereas the contri-
bution of voltage-dependent membrane currents in the active model yields a
marked deviation in the in vivo state. Model parameters: 7; =2.0ms; A I, =0,
o1 = 0.033nA; By = 0.33nA, o; = 0.33 nA.

tion periods (up to 500 s). In all cases, the mean and standard deviation
converged slowly toward the analytic result (data not shown). However,
the speed of this convergence depended on the parameters and was, for in-
stance, much slower for situations in which either inhibition and excitation
strongly dominated. Also, pronounced numerical instabilities were found
for situations in which conductance fluctuations dominated over the mean
conductance values and were especially present in the passive case without
negative conductance cutoff.

However, for g ij0 2 01.i}, which characterizes noisy high-conductance
states resembling in vivo conditions, the impact of negative conductances
and related numerical and statistical errors is expected to be small. Indeed,
due to the smaller fraction of negative conductances (see Figure 4A, right),
the error between the analytic and numerical solution is markedly reduced
compared to resting conditions (see Figures 4B and 4C; see also Figure 2B, the



2592 M. Rudolph and A. Destexhe

low-conductance high-conductance
A state (Qe0<Oe) state (@)0>0y)
3 H O,y 3 O,
2 H 2
a E a
. ‘ i i i
B 0 oo ey 0 Yeio Y
0.1 — analytic solution 0.1
— numerical solution
Z 0.06 < 0.06
g g
[o% [o%
0.02k 4 * 0.02
90 70 50 V (mv) 90 70 50 V (mV)
C . .
0.02 normalization 0.02
2 2
55 V(mV) 25 & V(mV)
350 o
© g; cutoff @
-0.02 -0.02
g, cutoff

Figure 4: Contribution of negative conductances to the error between the ana-
lytic and numerical solution of the membrane potential probability distribution.
Models with multiplicative synaptic noise pmu1t(V) were considered in noisy
low- and high-conductance states. The numerical solution was obtained for the
passive model subject to the constraints gi.;(t) > 0, Vt. In low-conductance
states with g0 < 0.3, the nonzero probability p(g..;) for negative conduc-
tances (gray region in A; stochastic variable g ; according to an Ornstein-
Uhlenbeck noise process with mean g ;0 and standard deviation o ;) yields
membrane potential probability distributions with a pronounced tail for hyper-
polarized and depolarized values due to excitatory and inhibitory conductances,
respectively (B, stars). The gray regions in C show the corresponding absolute
error, including the deviation due to normalization of the distributions. In noisy
high-conductance states (g0 > 0.3), the contribution of negative conduc-
tances and, thus, the error between analytic and numerical solution is only
small.
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gray dashed line). Moreover, the analytic membrane potential distribution
also pmult(V) yields a good description for the active model (see Figure 2B,
the black dashed line), suggesting that under high-conductance conditions,
the conductance due to synaptic noise outlasts the conductance due to the
(subthreshold) activity of voltage-dependent currents for spike generation,
thus resulting in only a minor role of the latter in shaping the steady-state
distribution.

In contrast, in the depolarized state typical for in vivo conditions, major
differences were found between the analytical and the numerical solution
of the active model for additive noise (see Figure 3B; compare the black
dashed and solid lines). Here, the probability distribution for the active case
isshifted toward the resting potential of the cell (i.e., hyperpolarized values),
indicating a crucial role of active voltage-dependent currents by contribut-
ing nonnegligible conductances to the membrane under low-conductance
conditions characteristic for models with additive noise.

5 Additive and Multiplicative Noise

Next, we characterized the parameter dependence of the mean V and stan-
dard deviation oy of the steady-state distribution. For multiplicative noise,
the static components gy, ;0 were the main determinants of V, with a nearly
linear behavior of the iso-V-lines as a function of g(. ;0 (see Figure 5A, left),
leading to ashift of V toward the reversal potential for excitatory (E, = 0mV)
or inhibitory conductance (E; = —75 mV) for increasing g.o or gjo, respec-
tively. This behavior can be deduced from the analytic solution, equation
3.6, by calculating the maximum Vmax of the probability distribution, which
yields

Ty :2Cma(gLELa+Eegeo+Eigio)+oezreEe+al-2riEi 5.1)
max 2Cpa(gra+ g0+ gio) + 02t + 0?1 ’

and approximates the mean V. A qualitatively and quantitatively nearly
identical behavior was found in the numerical solution of the passive model
(compares Figures 5A and 5B, left; relative error between analytical and nu-
merical solution < 0.5%). When negative conductances (see the discussion
in section 4) were excluded (see equation 2.1 with constraint g 5 (t) > 0, V)
and active voltage-dependent currents were incorporated (see equation
4.1), the mean V covered a smaller range of values (see Figure 6A and
6B, left, respectively). Especially for high excitatory mean conductances,
the pronounced subthreshold activity of active membrane conductances
acts against the depolarizing effect of excitation, thus effectively reducing V
compared to models without active conductances. However, in the physio-
logically relevant parameter range (indicated by the convex regions in Fig-
ures 5 and 6), the error between the numerical solution of the active model
and the analytic solution was smaller than 1 mV (relative error < 1.5%;
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Figure 5: Mean of membrane potential probability distribution as a function of
synaptic background parameters (left: g ijo, right: oy ;) for models with multi-
plicative noise. (A) The mean of the membrane potential probability distribution
for the analytic solution, V=N f fooo AV V pmult(V), was obtained by numerical
integration of equation 3.6. (B) Results for the numerical solution of the pas-
sive model (see equation 2.1) without negative conductance cutoff (for model
parameters, see section 4). In all cases, corresponding excitatory and inhibitory
background parameters were independently varied between 0% and 260% of the
standard values, while the remaining ones were kept constant. The convex re-
gions indicate the parameter range covering a cellular activity regime observed
between the in vitro and in vivo state (see section 4).

