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Lars Reichl1,2,3,4,∗, Dominik Heide1,5, Siegrid Löwel3,6, Justin C. Crowley7, Matthias Kaschube8, Fred
Wolf1,2,3,4∗

1 Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany

2 Bernstein Center for Computational Neuroscience, Göttingen, Germany

3 Bernstein Focus Neurotechnology, Göttingen, Germany

4 Faculty of Physics, Georg-August University, Göttingen, Germany

5 Frankfurt Institute of Advanced Studies, Frankfurt, Germany

6 School of Biology, Georg-August University, Göttingen, Germany

7 Carnegie Mellon University, Department of Biological Sciences, Pittsburgh PA, USA

8 Physics Department and Lewis-Sigler Institute, Princeton University, Princeton NJ,

USA

∗ E-mail: reichl@nld.ds.mpg.de; fred-wl@nld.ds.mpg.de

Abstract

In the primary visual cortex of primates and carnivores, functional architecture can be characterized by
maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), direction
preference, spatial frequency, and retinotopy. It is a long-standing question in theoretical neuroscience
whether the observed maps should be interpreted as optima of a specific energy functional that summarizes
the design principles of cortical functional architecture. Because the existence of such an optimization
principle should be inferred from the biological data, the optimization approach to explain cortical func-
tional architecture raises the following questions: i) Is there a model independent way to analyze the
coordinated organization of cortical maps predicted by a general optimization principle? ii) What are
the genuine ground states of candidate energy functionals and how can they be calculated with preci-
sion and rigor? iii) How do differences in the energy functional impact on the observable map structure
and conversely what can be learned about the underlying optimization principle from observations of
map structures? To answer these questions we developed a general dynamical systems approach to the
combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial
frequency preference. Based on basic symmetry assumptions we obtain a comprehensive phenomenolog-
ical classification of possible inter-map coupling energies and examine four representative examples: A
low and a high order gradient-type coupling energy as well as a low and high order product-type coupling
energy. A rigorous evaluation of the coordinated optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of orientation columns follows a set of universal quanti-
tative laws [1]. We systematically assess whether these or similar laws can result from the coordinated
optimization of orientation columns with other feature maps. OP maps are characterized by singulari-
ties, called pinwheel centers [2]. We show that all coupling energies above a critical inter-map coupling
strength predict spatially periodic and pinwheel-rich OP maps which represent energetic ground states
i.e. global optima of the system. Each individual coupling energy leads to a different class of OP solutions
with different correlations among the maps such that inferences about the optimization principle from
map layout appear possible.

Introduction

Neurons in the primary visual cortex are selective to a multidimensional set of visual stimulus features,
including visual field position, contour orientation, ocular dominance, direction of motion, and spatial
frequency. In many mammals, these response properties form spatially complex, two-dimensional pat-
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terns called visual cortical maps. The functional advantage of a two dimensional mapping of stimulus
selectivities is currently unknown [3,4]. What determines the precise spatial organization of these maps?
It is a plausible hypothesis that natural selection should shape visual cortical maps to build efficient
representations of visual information improving the ’fitness’ of the organism. Cortical maps are therefore
often viewed as optima of some cost function. For instance, it has been proposed that cortical maps
optimize the cortical wiring length [5, 6] or represent an optimal compromise between stimulus coverage
and map continuity [7–12]. If map structure was largely genetically determined map structure might be
optimized through genetic variation and Darwinian selection on an evolutionary timescale. Optimization
may, however, also occur during the ontogenetic maturation of the individual organism for instance by the
activity-dependent refinement of neuronal circuits. If such an activity-dependent refinement of cortical ar-
chitecture realizes an optimization strategy its outcome should be interpreted as the convergence towards
a ground state of a specific energy functional. This hypothesized optimized functional, however, remains
currently unknown. As several different functional maps coexist in the visual cortex candidate energy
functionals are expected to reflect various response properties in the visual cortex. Cortical maps, in fact,
are not independent of each other and various studies proposed a coordinated optimization of different
feature maps [7,8,10–17]. Coordinated optimization appears consistent with the observed distinct spatial
relationships between different maps such as the tendency of iso-orientation lines to intersect OD bor-
ders perpendicularly or the preferential positioning of orientation pinwheels at locations of maximal eye
dominance [12, 18–23]. Specifically these geometric correlations have thus been proposed to indicate the
optimization of a cost function given by a compromise between stimulus coverage and continuity [7–12],
see however [24].
Visual cortical maps are often spatially complex patterns that can contain defect structures such as point
singularities and line discontinuities (fractures) [2, 25–30]. It is conceivable that this spatial complexity
arises from geometric frustration resulting from the coordinated optimization of several feature maps
in which not all inter-map interactions can be simultaneously satisfied [31–35]. In many optimization
models, however, the resulting map layout is spatially not complex or lacks some of the basic features
such as topological defects [5, 31, 32, 36, 37]. In other studies coordinated optimization was reported to
preserve defects that would otherwise decay [31]. An attempt to rigorously study the hypothesis that the
structure of cortical maps is explained by an optimization process thus raises a number of questions: i) Is
there a model independent approach to analyze the simultaneous organization of cortical maps predicted
by such a general optimization principle? ii) What are the genuine ground states of such hypothetical
energy functionals and how can they be calculated with precision and rigor? iii) How do different choices
of energy functionals impact on the predicted map structure and conversely what can be learned about
the underlying optimization principle from observations of map structures? If theoretical neuroscience
was able to answer these questions with greater confidence, the interpretation and explanation of visual
cortical architecture could build on a more solid foundation than available. To start laying such a foun-
dation, we examine how symmetry principles constrain the form of optimization models and introduce a
formalism to analyze map optimization independent of the specific energy functional assumed. Minima of
a given energy functional can be found by gradient descent which is naturally represented by a dynamical
system describing a formal time evolution of the maps. Response properties in visual cortical maps are
arranged in repetitive modules of a typical spatial length called hypercolumns. Optimization models
that reproduce this typical length scale are therefore effectively pattern forming systems. In the theory
of pattern formation, it is well known that symmetries play a crucial role [38, 39]. Some symmetries
are widely considered biologically plausible for cortical maps, for instance the invariance under spatial
translations and rotations or a global shift of orientation preference [40–42]. Here, we show that such
symmetries and an approach that utilizes the analogy between map optimization and pattern forming
systems can open up a novel and systematic approach to the coordinated optimization of visual cortical
representations.
A recent study found strong evidence for a common design in functional architecture of orientation
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columns [1]. Different species, widely separated in evolution, share a universal set of quantities such as
the average pinwheel density or the distribution of minimal pinwheel distances. Such universal laws can
be reproduced in a self-organization model if long-range neuronal interactions are dominant [1]. However,
it is unclear whether the common design is a result of intrinsic OP properties or whether it can result from
interactions with other feature maps. We therefore also examine whether the coordinated optimization of
the OP map and another feature map can reproduce the quantitative laws defining the common design.
The presentation of our study is organized in three parts. In part I, we introduce a formalism to analyze
the coordinated optimization of complex and real valued scalar fields. Complex valued fields can rep-
resent for instance orientation preference (OP) or direction preference maps [43, 44]. Real valued fields
may represent for instance ocular dominance (OD) [45], spatial frequency maps [18,46] or ON-OFF seg-
regation [47]. We construct several optimization models such that an independent optimization of each
map in isolation results in a regular stripe pattern. A model-free, symmetry-based analysis of potential
optimization principles that couple the real and complex valued fields provides a comprehensive overview
of conceivable coordinated optimization models and identifies representative forms of coupling energies.
For analytical treatment of the optimization problem we adapt a perturbation method from pattern for-
mation theory called weakly nonlinear analysis [48–51]. This method reduces the dimensionality of the
system and leads to amplitude equations as an approximate description of the system. We identify a limit
in which inter-map interactions become unidirectional. In this limit, one can neglect the backreaction
of the complex map on the layout of the co-evolving scalar feature map. We show how to treat low
and high order versions of inter-map coupling energies which enter at different order in the perturbative
expansion.
In part II, we apply the derived formalism by calculating optima of four representative examples of
coordinated optimization models and examine how they impact on the resulting map layout. For con-
creteness, we illustrate the coordinated optimization of visual cortical maps for the most widely studied
example of a complex OP map and a real feature map such as the OD map. In particular, we address
the problem of pinwheel stability in OP maps [31, 52]. OP maps are characterized by pinwheels, regions
in which columns preferring all possible orientations are organized around a common center in a radial
fashion [2]. As shown previously, many theoretical models of visual cortical development and optimization
fail to predict OP maps possessing stable pinwheels [5, 31, 32, 36]. The OP maps we obtained as optima
of different optimization principles are therefore analyzed for the occurrence of pinwheels. We show that
in case of the low order energies, a strong inter-map coupling will typically lead to OP map suppression,
causing the orientation selectivity of all neurons to vanish. In contrast, for the high order versions, orien-
tation selectivity is preserved for arbitrarily strong inter-map coupling. For all considered optimization
models, we identify stationary solutions of the resulting dynamics and mathematically demonstrate their
stability. We further calculate phase diagrams as a function of the inter-map coupling strength and the
amount of overrepresentation of certain stimuli of the co-evolving scalar feature map. We show that the
optimization of any of the analyzed coupling energies can lead to spatially relatively complex patterns.
Moreover, in case of OP maps, these patterns are pinwheel-rich. The phase diagrams, however, differ
for each considered coupling energy, in particular leading to coupling energy specific ground states. We
therefore thoroughly analyze the spatial layout of energetic ground states and in particular their geomet-
ric inter-map relationships. Our analysis identifies a apparently general condition for pinwheel-rich OP
optima namely a bias in the response properties of the co-evolving scalar feature map.
In part III, we complement our analytical results by numerical studies and characterize the dynamics of
coordinated optimization models. In particular, we study the kinetics and conditions of pinwheel crys-
tallization and the creation of pinwheels from a pinwheel-free initial pattern. This process is a general
signature of systems in which a pinwheel-rich state corresponds to the energetic ground state and can be
easily assessed in more complex models that evade analytical treatment. We further explore the impact
of inter-map wavelength differences, as observed in certain species, on the structure of predicted optima.
Finally, we extend the presented models to explore the coordinated optimization of more than two feature
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maps.

Results

Part I: Modeling the coordinated optimization of multiple maps

The response properties of neurons in the visual cortex can be described by two-dimensional scalar order
parameter fields which are either complex valued or real valued. A complex valued field z(x) can for
instance describe OP or direction preference of a neuron located at position x. A real valued field o(x)
can describe for instance OD or the spatial frequency preference. Although we introduce a model for the
coordinated optimization of general real and complex valued order parameter fields we consider z(x) as
the field of OP and o(x) as the field of OD throughout this article. In this case, the pattern of preferred
stimulus orientation ϑ is obtained by

ϑ(x) =
1

2
arg(z). (1)

The modulus |z(x)| is a measure of the selectivity at cortical location x.
OP maps are characterized by so-called pinwheels, regions in which columns preferring all possible ori-
entations are organized around a common center in a radial fashion. The centers of pinwheels are point
discontinuities of the field ϑ(x) where the mean orientation preference of nearby columns changes by 90
degrees. Pinwheels can be characterized by a topological charge q which indicates in particular whether
the orientation preference increases clockwise or counterclockwise around the pinwheel center,

qi =
1

2π

∮

Ci

∇ϑ(x)ds , (2)

where Ci is a closed curve around a single pinwheel center at xi. Since ϑ is a cyclic variable in the interval
[0, π] and up to isolated points is a continuous function of x, qi can only have values

qi =
n

2
, (3)

where n is an integer number [53]. If its absolute value |qi| = 1/2, each orientation is represented only
once in the vicinity of a pinwheel center. In experiments, only pinwheels with a topological charge of
±1/2 are observed, which are simple zeros of the field z(x).
OD maps can be described by a real valued two-dimensional field o(x), where o(x) < 0 indicates ipsilateral
eye dominance and o(x) > 0 contralateral eye dominance of the neuron located at position x. The
magnitude indicates the strength of the eye dominance and thus the zeros of the field correspond to the
borders of OD.
In this article, we interpret visual cortical maps as optima of some energy functional E. The time
evolution of these maps can be described by the gradient descent of this energy functional. The field
dynamics thus takes the form

∂t z(x, t) = F [z(x, t), o(x, t)]

∂t o(x, t) = G[z(x, t), o(x, t)], (4)

where F [z, o] and G[z, o] are nonlinear operators given by F [z, o] = − δE
δz , G[z, o] = − δE

δo . The system
then relaxes towards the minima of the energy E. The convergence of this dynamics towards an attractor
is assumed to represent the process of maturation and optimization of the cortical circuitry. Various
biologically detailed models have been cast to this form [9, 31, 54].
All visual cortical maps are arranged in repetitive patterns of a typical wavelength Λ. We splitted the
energy functional E into a part that ensures the emergence of such a typical wavelength for each map and
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Figure 1. Swift-Hohenberg equation, A Cross section through the spectrum λ(k) of the
Swift-Hohenberg operator Eq. (8), r = 0.1. B Time evolution of the Power Eq. (9).

into a part which describes the coupling among different maps. A well studied model reproducing the
emergence of a typical wavelength by a pattern forming instability is of the Swift-Hohenberg type [38,55].
Many other pattern forming systems occurring in different physical, chemical, and biological contexts (see
for instance [48–51]) have been cast into a dynamics of this type. Its dynamics in case of the OP map is
of the form

∂t z(x, t) = L̂z(x, t)− |z|2z , (5)

with the linear Swift-Hohenberg operator

L̂ = r −
(
k2c +∆

)2
, (6)

kc = 2π/Λ, and N [z(x, t)] a nonlinear operator. The energy functional of this dynamics is given by

E = −
∫
d2x

(
z(x)L̂z(x)− 1

2
|z(x)|4

)
. (7)

In Fourier representation, L̂ is diagonal with the spectrum

λ(k) = r −
(
k2c − k2

)2
. (8)

The spectrum exhibits a maximum at k = kc, see Fig. 1(a). For r < 0, all modes are damped since
λ(k) < 0, ∀k and only the homogeneous state z(x) = 0 is stable. This is no longer the case for r > 0
when modes on the critical circle k = kc acquire a positive growth rate and now start to grow, resulting
in patterns with a typical wavelength Λ = 2π/kc. Thus, this model exhibits a supercritical bifurcation
where the homogeneous state looses its stability and spatial modulations start to grow.
While the linear part of the dynamics establishes a typical wavelength the nonlinearity in the dynamics
leads to the selection of the final pattern. The time T = rt is given in units of the intrinsic timescale
which is associated with the growth rate of the linear part Eq. (6). Considering the time evolution of
Eq. (5) initialized with a random OP map and low selectivity several different stages of the dynamics can
be distinguished. The linear part forces modes on the critical circle to grow with rate r while strongly
suppressing modes off the critical circle, see Fig. 1A. The OP map becomes more and more ordered in
this linear phase as one dominant wavelength is selected. The total power of the field is given by

P (t) = 〈|z(x, t)|2〉x , (9)
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where 〈〉x denotes spatial average. The time dependence of the power reflects the different growth rates
among modes. The time evolution of the power is depicted in Fig. 1B. Initially, the power decreases
slightly due to the suppression of modes outside the circle of positive growth rate. At T ≈ 1 there
is a rapid increase and then a saturation of the power. The amplitudes of the Fourier modes reach
their stationary values and P ∝ r. At this stage of the evolution the influence of the nonlinear part
is comparable to that of the linear part. Once the modes saturate the phase of nonlinear competition
between the active modes along with a reorganization of the structure of the OP map starts. The
competition between active modes leads to pattern selection. The final pattern then consists of distinct
modes in Fourier space [38, 56]. Once the active modes are selected a relaxation of their phases takes
place.
Inter-map coupling can influence the time evolution on all stages of the development depending on whether
this coupling affects only the nonlinear part or also the linear one. When incorporating additional maps
into the system in all cases we rescaled the dynamics by the bifurcation parameter of the OP map i.e.
T = rzt. The coupled dynamics we considered is of the form

∂t z(x, t) = L̂z z(x, t)− |z|2z − δU

δz

∂t o(x, t) = L̂o o(x, t) − o3 − δU

δo
+ γ , (10)

where L̂{o,z} = r{o,z} −
(
k2c,{o,z} +∆

)2
, and γ is a constant. To account for the species differences in

the wavelengths of the pattern we chose two typical wavelengths Λz = 2π/kc,z and Λo = 2π/kc,o. The
dynamics of z(x, t) and o(x, t) is coupled by interaction terms which can be derived from a coupling
energy U . In the uncoupled case this dynamics leads to pinwheel free OP stripe patterns.

Symmetries constrain inter-map coupling energies

How many inter-map coupling energies U exist? Using a phenomenological approach the inclusion and
exclusion of various terms has to be strictly justified. We did this by symmetry considerations. The
constant γ breaks the inversion symmetry o(x) = −o(x) of inputs from the ipsilateral (o(x) < 0) or
contralateral (o(x) > 0) eye. The inter-map coupling energy U was assumed to be invariant under this
inversion. The primary visual cortex shows no anatomical indication that there are any prominent regions
or directions parallel to the cortical layers [40]. Besides invariance under translations T̂yz(x) = z(x− y)

and rotations R̂φz(x) = z(R−1
φ x) of both maps we required that the dynamics should be invariant under

orientation shifts z(x) → eıϑz(x). Note, that the assumption of shift symmetry is an idealization that
uncouples the OP map from the map of visual space [57]. Numerous optimization and developmental
models have been proposed that exhibit this symmetry. A general coupling energy term can be expressed
by integral operators which can be written as a Volterra series

E =

∞∑

u=uo+uz

∫ uo∏

i=1

d2xi o(xi)

uo+uz/2∏

j=uo+1

d2xj z(xj)

u∏

k=uo+uz/2+1

d2xk z(xk)Ku(x1, . . . ,xu) , (11)

with an u-th. order integral kernel Ku. Inversion symmetry and orientation shift symmetry require uo to
be even and that the number of fields z equals the number of fields z. The lowest order term, mediating
an interaction between the fields o and z is given by u = 4, uo = 2 i.e.

E4 =

∫
d2x1d

2x2d
2x3d

2x4 o(x1)o(x2)z(x3)z(x4)K4(x1,x2,x3,x4) . (12)



7

Next, we rewrite Eq. (12) as an integral over an energy density U . We use the invariance under translations
to introduce new coordinates

xm = (1/4)

4∑

j

xi

y1 = x1 − xm

y2 = x2 − xm

y3 = x3 − xm . (13)

This leads to

E4 =

∫
d2xm

∫
d2y1d

2y2d
2y3 o(y1 + xm)o(y2 + xm)z(y3 + xm)

z(xm −
3∑

i

(yi − xm))K(y1,y2,y3)

=

∫
d2xm U4(xm) . (14)

The kernel K may contain local and non-local contributions. Map interactions were assumed to be local.
For local interactions the integral kernel is independent of the locations yi. We expanded both fields in
a Taylor series around xm

z(xm + yi) = z(xm) +∇z(xm)yi + . . . , o(xm + yi) = o(xm) +∇o(xm)yi + . . . (15)

For a local energy density we could truncate this expansion at the first order in the derivatives. The
energy density can thus be written

U4(xm) =

∫
d2y1d

2y2d
2y3 (o(xm) +∇o(xm)y1) (o(xm) +∇o(xm)y2) (16)

(z(xm) +∇z(xm)y3)

(
z(xm)−∇z(xm)

∑

i

(yi − xm)

)
K(y1,y2,y3) .

Due to rotation symmetry this energy density should be invariant under a simultaneous rotation of both
fields. From all possible combinations of Eq. (16) only those are invariant in which the gradients of the
fields appear as scalar products. The energy density can thus be written as

U4 = f(c1, c2, . . . , c8)

= f(o2, z2, zz, oz,∇o∇o,∇z∇z,∇z∇z,∇o∇z) , (17)

where we suppress the argument xm. All combinations cj can also enter via their complex conjugate.
The general expression for U4 is therefore

U4 =
∑

i>j

l
(1)
ij cicj +

∑

i>j

l
(2)
ij cicj +

∑

i,j

l
(3)
ij cicj . (18)
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From all possible combinations we selected those which are invariant under orientation shifts and eye
inversions. This leads to

U4 = l1o
4 + l2|z|4 + l3(∇o∇o)2 + l4|∇z∇z|2

+l5(∇z∇z)2 + l6(∇o∇o)o2 + l7(∇z∇z)|z|2

+l8(∇z∇z)z2 + l9(∇z∇z)z2

+l10(∇o∇z)oz + l11(∇o∇z)oz
+l12o

2|z|2 + l13|∇o∇z|2 + l14(∇z∇z)o2

+l15(∇o∇o)|z|2 + l16(∇z∇z)(∇o∇o) . (19)

The energy densities with prefactor l1 to l9 do not mediate a coupling between OD and OP fields and
can be absorbed into the single field energy functionals. The densities with prefactors l8 and l9 (also with
l10 and l11) are complex and can occur only together with l8 = l9 (l10 = l11) to be real. These energy
densities, however, are not bounded from below as their real and imaginary parts can have arbitrary
positive and negative values. The lowest order terms which are real and positive definite are thus given
by

U4 = l12o
2|z|2 + l13|∇o∇z|2 + l14o

2∇z∇z + l15∇o∇o|z|2 + l16 (∇z∇z) (∇o∇o) . (20)

The next higher order energy terms are given by

U6 = o2|z|4 + |z|2o4 + o4∇z∇z + . . . (21)

Here the fields o(x) and z(x) enter with an unequal power. In the corresponding field equations these
interaction terms enter either in the linear part or in the cubic nonlinearity. We will show in this article
that interaction terms that enter in the linear part of the dynamics can lead to a suppression of the
pattern and possibly to an instability of the pattern solution. Therefore we considered also higher order
interaction terms.
These higher order terms contain combinations of terms in Eq. (20) and are given by

U8 = o4|z|4 + |∇o∇z|4 + o4 (∇z∇z)2 + (∇o∇o)2 |z|4

+(∇z∇z)2 (∇o∇o)2 + o2|z|2|∇o∇z|2 + . . . (22)

As we will show below examples of coupling energies

U = α o2|z|2 + β |∇z∇o|2 + τ o4|z|4 + ǫ |∇z∇o|4 , (23)

form a representative set that can be expected to reproduce experimentally observed map relationships.
For this choice of energy the corresponding interaction terms in the dynamics Eq. (10) are given by

− δU

δz
= Nα[o, o, z] +Nβ[o, o, z] +Nǫ[o, o, o, o, z, z, z] +Nτ [o, o, o, o, z, z, z]

= −αo2z + β∇ (a∇o) + ǫ 2∇
(
|a|2a∇o

)
− 2τ o4|z|2z,

−δU
δo

= Ñα[o, z, z] + Ñβ[o, z, z] + Ñǫ[o, o, o, z, z, z, z] + Ñτ [o, o, o, z, z, z, z]

= −αo|z|2 + β∇ (a∇z) + ǫ 2∇
(
|a|2a∇z

)
− 2τ o3|z|4 + c.c. (24)

with a = ∇z∇o and c.c. denoting the complex conjugate. In general, all coupling energies in U4, U6,
and U8 can occur in the dynamics and we restrict to those energies which are expected to reproduce
the observed geometric relationships between OP and OD maps. It is important to note that with this
restriction we did not miss any essential parts of the model. When using weakly nonlinear analysis the
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Figure 2. Pinwheel annihilation, preservation, and generation in numerical simulations for
different strengths of inter-map coupling and OD bias, ro = 0.2, rz = 0.02. Color code of OP map with
zero contours of OD map superimposed. A γ = 0, ǫ = 0 B γ = 0, ǫ = 2000 C and D γ = 0.15, ǫ = 2000.
Initial conditions identical in A - C, Tf = 104 r−1

z .

general form of the near threshold dynamics is insensitive to the used type of coupling energy and we
therefore expect similar results also for the remaining coupling energies.
Numerical simulations of the dynamics Eq. (10) with the coupling energy Eq. (23) and α = β = τ = 0 are
shown in Fig. 2. The initial conditions and final states are shown for different bias terms γ and inter-map
coupling strengths ǫ. We observed that for a substantial contralateral bias and above a critical inter-map
coupling pinwheels are preserved from random initial conditions or are generated if the initial condition is
pinwheel free. Without a contralateral bias the final states were pinwheel free stripe solutions irrespective
of the strength of the inter-map coupling.

Calculating ground states by coupled amplitude equations

We studied Eq. (10) with the inter-map coupling energies Eq. (23) using weakly nonlinear analysis. To
obtain coupled amplitude equations for the fields z(x, t) and o(x, t) we expanded both fields in powers
of the small expansion parameter µ. To account for the fact that one bifurcation parameter can be
substantially smaller than the other we expanded the fields as

o(x, t) = µo1(x, t) + µ2o2(x, t) + µ3o3(x, t) + . . .

z(x, t) = (κµ)z1(x, t) + (κµ)2z2(x, t) + (κµ)3z3(x, t) + . . . (25)

We further expanded both control parameters as

ro = µr̃1 + µ2r̃2 + µ3r̃3 + . . .

rz = (κµ)r1 + (κµ)2r2 + (κµ)3r3 + . . . (26)
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We introduced a common slow timescale T = rzt and insert the expansions in Eq. (10) and get

0 = µκL̂0z1

+µ2κ2
(
−L̂0z2 + r1z1 − r1∂T z1

)

+µ3κ3
(
−r2∂T z1 + r2z1 + r1z2 − r1∂T z2 − L̂0z3 −N3,u[z1, z1, z1]

)

+µ3κ (−αN3,c[z1, o1, o1])

...

+µ7κ7
(
−L̂0z7 + r2z5 + r4z3 + r6z1 + · · · −N3,u[z3, z1, z3] +N3,u[z5, z1, z1] + . . .

)

+µ7
(
−ακ5N3,c[z5, o1, o1]− κ3αN3,c[z3, o3, o1]− . . .

)

+µ7κ3 (−ǫN7,c[z1, z1, z1, o1, o1, o1, o1])

... (27)

and

0 = µL̂0o1

+µ2
(
−L̂0o2 + r̃1o1 − κr1∂T o1 +

√
µr̃1 + µ2r̃2 + . . .Ñ2,u[o1, o1]

)

+µ3
(
−κ2r2∂T o1 + r̃2o1 + r̃1o2 − κr1∂T o2 − L̂0o3 − Ñ3,u[o1, o1, o1]

)

+µ3
(
−κ2αÑ3,c[z1, z1, o1]

)

...

+µ7
(
−L̂0o7 + r̃2o5 + r̃4o3 + r̃6o1 + · · · − Ñ3,u[o3, o1, o1]− Ñ2,u[o1, o5]− . . .

)

+µ7
(
−κ5αÑ3,c[z5, o1, o1]− κ3αÑ3,c[z3, o3, o1]− . . .

)

+µ7κ4
(
−ǫÑ7,c[z1, z1, z1, z1, o1, o1, o1]

)

... (28)

with the nonlinearities Ñ2,u = o2, N3,u = |z|2z, Ñ3,u = o3, and N3,c, N7,c, Ñ3,c, Ñ7,c the nonlinearities
of the inter-map coupling energy Eq. (24).
We further scaled out the inter-map coupling strength α and ǫ. We consider amplitude equations up to
seventh order as this is the order where the nonlinearity of the higher order coupling energy enters first.
For Eq. (27) and Eq. (28) to be fulfilled each individual order in µ has to be zero. At linear order in µ
we get the two homogeneous equations

L̂0z1 = 0 , L̂0o1 = 0 . (29)

Thus z1 and o1 are elements of the kernel of L̂0. The kernel contains linear combinations of modes with
a wavevector on the critical circle i.e.

z1(x, T ) =

n∑

j

(
A

(1)
j (T )eı

~kj~x +A
(1)
j− (T )e−ı

~kj~x
)

o1(x, T ) =

n∑

j

(
B

(1)
j (T )eı

~kj~x +B
(1)

j (T )e−ı
~kj~x
)
, (30)
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with the complex amplitudes A
(1)
j = Aje

ıφj , B
(1)
j = Bjeıψj . In view of the hexagonal or stripe layout

of the OD pattern shown in Fig. 2 n = 3 is an appropriate choice. Since in cat visual cortex the
typical wavelength for OD and OP maps are approximately the same [58, 59] i.e. kc,o = kc,z the Fourier

components of the emerging pattern are located on a common critical circle ~kj = ~k′j = (cosαj , sinαj) kc.
To account for species differences we also studied models with detuned OP and OD wavelengths. At
second order in µ we get

L̂0z2 + r1z1 − r1∂T z1 = 0

L̂0o2 + r̃1o1 − κr1∂T o1 = 0 . (31)

As z1 and o1 are elements of the kernel r1 = r̃1 = 0. At third order, when applying the solvability
condition (see Methods), we get

r2∂T z1 = r2z1 − P̂cN3,u[z1, z1, z1]−
α

κ2
P̂cN3,c[z1, o1, o1] (32)

κ2r2∂T o1 = r̃2o1 −
√
r̃2 P̂cÑ2,u[o1, o1]− P̂cÑ3,u[o1, o1, o1]− κ2αP̂cÑ3,c[z1, z1, o1] .

We insert the leading order fields Eq. (30) and obtain the amplitude equations

r2∂TA
(1)
i = r2A

(1)
i −

∑

j

gij |A(1)
j |2A(1)

i −
∑

j

fijA
(1)
j A

(1)
j−A

(1)

i− − α

κ2

∑

j

hij |B(1)
j |2A(1)

i

κ2r2∂TB
(1)
i = r̃2B

(1)
i − 2

√
r̃2B

(1)

i+1B
(1)

i+2 −
∑

j

g̃ij |B(1)
j |2B(1)

i − ακ2
∑

j

hij |A(1)
j |2B(1)

i . (33)

For simplicity we have written only the simplest coupling terms. Depending on the configuration of active
modes additional contributions may enter the amplitude equations. In addition there are coupling terms
which contain the constant δ, see Methods. The coupling coefficients are given by

gij = e−ı
~ki~x
(
N3,u[e

ı~ki~x, eı
~kj~x, e−ı

~kj~x] +N3,u[e
ı~kj~x, eı

~ki~x, e−ı
~kj~x]

)

gii = e−ı
~ki~xN3,u[e

ı~ki~x, eı
~ki~x, e−ı

~ki~x]

gij− = e−ı
~ki~x
(
N3,u[e

ı~ki~x, e−ı
~kj~x, eı

~kj~x] +N3,u[e
−ı~kj~x, eı

~ki~x, eı
~kj~x]

)

fij = e−ı
~ki~x
(
N3,u[e

ı~kj~x, e−ı
~kj~x, eı

~ki~x] +N3,u[e
−ı~kj~x, eı

~kj~x, eı
~ki~x]
)

fii =0

hij = e−ı
~ki~xN3,c[e

ı~ki~x, eı
~kj~x, e−ı

~kj~x]

hii = e−ı
~ki~xN3,c[e

ı~ki~x, eı
~ki~x, e−ı

~ki~x] . (34)

When we set r2 = 1/κ2 and r̃2 = 1 we get

∂TA
(1)
i =


1− α

∑

j

hij |B(1)
j |2


A

(1)
i − κ2

∑

j

(
gij |A(1)

j |2A(1)
i + fijA

(1)
j A

(1)
j−A

(1)

i−

)

∂TB
(1)
i = B

(1)
i − 2B

(1)

i+1B
(1)

i+2 −
∑

j

g̃ij |B(1)
j |2B(1)

i − κ2α
∑

j

hij |A(1)
j |2B(1)

i . (35)

For κ → 0 the inter-map coupling term in the dynamics of the modes B(1) vanishes, leading to an
uncoupled OD dynamics. In the dynamics for the modes A(1) the uncoupled cubic nonlinearities vanishes
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in this limit. Thus the dynamics is governed by the linear terms only. Inter-map coupling thus influences
the growth rate of the Fourier modes. For large enough inter-map coupling strength α the growth rate

becomes negative. In this case only the homogeneous solution A
(1)
j = 0, ∀j is stable.

Alternatively, we can set r2 = r̃2 = 1 in Eq. (33), scale back to the fast time t, and rescale the amplitudes

as Ai =
√
rzA

(1)
i , Bi =

√
roB

(1)
i . This leads to the amplitude equations

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− − α

κ2
rz
ro

∑

j

hij |Bj |2Ai

κ2
ro
rz
∂tBi = roBi − 2Bi+1Bi+2 −

∑

j

g̃ij |Bj |2Bi − ακ2
ro
rz

∑

j

hij |Aj |2Bi . (36)

Since rz/ro = κ2 +
(
κ4r4 − κ2r̃4

)
µ2 + . . . we get at leading order

∂tAi =



rz − α
∑

j

hij |Bj |2


Ai −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai−

∂tBi = roBi − 2Bi+1Bi+2 −
∑

j

g̃ij |Bj |2Bi − α
∑

j

hij |Aj |2Bi . (37)

At higher order we obtain corrections to the uncoupled dynamics of z(x, t) and o(x, t). In addition we
get corrections to the third order coupling energy terms. Finally, at seventh order enters the nonlinearity
of the higher order coupling energy term. The amplitude equations up to seventh order are thus derived
from

κ3r2∂T z1 = κ3r2z1 − κ3P̂N3,u[z1, z1, z1]− καP̂N3,c[z1, o1, o1]

κ5r2∂T z3 = κ5r2z3 − · · · − κ5P̂N3,u[z1, z1, z3] (38)

κ7r2∂T z5 = κ7r2z5 − · · · − κ7P̂N3,u[z3, z1, z3]− ǫκ3P̂N7,c[z1, z1, z1, o1, o1, o1, o1] ,

and corresponding equations for the fields o1, o3, and o5. The field z1 is given in Eq. (30) and its ampli-
tudes A(1) and B(1) are determined at third order. The field z3 contains contributions from modes off the

critical circle z3,off , |~koff | 6= kc and on the critical circle i.e. z3 = z3,off+
n∑
j

(
A

(3)
j (T )eı

~kj~x +A
(3)
j− (T )e−ı

~kj~x
)
.

Its amplitude A(3) are determined at fifth order. The field z5 also contains contributions from modes off

the critical circle z5,off and on the critical circle i.e. z5 = z5,off +
n∑
j

(
A

(5)
j (T )eı

~kj~x +A
(5)
j− (T )e−ı

~kj~x
)
. Its

amplitude A(5) are determined at seventh order. This leads to a series of amplitude equations

κ3r2∂TA
(1)
i = κ3r2A

(1)
i − κ3

∑

j

gij |A(1)
j |2A(1)

i − κ3
∑

j

fijA
(1)
j A

(1)
j−A

(1)

i− − κα
∑

j

hijA
(1)
i |B(1)

j |2

κ5r2∂TA
(3)
i = κ5r2A

(3)
i − · · · − κ5

∑

j

gij |A(1)
j |2A(3)

i (39)

κ7r2∂TA
(5)
i = κ7r2A

(5)
i − · · · − κ7

∑

j

gij |A(3)
j |2A(1)

i − ǫκ3
∑

jlk

hijlk |A(1)|2|B(1)|2|B(1)|2A(1)
i ,

which are solved order by order. To derive amplitude equations at seventh order we use the higher order
coupling energies and neglect the low order coupling energies i.e. set α = 0. The higher order corrections
to the uncoupled part are proportional to κ5 and κ7 while the inter-map coupling part is proportional to
κ3. For κ≪ 1 we thus can neglect fifth and seventh order corrections in the uncoupled dynamics.
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We set r2 = r̃2 = 1 and rescale the amplitudes as A(1) = r
1/2
z A(1), A(3) = r

3/2
z A(3), A(5) = r

5/2
z A(5),

B(1) = r
1/2
o B(1), B(3) = r

3/2
o B(3), B(5) = r

5/2
o B(5) and rescale to the fast time. This leads to

∂tA
(1)
i = rzA

(1)
i −

∑

j

gij |A(1)
j |2A(1)

i −
∑

j

fijA
(1)
j A

(1)
j−A

(1)

i−

∂tA
(3)
i = rzA

(3)
i − · · · −

∑

j

gij |A(1)
j |2A(3)

i (40)

∂tA
(5)
i = rzA

(5)
i − · · · −

∑

j

gij |A(3)
j |2A(1)

i − ǫ
1

κ4

∑

jlk

hijlk|A(1)|2|B(1)|2|B(1)|2A(1)
i .

We can combine the amplitude equations up to seventh order by introducing the amplitudes Aj =

A
(1)
j +A

(3)
j +A

(5)
j and Bj = B

(1)
j +B

(3)
j +B

(5)
j . This leads to the amplitude equations

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai−

−ǫ r2z
r2oκ

4

∑

jlk

hijlk |Aj |2|B2
l ||Bk|2Ai . (41)

Since rz/ro = κ2 +
(
κ4r4 − κ2r̃4

)
µ2 + . . . we finally obtain

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai−

−ǫ
∑

jlk

hijlk|Aj |2|B2
l ||Bk|2Ai

∂t Bi = roBi − 2Bi+1Bi+2 −
∑

j

g̃ij |Bj |2ABi

−ǫ
∑

jlk

hijlk|Bj |2|A2
l ||Ak|2Bi . (42)

In this article we used the amplitude equations (37) when considering the low order inter-map coupling
energies and the amplitude equations (42) when considering the higher order inter-map coupling energies.

Interpretation of coupling energies

Using symmetry considerations we derived inter-map coupling energies up to eighth order in the fields,
see Eq. (20), Eq.(21), and Eq.(22). Which of these various optimization principles could reproduce
realistic inter-map relationships such as a uniform coverage of all stimulus features? We identified two
types of optimization principles that can be expected to reproduce realistic inter-map relationships and
good stimulus coverage. First, product-type coupling energies of the form U = o2n|z|2n , n = 1, 2, ....
These energies favor configurations in which regions of high gradients avoid each other and thus leading
to high coverage. Second, gradient-type coupling energies of the form U = |∇o∇z|2n , n = 1, 2, ....
In experimentally obtained maps, iso-orientation lines show the tendency to intersect the OD borders
perpendicularly. Perpendicular intersection angles lead to high coverage as large changes of the field z in
one direction lead to small changes of the field o in that direction. To see that the gradient-type coupling
energy favors perpendicular intersection angles we decompose the complex field z(x) into the selectivity
|z| and the preferred orientation ϑ. We obtain

U = |∇z∇o|2n = |z|2n
(
|∇o∇ ln |z||2 + 4|∇o∇ϑ|2

)n
. (43)
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If the orientation selectivity is locally homogeneous, i.e. ∇ ln |z| ≈ 0, then the energy is minimized if
the direction of the iso-orientation lines (∇ϑ) is perpendicular to the OD borders. In our symmetry-
based analysis we further identified terms that are expected to lead to the opposite behavior for instance
mixture terms such as U = o2∇z∇z.
Pinwheels are prominent features in OP maps. We therefore also analyze how different optimization
principles impact on the pinwheel positions with respect to the co-evolving feature maps. The product-
type coupling energies are expected to favor pinwheels at OD extrema. Pinwheels are zeros of z and are
thus expected to reduce this energy term. They will reduce energy the most when |o| is maximal which
should repel pinwheels from OD borders, where o(x) is zero. Also the gradient-type coupling energy is
expected to couple the OD pattern with the position of pinwheels. To see this we decompose the field z
into its real and imaginary part

U =
(
|∇o∇Rez|2 + |∇o∇Imz|2

)
. (44)

At pinwheel centers the zero contours of Re z and Im z cross. Since there ∇Re z and ∇Im z are almost
constant and not parallel the energy can be minimized only if |∇o| is small at the pinwheel centers, i.e.
the extrema or saddle-points of o(x).