compare Figures 5A and 6B, left). In the same parameter regime, the devi-
ation of V, obtained from the numerical integration of the passive model
without negative conductances, and its analytic value did not exceed 1%
(compare Figures 5A and 6A, left).

Equation 5.1 also shows a dependence of V on the standard deviations
oye.iy of the stochastic conductances, with a shift to depolarized values for
increasing o; (see Figure 5A, right). This effect was also observed in the
numerical solution of the passive model (see Figure 5B, right), but only to
much less of an extent in the passive model without negative conductances
(see Figure 6B, right). No clear dependence was found in the active model
(see Figure 6B, right). This suggests that this effect is a direct result of the
presence of negative conductances for o; > gj0. At V() values larger than
E;, negative conductances effectively act like excitatory ones, causing a net
depolarization of the membrane. However, in the physiological parameter
range, V was nearly independent of oy, ;;, with an excellent agreement be-
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Figure 6: Mean of membrane potential probability distribution as a function of
synaptic background parameters (left: g ijo, right: oy ;) for models with multi-
plicative noise. Results for the numerical solution of the (A) passive (equation
2.1; with negative conductance cutoff) and (B) active model (equation 4.1), re-
spectively (for model parameters, see section 4). Corresponding excitatory and
inhibitory background parameter were independently varied between 0% and
260% of the standard values, while the remaining ones were kept constant. The
convex regions indicate the parameter range covering a cellular activity regime
observed between the in vitro and in vivo state (see section 4).

tween numerical and analytic solution (relative error < 0.5%, < 0.75% and
< 1.5% for the passive model, the passive model without negative conduc-
tances, and the active model, respectively).

No analytic form of the standard deviation o of the membrane potential
distribution could be deduced from equation 3.6. However, numerical inte-
gration revealed a strong dependency of oy on both the static conductance
components g ;0 and oy j (see Figure 7A). An increase in both o, and o;
naturally leads to an increase in oy, whereas the impact of the mean con-
ductances can be viewed as the result of two effects. First, the behavior of
oy as a function of g ;j0 follows closely that of V (compare Figures 5A and
7A, left panels), with a more depolarized membrane leading to a boosting of
membrane potential fluctuations. Second, lower mean conductances yield
a higher input resistance, which directly translates into an amplification of
membrane potential fluctuations for fixed amplitude of input fluctuations.
Due to the overall larger amplitudes of inhibition compared to excitation
(gio ~ 4.5 g0 and o; ~ 2 0, for the standard parameter values), oy was much
more dependent on g (see Figure 7A, left).
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Figure 7: Standard deviation of membrane potential probability distribution
as a function of synaptic background parameters (left: g i, right: o) for
models with multiplicative noise. (A) The standard deviation of the membrane
potential probability distribution for the analytic solution, o7 =N [~ dV (V —
V)2 pmutt(V), was obtained by numerical integration of equation 3.6. (B) Re-
sults for the numerical solution of the passive model (equation 2.1) without
negative conductance cutoff (for model parameters, see section 4). In all cases,
corresponding excitatory and inhibitory background parameters were indepen-
dently varied between 0% and 260% of the standard values, while the remaining
ones were kept constant. The convex regions indicate the parameter range cov-
ering a cellular activity regime observed between the in vitro and in vivo state
(section 4).

The numerical solution of the passive model (see Figure 7B, left) followed
closely oy obtained from the analytic solution, with a relative error of less
than 3% in the physiological parameter space, which is mostly attributable
to numerical errors. The covered range of fluctuation amplitudes in the
analytic solution and passive model was large (0 mV < oy < 20 mV), but
markedly decreased in the passive case without negative conductances (@
mV < oy S 8 mV for changes in g ij0; 0 mV < oy S 10 mV for changes
in oy, j); see Figure 8A) and active model (0 mV < oy < 7 mV for changes
in g0, 0 MV < oy < 8 mV for changes in oy, j; see Figure 8B). This
indicates that negative conductance fluctuations have a boosting effect on
the fluctuations of the membrane potential and that additional conductances
due to the subthreshold activation of voltage-dependent currents effectively
reduce the range of membrane potential fluctuations. However, despite the
marked differences in the functional dependency of oy on g 10 and oy, 3,
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Figure 8: Standard deviation of membrane potential probability distribution as
a function of synaptic background parameters (left: g0, right: o ;) for models
with multiplicative noise. Results for the numerical solution of the (A) passive
(see equation 2.1; with negative conductance cutoff) and (B) active model (see
equation 4.1), respectively (for model parameters see section 4). Corresponding
excitatory and inhibitory background parameter were independently varied be-
tween 0% and 260% of the standard values, while the remaining ones were kept
constant. The convex regions indicate the parameter range covering a cellular
activity regime observed between the in vitro and in vivo state (see section 4).