Part II: Optima of particular optimization principles

The impact of inter-map coupling: Low order coupling terms

As indicated by numerical simulations and weakly nonlinear analysis of the uncoupled OD dynamics, see
Methods, we discussed the influence of the OD stripe, hexagon, and constant solutions on the OP map
using the coupled amplitude equations derived in the previous section. A potential backreaction onto
the dynamics of the OD map can be neglected if the modes Aj of the OP map are much smaller than
the modes Bj of the OD map. This can be achieved if rz ≪ ro. We first give a brief description of the
uncoupled OP solutions. Next, we study the impact of the low order coupling energies in Eq. (23) on
these solutions. We demonstrate that these energies can lead to a complete suppression of orientation
selectivity. In the uncoupled case there are for rz > 0 two stable stationary solutions to the amplitude
equations Eq. (37), namely OP stripes

zst = Aeı(kx+φ), A =
√
rz , (45)

and OP rhombic solutions

zrh = A
2∑

j=1

(
eıkjx+φj + e−ıkjx+φj−

)
, (46)

with φ1 + φ1− = φ0, φ2 + φ2− = φ0 + π, φ0 an arbitrary phase, and A =
√
rz/5 ≈ 0.447

√
rz . In

the uncoupled case the angle α = arccos ~k1 ~k2/k
2
c between the Fourier modes is arbitrary. The stripe

solutions are pinwheel free while the pinwheel density for the rhombic solutions varies as ρ = 4 sinα and
thus 0 ≤ ρ ≤ 4. For the rhombic solutions pinwheels are located on a regular lattice. We therefore refer
to these and other pinwheel rich solutions which are spatially periodic as pinwheel crystals (PWC). In
particular, we refer to pinwheel crystals with as rhombic spatial layout as rPWC solutions and pinwheel
crystals with a hexagonal layout as hPWC solutions. Without inter-map coupling, the potential of the
two solutions reads Vst = − 1

2r
2
z < Vrh = − 2

5r
2
z , thus the stripe solutions are always energetically preferred

compared to rhombic solutions.
In the following we study three scenarios in which inter-map coupling can lead to pinwheel stabilization.
First, a deformation of the stripe solution can lead to the creation of pinwheels in this solution. Second,
inter-map coupling can energetically prefer the (deformed) rhombic solutions compared to the stripe



15

solutions. Finally, inter-map coupling can lead to the stabilization of new PWC solutions.
For the low order interaction terms the amplitude equations are given by ∂tAi = −δV/δAi, ∂tBi =
−δV/δBi with the potential

V = VA + VB +

3∑

j

αδ|Aj |2 +
3∑

j

αδ|Aj− |2

+2αδA1A2−B3 + 2αδA1A3−B2 + 2αδA1−A2B3 + 2αδA1−A3B2

+
∑

i,j

g
(1)
ij |Ai|2|Bj |2 +

∑

i6=j

g
(2)
ij AiAjBiBj +

∑

i6=j

g
(2)
ij Ai−Aj−BiBj

+
∑

i,j

g
(3)
ij AiAj−BiBj +

∑

i,j

g
(3)
ij AiAj−BiBj , (47)

with the uncoupled contributions

VA = −rz
3∑

j

|Aj |2 +
1

2

3∑

i,j

gij |Ai|2|Aj |2 +
1

2

3∑

i,j

fijAiAi−AjAj−

VB = −ro
3∑

j

|Bj |2 +
1

2

3∑

i,j

g̃ij |Bi|2|Bj |2 . (48)

The coupling coefficients read g
(1)
ij = 2α + 2β cos2(αij), g

(2)
ij = 2α + β

(
1 + cos2(αij)

)
, g

(3)
ij = 2α +

β
(
1 + cos2(αij)

)
, g

(3)
ii = α+ β, where αij is the angle between the wavevector ~ki and ~kj .

Product-type energy U = αo2|z|2

We first studied the impact of the low order product-type coupling energy. Here, the constant δ(γ) enters
explicitly in the amplitude equations.

Stationary solutions and their stability

In the case of OD stripes, see Methods, with B1 = B,B2 = B3 = 0 we get the following amplitude
equations

∂tA1 =
(
rz − αδ2 − 2α|B|2

)
A1 − αB2A1− + nct.

∂tA2 =
(
rz − αδ2 − 2α|B|2

)
A2 − 2αδA3−B + nct.

∂tA3 =
(
rz − αδ2 − 2α|B|2

)
A3 − 2αδA2−B + nct. (49)

where nct. refers to non inter-map coupling terms −∑3
j gij |Aj |2Ai −

∑3
j 6=i fijAjAj−Ai− , resulting from

the potential VA, see Eq. (48). The equations for the modes Ai− are given by interchanging the modes
Ai and Ai− as well as interchanging the modes Bi and Bi. The OP stripe solution in case of inter-map
coupling is given by

z = A1e
ı(~k1~x+φ1) +A1−e

−ı(~k1~x+φ1−
) , (50)

with A1 = p3/2/(2
√
2B2α), A1− = p/

√
2, and

p = rz − 2B2α− αδ2 −
√
(rz − αδ2)(rz − α(4B2 + δ2)) and the phase relation

φ1 − φ1− = 2ψ1 + π. In the uncoupled case (α = 0) they reduce to A1− = 0 and A1 =
√
rz . With

increasing inter-map coupling the amplitude A1− grows and the solutions are transformed, reducing the
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representation of all but two preferred orientations. The parameter dependence of this solution is shown
in Fig. 3A for different values of the bias γ. Both amplitudes become identical at α = rz/(4B

2+ δ2) with

A1 = A1− =

√
rz − αB2 − αδ2

3
. (51)

This pattern solution finally vanishes at

αc = rz/(B
2 + δ2) = 3 rz/ro . (52)

This existence border is thus independent of the OD bias γ. Above this coupling strength only the trivial
solution Aj = 0, ∀j is stable.
In addition to the OP stripe patterns there exist rhombic OP solutions, see Fig. 3B. These rhombic
solutions are pinwheel rich with a pinwheel density of ρ = 4 sinπ/3 ≈ 3.46 but are energetically not
preferred compared to the stripe solutions, see Fig. 3E. The rhombic solutions in the uncoupled case
A1 = A1− = A2 = A2− , A3 = A3− = 0 are transformed by inter-map coupling. The phase relations are
given by

φ1 + φ1− = φ0

φ2 + φ2− = φ0 + π

φ3 + φ3− = φ0 + π

φ1 − φ1− = 2ψ1 + π

ψ1 + φ2 + φ3 = φ0 , (53)

where φ0 is an arbitrary phase. Stationary amplitudes are given by

A1 = A1− =

√
rz + α(B2 − δ2)

5

A2 = A2− =

√
3rz − 12B2α− 3αδ2 − 1/3q

30

A3 = A3− = A2
3rz − 12B2α− 3αδ2 + 1/3q

20Bαδ , (54)

with q =
√
−3600B2α2δ2 + (−9rz + 36B2α+ 9αδ2)2. With increasing inter-map coupling strength α the

amplitudes A2 = A2− are suppressed, see Fig. (3)B. In addition, for nonzero bias γ, there is an increase
of the amplitudes A3 = A3− . The amplitudes A2 and A3 collapse at α/rz = 3/(12B2 + 20Bδ + 3δ2). A
further increase of the inter-map coupling strength leads to a suppression of these amplitudes and finally
to the OP stripe pattern where A2 = A3 = 0.
In the case the OD map is a constant, Eq. (117), the amplitude equations simplify to

∂tAi =
(
rz − αδ2

)
Ai −

∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− . (55)

Thus inter-map coupling in this case only renormalizes the bifurcation parameter and the energetic ground
state is thus a stripe pattern with an inter-map coupling dependent reduction of the amplitudes

A1 =
√
rz − αδ2 ,A2 = A3 = 0 . (56)

Therefore at αc = rz/δ
2 the stripe pattern ceases to exist and the only stable solution is the trivial one

i.e. Ai = 0. In addition, there is the rhombic solution with the stationary amplitudes

A1 = A1− = A2 = A2 =

√
rz − αδ2

5
,A3 = 0 . (57)
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In the case of OD hexagons Bi = Beıψi, Eq. (116), the amplitude equations read

∂t Ai =
(
rz − 6αB2 − αδ2

)
Ai − αB2

(
Ai−e

2ıψi + 2A(i+1)−e
ı(ψi+ψi+1) + 2A(i+2)−e

ı(ψi+ψi+2)
)

−2αB2
(
Ai+1e

ı(ψi−ψi+1) +Ai+2e
ı(ψi−ψi+2)

)

−2αδB
(
A(i+1)−e

−ıψi+2 +A(i+2)−e
−ıψi+1

)
+ nct. , (58)

where the indices are cyclic i.e. i + 3 = i. These amplitude equations have stripe-like solutions as well
as solutions with a rhombic layout of the form A1 = A1− = A2 = A2− , A3 = A3− . For both solutions
the stationary phases depend on the inter-map coupling strength α. In this case stationary solutions of
Eq. (58) are calculated numerically using a Newton method and initial conditions close to these solutions.
In contrast to the case of OD stripes and OD constant solutions the amplitude equations (58) have an
additional type of PWC solution which have uniform amplitudes, Aj = Aeıφi . The dynamics of their
phases is given by

∂t φi = 2A2
∑

j 6=i

sin
(
φi + φi− − φj − φj−

)

−B2α
∑

j 6=i

(
2 sin (φi − φj − ψi + ψj) + 2 sin

(
φi − φj− − ψi − ψj

))

−B2α sin (φi − φi− − 2ψi)

−2δαB
(
sin
(
φi − φ(i+1)− + ψi+2

)
+ sin

(
φi − φ(i+2)− + ψi+1

))
. (59)

When solving the amplitude equations numerically we observe that the phase relations vary with the
inter-map coupling strength for non-uniform solutions. But for the uniform solution the phase relations
are independent of the inter-map coupling strength. The phases of the uniform solution are determined
up to a free phase ϕ which results from the orientation shift symmetry z → z eıϕ of Eq. (10). We therefore
choose φ1 = ψ1. As an ansatz for the uniform solutions we use

Aj = Aj− = A, j = 1, 2, 3

φj = ψj + (j − 1)2π/3 + ∆ δj,2

φj− = −ψj + (j − 1)2π/3 + ∆ (δj,1 + δj,3) , (60)

where δi,j is the Kronecker delta and ∆ a constant parameter. Note, that z(x) cannot become real since
φj 6= −φj− . The equation for the uniform amplitudes is then given by

∂tA = rzA− 9A3 − 4αB2A− αδ2A+ABα (B − 2δ) cos∆ , (61)

while the phase dynamics reads
∂tφj = −Bα (B − 2δ) sin∆ . (62)

The stationarity condition is fulfilled for an arbitrary δ only if ∆ = 0 or ∆ = π. The corresponding
amplitudes are given by solving the stationarity condition for the real part and read

A∆=0 =

√
rz − α (3B2 + 2Bδ + δ2)

9
, A∆=π =

√
rz − α (5B2 − 2Bδ + δ2)

9
. (63)

We calculate the stability properties of all solutions by linear stability analysis considering perturbations
of the amplitudes Aj → A + aj , Aj− → A + aj− and of the phases φj → φj + ϕj , φj− → φj− + ϕj− .
This leads to a perturbation matrix M . Amplitude and phase perturbations in general do not decouple.
We calculated the eigenvalues of the perturbation M matrix numerically and checked the results by
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direct numerical simulation of the amplitude equations. In case of the uniform solutions Eq. (60) the
perturbation matrix M is explicitly stated in the appendix.
The stability of the ∆ = 0and ∆ = π uniform solutions depends on the coupling strength α and on the
sign of (B − 2δ). As the solution of B(γ) = 2δ(γ) is given by γ = γ∗ in the stability range of OD hexagons
there is only one possible stable uniform solution, the ∆ = π uniform solution. This solution ceases to
exist at rz < α

(
5B2 − 2Bδ + δ2

)
. This existence border is in fact independent of the bias γ and given by

αc = 3rz/ro . (64)

Thus the limit rz → 0 makes the uniform solution unstable for smaller and smaller coupling strengths.

Bifurcation diagram

The course of OP solutions when interacting with OD stripes is shown in Fig. 3A,B. In case of OP
stripes inter-map coupling suppresses the amplitude A1 of the stripe pattern while increasing the ampli-
tude of the opposite mode A1− . This transformation reduces the representation of all but two preferred
orientations. When both amplitudes collapse the resulting OP map is selective only to two orthogonal
orientations namely ϑ = φ1 and ϑ = φ1 + π/2. We refer to these unrealistic solutions as orientation

scotoma solutions. The phase relations ensure that OD borders that run parallel to the OP stripes are
located at the OP maxima and minima i.e. in the center of the orientation scotoma stripes. With in-
creasing inter-map coupling, this orientation scotoma pattern is suppressed until finally all amplitudes
are zero and only the homogeneous solution is stable. In case of OP rhombs inter-map coupling makes
the rhombic pattern more stripe-like by reducing the amplitude A2 = A2− . The mode A3 = A3− which
is zero in the uncoupled case increases and finally collapses with the mode A2. Increasing inter-map
coupling more suppresses all but the two modes A1 = A1− , leading again to the orientation scotoma
stripe pattern.
The parameter dependence of OP solutions when interacting with OD hexagons is shown in Fig. 3C,D.
OP stripe solutions became above a critical inter-map coupling strength unstable against PWC solutions.
This critical coupling strength strongly depended on the OD bias. OP rhombic solutions also became
unstable against PWC but for a lower coupling strength than the OP stripes. Thus there is at interme-
diate coupling strength a bistability between stripe-like solutions and PWC solutions. The potential of
the OP stripe and OP rhombic solutions is shown in Fig. 3E,F. Stripes are energetically preferred in the
uncoupled case as well as for small inter-map coupling strength for which they are stable.
To summarize, stripe solutions were deformed but no pinwheels were created for this solution. The
rhombic solutions were energetically not preferred for low inter-map coupling whereas for intermediate
inter-map coupling these solutions lose pinwheels and became stripe solutions. Instead, additional pin-
wheel rich solutions with a crystal layout became stable for intermediate inter-map coupling. For large
inter-map coupling orientation selectivity was completely suppressed.
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Figure 3. Stationary amplitudes with coupling energy U = α |z|2o2, ro = 0.2. Solid (dashed)
lines: stable (unstable) solutions to Eq. (49) (OD stripes) and Eq. (58) (OD hexagons). A,B OD
stripes, γ = 0 (blue), γ = γ∗ (green), γ = 1.4γ∗ (orange). C,D OD hexagons, γ = 1.4γ∗ (blue), γ = 3γ∗

(red). E Potential for OP stripes (red) and OP rhombs (blue) interacting with OD stripes, γ = 0. F
Potential for OP stripes and OP rhombs interacting with OD hexagons.
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Figure 4. Phase diagram with the coupling energy U = αo2|z|2, ro = 0.2, rz ≪ ro. Vertical
lines: stability range of OD stripes, hexagons, and constant solution. Green line: transition to the
orientation scotoma solution. Blue line: stability border for the ∆ = π uniform solution (hPWC).
Orange line: stability line of stripe-like solutions. Red line: pattern solutions ceases to exist, see
Eq. (52) and Eq. (64). Blue region: stability region of hPWC, gray region: No pattern solution stable.

Phase diagram

The phase diagram as a function of the OD bias γ and the inter-map coupling strength α for this coupling
energy is shown in Fig. 4. When rescaling the inter-map coupling strength as α/rz the phase diagram is
independent of the bifurcation parameter of the OP map rz . Thus for fixed ro ≫ rz the phase diagram
depends only on two control parameters γ/γ∗ and α/rz . The phase diagram contains the stability borders
of the uncoupled OD solutions γ∗, γ∗2 , γ

∗
3 , γ

∗
4 . They correspond to vertical lines, as they are independent of

the inter-map coupling in the limit rz ≪ ro. At γ = γ∗ hexagons become stable. Stripe solutions become
unstable at γ = γ∗2 . At γ = γ∗3 the homogeneous solution becomes stable while at γ = γ∗4 hexagons lose
their stability. In the units γ/γ∗ the borders γ∗2 , γ

∗
3 , γ

∗
4 vary slightly with ro , see Fig. 26, and are drawn

here for ro = 0.2. Colored lines correspond to the stability and existence borders of OP solutions. In
the region of stable OD stripes the OP stripes run parallel to the OD stripes. With increasing inter-map
coupling strength the orientation preference of all but two orthogonal orientations is suppressed. In the
region of stable OD hexagons stripe-like OP solutions dominate for low inter-map coupling strength.
Above a critical bias dependent coupling strength the ∆ = π uniform solution becomes stable (blue line).
There is a region of bistability between stripe-like and uniform solutions until the stripe-like solutions lose
their stability (orange line). OP rhombic solutions lose their stability when the uniform solution becomes
stable. Thus there is no bistability between OP rhombs and OP uniform solutions. As in the case of OD
stripes the uniform solution becomes unstable at α = rz/(3B2). Also in the case of OD hexagons the
inter-map coupling leads to a transition towards the trivial solution where there is no OP pattern at all.
In case of the OD constant solution the OP map is a stripe solution. Pinwheel rich solutions thus occur
only in the region of stable OD hexagons. In the following we discuss the properties of these solutions.
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Figure 5. Ipsi-center pinwheel crystal. A OP map, superimposed are the OD borders (gray), 90%
ipsilateral eye dominance (black), and 90% contralateral eye dominance (white), ro = 0.2, γ = 3γ∗.
Dashed lines mark the unit cell of the regular pattern. B Distribution of preferred orientations.

Interaction induced pinwheel crystals

The uniform solution Eq. (60) with ∆ = π is illustrated in Fig. 5. For all stationary solutions the positions
of the pinwheels are fixed by the OD map and there are no translational degrees of freedom. The unit cell
(dashed line) contains 6 pinwheels which leads to a pinwheel density of ρ = 6 cosπ/6 ≈ 5.2. Two of them
are located at OD maxima (contra center) while one is located at an OD minimum (ipsi center). The
remaining three pinwheels are located at OD saddle-points. Therefore, all pinwheels are located where
the gradient of the OD map is zero. The pinwheel in the center of the OP hexagon is at the ipsilateral
OD peak. Because these pinwheels organize most of the map while the others essentially only match one
OP hexagon to its neighbors we refer to this pinwheel crystal as the Ipsi-center pinwheel crystal. The
iso-orientation lines intersect the OD borders (gray) exactly with a right angle. The intersection angles
are, within the stability range of OD hexagons, independent of the bias γ. The remarkable property of
perfect intersection angles cannot be deduced directly from the coupling energy term. The solution is
symmetric under a combined rotation by 60◦ and an orientation shift by −60◦. The symmetry of the
pattern is reflected by the distribution of preferred orientations, see Fig. 5B. Although the pattern is
selective to all orientations the six orientations ϑ+ nπ6 , n = 0, ..., 5 are slightly overrepresented.
To summarize, the low order product-type inter-map coupling leads in case of OD hexagons to a transition
from pinwheel free stripe solutions towards pinwheel crystals. The design of the PWC is an example of
an orientation hypercolumn dominated by one pinwheel. With increasing inter-map coupling the PWC
solution is suppressed until only the homogeneous solution is stable. In case of OD stripes or the constant
solution the OP solutions are pinwheel free stripe pattern.