in the physiological relevant parameter range, the absolute error between
analytic and numerical solutions was smaller than 0.5 mV (relative error
<8%).
Due to the strict coupling between a{ ;y and the corresponding noise time
constants 7 ;) (see equation 3.6 and section 3 for discussion), an impact of
7(.;j comparable to those of oy, ;;, but weaker in amplitude, on the mean and
standard deviation of the membrane potential is expected. Indeed, even
strong alterations of 7, ;) from its standard values only minimally changed
V in the narrow range between —65 mV < V < —60 mV (see Figure 9A,
left). This result was confirmed by numerical simulations of the membrane
equation 2.1 (see Figure 9A, right; relative error <0.8% in the physiological-
relevant parameter range as indicated by the convex regions in Figure 9),
as well as numerical stimulations of the passive model without negative
conductances (relative error <1.0%) and the active model (relative error
<1.5%).
The standard deviation of the membrane potential oy increased for both
increasing excitatory and inhibitory time constants (Figure 9B, left) in a
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Figure 9: (A) Mean and (B) standard deviation of the membrane potential
probability distribution as a function of conductance noise constants z;, ;o for
models with multiplicative noise. The left panels show the results for the an-
alytic solution, with mean V=N ffooo AV V pmuit(V) and standard deviation
o2=N ffzo AV (V=T)? Pmult(V),obtained by numerical integration of equation
3.6. The right panels show the results for the numerical solution of the passive
model (see equation 2.1) without negative conductance cutoff (for model param-
eters, see section 4). In all cases, corresponding excitatory and inhibitory noise
time constants were independently varied between 0% and 260% of the stan-
dard values, while the remaining background parameters (conductance mean
and variance) were kept constant. The convex regions indicate the parameter
range covering a cellular activity regime observed between the in vitro and in
vivo state (section 4).

fashion similar to those found for oy ;; (compare Figure 9B, left, and Figure
7A, right). However, it is interesting to note that only the analytic solution
revealed, as expected, a marked effect of the conductance time constants.
The increase of oy with increasing t.;; was less pronounced in the cor-
responding numerical solution of the passive membrane equation 3.6 (see
Figure 9B, right; 0 mV < oy < 9 mV compared to 0 mV < oy < 14 mV in
the analytic case for a corresponding parameter range), the passive model
without negative conductances and the active case (0 mV < oy < 6 mV in
both cases; data not shown). This deviation between analytic and numerical
results can primarily be assigned to the limits of the numerical simulations,
where instabilities in the integration of the stochastic differential equation
3.6 were found to be present especially at long noise time constants. The
deviations also reveal the limit of the analytic approach, especially of as-
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Figure 10: Mean and standard deviation of the membrane potential probability
distribution as functions of synaptic background parameters for models with
additive noise. The (A) mean V and the (B) standard deviation oy, which are
respectively described by equations 3.8 and 3.9, are shown as functions of the
synaptic background parameters (left: I; right: o7). Results for the analytic solu-
tion (black solid line) and the active (gray solid line) and passive (gray dashed
line) models are shown (for model parameters see section 4). Background pa-
rameters were varied between 0% and 260% of the standard values. The gray
bars indicate the parameter range covering a cellular activity regime observed
between the in vitro and in vivo state (see section 4).

sumption 3.3. However, in the physiological-relevant parameter range, the
error did not exceed that found for oy, j; (see above).

In contrast to the multiplicative noise case, the gaussian shape of the an-
alytic solution for additive noise, equation 3.7, yields explicit expressions
for the mean and standard deviation of the steady-state membrane poten-
tial distributions, equations 3.8 and 3.9, respectively. Here, a linear increase
of V with increasing mean background current Iy is expected, whereas the
average membrane potential is independent of o;. The opposite functional
dependency should be observed for oy, with o proportional to o but inde-
pendent of Iy (see Figure 10, solid lines). The numerical solution of the pas-
sive membrane equation closely follows this behavior (compare the black
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solid and gray dashed lines in Figure 10), suggesting that additive noise
yields a valid description of synaptic noise for passive models without ad-
ditional conductances.

However, the presence of active channels led to a marked deviation from
the analytic or passive solution (see Figure 10, the gray solid line) for both V
and oy, with relative errors in the physiological-relevant parameter range
of about 7.5% in V, as well as 20% and 40% in oy for changes of Iy and oy,
respectively. These strong deviations can be attributed to the subthreshold
activity of the voltage-dependent currents included for spike generation,
which contribute a not negligible amount of conductance compared to the
membrane (leak) conductance in the passive models with additive noise.
This indicates that models of low conductance states, in which synaptic
noise is incorporated by additive coupling, are less suitable for describing
membrane activity in the presence of voltage-dependent currents under in
vivo conditions.

6 Discussion

To characterize the subthreshold dynamics of neurons in the presence of
synaptic noise, we studied the stochastic passive membrane equation sub-
ject to two independent multiplicative (conductance) noise sources as well
as additive (current) noise (see equation 2.1). We deduced the Fokker-Planck
equation for this system and obtained analytic expressions for the steady-
state membrane potential probability distribution. We then used this ana-
lytic solution to compare current-based (additive noise) and conductance-
based (multiplicative noise) models. The analytic solution can be used to
investigate the link between subthreshold and superthreshold activity. It
may also provide a novel method to estimate the mean and variance of
synaptic conductances from experimental data. We discuss these points be-
low.