Gradient-type energy U = β|∇z∇o|2

When using a gradient-type inter-map coupling energy the interaction terms are independent of the OD
shift δ. In this case, the coupling strength can be rescaled as βB2 and is therefore independent of the bias
γ. The bias in this case only determines the stability of OD stripes, hexagons or the constant solution.
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Stationary solutions and their stability

A coupling to OD stripes is easy to analyze in the case of a gradient-type inter-map coupling. The
energetically preferred solutions are OP stripes with the direction perpendicular to the OD stripes for
which U = 0. This configuration corresponds to the Hubel and Wiesel Ice-cube model [45]. In addition
there are rPWC solutions with the stationary amplitudes A1 = A1− =

√
(rz + 2B2β)/5, A2 = A2− =√

(rz − B2β)/5, A3 = A3− = 0, and the stationary phases as in Eq. (53). Increasing inter-map coupling
strength β leads to an increase of the amplitudes A1 = A1− while decreasing the amplitudes A2 = A2−

thus making the rhombic solution more stripe-like.
In the case the OD map is a constant, Eq. (117), the gradient-type inter-map coupling leaves the OP
dynamics unaffected. The stationary states are therefore OP stripes with an arbitrary direction and
rPWC solutions as in the uncoupled case.
In the case of OD hexagons the amplitude equations read

∂tAi =
(
rz − 3βB2

)
Ai +

5

4
βB2

(
Ai+1e

ı(ψi−ψi+1) +Ai+2e
ı(ψi−ψi+2)

)

−βB2

(
Ai−e

2ıψi +
5

4
A(i+1)−e

ı(ψi+ψi+1) +
5

4
A(i+2)−e

ı(ψi+ψi+2)

)
+ nct. . (65)

Using Ai = Aie
ıφi we obtain the phase equations

Ai∂t φi =
∑

j 6=i

AjAj−Ai− sin
(
φi + φi− − φj − φj−

)

−B2β
∑

j 6=i

(
5

4
Aj sin (φi − φj − ψi + ψj) +

5

4
Aj− sin

(
φi − φj− − ψi − ψj

))

−B2βAi− sin (φi − φi− − 2ψi) . (66)

These amplitude equations have stripe-like and rhombic solutions with inter-map coupling dependent
phase relations. We therefore calculate their stationary phases and amplitudes numerically using a
Newton method and initial conditions close to these solutions. Besides stripe-like and rhombic solutions
these amplitude equations have uniform solutions. Again we find that the ansatz Eq. (60) can satisfy the
stationarity condition. The phase dynamics in this case reads

∂t φi = −1

4
B2β sin∆ . (67)

As in the case of the product-type inter-map coupling energy stationary solutions are ∆ = 0 and ∆ = π
with the stationary amplitudes

A∆=0 =

√
rz − 3/2B2β

9
, A∆=π =

√
rz − 2B2β

9
. (68)

We studied the stability properties of both stationary solutions by linear stability analysis where ampli-
tude and phase perturbations in general do not decouple. The stability matrix of the uniform solutions is
given in the appendix. The eigenvalues are calculated numerically. It turned out that the ∆ = π solution
is unstable for β > 0 while the ∆ = 0 solution becomes stable for β ≈ 0.05rz/B2. The ∆ = 0 solution
loses its stability above

βc B2 = 2rz/3 . (69)

From thereon only the homogeneous solution Aj = 0 is stable.



23

0 0.2 0.4 0.6

β B
4
/ rz

0

0.2

0.4

0.6

0.8

1

Figure 6. Stationary amplitudes with U = β|∇z∇o|2 and OD hexagons. Solid (dashed) lines:
Stable (unstable) solutions to Eq. (65). Transition from OP stripes towards the uniform solution (red),
transition from OP rhombs towards the uniform solution (blue).

Bifurcation diagram

The course of the stationary amplitudes when interacting with OD hexagons is shown in Fig. 6. The
OP rhombic solution is almost unchanged by inter-map coupling but above a critical coupling strength
the rhombs decay into a stripe-like solution. The amplitude of the OP stripe solution is suppressed by
inter-map coupling and finally becomes unstable against the ∆ = 0 uniform solution. Thus for large
inter-map coupling only the uniform solution is stable. A further increase in the inter-map coupling
suppresses the amplitude of this uniform solution until finally only the homogeneous solution is stable.

Phase diagram

The phase diagram of this coupling energy is shown in Fig. 7. We rescaled the inter-map coupling
strength as βB2/rz, where B is the stationary amplitude of the OD hexagons. The stability borders are
then independent of the OD bias in the OD solutions and further independent of the bifurcation parameter
rz . This simplifies the analysis since the OP solutions and their stability depend on γ only indirect via
the amplitudes B. In case of OD stripes or OD constant solution there is no pinwheel crystallization.
Instead the OP solutions are pinwheel free stripes. In case of OD hexagons hPWCs become stable above
β ≈ 0.05rz/B2 (blue line). Rhombic OP patterns become unstable at βB4/rz ≈ 0.17 and decay into a
stripe-like solution (green line). At βB4/rz ≈ 0.36 these stripe-like solutions become unstable (orange
line). Thus above βB4/rz ≈ 0.36 the hPWC is the only stable solution. At βB2/rz = 2/3 the pattern
solution ceases to exist (red line).

Interaction induced pinwheel crystals

The uniform solution Eq. (60), ∆ = 0 is illustrated in Fig. 8. This PWC contains only three pinwheels
per unit cell leading to a pinwheel density of ρ = 3 cosπ/6 ≈ 2.6. Two of the three pinwheels are located
at maxima of the OD map (contra peak) while the remaining pinwheel is located at the minimum (ipsi
peak) of the OD map. A remarkable property of this solution is that the pinwheel located at the OD
minimum, carries a topological charge of 1 such that each orientation is represented twice around this
pinwheel. Pinwheels of this kind have not yet been observed in experimentally recorded OP maps. This
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Figure 7. Phase diagram with the coupling energy U = β|∇z∇o|2, rz ≪ ro. Vertical black lines:
stability range of OD stripes, hexagons, and constant solution. Blue line: stability border for the ∆ = 0
uniform solution. Green line: rhombic solutions become unstable. Orange line: stripe-like solutions
become unstable. Red line: pattern solutions cease to exist, see Eq. (68). Gray region: No pattern
solution stable.

kind of uniform solution corresponds to the structural pinwheel model by Braitenberg [60]. We therefore
refer to this solution as the Braitenberg pinwheel crystal.
The iso-orientation lines are again perfectly perpendicular to OD borders and this is independent of the
bias γ. The solution is symmetric under a combined rotation by 120◦ and an orientation shift by −2π/3.
Further it is symmetric under a rotation by 180◦. The pattern is selective to all orientations but the
distribution of represented orientations is not uniform. The three orientations ϑ + nπ3 , n = 0, ..., 2 are
overrepresented, see Fig. 8B.
Overall this OP map is dominated by uniform regions around hyperbolic points. In contrast to the ipsi
center PWC all pinwheels in this OP map organize a roughly similar fraction of the cortical surface.

The impact of inter-map coupling: Higher order coupling terms

In the last section we demonstrated that the low order coupling terms can lead to a complete suppression
of OP selectivity. As the coupling terms are effectively linear they not only influence pattern selection
but also whether there is a pattern at all. This is in general not the case for higher order coupling energies
using the amplitude equations Eq. (42). In this case the coupling is an effective cubic interaction term
and complete selectivity suppression is impossible. Moreover, we could identify the limit rz ≪ ro in which
the backreaction onto the OD map formally becomes negligible. When using the higher order inter-map
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Figure 8. The Braitenberg pinwheel crystal, ∆ = 0 uniform solution of Eq. (60). A OP map,
superimposed are the OD borders (gray), 90% ipsilateral eye dominance (black), and 90% contralateral
eye dominance (white), ro = 0.2, γ = 3γ∗. Dashed lines mark the unit cell of the regular pattern. B
Distribution of preferred orientations.

coupling terms and assuming Bi = Beıψi the potential reads

V = VA + VB +

+ǫB4
3∑

ijlk

(
h
(1)
ijlkAjAlAkAi + h

(2)
ijlkAj−Al−Ak−Ai + h

(3)
ijlkAjAl−AkAi

+h
(4)
ijlkAj−Al−AkAi + h

(5)
ijlkAjAlAk−Ai + h

(6)
ijlkAjAl−Ak−Ai

+h̃
(1)
ijlkAj−Al−Ak−Ai− + h̃

(3)
ijlkAj−AlAk−Ai− + h̃

(4)
ijlkAjAlAk−Ai−

)
, (70)

where h̃
(u)
ijlk, u = 1, 3, 4 is given by the coefficient h

(u)
ijlk for which all phases ψm are replaced by −ψm. The

amplitude equations can be derived from a potential given by

∂tAi = rz Ai −
3∑

j

gij |Aj |2Ai −
3∑

j 6=i

fijAjAj−Ai−

−B4
3∑

j,l,k

(
h
(1)
ijlkAjAlAk + h

(2)
ijlkAj−Al−Ak− + h

(3)
ijlkAjAl−Ak

+h
(4)
ijlkAj−Al−Ak + h

(5)
ijlkAjAlAk− + h

(6)
ijlkAjAl−Ak−

)
, (71)

with gii = 1, gij = 2 and h
(u)
ijlk effective self-interaction coupling coefficients given in the Appendix.

We have not written terms containing the constant δ for simplicity. The phases ψj are absorbed into
the coupling coefficients. The dynamics for the modes Ai− is given by interchanging Ai and Ai− . For
negligible backreaction B = Bhex, B = Bst, or B = Bc. In the following we identify classes of stationary
solutions of the amplitude equations Eq. (71) and provide their stability criteria for the two higher order
pendants of the coupling energies.
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Product-type energy U = τ o4|z|4

First, we studied the higher order product-type inter-map coupling energy in Eq. (23). As for the lower
order version of this coupling energy the shift δ(γ) explicitly enters the amplitude equations resulting in
a rather complex parameter dependence.

Stationary solutions and their stability

In the case of OD stripes the amplitude equations of OP modes read

∂t A1 = rzA1 −
∑

j

(
g
(1)
1j |Aj |2A1 + g

(2)
1j |Aj |2A1− + g

(3)
1j AjAj−A1− + g

(4)
1j AjAj−A1

)

−B4A2
1−A1 −

∑

u6=v 6=w

AuAvAw

((
8δ3B + 24δB2B

)
δ~ku+~kv−~kw ,0 (72)

+
(
8δ3B + 24δBB

2
)
δ~ku+~kv−~kw ,2~k1 + 8δB3δ~ku+~kv−~kw,−2~k1

)

∂t A2 = rzA2 −
∑

j

(
g
(1)
2j |Aj |2A2 + g

(3)
2j AjAj−A2−

)

−g(2)ii A2A1−A1 − g(5)A2A1A1− − 1/2g
(2)
ii A

2
1−A2− − 1/2g(5)A2

1A2−

−
∑

u,v,w

AuAvAw

(
g(6)uv δ~ku+~kv−~kw ,~k2 + g

(7)
ij δ~ku+~kv−~kw,~k1+~k2

+g
(8)
ij δ~ku+~kv−~kw ,−~k1+~k2 + g

(9)
ij δ~ku+~kv−~kw ,2~k1+~k2 + g

(10)
ij δ~ku+~kv−~kw,−2~k1+~k2

)
,

where δi,j denotes the Kronecker delta and

g
(1)
ii = 1+ δ4 + 12δ2|B|2 + 6|B|4, g

(1)
ij 6=i = 2g

(1)
ii ,

g
(2)
ii = g

(2)
ij 6=i = 12δ2B2 + 8B3B,

g
(3)
ii = 0, g

(3)
ij 6=i = 2 + 12|B|4 + 24δ2|B|2 + 2δ4,

g
(4)
ii = 0, g

(4)
ij 6=i = 12δ2B2 + 8B3B,

g(5) = 12δ2B
2
+ 8BB

3
, g

(6)
uu = 6|B|4 + 6δ|B|2, g(6)uv 6=u = 2g

(6)
uu ,

g
(7)
uu = 4Bδ3 + 1BB

2
δ, g

(7)
uv 6=u = 2g

(7)
uu ,

g
(8)
uu = 4Bδ3 + 1B2Bδ, g

(8)
uv 6=u = 2g

(8)
uu ,

g
(9)
uu = 6B

2
δ2, g

(9)
uv 6=u = 2g

(9)
uu ,

g
(10)
uu = 6B2δ2, g

(10)
uv 6=u = 2g

(10)
uu .

The equation for the mode A3 is given by interchanging the modes A2 and A3 in Eq. (72). The equations
for the modes Ai− are given by interchanging the modes Ai and Ai− and interchanging the modes Bi
and Bi.
In this case, at low inter-map coupling the OP stripes given by

z = A1e
ı(~k1~x+φ1) −A1−e

−ı(~k1~x+φ1−) , (73)

with φ1 − φ1− = 2ψ1 + π run parallel to the OD stripes. Their stationary amplitudes are given by

A2
1 =

(
u− v −

√
u2 − 2uv + v2 − 16w2

)2
x/32w

A1− = x/2 , (74)
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with x = rz
(
u− v +

√
u2 − 2uv + v2 − 16w2

)
/(uv − v2 − 8w2), u = 2 + 13B4τ + 24B2δ2τ + 2δ4τ , v =

(6B4+12B2δ2 + δ4)τ , w = (2B2+3δ2)τB2. The parameter dependence of these stripe solutions is shown
in Fig. 9A.
At large inter-map coupling the attractor states of the OP map consist of a stripe pattern containing
only two preferred orientations, namely ϑ = φ1 and ϑ = φ1 + π/2. The zero contour lines of the OD map
are along the maximum amplitude of orientation preference minimizing the energy term.
In addition there are rhombic solutions

z = A1e
ı(~k1~x+ψ1) +A1−e

−ı(~k1~x−ψ1+π) +A2e
ı(~k2~x+ψ1) +A2−e

−ı(~k2~x−ψ1) , (75)

which exist also in the uncoupled case, see Fig. 9B. However, these rhombic solutions are energetically
not favored compared to stripe solutions, see Fig. 9C. The inclusion of the inter-map coupling makes
these rhombic solution even more stripe-like.
In case of a OD constant solution the amplitude equations read

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− , (76)

with gii = 1+ δ4τ , gij = 2+2δ4τ and fij = 2+2δ4τ . Inter-map coupling thus leads to a renormalization
of the uncoupled interaction terms. Stationary solutions are stripes with the amplitude

A =

√
rz

1 + δ4τ
, (77)

and rhombic solutions with the stationary phases φ1+φ1− −φ2−φ2− = π and the stationary amplitudes

A1 = A1− = A2 = A2− =
√
rz/(5 + 5δ4τ) . (78)

In the case of OD hexagons we identify, in addition to stripe-like and rhombic solutions, uniform solutions
Ai = A. When solving the amplitude equations numerically we have seen that the phase relations vary
with the inter-map coupling strength τ for non-uniform solutions. But for the uniform solution the phase
relations are independent of the inter-map coupling strength. When we use the ansatz Eq. (60) for
uniform solutions we get the stationarity condition

6A2B
[
4
(
−4B3 + 7B2δ −Bδ2 + δ3

)
+ B cos∆

(
13B2 − 8Bδ + 6δ2

)]
sin∆ = 0 . (79)

Four types of stationary solutions exist namely the ∆ = 0,∆ = π, which we already observed in case of
the low order energies, and the solutions

∆ = ∆(γ) = ± arccos

(
4(4B3 − 7B2δ + Bδ2 − δ3)

B(13B2 − 8Bδ + 6δ2)

)
, (80)

which depends on B and δ and thus on the bias γ. The course of Eq. (80) as a function of γ is shown in
Fig. 10B. Stationary amplitudes for these solutions are given by

A2
∆=0 =

rz
3τ (3/τ + 33B4 + 56B3δ + 50B2δ2 + 16Bδ3 + 3δ4)

A2
∆=π =

rz
τ (9/τ + 483B4 − 504B3δ + 246B2δ2 − 48Bδ3 + 9δ4)

(81)

A2
∆(γ) =

rz(13B2 − 8Bδ + 6δ2)

3τ (411B6τ + 704B5δτ − 376B4δ2τ + 32B3δ3τ + 2δ2(9− 7δ4τ)− 39B2(3δ4τ − 1) + 8Bδ(5δ4τ − 3))

We study the stability properties of OP stripe-like, rhombic and uniform solutions using linear stability
analysis. The eigenvalues of the stability matrix , see appendix, are calculated numerically. Linear
stability analysis shows that for τ ≥ 0 the ∆ = 0 solution is unstable for all bias values. The stability
region of the ∆ = π solution and the solution Eq. (80) is bias dependent. The bias dependent solution
Eq. (80) is stable for γ > γ∗ and γ < γc for which ∆ = π, see Fig. 10B. For larger bias γ > γc only the
d = π uniform solution is stable.
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Bifurcation diagram

The parameter dependence of OP solutions when interacting with OD stripes is shown in Fig. 9A,B.
Similar to the low order variant of this coupling energy the amplitude of the stripes pattern A1 is
suppressed while the amplitude of the opposite mode A1− grows. Finally both amplitudes collapse,
leading to an orientation scotoma solution. In contrast to the low order variant this stripe pattern is stable
for arbitrary large inter-map coupling. In case of OP rhombic solutions inter-map coupling transforms
this solution by reducing the amplitudes A2 = A2− while increasing the amplitudes A3 = A3− . Without
OD bias this solution is then transformed into the orientation scotoma stripe pattern, similar to the low
order variant of this energy. In contrast to the low order energy, for non-zero bias the amplitudes A2 and
A3 stay small but non-zero.
The parameter dependence of OP solutions when interacting with OD hexagons is shown in Fig. 9C,D.
For a small OD bias (γ = γ∗) OP rhombic solutions decay into OP stripe-like patterns. These stripe-like
patterns stay stable also for large-inter map coupling. In case of a larger OD bias (γ = 3γ∗), both the OP
stripe and the OP rhombic solutions decay into the uniform PWC solution. Thus for small bias there is
a bistability between stripe-like and uniform PWC solutions while for larger OD bias the uniform PWC
solution is the only stable solution. The potential of OP stripe and OP rhombic solutions is shown in
Fig. 9E,F. In the uncoupled case as well as for small inter-map coupling strength OP stripe solutions are
for all bias values the energetic ground state. For large inter-map coupling and a small bias (γ ≈ γ∗)
rhombic solutions are unstable and the stripe-like solutions are energetically preferred compared to PWC
solutions. For larger bias, however, PWC solutions are the only stable solutions for large inter-map
coupling.
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Figure 9. Stationary amplitudes with coupling energy U = τ |z|4o4. Solid (dashed) lines: stable
(unstable) solutions to Eq. (71). A,B OD stripes, γ = 0 (blue), γ = γ∗ (green), γ = 1.4γ∗ (red). A OP
stripe-like solutions, B OP rhombic solutions, C,D OD hexagons, γ = γ∗ (blue), γ = 3γ∗ (red). C OP
stripe-like solutions, D OP rhombic solutions, E Potential, Eq. (70), of OP stripes and OP rhombs
interacting with OD stripes. F Potential, Eq. (70), of OP stripes, OP rhombs, and hPWC interacting
with OD hexagons.
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Figure 10. A Phase diagram with coupling energy U = τo4|z|4, ro = 0.2, rz ≪ ro. Vertical black
lines: stability range of OD stripes, hexagons, and constant solutions. Orange dashed line: Stability
border of orientation scotoma stripes. Green solid line: Stability border of rhombic solutions. Red solid
line: Stability border of PWC solutions, red dashed line: γc, B Course of Eq. (80), dashed line: ∆ = π.
C Stability border between Eq. (80) solution and the ∆ = π solution as a function of ro (vertical red
line in A).

Phase diagram

The stability properties of all stationary solutions are summarized in the phase diagram Fig. 10. Compared
to the gradient-type interaction energy we cannot scale out the dependence on ro. The phase diagram is
thus plotted for ro = 0.2. We rescale the inter-map coupling strength as τB4 where B is the stationary
amplitude of the OD hexagons. In the regime of stable OD stripes there is a transition from OP stripes
towards the orientation scotoma stripe solution. In the regime of stable OD hexagons there is a transition
from OP stripes towards PWC solutions (red line). The stability border of PWC solutions is strongly
OD bias dependent and has a peak at γ ≈ 2γ∗. For small OD bias γ the uniform solution Eq. (80)
is stable. With increasing bias there is a smooth transition of this solution until at γ = γc the d = π
uniform solution becomes stable. In Fig. 10C the stability border γc between the two types of uniform
solutions is plotted as a function of ro. We observe that there is only a weak dependence on the control
parameter and γc ≈ 2γ∗.

Interaction induced pinwheel crystals

Figure 11 illustrates the uniform solutions Eq. (80) for different values of the OD bias γ. For small bias,
the OP pattern has six pinwheels per unit cell. Two of them are located at OD maxima while one is
located at an OD minimum. The remaining three pinwheels are located near the OD border. With
increasing bias, these three pinwheels are pushed further away from the OD border, being attracted to
the OD maxima. With further increasing bias three shifted pinwheels merge with the one at the OD
maximum building a single charge 1 pinwheel centered on a contralateral peak. The remaining two
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Figure 11. Bias dependent pinwheel crystals, Eq. (80) A γ = γ∗, B γ = 1.3 γ∗, C γ = 1.6 γ∗, D
γ = 2 γ∗. OP map, superimposed are the OD borders (gray), 90% ipsilateral eye dominance (black),
and 90% contralateral eye dominance (white), ro = 0.2. Dashed lines mark the unit cell of the regular
pattern. E,F Distribution of orientation preference. G Intersection angles between iso-orientation lines
and OD borders.

pinwheels are located at an ispi and contra peak, respectively. Note, compared to the Braitenberg PWC
of the ∆ = 0 uniform solution the charge 1 pinwheel here is located at the contralateral OD peak. Finally,
the charge 1 pinwheels split up again into four pinwheels. With increasing bias the solution more and
more resembles the Ipsi-center PWC (∆ = π solution) which is stable also in the lower order version of
the coupling energy. Finally, at γ/γ∗ ≈ 2 the Ipsi-center PWC becomes stable and fixed for γ > 2γ∗. The
distribution of preferred orientations for different values of the bias γ is shown in Fig. 11E,F, reflecting the
symmetry of each pattern. The distribution of intersection angles is shown in Fig. 11G. Remarkably, all
solutions show a tendency towards perpendicular intersection angles. This tendency is more pronounced
with increasing OD bias. At about γ/γ∗ ≈ 1.9 parallel intersection angles are completely absent and at
γ/γ∗ ≈ 2 there are exclusively perpendicular intersection angles.

Gradient-type energy U = ǫ |∇o∇z|4

Finally, we examine the higher order version of the gradient-type inter-map coupling. The interaction
terms are independent of the OD shift δ. In this case the coupling strength can be rescaled as βB4 and
is therefore independent of the bias γ. The bias in this case only determines the stability of OD stripes,
hexagons or the constant solution.

Stationary solutions and their stability

As for its lower order pendant a coupling to OD stripes is relatively easy to analyze. The energetic ground
state corresponds to OP stripes with the direction perpendicular to the OD stripes for which U = 0.
In addition, there are rhombic solutions with the stationary amplitudes A1 = A1− = A2 = A2− =√
rz/(5 + 80ǫB4). In case the OD map is a constant, Eq. (117), the gradient-type inter-map coupling
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Figure 12. Stationary amplitudes with coupling energy U = ǫ |∇z∇o|4, A Solid (dashed) lines:
Stable (unstable) solutions of Eq. (71). Blue: rPWC, green: distorted rPWC, red: hPWC. Black lines:
stripe-like solutions. B Potential, Eq. (70), of OP stripes (black), OP rhombs (blue), and hPWC
solutions (red).

leaves the OP unaffected. As for its lower order pendant the stationary states are therefore OP stripes
running in an arbitrary direction and the uncoupled rhombic solutions.
In case of OD hexagons, Eq. (116), we identified three types of non-uniform solutions. Besides stripe-like
solutions of z(x) with one dominant mode we find rPWCsAj = Aj− = (A, a,A) with a≪ A and distorted
rPWCs Aj = (A1,A2,A3) , Aj− = (A3,A2,A1) with A1 6= A2 6= A3. Note, that distorted rPWCs are not
stable in case of the product-type coupling energy or the analyzed low-order coupling energies. For these
non-uniform solutions the stationary phases are inter-map coupling strength dependent. We therefore
calculate the stationary phases and amplitudes numerically using a Newton method and initial conditions
close to these solutions.
In case of OD hexagons there are further uniform solutions Aj = Aj− = A, Bj = B and ψ1 = ψ3 =
0, ψ2 = π. The imaginary part of Eq. (71) leads to equations for the phases φj . The ansatz Eq. (60)
leads to the stationarity condition

(13 cos∆− 5) sin∆ = 0 . (82)

The solutions are ∆ = 0,∆ = π, and ∆ = ± arccos
(

5
13

)
≈ ±1.176 where the stationary amplitude are

given by
A =

√
rz/ (9 + ǫB4 (61.875− 7.5 cos∆ + 4.875 cos(2∆))) . (83)

We calculated the stability properties of all stationary solutions by linear stability analysis considering
perturbations of the amplitudes Aj → A + aj , Aj− → A + aj− and of the phases φj → φj + ϕj ,
φj− → φj− +ϕj− . This leads to a perturbation matrixM . In general amplitude and phase perturbations
do not decouple. We therefore calculate the eigenvalues of the perturbation M matrix numerically. It
turns out that for this type of coupling energy only the uniform solutions with ∆ = ± arccos

(
5
13

)
are

stable while the ∆ = 0 and ∆ = π solutions are unstable in general.

Bifurcation diagram

For increasing inter-map coupling strength the amplitudes of the OP stripe and OP rhombic solutions
are shown in Fig. 12A. In case of stable OD hexagons there is a transition from rPWC (blue) towards
distorted rPWC (green). The distorted rPWCs then decay into the hPWC (red). In case of OP stripes
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(black dashed lines) inter-map coupling leads to a slight suppression of the dominant mode and a growth
of the remaining modes. This growth saturates at small amplitudes and thus the solution stays stripe-
like. This stripe-like solution remains stable for arbitrary large inter-map coupling. Therefore there is a
bistability between hPWC solutions and stripe-like solutions for large inter-map coupling.
The stability borders for the rPWC and distorted rPWC solutions were obtained by calculating their
bifurcation diagram numerically from the amplitude equations Eq. (71). With increasing map coupling
we observe a transition from a rPWC towards a distorted rPWC at ǫB4 ≈ 0.033 (blue dashed line in
Fig. 13A), see also Fig. 16A. The distorted rPWC loses its stability at ǫB4 ≈ 0.065 (blue solid line in
Fig. 13A) and from thereon all amplitudes are equal corresponding to the hPWC. There is a bistability
between hPWC, rPWC, and stripe-like solutions. To calculate the inter-map coupling needed for the
hexagonal solution to become the energetic ground state we calculated the potential Eq. (70) for the
three solutions. In case of the uniform solution Eq. (60) the potential is given by

V = −6A2rz − 3B2ro + 27A4 +
45

2
B4

+
1

16
A4B4ǫ (3210− 456 cos∆ + 90 cos(2∆)) . (84)

The potential in case of the rhombic and stripe-like solutions was obtained by numerically solving the
amplitude equations using Newtons method and initial conditions close to these solutions. Above ǫB4 ≈
0.12 the hPWC is energetically preferred compared to stripe-like solutions (red dashed line in in Fig. 13)
and thus corresponds to the energetic ground state for large inter-map coupling, see Fig. (12)B.

Phase diagram

We calculated the phase diagram of the coupled system in the limit rz ≪ ro, shown in Fig. 13. The phase
diagram contains the stability borders of the uncoupled OD solutions γ∗, γ∗2 , γ

∗
3 , γ

∗
4 . They correspond to

vertical lines, as they are independent of the inter-map coupling in the limit rz ≪ ro. At γ = γ∗ hexagons
become stable. Stripe solutions become unstable at γ = γ∗2 . At γ = γ∗3 the homogeneous solution becomes
stable while at γ = γ∗4 hexagons loose their stability. In units γ/γ∗ the borders γ∗2 , γ

∗
3 , γ

∗
4 vary slightly

with ro , see Fig. 26, and are drawn here for ro = 0.2. We rescale the inter-map coupling strength as ǫB4

where B is the stationary amplitude of the OD hexagons. The stability borders of OP solutions are then
horizontal lines. For γ < γ∗ or for γ > γ∗4 pinwheel free orientation stripes are dynamically selected. For
γ∗ < γ < γ∗4 and above a critical effective coupling strength ǫB4 ≈ 0.042 hPWC solutions are stable and
become the energetic ground state of Eq. (70) above ǫB4 ≈ 0.117. Below ǫB4 ≈ 0.065, rPWC solutions
are stable leading to a bistability region between rPWC and hPWC solutions. We find in this region
that rhombic solutions transform into distorted rhombic solutions above an effective coupling strength of
ǫB4 ≈ 0.033.

Interaction induced pinwheel crystals

First, we studied the spatial layout of the rhombic solutions which is illustrated in Fig. 14. The rPWC
solutions are symmetric under rotation by 180 degree. The rhombic solution has 4 pinwheels per unit
cell and its pinwheel density is thus ρ = 4 cos(π/6) ≈ 3.5. One may expect that the energy term Eq. (23)
favors pinwheels to co-localize with OD extrema. In case of the rhombic layout there is only one pinwheel
at an OD extremum while the other three pinwheels are located at OD saddle-points which are also
energetically favorable positions with respect to U . The orientation selectivity |z(x)| for the rPWC is
shown in Fig. 14B. The pattern of selectivity is arranged in small patches of highly selective regions.
The hexagonal layout of the two stable uniform solutions is shown in Fig. 15. The ∆ = ± arccos(5/13)
solutions have six pinwheels per unit cell. Their pinwheel density is therefore ρ = 6 cosπ/6 ≈ 5.2. Three
pinwheels of the same topological charge are located at the extrema of the OD map. Two of these are
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Figure 13. Phase diagram with coupling energy U = ǫ |∇z∇o|4, for rz ≪ ro. Vertical lines:
stability range of OD hexagons, red solid line: stability border of hPWC, blue solid line: stability
border of rPWC, blue dashed line: transition from rPWC to distorted rPWC. Dashed red line: hPWC
corresponds to ground state of energy.
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A B

Figure 14. Rhombic pinwheel crystals. A OP map with superimposed OD borders (gray), 90%
ipsilateral eye dominance (black), and 90% contralateral eye dominance (white), γ = 3γ∗, ro = 0.2. B
Selectivity |z(x)|, white: high selectivity, black: low selectivity.

located at the OD maximum while one is located at the OD minimum. The remaining three pinwheels
are not at an OD extremum but near the OD border. The distance to the OD border depends on the
OD bias, see Fig. 15D. For a small bias (γ ≈ γ∗) these three pinwheels are close to the OD borders
and with increasing bias the OD border moves away from the pinwheels. The pinwheel in the center
of the OP hexagon is at the contralateral OD peak. Because these pinwheels organize most of the
map while the others essentially only match one OP hexagon to its neighbors we refer to this pinwheel
crystal as the Contra-center pinwheel crystal. Note, that some pinwheels are located at the vertices of
the hexagonal pattern. Pinwheels located between these vertices (on the edge) are not in the middle
of this edge. Solutions with ∆ = ± arccos(5/13) are therefore not symmetric under a rotation by 60
degree but symmetric under a rotation by 120 degree. Therefore the solution ∆ = +arccos(5/13) cannot
be transformed into the solution ∆ = − arccos(5/13) by a rotation of the OD and OP pattern by 180
degrees. This symmetry is also reflected by the distribution of preferred orientations, see Fig. 15F. Six
orientations are slightly overrepresented. Compared to the Ipsi-center PWC, which have a 60◦ symmetry,
this distribution illustrates the 120◦ symmetry of the pattern. The distribution of intersection angles is
continuous, see Fig. 15C. Although there is a fixed uniform solution with varying OD bias the distribution
of intersection angles changes. The reason for this is the bias dependent change in the OD borders, see
Fig. 15D. For all bias values there is a tendency towards perpendicular intersection angles, although for
low OD bias there is an additional small peak at parallel intersection angles. The orientation selectivity
|z(x)| for the hPWC is shown in Fig. 15E. The pattern shows hexagonal bands of high selectivity.
Finally, we study changes in pinwheel positions during the transition from a rPWC towards a hPWC i.e.
with increasing inter-map coupling strength. In case of the higher order gradient-type coupling energy
there is a transition towards a contra-center PWC, see Fig. 16A. In the regime where the distorted
rPWC is stable, three of the four pinwheels of the rPWC are moving either from an OD saddle-point
to a position near an OD border (pinwheel 1 and 3) or from an OD saddle-point to an OD extremum
(pinwheel 4). One pinwheel (pinwheel 2) is fixed in space. At the transition to the hPWC two additional
pinwheels are created, one near an OD border (pinwheel 5) and one at an OD extremum (pinwheel 6).
We compare the inter-map coupling strength dependent pinwheel positions of the gradient-type coupling
energy with those of the product type coupling energy, see Fig. (16)B. In this case three (pinwheel 2,3,4)
of the four rPWC pinwheels have a inter-map coupling strength independent position. The remaining
pinwheel (pinwheel 1) with increasing inter-map coupling strength splits up into three pinwheels. While
one of these three pinwheels (pinwheel 1) is fixed in space the remaining two pinwheels (pinwheel 5,6)
move towards the extrema of OD. Thus for large inter-map coupling, where hPWC solutions are stable,
all six pinwheels are located at OD extrema.
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Figure 15. Contra-center pinwheel crystals. A,B OP map, superimposed are the OD borders
(gray), 90% ipsilateral eye dominance (black), and 90% contralateral eye dominance (white),
ro = 0.2, γ = 3γ∗. A ∆ = arccos(5/13), B ∆ = − arccos(5/13). C Distribution of orientation preference.
D OP map with superimposed OD map for three different values
(γ = γ∗, γ = (γ∗4 − γ∗) /2 + γ∗, γ = γ∗4 ) of the OD bias. E Selectivity |z(x)|, white: high selectivity,
black: low selectivity. F Distribution of intersection angles.

Synopsis of analytical results

We have examined the impact of four different interaction energies on the structure of local minima and
ground states of models for the coordinated optimization of a complex and a real scalar feature map
such as OP and OD maps. The models were constructed such that in the absence of interactions, the
maps reorganized into simple stripe or blob pattern. In particular, the complex scalar map without
interactions would form a periodic stripe pattern without any phase singularity. In all four models, in-
creasing the strength of interactions could eventually stabilize qualitatively different more complex and
biologically more realistic patterns containing pinwheels that can become the energetic ground states for
strong enough inter-map interactions. The way in which this happens provides fundamental insights into
the relationships between map structure and energy functionals in optimization models for visual cortical
functional architecture.
Our results demonstrate that the structure of maps shaped by inter-map interactions is in principle
informative about the type of coupling energy. Pinwheel positions in rPWCs tracked while increasing
inter-map coupling strength were different for different coupling terms examined and thus can in prin-
ciple serve as a trace of the underlying optimization principle. Furthermore, the organization of the
complex scalar map that optimizes the joined energy functional was in general different for all four types
of coupling terms examined. This organization, however, was often not inferable by simple qualitative
considerations on the energy functional. For instance, the higher order gradient-type interaction term
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Figure 16. Inter-map coupling strength dependent pinwheel positions. OD map,
superimposed pinwheel positions (points) for different inter-map coupling strengths, γ/γ∗ = 3. Numbers
label pinwheels within the unit cell (dashed lines). Blue (green, red) points: pinwheel positions for
rPWC (distorted rPWC, hPWC) solutions. A U = ǫ |∇z∇o|4, using stationary amplitudes from
Fig. (12)(a). Positions of distorted rPWCs move continuously (pinwheel 1,3,4). B U = τ |z|4o4, using
stationary amplitudes from Fig. (9)D. Positions of rPWCs move continuously (pinwheel 5,6).

positioned half of the pinwheels close to OD borders although examination of the interaction term per
se suggests that OD extrema should be energetically preferred. Also, in all models, intersection angles of
iso-orientation lines and OD borders have a tendency towards perpendicular angles whether the energy
term mathematically depends on this angle, as for the gradient-type energies, or not, as for the product-
type energies. Intersection angle statistics thus are not a very sensitive indicator of the type of interaction
optimized. Mathematically, these phenomena result from the complex interplay between the single map
energies and the interaction energies.
The information provided by the map structure appears rather qualitative than quantitative. In three of
the four models, hPWC patterns resulting from strong interactions were fixed, not exhibiting any sub-
stantial dependence on the precise choice of interaction coefficient. In principle, the spatial organization
of stimulus preferences in a map is an infinite dimensional object that could depend and be sensitively
in distinct ways on a large number of model parameters. It is thus important to note that this structure
often essentially gives no information about the value of coupling constant in our simple models. The
situation is reversed when considering the structure of rPWCs. These solutions exist and are stable
although energetically not favored in the absence of inter-map interactions. Some of their pinwheel posi-
tions continuously depend on the strength of inter-map interactions. These solutions and their parameter
dependence however are largely uninformative about the nature of the interaction energy. This reflects
that the rPWC state essentially is an uncoupled system solution that is only modified by the inter-map
interaction. In summary, although distinct types of coupling energies can leave distinguishing signature
on the structure of maps shaped by interaction (as the OP map in our example), drawing precise conclu-
sions about the coordinated optimization principle from observed map structures is not possible for the
analyzed models.

Part III: Dynamics and higher feature dimensions

So far, we presented an analytical treatment of the coordinated optimization of interacting pairs of maps.
Our results demonstrate that various types of inter-map coupling energies can induce the formation of
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pinwheel-like singularities in the complex scalar map. In the solutions that are energetically favored by
the interaction energy and can become global ground states of the model, singularities are arranged on
regular periodic lattices (rPWCs, hPWCs). However, our perturbative treatment gives no information
on the speed with which singularities that were initially generated during spontaneous symmetry break-
ing will crystallize into such highly ordered arrays. In principle, this process may occur on very long
timescales. If this was the case, developmental optimization may lead to long-lived spatially irregular
states that are transients towards regular patterns that would be reached after very long times or poten-
tially never if the relevant time scale would be bigger than the critical period. In addition, we showed
that for higher order inter-map coupling energies we could neglect the backreaction onto the OD map
for a sufficiently small ratio rz/ro. Also this finding raises questions that cannot be addressed purely
perturbatively. Do the observed local minima and ground states of the analyzed optimization princi-
ples persist when taking the backreaction into account or when considering map formation far from the
pattern forming threshold? Besides the influence of the backreaction the full dynamical system receives
additional corrections. There are higher order corrections to the uncoupled amplitude equations which
can become important for finite bifurcation parameters rz , ro but which we neglected above. Finally, it
seems appropriate to assess whether our main results might qualitatively depend on the relatively low
number of feature maps considered. While our analysis so far was confined to two interacting maps such
as OP and OD the visual cortex contains additional mapped representations. Theoretically, multiple
interacting maps with conflicting design requirements may more easily lead to spatially aperiodic layouts
that would be biologically more realistic than the regular pattern we found in the models considered so
far. To assess these issues we solved the full field dynamics Eq. (10) numerically. The numerical inte-
gration scheme is detailed in the Methods part. Initial conditions for the OD map are stripe, hexagonal,
or constant patterns plus white noise. Initial conditions for the OP map are either pinwheel-free OP
stripes or band-pass filtered Gaussian random noise for which the average pinwheel density equals the
mathematical constant π. For this numerical analysis we focus on the high order gradient-type inter-map
coupling energy that can reproduce all qualitative relationships found between OP and OD maps, does
not suffer from potential OP map suppression, and has a relatively simple phase diagram.