6.1 A Characterization of Subthreshold Activity. The Fokker-Planck
equation describes the time evolution of the probability density function
for the membrane potential. This approach was applied in several previous
studies (e.g., Ricciardi & Sacerdote, 1979; De Groff, Neelakanta, Sudhakar, &
Aalo, 1993) aiming at the characterization of subthreshold activity in various
neuronal modelsin the presence of noise (e.g., Levitan etal., 1968; Rappetal.,
1992; Poznanski & Peiris, 1996; Hillenbrand, 2002). However, most of these
previous studies have considered additive noise sources, which yield a valid
description only for low-conductance states (see below). Cortical neurons
in vivo are in a high-conductance state (Borg-Graham et al., 1998; Paré et
al., 1998; Destexhe & Paré, 1999), which is more appropriately described
by conductance-based noise models (Destexhe et al., 2001). However, these
conductance-based models are equivalent to multiplicative noise, which
substantially limits the solubility of the governing stochastic equations.
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An interesting comparison between both types of models was proposed
recently (Lansky, Sacerdote, & Tomassetti, 1995). There, a conductance-
based model (the Feller model) was described by a diffusion equation with
an inhibitory reversal potential, which can be transformed into the standard
form of a Feller process (Feller, 1951) by using the space transformation for
diffusion processes. The Feller model, which is equivalent to a reduced ver-
sion (no state dependent stochastic process for excitation) of our passive
model with multiplicative noise (see equation 2.1), was compared with a
current-based model (the OU model), which corresponds to the model sub-
ject to additive synaptic noise used here. As correctly argued, the introduc-
tion of a state-dependent infinitesimal mean and variance of the stochastic
process, hence the Feller model, should yield a better description of the
behavior of real neurons.

The equations we used here included both additive and multiplicative
noise sources and are therefore general (they include the above models as
particular cases). We provided the Fokker-Planck equation for such a system
and showed that an analytic solution can be obtained at steady state. This
steady-state membrane potential distribution is expressed in terms of the
parameters of the synaptic noise (the mean excitatory and inhibitory con-
ductances, their respective standard deviations, and time constants). These
quantities can be compared to numerical simulations or to experimental
data (see below).

To validate our approach, we compared the analytic solution of the
steady-state membrane potential distribution to cases of increasing com-
plexity. In a first step, the analytic solution was tested against numerical
simulation of the passive membrane equation with two multiplicative or
one additive OU noise sources (see Figure 1A). The quasi-perfect corre-
spondence between the two models (compare Figures 5A and 5B, Figures 7A
and 7B, and Figure 10, the black and gray dashed lines) validates the ob-
tained analytic solution for p (V). We further tested the analytic solution
using single-compartment models receiving thousands of random synaptic
inputs simulated by conductance-based kinetic models (see Figures 1B and
1D; see Destexhe et al., 2001), as well as by using multicompartment model
of a neocortical pyramidal neuron with distributed synaptic inputs in its
dendrites (see Figure 1C). In all cases, the analytic solution was in excellent
agreement with the membrane potential distributions obtained numerically
using the same parameters for synaptic conductances.

One possible drawback of this approach is that the presence of voltage-
dependent currents may induce significant deformations of the voltage dis-
tribution. We tested this aspect by including voltage-dependent conduc-
tances for action potentials as well as spike-frequency adaptation (see sec-
tion4). Because the membrane potential operates mainly in the subthreshold
regime and due to the high conductance of synaptic currents, the deviations
due to voltage-dependent currents were found to be minor in conductance-
based models (see Figure 2B). However, in current-based models, these
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deviations were significant, especially in the region near threshold (see Fig-
ure 3B), suggesting that this type of model is less appropriate for analyzing
subthreshold activity (see below).

6.2 Comparison Between Current-Based and Conductance-Based
Models. In current-based models of synaptic noise, the additive coupling
to the state variable V(t) yields a symmetric gaussian probability distri-
bution (see equation 3.7). In conductance-based models, the multiplicative
coupling yields a membrane potential distribution that in general is asym-
metric (see equation 3.6), due to the presence of reversal potentials. As
discussed above, conductance-based models provide a reasonably accurate
description of distributions obtained from numerical solutions of biophys-
ical models in conditions of intense synaptic activity (e.g., see Figure 1C),
and the contribution of voltage-dependent conductances of spike genera-
tion was minor in the subthreshold voltage range. This was not the case for
current-based models, because in this case, the low conductance of the mem-
brane is significantly contaminated by voltage-dependent currents, even
in the subthreshold range. As a consequence, the current-based analytic
distributions do not approximate well that of models containing voltage-
dependent currents. Furthermore, the high-conductance state caused by the
multiplicative coupling of the noise to the state variable V(¢) effectively di-
minished the impact of fluctuations on the intracellular activity, resulting in
a larger bandwidth of changes in the network activity, which could modu-
late the electrophysiological dynamics and response of individual neurons
in a physiologically meaningful range. The conductance-based (multiplica-
tive noise) models therefore provide a better description of synaptic noise
in conditions of intense activity resembling in vivo conditions.