Kinetics of pinwheel crystallization

To characterize the process of pinwheel annihilation, preservation, and creation during progressive map
optimization we calculated the pinwheel density as well as various other pinwheel statistics, see Methods,
during the convergence of patterns to attractor states. The time evolution of the pinwheel density is
shown in Fig. 17. In the uncoupled case (ǫ = 0) most of the patterns decayed into a stripe solution and
their pinwheel density dropped to a value near zero. At small coupling strengths (ǫ = 200) the pinwheel
density converged either to zero (stripes), to values near 3.5 for the rPWC, or to approximately 5.2 for
the contra-center PWC. At high map coupling (ǫ = 2000) pinwheel free stripe patterns formed neither
from pinwheel rich nor from pinwheel free initial conditions. In this regime the dominant layout was
the contra-center PWC. When starting from OD and OP stripes, see Fig. 17C (green lines), the random
orientation between the stripes first evolved towards a perpendicular orientation (T ≈ 1). This lead to a
transient increase in the pinwheel density. At the time (T ≈ 10) where the OD stripes dissolve towards
OD hexagons hPWC solutions formed and the pinwheel density reached its final value.
Regions of hPWC layout can however be inter-digitated with long lived rPWC solutions and stripe do-
mains. Figure 17D shows the time course of the normalized power Pn(t) = 〈|z(x, t)dyn|2〉x/〈|z(x, t)th|2〉x,
where 〈〉x denotes spatial average. The field zth is obtained from solution of the amplitude equations
Eq. (42) while zdyn is the field obtained from the simulations. Starting from a small but nonzero power
the amplitudes grew and saturated after T ≈ 1. When the amplitudes were saturated the selection of
the final pattern started. Quantitatively, we found that with backreaction the critical coupling strengths
were slightly increased compared to their values in the limit rz ≪ ro. Snapshots of the simulation leading
to hPWC solutions at three time frames are shown in Fig. 18. At T ≈ 0.8 a broad rearrangement of the
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Figure 17. Time evolution of the pinwheel density, U = ǫ |∇z∇o|4,
rz = 0.05, ro = 0.25, γ = 0.15. For each parameter set A-C simulations in blue started from an identical
set of 20 initial conditions. Red dashed line: ρ = 4 cos(π/6) and ρ = 6 cos(π/6). A ǫ = 0 B ǫ = 200 C

ǫ = 2000. D Normalized power of OP map, ǫ = 0 (red), ǫ = 200 (blue), and ǫ = 2000 (green). In green
C: OD and OP stripes as initial conditions. Parameters: 128× 128 mesh, Γ = 22.

pattern took place and we could identify different domains in the pattern.
During time evolution we further calculated the distributions of pinwheel next-neighbor distances d,
measured in units of the column spacing Λ. The distributions of distances for simulations leading to
rhombic and hPWC solutions are shown in Fig. 19. We could identify three stages in the evolution of
the pinwheel distances. At early stages of the evolution (T ≈ 10−2) there was a continuous distribution
starting approximately linearly from d = 0. At the time where the amplitudes saturated (T ≈ 1) the
distribution of pinwheels became very inhomogeneous. Different domains with stripe-like, rhombic, or
hexagonal patterns appeared (see also Fig. 21C,D) until finally the rhombic or hexagonal pattern took
over the whole area.
As pinwheels carry a topological charge we could divide the distributions according to distances be-
tween pinwheels of the same charge or according to distances between pinwheels of the opposite charge.
In Fig. 20 we present pinwheel distances for the final states of the dynamics. In case of the rhombic
solutions there is only a single pinwheel to pinwheel distance with d = 1/

√
3 ≈ 0.58Λ. In numerical sim-

ulations small variations in the amplitudes lead to a slightly larger distance between pinwheels of equal
charge than between pinwheels of opposite charge. Therefore their distance distributions do not collapse
exactly, see Fig. 20A. In case of the hPWC there are three peaks at d ≈ 0.28Λ, d ≈ 0.36Λ and d ≈ 0.56Λ
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Figure 18. Snapshots of the pinwheel crystallization process. Top panel: OP map, bottom
panel: selectivity |z(x)|. Left: T = 0.01, middle: T = 0.8, right: T = Tf = 104. Parameters as in
Fig. 17(c).

in the pinwheel distance distribution of arbitrary charge, see Fig. 20B. These three peaks all result from
distances between pinwheels carrying the opposite charge while the distance between pinwheels of the
same charge shows two peaks at d ≈ 0.48Λ and d ≈ 0.64Λ in the distribution. The origin of the peaks
is indicated in Fig. 20C and Fig. 20D.
We have shown that inter-map coupling leads to a stabilization of pinwheels in the OP pattern. This
however does not mean that pinwheels initially generated by spontaneous symmetry breaking will be
preserved during convergence of the map. To what extent are the pinwheels in the crystalline OP maps
rearrangements of pinwheels of the initial OP pattern? To answer this question we calculated the pin-
wheel annihilation a(t) and creation c(t) rate during time evolution, see Methods. The time evolution
of these rates, averaged over 20 simulations leading to a hPWC, is shown in Fig. 21A. We observe that
both rates are fairly equal throughout the development, with a slightly higher creation rate in the later
stage of development. During the initial stages of time evolution creation and annihilation rates decay
algebraically. At T ≈ 3 both rates deviate from this algebraic decay. From thereon annihilation and
creation rates increase, reflecting a broad rearrangement of the pattern. After T ≈ 15 no pinwheels are
created or annihilated anymore and the pinwheels of the final pattern are present.
Pinwheels are created and annihilated until the crystal pattern is formed. How many pinwheels of the
initial pattern are still present in the final pattern? For a given set of pinwheels at an initial time T = T ∗

we further calculate the fraction s(t) of those pinwheels surviving until time T . The fraction of pinwheels
present at time T ∗ that survive up to the final time T = Tf is given by p(t). Both fractions are shown in
Fig. 21B for T ∗ = 0.01 and in Fig. 21C for T ∗ = 2, a time where the power P (t) has almost saturated,
see Fig. 17D. We observed that about 20% of the initial pinwheels are preserved until the final time
and therefore most of the pinwheels of the crystal pattern are created during development. From those
pinwheels which are present when the power saturates about 65% are also present in the final pattern.

Detuning OD and OP wavelengths: OD stripes

The previous analytical as well as numerical results showed that OD stripes do not lead to spatially com-
plex patterns and are not capable of stabilizing pinwheels. In case of gradient-type inter-map couplings
the OP map consists of stripes which run perpendicular to the OD stripes, see Fig. 7 and Fig. 13A.
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Figure 19. Distribution of nearest neighbor distances during development. A-C rPWC D-F

hPWC. Distance to the next pinwheel of arbitrary A,D, opposite B,E, and equal C,F topological
charge. Parameters as in Fig. 17B.

In case of the product-type inter-map coupling high gradient regions of both maps avoid each other by
producing again OP stripes but now running in the same direction as the OD stripes, see Fig. 3A and
Fig. 9A. In numerical simulations we also investigated the case of OD stripes of larger wavelength than
OP columns, as is the case in macaque monkeys [20]. In case of a gradient-type inter-map coupling the
OD bands are perpendicular to the OP bands independent of the ratio Λo/Λz > 1, see Fig. 22A-C. In
case of the product-type inter-map coupling if the ratio Λo/Λz > 1 orientation representation does not
collapse, as seen in Fig. 9D-F. The system, however, again finds a way to put a zero contour of z along
the OD maximum which now is a fracture line, see Fig. 22. The angle between the active OP and OD
modes is given by α = arccoskc,o/kc,z. This leads to the resonance relation ~k1,z − ~k2,z − 2~k1,o = 0, see
Fig. 22A. Interaction terms between OD and OP Fourier modes thus arise through amplitude equations
of the form

∂t A1 = rzA1 − |A1|2A1 − 2|A2|2A1 − 6τ |B|4
(
|A1|2A1 + 2|A2|2A1

)

−4τB3B
(
|A2|2A2 + 2|A1|2A2

)
− 4τB

3
BA2

1A2 − τB4A1A
2
2 , (85)

and a corresponding equation for the mode A2.

Detuning OD and OP wavelengths: OD hexagons

In case of identical wavelengths kc,o = kc,z strong interaction with OD hexagons leads to hPWC solu-
tions. For these solutions pinwheel positions are correlated with OD extrema. For instance in case of
the higher order gradient-type inter-map coupling energy, for which the contra-center PWC corresponds
to the energetic ground state, half of the pinwheels are located at OD extrema. However, if the typical
wavelengths of OD and OP patterns are detuned such a precise relationship cannot be fulfilled in gen-
eral. We therefore studied whether a detuning of typical wavelengths can lead to spatially irregular and
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Figure 20. Distribution of nearest neighbor distances for final states (T = Tf = 104). A
rPWC, B hPWC with pinwheels of equal (red) and opposite (blue) charge. C and D Illustration of
occurring pinwheel distances. Pinwheels are marked with star symbols according to their charge. Units
are given in Λ. Parameters as in Fig. 17B.
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Figure 21. Pinwheel annihilation and creation. A Creation (blue) and annihilation (red) rates
during time evolution. B,C Survival fraction (red) and fraction of preserved pinwheels (blue) compared
to the initial time T ∗ = 0.01 B and T ∗ = 2 C. Parameters as in Fig. 17C.

pinwheel rich OP patterns. In numerical simulations which lead to OD hexagons with a fixed wavelength
we varied the OP wavelength using identical initial conditions. Examples of final patterns of such simu-
lations are shown in Fig. 23 using the high order gradient-type inter-map coupling energy. In all studied
cases the final patterns are spatially regular. The observed patterns are either patterns with two active
modes Fig. 23A,C,D,E or rPWC, see Fig. 23B,F. For a large ratio kc,o/kc,z the patterns with two active
modes are pinwheel free, see Fig. 23A,C,D. For smaller ratios kc,o/kc,z the patterns are pinwheel rich,
see Fig. 23E.
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Figure 22. Map interactions with detuned wavelengths and OD stripes. OD stripes
interacting with OP columns where Λo/Λz > 1. A,B Illustration of active modes in Fourier space with
kc,o < kc,z, α = arccoskc,o/kc,z. C,D U = ǫ|∇z∇o|4, E,F U = τo4|z|4. C,E Λo/Λz = 1.3, D,F

Λo/Λz = 2. Left: initial condition, middle: T = 1, right: T = 5 · 104. Parameters:
τ = 2000, rz = 0.05, ro = 0.2,Γz = 20, 256× 256 mesh. Initial condition identical in all simulations.



45

A B C

D E F

Figure 23. Map interactions with detuned wavelength and OD hexagons. U = ǫ |∇z∇o|4. A
Λo/Λz = 0.927, B Λo/Λz = 0.829, C Λo/Λz = 0.634, D Λo/Λz = 0.586, E Λo/Λz = 0.537, F
Λo/Λz = 0.488. Parameters: γ = 0.15, rz = 0.05, ro = 0.2, ǫ = 2000,Γo = 41, Tf = 104, 256× 256 mesh.
Initial condition identical in all simulations.
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Higher feature dimensions

The inclusion of more feature dimensions into the dynamics can be performed in a similar fashion as the
geometric correlations between the maps seem to be universal [18]. To illustrate this we used the higher
order gradient-type inter-map coupling with three and four cortical maps which are mutually coupled.
Whereas in the case of two maps the coupling energy is zero if the two stripe solutions are perpendicular
to each other the interactions between more maps potentially leads to a frustration as not all of the
individual coupling energies can simultaneously vanish. Using the gradient coupling energy

U = U1 + U2 + U3 = ǫ1 |∇z∇o1|4 + ǫ2 |∇z∇o2|4 + ǫ3 |∇o1∇o2|4 , (86)

and no OD bias (γ = 0) we observed two types of stationary solutions, see Fig. 24. Here we used equal
coupling strengths ǫ1 = ǫ2 = ǫ3 = ǫ. In case all bifurcation parameters were equal the OP map consisted
of stripes. Also the two real fields consisted of stripes, both perpendicular to the OP stripes i.e.

z(x) = Aeı
~k1~x

o1(x) = 2B1 cos(~k2~x)

o2(x) = 2B2 cos(~k2~x+ ψ) , ~k1 · ~k2 = 0 . (87)

The energy in this case is given by U1 = U2 = 0, U3 =
B4

1B
4
2π

16 (18 + 16 cos(2ψ) + cos(4ψ)) which is
minimal for ψ = π/2, i.e. the energy is minimized by shifting one real field by half of the typical
wavelength. When the bifurcation parameter of the OP map was smaller than that of the two real fields
we obtained PWC patterns, see Fig. 24B. The pinwheels were arranged such that they are in the center
of a square spanned by the two orthogonal real fields and the resulting pinwheel density is ρ = 4. All
intersection angles between iso-orientation lines and borders of the real fields were perpendicular. When
extending the system by another real field we observed a similar behavior. Figure 24C,D shows the
stationary states of a complex field coupled to three real fields. In case of equal bifurcation parameters
the stationary patterns were OP stripes, perpendicular to the stripe and meandering real solutions. In
case the bifurcation parameter of the OP map was smaller than the other bifurcation parameters we again
observed pinwheel crystallization. Note, that in this case all pinwheels were located at the border of one
of the three real fields. To summarize, pinwheel crystallization was only observed if the OP is driven
by the real field i.e. if the OP amplitudes are small. In all observed cases the patterns were spatially
periodic.
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Figure 24. Map interactions in higher feature dimensions. A,B Map layout by interactions
between three columnar systems (z(x), o1(x), o2(x)). All maps are mutually coupled. Superimposed on
the OP map there are the borders of two real fields (black, white). A rz = ro1 = ro2 = 0.1 B

rz = 0.01, ro1 = ro2 = 0.1. C,D Interactions with four columnar systems (z(x), o1(x), o2(x, t), o3(x, t)).
C rz = ro1 = ro2 = ro3 = 0.1. D rz = 0.01, ro1 = ro2 = ro3 = 0.1. Superimposed on the OP map there
are the borders the of three real fields (black, gray, white). Left panel: initial conditions, middle panel:
T = 10, right panel: T = Tf = 5 · 104. Parameters in all simulations: ǫ = 2000, γ = 0,Γ = 22, 128× 128
mesh.
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Discussion

Summary of results

In this study we presented a symmetry-based analysis of the hypothesis that visual cortical architecture
is shaped by the coordinated optimization of different functional maps. In particular, we focused on the
question of how and whether different optimization principles impact on the spatial layout of functional
maps in the primary visual cortex. Specifically, we identified different representative candidate optimiza-
tion principles. We developed a dynamical systems approach for analyzing the simultaneous optimization
of interacting maps and showed how their layout is influenced by coordinated optimization. In partic-
ular, we demonstrated that inter-map coupling can stabilize pinwheel-rich layouts even if pinwheels are
intrinsically unstable in the uncoupled system. We calculated and analyzed the stability properties of
solutions forming a spatially regular layout with pinwheels arranged in a crystalline array. We analyzed
the structure of these pinwheel crystals in terms of their stability properties, spatial layout, and geomet-
ric inter-map relationships. For all models, we calculated phase diagrams showing the stability of the
pinwheel crystals depending on the OD bias and the inter-map coupling strength. The main phenomena
characterizing all considered models, crystallization induced by coordinated optimization and inter-map
coupling, was found to be robust to a substantial degree of backreaction between the maps and persisted
in models with higher feature space dimensionality.
Comparison to previous work

Our results rigorously establish that models of interacting OP and OD maps in principle offer a so-
lution to the problem of pinwheel stability [31, 52]. This problem and other aspects of the influence
of OD segregation on OP maps have previously been studied in a series of models such as elastic net
models [12–15,31,33], self-organizing map models [8,10,11,16,17], spin-like Hamiltonian models [32,61],
spectral filter models [62], correlation based models [63], and evolving field models [64]. Several of these
simulation studies found a higher number of pinwheels per hypercolumn if the OP map is influenced
by strong OD segregation compared to the OP layout in isolation or the influence of weak OD segrega-
tion [31, 61, 64]. In such models, high gradients of OP and OD avoid each other [10, 16]. As a result,
pinwheel centers tend to be located at centers of OD columns as seen in experiments [18, 19, 63, 65, 66].
By this mechanism, pinwheels are spatially trapped and pinwheel annihilation is reduced [31]. More-
over, many models appear capable of reproducing realistic geometric inter-map relationships such as
perpendicular intersection angles between OD borders and iso-orientation lines [33,62,63]. Furthermore,
Tanaka et al. have reported that the relative positioning of orientation pinwheels and OD columns was
dependent on model details [63]. Informative as they were, one must note that almost all of these pre-
vious studies entirely relied on numerical approaches using methodologies that do not easily permit to
assess the progress and convergence of solutions. Whether the reported solutions are attractors or just
transient states and whether the solutions further develop towards pinwheel-free solutions or other states
thus remained unclear. Moreover, in almost all previous models, a continuous variation of the inter-map
coupling strength was not possible which makes it hard to disentangle the contribution of inter-map
interactions from intrinsic mechanisms. Our results consistently show that coordinated optimization
models exhibit a complex dynamics that persistently reorganizes maps over a broad range of timescales
before attractors or optimized ground states are reached. Although our models exhibit various different
attractor states none of them was able to directly converge to the final layout. Rather all of them were
found to require substantial rearrangement of orientation columns after initial symmetry breaking. The
only prior simulation study of a coordinated optimization model that tracked the number of pinwheels
during the optimization process did not provide evidence that pinwheel annihilation could be stopped
but only reported a reduction in annihilation speed [31]. In view of these findings, the prior evidence
for coordination induced pinwheel stabilization appears rather limited. Our analytical calculations of
attractor and ground states thus close a fundamental gap in the theory of visual cortical architecture and
its development.
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The mathematical structure of interaction models

To the best of our knowledge our study for the first time describes an analytical approach for examining
the coordinated optimization of OP and OD maps. To achieve this we mapped the optimization problem
to a dynamical systems problem which allows for a perturbative expansion of fixed points, metastable
states, and ground states. Extending standard weakly nonlinear analysis to fifth order, we derived am-
plitude equations as an approximate description near the symmetry breaking threshold. We identified
fixed points and study their stability properties using different types of inter-map coupling energies. For
the low order version of these energies, a strong inter-map coupling often leads to OP map suppression,
causing the orientation selectivity of all neurons to vanish. In contrast, the higher order variants of the
coupling energies do not lead to map suppression but only influence pattern selection. In addition, high
order coupling energies exhibit a limit in which the inter-map coupling becomes unidirectional enabling
the use of the uncoupled OD patterns. We did not consider an interaction with the retinotopic map.
Compared to other feature maps, the retinotopic map seems to be exceptional concerning its geometric
relationships. It has been observed that the correlations between OP and retinotopic map are such that
high gradient regions do not avoid each other [67]. Such correlations cannot be easily treated with dimen-
sion reduction models, see [68]. It is noteworthy that our phenomenological analysis identified coupling
terms that could induce an attraction of high gradient regions. Such terms contain the gradient of only
one field and can thus be considered as a mixture of the gradient and the product-type energy.
To confirm our results and to study the impact of a finite backreaction on the OD map we solved the
full field dynamics numerically. In particular, we studied the dynamics of pinwheel crystallization. With
the presented analytical approach we were able to show that pinwheel rich solutions correspond to the
energetic ground state of the system for large inter-map coupling. This is reflected by the fact that in
simulations, pinwheels can actually be created from an initial OP stripe pattern. Assessing pinwheel
creation from pinwheel-free initial conditions can in general serve as a simple test of a pinwheel-rich ener-
getic ground state in models of OP development. Taken together our results and approaches thus provide
a formal basis and general methodology for the rigorous characterization of coordinated optimization
models.
Modeling experimentally induced heterogeneities and areal borders