However, conductance-based models of synaptic background activity
deviated markedly from the numerical solution for low-activity states re-
sembling in vitro conditions. Although the numerical solution of the passive
model was in excellent agreement with the analytic solution, the presence
of reversal potentials for excitatory and inhibitory synaptic conductances,
as well as the cutoff of physically not meaningful negative conductances in
the numerical integration of the active model, led to strong deformations
of the steady-state membrane potential distribution compared to the an-
alytic distribution obtained for equivalent parameters. This suggests that
the present analytic model with noisy conductances is less suitable for the
description of noisy low-conductance states (in vitro-like states), in which
case models with additive noise would be more appropriate. In agreement
with previous findings (Lansky et al., 1995; see the discussion above), our
results suggest that conductance-based (multiplicative noise) models yield
a better description of synaptic noise in neurons.

6.3 Possible Extensions of the Model. A possible extension of our ap-
proach could be to refine the model to account for the cutoff of negative
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conductances or additional conductances related to spike-generating mech-
anisms. The typical shape of the emerging error (see Figure 4C, left) is de-
termined by the relative amplitude of excitatory and inhibitory conduc-
tances, as well as the value of the mean membrane potential with respect to
the reversal potentials of excitation and inhibition. A heuristically deduced
voltage-dependent correction term could be included in the normalization
term N in pmut(V), equation 3.7, in order to compensate the effect of neg-
ative conductances. In addition, although the functional form of Hodgkin-
Huxley-based voltage-dependent conductances for spike generation does
not allow an explicit solution of the active model described by the mem-
brane equation 4.1, linearized conductance-based models (Mauro, Conti,
Dodge, & Schor, 1970; Koch, 1999) could be used to capture the subthresh-
old activity of active conductances and thus may allow an analytic approach
to the biophysically more realistic situation of an active membrane subject
to multiplicative noise.

Another extension would be to use the solution of the steady-state mem-
brane potential distribution, equation 3.4, to access the link between sub-
threshold and superthreshold activity, and to investigate the dependence of
the cellular response on various background parameters (for a related study,
see Salinas & Sejnowski, 2000). Experiments and numerical simulations
suggest that the mean excitatory and inhibitory conductances determine
the average firing rate, thus, the “working point” of the cell, whereas the
statistics of the synaptic background activity, characterized by the standard
deviation of the excitatory and inhibitory noise components, preferably has
an impact on changes of the firing rate, thus the “sensitivity” (or gain) of
the cell to changes in the synaptic inputs (H6 & Destexhe, 2000; Chance,
Abbott, & Reyes, 2002; Rudolph & Destexhe, 2002; Prescott & De Koninck,
2003; Fellous et al., in press). If a link between subthreshold activity and
cellular response could be established (see, e.g., Koch, Bernander, & Dou-
glas, 1995), this modulating effect of the cellular gain by synaptic network
activity could be formulated and investigated in more analytic terms.

Finally, the expressions obtained here could be used as a basis to analyze
experimental data. The analytic expressions given in equations 3.6 and 3.7
could be fit to distributions obtained from intracellular recordings in vivo,
yielding an estimate of the average excitatory and inhibitory synaptic con-
ductances, as well as their variance. This procedure would allow estimating
the statistical properties of excitatory and inhibitory conductances during
different states of the network, or during responses to stimuli. Furthermore,
this approach would also allow confining the parameters for experiments
that aim at recreating in vivo activity in in vitro slice preparations (Destexhe
et al., 2001; Fellous et al., in press). However, this procedure relies on the
assumption that the experimental data are collected in a region of the mem-
brane potential where there is little contamination from voltage-dependent
currents. The evaluation of this method from experimental data and the
assessment of its sensitivity will be the subject of a forthcoming study.
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A: The Integrated Ornstein-Uhlenbeck Process

In this appendix, we briefly review basic properties of the OU and the
integrated OU stochastic process. The latter will be used for solving the
Langevin equation 2.5. In particular, the It6 rules for the integrated OU pro-
cess are presented (see equations A.13), which allow deducing Itd’s formula
and the Fokker-Planck equation (see equations B.10 and 3.1 in appendix 6.3,
respectively) for the Langevin equation in question.

A.1 The Ornstein-Uhlenbeck Stochastic Process. The Ornstein-
Uhlenbeck stochastic process is a special example of a Markov process,
which describes a stochastic variable o(t) with the unconditional and con-
ditional probability distributions

o1 ()
p(0, t) = — exp [— 72 } , (A.la)
1

1 At
o0, t1 |0, t0) = exp |:—252 (0(t1) — 0(tp) e_T)z:| , (A.1b)

27 §?

where At = |t; — tg|, T denotes the correlation time and S = o2 (1 — e_%).
The OU process is homogeneous in time (p(0, t1 | 0, tp) depends only on
At) and stationary; p (9, ) does not change in time. The corresponding char-
acteristic functions, defined as the Fourier transforms of the probability
distributions, are given by

o2
Gs(s, t) = exp [—? sz] , (A.2a)

2
Gz (s0, to; 51, 1) = exp [—% (s3 + 57 + 25051 e‘%)] , (A.2b)

respectively. The associated one-dimensional moments (0" (f)) and multidi-
mensional moments (0" (tp) 0™ (1)), defined as the coefficients in the Taylor
expansion of the characteristic functions A .2, respectively, are

0 for odd n,
©"(t) = k (A.3a)
%LI (”72) for even n = 2k,
0 for odd (ng + n1),
o2e for np =1, m =1,
(@ (t) 7" (1)) = | 3ote ¥ for mo=3,m=1  (A3b)

ot (1+ e_%) for no =2, m = 2.
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The logarithms of equations A.2 define the one-dimensional and multidi-
mensional cumulants ((9"(t))) and ({7 (t9) 9™ (t1))), respectively:

() o2 for n =2, (A da)
= Aa
) 0 otherwise,
2,-% f = =1
(o) =1 ¢ o (A.4b)
0 otherwise for ng, n1 # 0.