The presented map interaction model offers the possibility to study the impact of spatial inhomogeneities
in the visual cortex on OP map structure. In such an application, the co-evolving field does not represent
a feature map but would be designed to describe a real or artificial areal border or a disruption of local
circuitry, which can be induced also experimentally [69]. To this end, the OP map is coupled to the field
describing the areal border using low order coupling energies. At the areal border a strong inter-map
coupling can lead to complete suppression of orientation selectivity. Using a gradient-type inter-map
coupling energy inter-map coupling can furthermore lead to perpendicular crossings of iso-orientation
lines with the areal borders as observed in experiments [70]. While in the past artificial heterogeneities
and areal borders could only be induced by ablation of local surgical interventions, viral approaches now
make it possible to impose them with minimal intervention and potentially in a reversible fashion.
Conditions for pinwheel stabilization

Our results indicate that a patchy layout of a second visual map interacting with the OP map is important
for the effectiveness of pinwheel stabilization by inter-map coupling. Such a patchy layout can be easily
induced by an asymmetry in the representation of a stimulus feature such as eye dominance or spatial
frequency preference. In spatial frequency maps, for instance, low spatial frequency patches tend to form
islands in a sea of high spatial frequency preference [18]. In our model, the patchy layout results from the
overall dominance of one eye. In this case, OD domains form a system of hexagonal patches rather than
stripes enabling the capture and stabilization of pinwheels by inter-map coupling. The results from all
models question the view that OD stripes are capable of stabilizing pinwheels [31, 61, 64]. Our analysis
shows that OD stripes are indeed not able to stabilize pinwheels, a result that appears to be independent
of the specific type of map interaction and further independent of a detuning of typical wavelength. In
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line with this, several other theoretical studies, using numerical simulations [31, 61, 64], in fact indicated
that more banded OD patterns lead to less pinwheel rich OP maps. For instance, in simulations using
an elastic net model, the average pinwheel density of OP maps interacting with a patchy OD layout is
substantially higher (about 2.5 pinwheels per hypercolumn) than for OP maps interacting with a more
stripe-like OD layout (about 2 pinwheels per hypercolumn) [31].
We showed that our framework can be generalized to include any additional number of columnar systems
and thus is not restricted to interactions among OD and OP maps. One reason to consider additional
visual cortical maps originates from the finding that the removal of the OD map in experiments does not
completely destabilize pinwheels [11]. In additions, higher feature dimensions are often treated with di-
mension reduction models [10,71]. Moreover, in tree shrews, animals which completely lack OD columns,
OP maps contain pinwheels and exhibit a pinwheel arrangement essentially indistinguishable from species
with columnar OD segregation [70]. This might reflect the influence of additional columnar systems like
spatial frequency columns that can be expected to interact with the OP map in a similar fashion as OD
columns [18]. We also extended the map interaction model to more than two feature dimensions. In
numerical simulations we explored coordinated optimization with three and four columnar systems. Al-
though in this case, pinwheel stabilization is possible even without an OD bias, the resulting stationary
OP patterns are either stripes or PWC solutions. Asymmetry of one feature dimension is thus not a
necessary condition for pinwheel stabilization by coordinated optimization.
Experimental evidence for pinwheel stabilization by inter-map coupling

Supporting the notion that pinwheels might be stabilized by the interaction with patchy OD columns,
visual cortex is indeed dominated by one eye in early postnatal development and has a pronounced patchy
layout of OD domains [72–74]. Further support for the potential relevance of this picture comes from ex-
periments in which the OD map was artificially removed resulting apparently in a significantly smoother
OP map [11]. In this respect it is noteworthy that macaque visual cortex appears to exhibit all three
fundamental solutions of our model for OD maps: stripes, hexagons, and a constant solution, which are
stable depending on the OD bias. In the visual cortex of macaque monkeys, all three types of patterns are
found to coexist [74]. Here, OD domains form bands in the binocular region and a system of ipsilateral
eye patches at the transition zone to the monocular region where the contralateral eye gradually becomes
more dominant, see Fig. (25) and [75]. If pinwheel stability depends on a geometric coupling to the
system of OD columns one predicts systematic differences in pinwheel density between these three zones
of macaque primary visual cortex.
The geometry of interaction induced pinwheel crystals

We analyzed the stationary patterns with respect to intersection angles and pinwheel positions. Remark-
ably, all analyzed PWC solutions and models show the tendency for iso-orientation lines to intersect OD
borders perpendicularly, even in the case of the product-type energy which is not explicitly dependent
on intersection angles. For the low order versions of the coupling energy the distribution of intersection
angles is not continuous. Half of the pinwheels in the analyzed PWC solutions are located at OD extrema,
as expected from the used coupling energies. Some pinwheels, however, are located at OD saddle-points.
Remarkably, such correlations, which are expected from the gradient-type coupling energies, occur also
in the case of the product-type energies. Such correlations are not expected in product-type energies per
se and presumably result from the periodic layout of OP and OD maps. Correlations between pinwheels
and OD saddle-points have not yet been studied quantitatively in experiments and may thus provide
valuable information on the principles shaping cortical functional architecture.
How informative is map structure?

In the past numerous studies have attempted to identify signatures of coordinated optimization in the
layout of visual cortical maps and to infer the validity of specific optimization models from aspects of
their coordinated geometry [8, 10–17, 31–33, 61]. It was, however, never clarified theoretically in which
respect and to which degree map layout and geometrical factors of inter-map relations are informative of
an underlying optimization principle. Because our analysis provides complete information of the detailed
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relation between map geometry and optimization principle for our different models our results enable to
critically assess whether different choices of energy functionals impact on the predicted map structure
and conversely what can be learned about the underlying optimization principle from observations of
map structures. The stabilization of pinwheel crystals for strong inter-map coupling appears to be uni-
versal and provides per se no specific information about the underlying optimization principle. In fact,
the general structure of the amplitude equations is universal and only the coupling coefficients change
when changing the coupling energy. It is thus expected that also for other coupling energies, respecting
the proposed set of symmetries, PWC solutions can become stable for large inter-map coupling. As
pointed out before, preferentially orthogonal intersection angles between iso-orientation lines and OD
borders appear to be a general feature of coordinated optimization models in the strong coupling regime.
Although the detailed form of the intersection angle histogram is solution and thus model specific, our
analysis does not corroborate attempts to use this feature to support specific optimization principles, see
also [24,76,77]. We identified a class of PWC solutions which become stable for large inter-map coupling.
This class depends on a single parameter which is specific to the used inter-map coupling energy. This
demonstrates that, although pinwheel stabilization is not restricted to a particular choice of the interac-
tion term, each analyzed phase diagram is specific to the used coupling energy. In the strong coupling
regime substantial information can thus be obtained from a detailed inspection of solutions. In the case
of the product-type coupling energies, the resulting phase diagrams are relatively complex as stationary
solutions and stability borders explicitly depend on the OD bias. Here, even quantitative values of model
parameters could in principle be constrained by analysis of map layout. In contrast, for the gradient-type
coupling energies, the bias dependence can be absorbed into the coupling strength and only selects the
stationary OD pattern. This leads to rather simple phase diagrams. For these models map layout is
thus uninformative of quantitative model parameters. We identified several biologically implausible OP
patterns. In the case of the product-type energies, we found orientation scotoma solutions which are
selective to only two preferred orientations. In the case of the low order gradient-type energy, we found
OP patterns containing pinwheels with a topological charge of 1 which have not yet been observed in
experiments. If the relevant terms in the coupling energy were known by other means, the parameter
regions in which these patterns occur could be used to constrain model parameters by theoretical bounds.
From a practical point of view, the analyzed phase diagrams and pattern properties indicate that the
higher order gradient-type coupling energy is the simplest and most convenient choice for constructing
models that reflect the correlations of map layouts in the visual cortex. For this coupling, intersection
angle statistics is reproduced well, pinwheels can be stabilized, and pattern collapse cannot occur.
Periodic and aperiodic solutions of optimization

We presented a complete characterization of the stable OP and OD patterns, stripe-like solutions, rhombic
and hexagonal crystal patterns predicted by the coordinated optimization models. The pinwheel crystals
we obtained, although beautiful and easy to characterize, deviate from experimentally obtained maps in
several respects. All PWC solutions that we found have a large pinwheel density of about 3.5 or even
5.2 pinwheels per hypercolumn. Densities obtained from experiments, although somewhat variable, are
in the range of 3 pinwheels per hypercolumn [1, 78]. Moreover, other pinwheel statistics such as the dis-
tribution of minimal pinwheel distances have been shown to be continuous [1] whereas such distributions
have distinct peaks in case of PWC solutions. In contrast to the large variability of local map layouts
in experimentally observed maps, the pinwheel crystals show a regular and stereotyped structure. The
reason for this difference might be the presence of biological factors neglected in the models examined
here. Such factors might be realistic boundary conditions, biological noise in the system or long-range
neuronal interactions. We examined whether the non-crystalline layout of visual cortical maps can result
from a detuning of OP and OD wavelengths. However, while destabilizing hPWC solutions, a detuning
leads to spatially regular solutions in all studied cases. Given the close agreement of model solutions and
actual cortical architecture that can be achieved by including long-range interactions the latter possibility
appears quite plausible [1, 52, 79]. Another relevant aspect in this respect might be the developmental
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stage which is represented by the maps of our model. PWC solutions represent attractor states and thus
must be compared to late stages of development potentially only comparable to very late adult patterns.
One might therefore expect that later in development, a crystallization of the pinwheel pattern, along
with an increase in the pinwheel density takes place. With regard to this one should note that pinwheel
crystals have been previously reported in several abstract [5, 36] as well as detailed synaptic plasticity
based models [80–82]. Remarkably, in a model of receptive field development based on a detailed dynam-
ics of synaptic connections the resulting OP map showed a striking similarity to the hPWC presented
above, see Fig. (15) and [81]. These observations indicate that pinwheel crystallization is not an artefact
of the highly idealized mathematical approach used here. In fact, the first OP map predicted ever by a
synaptically based self-organization model exhibited a clearly hexagonal column arrangement [80]. Very
late or very long term chronic studies of map layout are needed to assess this possibility systematically.
In our models, however, crystallization is not intrinsically a process that would be restricted to very long
timescales.
Conclusions

Our analysis conclusively demonstrates that OD segregation can stabilize pinwheels and induce pinwheel-
rich ground states in models for the coordinated optimization of OP and OD maps even if pinwheels are
intrinsically unstable in the uncoupled dynamics of the OP map. This allows to systematically assess the
possibility that inter-map coupling might be the mechanism of pinwheel stabilization in the visual cortex.
The analytical approach developed here is independent of the specific optimization principle and thus
allowed to systematically analyze how different optimization principles impact on map layout. Moreover,
our analysis clarifies to which extend the observation of the layout in physiological maps can provide
information about optimization principles shaping visual cortical organization. To clarify the question of
pinwheel stabilization by inter-map interaction the current study focused on models in which the scalar
(OD-like) map is dominant. Recent work strongly suggests that the aperiodic pinwheel-rich layout of
pinwheels and orientation columns in the visual cortex can be reproduced very well by models that repre-
sent only the orientation map but include long-range interactions [1, 31, 52]. Using the general approach
developed here it is possible to construct a complementary type of models in which the complex OP
map is dominant. Such models, using non-local terms in the energy functional, thus reduce to the model
in [1, 31, 52] in the weak coupling limit. Because of their mathematical transparency and tractability
such models are expected to provide powerful tools for examining to which extend long-range interaction
models are robust against coupling to other cortical maps and how coupling to an aperiodic orientation
map can shape other visual cortical representations.

Methods

Tracking and counting pinwheels

During the evolution of OD and OP maps we monitored the states from the initial time T = 0 to the
final time T = Tf using about 150 time frames. To account for the various temporal scales the dynamics
encounters the time frames were separated by exponentially increasing time intervals. Pinwheel centers
were identified as the crossing of the zero contour lines of the real and imaginary parts of z(x). During time
evolution we tracked all the pinwheel positions and, as the pinwheels carry a topological charge, we divided
the pinwheels according to their charge. The distribution of pinwheel distances indicates the regularity
and periodicity of the maps. Therefore we calculated the minimal distance between pinwheels, measured
in units of the column spacing Λ during time evolution. In simulations we used periodic boundary
conditions. We accounted for a ’wrap around’ effect by searching also for corresponding pinwheels in
periodically continued maps.
The rearrangement of OP maps leads to annihilation and creation of pinwheels in pairs. Between two
time frames at Ti and Ti+1 we identified a pinwheel to move if two pinwheels differ in position less than
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∆x = 0.2Λ and carry the same topological charge. If no corresponding pinwheel was found within ∆x it
was considered as annihilated. If a pinwheel at Ti+1 could not be assigned to one at Ti it was considered
as created. We define the pinwheel creation c(t) and annihilation a(t) rates per hypercolumn as

c(t) =
dNc
Λ2dt

, a(t) =
dNa
Λ2dt

, (88)

where Nc and Na are the numbers of created and annihilated pinwheels. Creation and annihilation rates
were confirmed by doubling the number of time frames.
To what extend are the pinwheels of the final pattern just rearrangements of pinwheels at some given time
T ? To answer this question for a given set of pinwheels at an initial time T = T ∗ we further calculated
the fraction s(t) of those pinwheels surviving until time T . Finally, the fraction of pinwheels present at
time T ∗ that survive up to the final time T = Tf is given by p(t).

Intersection angles

We studied the intersection angles between iso-orientation lines and OD borders. The distribution of
intersection angles is given by

α(x) = cos−1

( ∇o(x) · ∇ϑ(x)
|∇o(x)||∇ϑ(x)|

)
, (89)

where x denotes the position of the OD zero-contour lines. A continuous expression for the OP gradient
is given by ∇ϑ = Im∇z/z. We emphasized those parts of the maps from which the most significant
information about the intersection angles can be obtained [19, 20]. These are the regions where the OP
gradient is high and thus every intersection angle receives a statistical weight according to |∇ϑ|.

The transition from OD stripes to OD blobs

We studied how the emerging OD map depends on the overall eye dominance. To this end we mapped the
uncoupled OD dynamics to a Swift-Hohenberg equation containing a quadratic interaction term instead
of a constant bias. This allowed for the use of weakly nonlinear analysis to derive amplitude equations
as an approximate description of the shifted OD dynamics near the bifurcation point. We identified the
stationary solutions and studied their stability properties. Finally, we derived expressions for the fraction
of contralateral eye dominance for the stable solutions.

Mapping to a dynamics with a quadratic term

Here we describe how to map the Swift-Hohenberg equation

∂t o(x, t) = L̂ o(x, t)− o(x, t)3 + γ , (90)

to one with a quadratic interaction term. To eliminate the constant term we shift the field by a constant
amount o(x, t) = õ(x, t) + δ. This changes the linear and nonlinear terms as

L̂ o → L̂ õ−
(
k4c − ro

)
δ

o3 → −õ 3 + 3δõ 2 + 3δ2õ+ δ3 . (91)

We define the new parameters r̃o = ro − 3δ2 and γ̃ = −3δ. This leads to the new dynamics

∂t õ = r̃o õ−
(
k2c +∆

)2
õ+ γ̃õ 2 − õ 3 − δ3 −

(
k4c,o − ro

)
δ + γ . (92)

The condition that the constant part is zero is thus given by

− δ3 −
(
k4c − ro

)
δ + γ = 0 . (93)
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For ro < 1 the real solution to Eq. (93) is given by

δ =
21/3 (kc − ro)

β
− β

3 21/3
, (94)

with β =

(
−27γ +

√
108 (ro − kc)

3
+ 729γ2

)1/3

. For small γ this formula is approximated as

δ ≈ γ
1

k4c − ro
− γ3

1

(k4c − ro)4
+ 3γ5

1

(k4c − ro)7
+ . . . (95)

The uncoupled OD dynamics we consider in the following is therefore given by

∂t õ = r̃oõ−
(
k2c +∆

)2
õ+ γ̃õ 2 − õ 3 . (96)

This equation has been extensively studied in pattern formation literature [50].

Amplitude equations for OD patterns

We studied Eq. (96) using weakly nonlinear analysis. This method leads to amplitude equation as an
approximate description of the full field dynamics Eq. (96) near the bifurcation point r̃o = 0. We
summarize the derivation of the amplitude equations for the OD dynamics which is of the form

∂t o(x, t) = L̂ o(x, t) +N2[o, o]−N3[o, o, o] , (97)

with the linear operator L̂ = ro−
(
k2c,o +∆

)2
. In this section we use for simplicity the variables (o, ro, γ)

instead of (õ, r̃o, γ̃). The derivation is performed for general quadratic and cubic nonlinearities but are
specified later according to Eq. (10) as N3[o, o, o] = o3 and N2[o, o] = γ o2. For the calculations in the
following, it is useful to separate ro from the linear operator

L̂ = ro + L̂0 , (98)

therefore the largest eigenvalue of L̂0 is zero. The amplitude of the field o(x, t) is assumed to be small
near the onset ro = 0 and thus the nonlinearities are small. We therefore expand both the field o(x, t)
and the control parameter ro in powers of a small expansion parameter µ as

o(x, t) = µ o1(x, t) + µ2o2(x, t) + µ3o3(x, t) + . . . , (99)

and
ro = µr1 + µ2r2 + µ3r3 + . . . (100)

The dynamics at the critical point ro = 0 becomes arbitrarily slow since the intrinsic timescale τ = r−1
o

diverges at the critical point. To compensate we introduce a rescaled time scale T as

T = ro t, ∂t = ro ∂T . (101)

In order for all terms in Eq. (97) to be of the same order the quadratic interaction term N2 must be
small. We therefore rescale N2 as

√
roN2. This preserves the nature of the bifurcation compared to the

case N2 = 0.
We insert the expansion Eq. (99) and Eq. (100) in the dynamics Eq. (97) and get

0 = µ L̂0o1

+ µ2
(
−L̂0o2 − r1∂T o1 + r1o1 +

√
µr1 + µ2r2 + . . . N2[o1, o1]

)

+ µ3
(
−L̂0o3 + r1 (o2 − ∂T o2) + r2 (o1 − ∂T o1)−N3[o1, o1, o1]

)

... (102)
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We sort and collect all terms in order of their power in µ. The equation can be fulfilled for µ > 0 only if
each of these terms is zero. We therefore solve the equation order by order. In the leading order we get
the homogeneous equation

L̂0o1 = 0 . (103)

Thus o1 is an element of the kernel of L̂0. The kernel contains linear combinations of modes with
wavevector ~kj on the critical circle |~kj | = kc,o. At this level any of such wavevectors is possible. We
choose

o1 =

n∑

j

Bj(T )e
i~kj~x +

n∑

j

Bj(T )e
−i~kj~x , (104)

where the wavevectors are chosen to be equally spaced ~kj = kc,o (cos(jπ/n), sin(jπ/n)) and the complex
amplitudes Bj = Bjeıψj . The homogeneous equation leaves the amplitudes Bj undetermined. These
amplitudes are fixed by the higher order equations. Besides the leading order homogeneous equation we
get inhomogeneous equations of the form

L̂0om = Fm (105)

To solve this inhomogeneous equation we first apply a solvability condition. We thus apply the Fredholm

Alternative theorem to Eq. (105). Since the operator L̂0 is self-adjoint L̂0 = L̂0 †, the equation is solvable
if and only if Fm is orthogonal to the kernel of L̂0 i.e.