A straightforward calculation shows that moments and cumulants are re-
lated to each other by the following expression:

. 5 1 o1 @)\
@ =nd 3 v7a-0 ] (“’m(!”) NG

i=1 ky,...k, m=1

Here, the second sum runs over all n-tuple (k1, . . ., k) for which Z,”nzl mky,
=mn, y 1 ky = i. Similarly, for the multidimensional moments and cumu-
lants, one can prove the relation

no+m '
(0" (t0) D" (£1))) = no! 1! Z Z (—1)~1 (i — 1)!
=1 kgm
w1 @G\
: L Kam! ( I'm! ) ’ (A.6)

where the second sum denotes the sum over all (I, m)-tuple k¢ ,,,) for which

n1 1y
Z Z k(l,m)l =no,
m=0 1=0

I+m=>1
m no
> X kamm=m,
m=0 1=0
I+m=>1
1 no
> D kam =i.
m=0 [=0

A.2 The Integrated Ornstein-Uhlenbeck Stochastic Process. In order
to solve the Langevin equation 2.5, the stochastic variables g ;(f) and I(f)
need to be integrated. To that end, we formally define the integrated OU
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process,

t t
Wb = / div(s) = / ds5(s), (A7)
0 0

of an OU stochastic process ().
A straightforward calculation shows that the cumulants of w(t) are given

by
ZUztt—Zoztz(l—e_?[) for n =2,
((@" (b)) = (A.8a)
0 otherwise,
2021ty — o2 2(1—e % —eF 1)

for to < t1, At =11 — to,
(@™ (to)w™ (t))) = no=ny =1, (A.8b)

0 otherwise.

From these, one can construct the one-dimensional and multidimensional
characteristic functions for w(#):

G@s. b = expl(is)* fo?tt — 022 (1 —e D), (A.9a)
G(s0, to; s1, 1)
— expl(iso) (is1) {202ty — o2 T2 (L —e F —e F e %))
+ (s 02 thy — o2 (1—e %))
Fs)2folth —o?2(1 —e ) (A.9b)

which in turn allows deducing the one-dimensional and multidimensional
moments of the integrated OU stochastic process:

mio?rt—o??(1—e*) foreven n =2k,

(@ () = (A.10a)
0 for odd n,
- - 1
(w”o (t()) wm (tl)) = 1’10!1’[1! Z ﬁ
1y T s miimpims!
X (2027t —02t2(1—e F —eF poFym (A.10b)

t t
x{oltty—o2t2(1—e TN {021t — o212 (1 —e 7)™,
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The sum in equation A.10b runs over all 3-tuple (71, m2, m3) obeying the
conditions m1 + 2my = ng and mq + 2m3 = ny, thatis, m; +mp +m3 = H%L

In the limit of a vanishing time constant, ¢ — 0, the integrated OU
stochastic process w(t) yields a Wiener-process w(t) with one-dimensional
and multidimensional cumulants:

o = 2P for 1 =2 (Al1a)
w = Jdla
0 otherwise,
2D min(ty, t for np =ny =1,
(@™ (to) W™ (1)) = to 1) 0= (A11b)
0 otherwise,
as well as one-dimensional and multidimensional moments:
n! k
Z (Db for even n = 2k,
w'(t) =1 K A.12a
W @ { 0 for odd n, ( )
om
(@™ (t) w" (t)) = mo!m! Y ————(Dtg)™ "™ (Dt))"™,
T mi:mpims:
(A.12b)

where D = ¢% 7. The sum in equation A.12b runs again over all 3-tuple
(m1, my, m3) obeying my + my + mz = 20

A.3 The Itd Rules for the Integrated Ornstein-Uhlenbeck Stochastic
Process. In the heart of the mathematical deduction of the Fokker-Planck
equation from the Langevin equation 2.5 with colored noise sources lies a
set of differential rules (It6 rules). It can be proved that for the integrated
OU process w(t), the Itd rules read:

. 1

dw;(t) dw;(t) = & {02 t(l—e7)+ 77 WA (t) — o t} dt, (A.13a)
[do®IN =0 for N > 3, (A.13b)
[do®INdt =0 for N > 1, (A.13¢)
[@N =0 for N > 2. (A.13d)

These rules apply for each of the three stochastic variables wy, ;(t) and
@y (t) obtained by integrating the OU processes gy (t) and I(t), respectively
(see section 2). Note that equation A.13a indicates that the independence
of Ji.;(t) and I directly translates into the independence between the
corresponding integrated stochastic processes.

The rules A.13 have to be interpreted in the context of integration. Here,
the integral S(f) = fot dn(s)G(s) over a stochastic variable 5(t), where G(t)
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denotes an arbitrary nonanticipating function or stochastic process, is ap-
proximated by the sum

S*(t) = ms-lim,,_, o S% (1), (A.14a)
S2(h =Y G((1—a) ko +at) (n(t) — (1)), (A.14b)
k=1

which evaluates the integral at n discrete time steps t; = k £ in the inter-
val [0, t]. The mean square limit ms-lim,_,« is defined by the following
condition of convergence: S*(f) = ms-lim,,_,,,S%(t) if and only if

Lim (S5 = ()% = 0.

Note the dependence of this definition on the parameter «, which allows
choosing the position in the interval [t,_1, #] where G(¢t) is evaluated. In
contrast to ordinary calculus, stochastic integrals in general do not become
independent of « in the limitn — oo.

There are two popular choices for the parameter «. @ = 1/2 defines the
Stratonovich calculus, which exhibits the same integration rules as ordi-
nary calculus and is a common choice for integrals with stochastic variables
describing noise with finite correlation time. However, mathematical strict
proofs are nearly impossible to perform in the Stratonovich calculus. For
instance, the Itd rules listed above can be derived only for « = 0, which
defines the Itd calculus. On the level of stochastic differential equations, a
transformation between It6 and Stratonovich calculus can be shown. We
will use this transformation to apply the It6 rules, which hold in the It6
calculus, to the Langevin equation, which allows a physical interpretation
and treatment in the context of standard calculus only in the framework of
the Stratonovich interpretation (see appendix 6.3). For more details about
both stochastic calculi and their relation, we refer to standard textbooks of
stochastic calculus (e.g., Gardiner, 2002).

Appendix B: Deduction of the Fokker-Planck Equation for the
Stochastic Passive Membrane Equation

In this appendix we briefly outline the mathematical path we followed in de-
ducing the Fokker-Planck equation for the passive membrane equation 2.1.
For more details we refer to standard textbooks of stochastic calculus (e.g.,
Gardiner, 2002).

B.1 Itd’s Formula for the Langevin Equation 2.5. In order to obtain
the steady-state probability distribution of the membrane potential V(¢) for
the Langevin equation with three independent multiplicative and additive
colored noise terms (see equation 2.5), we first deduce It6’s formula for the
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stochastic differential equation in question. Equation 2.5 together with the
definition of the integrated OU stochastic process (see equation A.7) yields

V() t t
/ dv(s) = / ds f(V(s)) +/ Adwe(s) he(V(s))
0 0

V(0)
t t
+/ dw;(s) hj(V (s)) +/ dwi(s) hy. (B.1)
0 0

The first term on the right-hand side denotes the ordinary Riemannian in-
tegral over the drift term f(V(t)) given by equation 2.7, whereas the last
three terms are stochastic integrals in the sense of Riemann-Stieltjes. This
interpretation does not require the stochastic processes g, (t) and I(f) to
be gaussian white noise processes. Only the mathematically much weaker
assumption that the corresponding integrated processes wie ;) (t) and wy(f)
are continuous function of t is required. This condition is fulfilled in the case
of OU stochastic processes we consider here.

The natural choice for an interpretation of stochastic integral equations
involving noise with finite correlation time is provided within the Stratono-
vich calculus (Mortensen, 1969; van Kampen, 1981; Gardiner, 2002). How-
ever,inorder tosolve the integral equation B.1 in amathematically satisfying
way by applying the It rules A.13 deduced in appendix 6.3, the integrals
over stochastic variables in equation B.1 have to be written as It6 integrals
(for a general discussion about the link between both It6 and Stratonovich
interpretation, see, e.g., Gardiner, 2002). For instance, taking the defining
equation A.14, the stochastic integral S(t) = fot dw,(s) he(V(s)) has to be
understood in the Stratonovich interpretation (¢ = %) as

S(t) = ms-limy oo Y Be(V (7)) {@e(ty) — Deltr—1)}
k=1

= ms-lim,_, « [Z he (V (7)) {te (tk) — We(Ti) }

k=1

+ D he(V (1)) {de (1) — Zbe(tk—l)}:| . (B2)

k=1
Now we approximate /,(V (tx)), which is an analytic function of V(¢), by

power expansion around the left point of the interval [#;_1, t;]. This yields
in our case, where h,(V (1)) is linear in V(t), the linear function

he(V (7)) = he(V (t—1)) + Qv he(V (t—1))) (V(Ti) — V(t-1)). (B.3)

Note that /,(V (7x)) does not explicitly depend on ¢.
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To further resolve equation B.2, we remark that V() is a solution of the
stochastic Langevin equation 2.5, with an infinitesimal displacement given

by
Vit — Vtr-1) = f(V(t-1) (tk — t-1)
+ he (V (t-1)) (@e () — We (t—1))
+ hi(V(t—1)) (@;(t) — Wi(t—1)) (B.4)
+ hy (W (t) — Wy (t-1)).

Inserting this equation into equation B.3, and the result into the second sum
of equation B.2, leaves us after a straightforward calculation with

S(H) = ms-lim,,_, oo |:Z he(V (7)) {We(tr) — We(ti)}

k=1

+ Y (he(V (1)) {e(Tr) — Delti1)}

=1
+ 2e(te—1) {tk — ti—1} he(V (t-1))

X (dy he(V(tk—l)))):| , (B.5)
where
2 t 1 5 2
200,(tH) =0, T (1 —exp |:——:|> + —w,(t) —o, t. (B.6)
T, 21,

In order to obtain equation B.5, we made use of the fact that individual terms
of the sum approximate integrals in the It6 calculus (equation A.14, « = 0),
which in turn allows the application of the It6 rules given in equation A.13.

For the third and fourth terms on the right-hand side of equation B.1,
expressions similar to equations B.5 and B.6 can be obtained. Inserting the
corresponding expressions in equation B.1 yields an infinitesimal displace-
ment of the state variable V (¢):

dV(t) = f(V() dt + ho(V(t)) di.(t)
+ hi(V (1)) d;(t) + hy divy(t)
+ () he(V (1) dvho(V(1)) dt (B.7)
+ai(®) hi(V($) dyhi(V (1)) dt,
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where

t
20.int) = oé’i’” Tie,id) (1 —exp |:— :|>

Te,i,1}

1 ~2 2
+ —wi, ; n(t) — 0o, ;i nt. B.8
2 Te.il) [e,z,I}( ) {e.i,I} (B.8)

In deducing equation B.8 we made use of the fact that h, ; (V(#)) are linear
in V(#) but do not explicitly depend on ¢ (see equation 2.8a), whereas
(equation 2.8b) does not depend on V(¢) or ¢ at all.
Denoting by F(V(#)) an arbitrary function of V (¢) satisfying equation B.8,
an infinitesimal change of F(V (¢)) with respect to dV (¢) is given by
dF(V(H) = F(V() +dV () — F(V(D)

= v V(1)) dV(t)

+ % (aéF(V(t))) AV2(t) + O@dV3 (b)), (B9)

where O(dV3(t)) denotes terms of third or higher order in dV (t). Substituting
equation B.8 into equation B.9 and again applying the Itd rules A.13, we
finally obtain It6’s formula,
dE(V () = dvF(V(1)) f(V (1) dt + dvE(V (1) he(V (1)) dw,(t)

+ dvE(V (1) hi(V () dw;(t) + dvF(V (1)) hy dwi(t)

+ OvE(V (1) ae(t) he(V (1)) dvhe (V (1)) dt

+ ovE(V () ai(t) hi(V(1)) dvhi(V (1)) dt

+IE(V () ae(D) B2 (V (1)) dt + 95 F(V () i (t) B (V (1)) dit

+ dvF(V(t) hy ddvy(t) + 05F(V (1)) ey (t) B2 dt, (B.10)
which describes an infinitesimal displacement of F(V(f)) as a function of
infinitesimal changes in its variables. Note that equation B.10 shows that

due to the dependence on stochastic variables, this displacement differs
from those expected from ordinary calculus.

B.2 The Fokker-Planck Equation for the Langevin Equation 2.5. We
now take the formal average of It6’s formula B.10:
dE(V () = (vF(V (1) (VD) dt) + (dvF(V (1) he(V (D)) die (D))
+ (F(V (1) hi(V (1)) dwi(t)) + (dvF(V (1)) hy dwy(t))
+ (VFV (D) e () b (V (1) dvhe(V (1)) dt)
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+ (OvE(V (D) ai(t) hi(V (1)) dvii(V (1)) dit)
+ (OZF(V (1) ae(t) H2(V (1)) dit)
+ (BFF(V (D) ai(t) K2 (V (1)) dt)
+ (OyF(V () hy dw; (t)) + (8‘2,F(V(t)) ar(t) h? dt), (B.11)
which yields
dF(V(t
<%> = (WE(V(E) FV (D))

+ (OvF(V (D) ae (D) he(V () dvhe (V(£)))

+ (OvF(V (1) ai(t) hi(V (1)) ovhi(V (1))

+ OFF(V (D) et 2 (V (1))

+ (OFE(V(B) ait) B (V (1))

+ (OFF(V(1) ar(t) ). (B.12)
In the last step, we used the fact that ki ;; are nonanticipating functions
and, thus, are statistically independent of dwy, ; 1, respectively. Furthermore,

we made use of (dw(t)) = (g(t)dt) = 0 for the integrated OU process.

Defining the average (or expectation value) of the arbitrary function
FV(t)) as

V() = f AV (B E(V) p(V. ), (B.13)

where p(V, t) denotes the probability density function with finite support
in the space of the state variable V (t), we have

(B.14)

d _ [dE(V(t)
— (FV) = <—dt >

Performing the time derivative on the right-hand side of equation B.13
yields, after inserting equation B.12 and partial integration, the Fokker-
Planck equation of the passive membrane equation with multiplicative and
additive noise sources:
dp(V, 1) = —ov(f(V(1) p(V, 1)

+ Iy (he(V (1) dv (he(V (1)) e (D) p (V, 1))

+ Iy (i (V (1)) oy (hi(V (D) eti(H) p(V, 1))

+ 1 ar(h) 35p(V. 1), (B.15)
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where

t
20.int) = oé’i’” Tie,id) (1 —exp |:— :|>
Tle,iI}

+

(@, .y () — ol it
2 Te.il) {e,i,I} {e,i,I}
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