〈Fm, õ〉 = 0, ∀ L̂0õ = 0 (106)

The orthogonality to the kernel can be expressed by a projection operator P̂c onto the kernel and the
condition 〈F, õ〉 = 0 can be rewritten as P̂cF = 0.
At second order we get

L̂0o2 = r1 (o1 − ∂T o1) . (107)

Applying the solvability condition Eq. (106) we see that this equation can be fulfilled only for r1 = 0. At
third order we get

L̂0o3 = r2 (o1 − ∂T o1) +N2[o1, o1]−N3[o1, o1, o1] . (108)

The parameter r2 sets the scale in which o1 is measured and we can set r2 = 1. We apply the solvability
condition and get

∂T o1 = o1 + P̂cN2[o1, o1]− P̂cN3[o1, o1, o1] . (109)

We insert our ansatz Eq. (104) which leads to the amplitude equations at third order

∂TBi = Bi + P̂i
∑

j,k

BjBke
−ı~ki~xN2[e

ı~kj~x, eı
~kk~x]− P̂i

∑

j,k

BjBkBle
−ı~ki~xN3[e

ı~kj~x, eı
~kk~x, eı

~kl~x] , (110)

where P̂i is the projection operator onto the subspace {eı~ki~x} of the kernel. P̂i picks out all combinations

of the modes which have their wavevector equal to ~ki. In our case the three active modes form a so called
triad resonance ~k1 + ~k2 + ~k3 = 0. The quadratic coupling terms which are resonant to the mode B1 are
therefore given by

B2B3e
−ı~k1~x

(
N2[e

−ı~k2~x, e−ı
~k3~x] +N2[e

−ı~k3~x, e−ı
~k2~x]

)
. (111)

Resonant contributions from the cubic nonlinearity result from terms of the form |Bj |2Bi. Their coupling
coefficients are given by

g̃ij = N3[e
ı~ki~x, eı

~kj~x, e−ı
~kj~x] +N3[e

ı~ki~x, e−ı
~kj~x, eı

~kj~x] +N3[e
ı~kj~x, eı

~ki~x, e−ı
~kj~x] +

N3[e
−ı~kj~x, eı

~ki~x, eı
~kj~x] +N3[e

ı~kj~x, e−ı
~kj~x, eı

~ki~x] +N3[e
−ı~kj~x, eı

~kj~x, eı
~ki~x] , (112)
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Figure 25. OD patterns. A Stationary amplitudes of the OD dynamics. The course of Bst(γ)
Eq. (115) (blue), Bhex(γ) Eq. (116) (red), and of δ(γ) Eq. (94) (green) for ro = 0.2. The solutions are
plotted in solid lines within their stability ranges. B OD map of macaque monkey. Adapted from [74].
C Details of B with stripe-like, patchy, and homogeneous layout.

and
g̃ii = N3[e

ı~ki~x, eı
~ki~x, e−ı

~ki~x] +N3[e
ı~ki~x, e−ı

~ki~x, eı
~ki~x] +N3[e

−ı~ki~x, eı
~ki~x, eı

~ki~x] . (113)

When specifying the nonlinearities Eq. (10) the coupling coefficients are given by g̃ij = 6, g̃ii = 3. Finally,
the amplitude equations (here in the shifted variables (r̃o, γ̃) are given by

∂tB1 = r̃oB1 − 3|B1|2B1 − 6
(
|B2|2 + |B3|2

)
B1 + 2γ̃B2B3 , (114)

where we scaled back to the original time variable t. Equations for B2 and B3 are given by cyclic
permutation of the indices.

Stationary solutions

The amplitude equations (114) have three types of stationary solutions, namely OD stripes

ost(x) = 2Bst cos (x+ ψ) + δ, (115)

with Bst =
√
r̃/3, hexagons

ohex(x) = Bhex
3∑

j=1

eıψjeı
~kj~x + c.c.+ δ, (116)

with the resonance condition
∑3

j
~kj = 0 and Bhex = −γ̃/15 +

√
(γ̃/15)

2
+ r̃/15. Finally, there is a

homogeneous solution with spatially constant eye dominance

oc(x) = δ. (117)

The spatial average of all solutions is 〈o(x)〉 = δ. The course of Bst, Bhex, and of δ(γ) is shown in
Fig. 25A.
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Linear stability analysis for OD patterns

We decomposed the amplitude equations (114) into the real and imaginary parts. From the imaginary
part we get the phase equation

∂tψ1 = −2γ̃ sin (ψ1 + ψ2 + ψ3) , (118)

and equations for ψ2, ψ3 by cyclic permutation of the indices. The stationary phases are given by ψ1 +
ψ2 + ψ3 = {0, π}. The phase equation can be derived from the potential V [ψ] = −2γ̃ cos(ψ1 + ψ2 + ψ3).
We see that the solution ψ1 + ψ2 + ψ3 = 0 is stable for γ̃ > 0(γ < 0) and the solution ψ1 + ψ2 + ψ3 = π
is stable for γ̃ < 0(γ > 0).
We calculate the stability borders of the OD stripe, hexagon, and constant solution in the uncoupled case.
This treatment follows [50]. In case of stripes the three modes of the amplitude equations are perturbed
as

B1 → Bst + b1 , B2 → b2 , B3 → b3, (119)

assuming small perturbations b1, b2, and b3. This leads to the linear equations ∂t~b =M~b with the stability
matrix

M =




r̃ − 9B2
st 0 0

0 r̃ − 6B2
st 2γ̃Bst

0 2γ̃Bst r̃ − 6B2
st


 . (120)

The corresponding eigenvalues are given by

λ =
(
−2r̃,−r̃ − 2

√
r̃/3γ̃,−r̃ + 2

√
r̃/3γ̃

)
. (121)

This leads to the two borders for the stripe stability

r̃ = 0, r̃ =
4

3
γ̃2 . (122)

In terms of the original variables ro, γ the borders are given by (0 < ro < 1)

γ∗3 =
(3− 2ro)

√
ro

33/2
, γ∗2 =

(15− 14ro)
√
ro

153/2
. (123)

To derive the stability borders for the hexagon solution ohex(x) we perturb the amplitudes as

B1 → Bhex + b1 , B2 → Bhex + b2 , B3 → Bhex + b3 . (124)

The stability matrix is then given by

M =




−21Bhex + r̃ −12B2
hex − 2Bhexγ̃ −12B2

hex − 2Bhexγ̃
−12B2

hex − 2Bhexγ̃ −21Bhex + r̃ −12B2
hex − 2Bhexγ̃

−12B2
hex − 2Bhexγ̃ −12B2

hex − 2Bhexγ̃ −21Bhex + r̃


 , (125)

and the corresponding eigenvalues are given by

λ =
(
−45B2

h + r̃ − 4Bhγ̃,−9B2
h + r̃ + 2Bhγ̃,−9B2

h + r̃ + 2Bhγ̃
)
. (126)

The stability borders for the hexagon solution are given by

r̃ = − 1

15
γ̃2, r̃ =

16

3
γ̃2 . (127)

In terms of the original variables we finally get

γ∗4 =
(12− 7ro)

√
ro
√
5

24
√
3

, γ∗ =
(51− 50ro)

√
ro

513/2
. (128)
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Figure 26. The uncoupled OD dynamics. A Phase diagram of the OD model Eq. (90). Dashed
lines: stability border of hexagon solutions, solid line: stability border of stripe solution, gray regions:
stability region of constant solution B Percentage of neurons dominated by the contralateral eye plotted
for the three stationary solutions. Circles: numerically obtained values, solid lines: Cst and Chex.

The phase diagram of this model is depicted in Fig. 26A. It shows the stability borders γ∗, γ∗2 , γ
∗
3 , and γ

∗
4

for the three solutions obtained by linear stability analysis. Without a bias term the OD map is either
constant, for ro < 0, or has a stripe layout, for ro > 0. For positive ro and increasing bias term there are
two transition regions, first a transition region from stripes to hexagons and second a transition region
from hexagons to the constant solution.
The spatial layout of the OD hexagons consists of hexagonal arrays of ipsilateral eye dominance blobs in
a sea of contralateral eye dominance, see Fig. 26A.

Contralateral eye fraction

To compare the obtained solutions with physiological OD maps we quantified the fraction of neurons
selective to the contralateral eye inputs. For stripe and hexagon solutions we thus calculated the fraction
of contralateral eye dominated territory Cst and Chex. In case of stripes this is a purely one-dimensional
problem. The zeros of the field are given by

ost(x) = 2Bst cos (x+ ψ) + δ = 0 , (129)

with the solution

x = arccos

( −δ
2Bst

)
. (130)

As the field has a periodicity of π the area fraction is given by

Cst = arccos

( −δ
2Bst

)
/π . (131)

In case of hexagons we observe that the territory of negative o(x) values is approximately a circular area.
We obtain the fraction of negative o(x) values by relating this area to the area of the whole hexagonal
lattice. In case of hexagons the field is given by

ohex(x) = 2Bhex
∑

j

cos
(
~kj~x+ ψj

)
+ δ . (132)
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As an approximation we project the field onto the x-axis and choose for simplicity ψj = 0, ∀j. The field
has its maximum at the origin ohex(0, 0) = 6 + δ. The projection leads to

f(x) = 2Bhex (cosx+ 2 cos(1/2)x) + δ . (133)

The zeros f(x1) = 0 are located at

x1 = 2 arccos

(
1

2

(
−1 +

√
3 +

δ

Bhex

))
. (134)

The circular area of positive ohex(x) values is now given by Ac = πx21. The periodicity of the hexagonal
pattern is given by f(x2)δ=0 = min(f)δ=0 = −3. This leads to x2 = 4π/3. The area of the hexagon is
therefore given by Ahex = 3x22

√
3/2. The contra fraction is finally given by

1− Chex ≈ Ac
Ahex

=

√
3

2π
arccos

(
1

2

(
−1 +

√
3 +

δ

Bhex

))2

. (135)

The course of the fractions Cst and Chex is shown in Fig. 26B. At the border γ = γ∗, where hexagons
become stable Chex ≈ 65.4%. At the border γ = γ∗4 , where hexagons loose stability Chex ≈ 95.2%. Both
quantities are independent of ro. We confirmed our results by direct numerical calculation of the fraction
of positive ohex(x) pixel values. Deviations from the result Eq. (135) are small. For γ/γ∗ ≈ 1 the zeros of
Eq. (133) are not that well approximated with a circular shape and the projection described above leads
to the small deviations which decrease with increasing bias γ.

Numerical integration scheme

As the Swift-Hohenberg equation is a stiff partial differential equation we used a fully implicit integrator
[83]. Such an integration scheme avoids numerical instabilities and enables the use of increasing step sizes
when approaching an attractor state. The equation

∂t z(x, t) = L̂z(x, t)−N [z(x, t)] , L̂ = r −
(
k2c +∆

)2
, (136)

is discretized in time. Using a Crank-Nicolson scheme this differential equation is approximated by the
nonlinear difference equation

zt+1 − zt
∆t

=

(
L̂zt+1 +N [zt+1]

)
+
(
L̂zt +N [zt]

)

2
. (137)

This equation is solved iteratively for zt+1 with the help of the Newton method which finds the root of
the function

G[zt+1] =

(
−L̂+

2

∆t

)
zt+1 −N [zt+1]−

((
L̂+

2

∆t

)
zt +N [zt]

)
. (138)

The field z(x) is discretized. For a grid with N meshpoints in x-direction andM meshpoints in y-direction
this leads to a M × N dimensional state vector u. Discretization is performed in Fourier space. The
Newton iteration at step k is then given by

DG(uk)∆uk = −G(uk), uk+1 = uk +∆uk , (139)

with DG the Jacobian of G. Instead of calculating the matrix DG explicitly a matrix free method is
used, where the action of the matrix is approximated using finite differences. To solve the linear system
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Ax = b with A = DG(uk), b = −G(uk) we used the Krylov subspace method [83]. The Krylov subspace
of dimensionality k is defined as

Kk(A,v1) = span{v1, Av1, A
2v1, . . . , A

k−1v1} . (140)

In the Generalized Minimum Residual (GMRES) algorithm the Krylov subspace is generated by v1 =
r0/|r0| with r0 = Ax0 − b, and x0 an initial guess, see [83]. After k iterations, the refined solution is
given by

xk = x0 + Vky , (141)

where the matrix Vk = (v1, . . . ,vk) has the base vectors of the Krylov subspace as its columns. The
vector y is chosen by minimizing the residuum

‖b−Axk‖2 = ‖r0 −AVky‖2 !
= min , (142)

where ‖.‖2 denotes the Euclidean norm. For this procedure an orthonormal basis of the Krylov subspace
is generated with an Arnoldi process. With the use of the similarity transformation

AVk = Vk+1H̃k , (143)

where H̃k is an upper Hessenberg matrix, v1 = r0/|r0|, and the orthogonality of Vk, the optimality
condition Eq. (142) becomes

‖H̃ky − |b|e1‖2 !
= min , (144)

with e1 = (1, 0, . . . , 0) the first unit vector of dimension k + 1. For a y that minimizes this norm the
approximate solution is given by xk = x0 + Vky. To improve the convergence of this iterative method
preconditioning was used. A preconditionerM is multiplied to Ax = b such thatM−1A is close to unity.
A preconditioner suitable for our model is the inverse of the linear operator in Fourier space with a small
shift 0 < ǫ≪ 1 in order to avoid singularities i.e.

M =

(
ǫ+

(
k2 − k2c

)2
+

2

∆t

)−1

. (145)

The convergence of Newton’s method is only guaranteed from a starting point close enough to a solution.
In the integration scheme we use a line search method to ensure also a global convergence [84]. Newton’s
method Eq. (139) is thus modified as

uk+1 = uk + λ∆uk , (146)

where the function

f(uk) =
1

2
G(uk)G(uk), (147)

is iteratively minimized with respect to λ.
This integrator was implemented using the PetSc library [85]. As the dynamics converges towards an
attractor an adaptive stepsize control is very efficient. The employed adaptive stepsize control was
implemented as described in [86]. The described integration scheme has been generalized for an arbitrary
number of real or complex fields. The coupling terms are treated as additional nonlinearities in N . As
a common intrinsic timescale we choose T = trz with rz the bifurcation parameter of the OP map. Due
to the spatial discretization not all points of the critical circle lie on the grid. Thus, the maximal growth
rate on the discretized circle is not exactly equal to r, the theoretical growth rate. In particular, some
modes may be suppressed or even become unstable. Due to this we expect deviations from analytical
solutions. To minimize such deviations the size of the critical circle was chosen such that this disbalance
between the active modes was minimized. Periodic boundary conditions were applied to account for the
translation invariance of the spatial pattern.
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Appendix

Coupling coefficients

In this appendix we list the explicit form of the coupling tensor l
(u)
ijlk of the coupled amplitude equations

(71). They have the symmetry h
(u)
ijlk = h

(u)
iljk, u = 1, 2, 4, 5.

h
(1)
iiii = 40.5 ǫ+ 90 τ, h

(1)
iiij = (16.125 ǫ+ 48 τ) eı(ψj−ψi),

h
(1)
ijjj = (16.125 ǫ+ 48 τ) eı(ψi−ψj), h

(1)
iijj = 40.5 ǫ+ 180 τ,

h
(1)
iiji = (32.25 ǫ+ 96 τ) eı(ψi−ψj), h

(1)
ijji = (4.125 ǫ+ 6 τ) eı2(ψi−ψj),

h
(1)
iijl = − (16.5 ǫ+ 96 τ) eı(ψl−ψj), h

(1)
ijli = (7.5 ǫ+ 24 τ) eı(2ψi−ψj−ψl),

h
(1)
ijll = (16.5 ǫ+ 96 τ) eı(ψi−ψj), h

(1)
ijjl = (3.75 ǫ+ 12 τ) eı(ψl+ψi−2ψj)

In terms containing also the opposite wavevectors Aj− triad resonances ~k1 + ~k2 + ~k3 appear. They lead
to the phase relation ψ1 + ψ2 + ψ3 = π for the modes Bj and therefore the coupling coefficients depend
only on two of the three phases.

h
(2)
iiii = (19.25 ǫ+ 34 τ) e2ıψi , h

(2)
ijjj = (15.75 ǫ+ 60 τ) eı(ψi+ψj),

h
(2)
iiij = (3.5 ǫ+ 4 τ) eı(3ψi−ψj), h

(2)
iiji = (31.5 ǫ+ 120 τ) eı(ψi+ψj),

h
(2)
ijji = (9.875 ǫ+ 34 τ) eıψj , h

(2)
iijj = (19.75 ǫ+ 68 τ) e2ıψi ,

h
(2)
iijl = − (7.25 ǫ+ 32 τ) eı(3ψi+2ψj), h

(2)
ijli = (9 ǫ+ 120 τ) eıψi ,

h
(2)
ijll = (9 ǫ+ 120 τ) eı(ψi+ψj), h

(2)
ijjl = − (3.625 ǫ+ 16 τ) eı(2ψi+3ψj)

h
(3)
iiii = (38.5 ǫ+ 68 τ) e2ıψi , h

(3)
ijjj = h

(3)
iiij = h

(3)
iiji = (31.5 ǫ+ 120 τ) eı(ψi+ψj)

h
(3)
ijii = (7 ǫ+ 8 τ) eı(3ψi−ψj), h

(3)
iijj = (19.75 ǫ+ 68 τ) e2ıψj ,

h
(3)
ijji = h

(3)
ijij = (19.75 ǫ+ 68 τ) e2ıψi , h

(3)
iijl = − (9 ǫ+ 120 τ) eıψi ,

h
(3)
ijil = h

(3)
ijli = − (7.25 ǫ+ 32 τ) eı(ψi−2ψj), h

(3)
ijll = (7.25 ǫ+ 32 τ) e−ı(ψi+3ψj),

h
(3)
iljl = (9 ǫ+ 120 τ) eı(ψi+ψj), h

(3)
ijjl = − (9 ǫ+ 120 τ) e−ıψj

h
(4)
iiii = (2 ǫ+ τ) e4ıψi , h

(4)
ijjj = (3.125 ǫ+ 16 τ) eı(ψi+3ψj),

h
(4)
iiij = (3.125 ǫ+ 16 τ) eı(3ψi+ψj), h

(4)
iiji = 2 h

(4)
iiij ,

h
(4)
ijji = (5.125 ǫ+ 34 τ) e2ı(ψi+ψj), h

(4)
iijj = 2 h

(4)
ijji,

h
(4)
iijl = h

(4)
ijli = (9 ǫ− 120 τ) eıψi , h

(4)
ijll = (−9 ǫ+ 120 τ) e−ı(ψi+ψj),

h
(4)
ijjl = (4.5 ǫ− 60 τ) eıψj
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h
(5)
iiii = (19.25 ǫ+ 34 τ) e−2ıψi , h

(5)
ijjj = (3.5 ǫ+ 4 τ) eı(ψi−3ψj),

h
(5)
iiij = (15.75 ǫ+ 60 τ) e−ı(ψi+ψj), h

(5)
iiji = 2 h

(5)
iiij ,

h
(5)
ijji = (9.875 ǫ+ 34 τ) e−2ıψj , h

(5)
iijj = 2 h

(5)
ijji,

h
(5)
ijll = (7.25 ǫ+ 32 τ) eı(3ψi+ψj), h

(5)
ijjl = − (3.625 ǫ+ 16 τ) eı(2ψi−ψj),

h
(5)
iijl = h

(5)
ijli = − (9 ǫ+ 120 τ) eıψi

h
(6)
iiii = (2 ǫ+ 180 τ) eıψi , h

(6)
iiji = (32.25 ǫ+ 96 τ) eı(−ψi+ψj),

h
(6)
ijjj = h

(6)
iiij = h

(6)
ijii = (32.25 ǫ+ 96 τ) eı(ψi−ψj),

h
(6)
ijji = h

(6)
iijj = (40.5 ǫ+ 180 τ) , h

(6)
ijij = (8.25 ǫ+ 12 τ) e2ı(ψi−ψj),

h
(6)
ijil = − (7.5 ǫ+ 24 τ) eı3ψi , h

(6)
iljl = (7.5 ǫ+ 24 τ) e3ı(ψi+ψj),

h
(6)
ijll = (16.5 ǫ+ 96 τ) eı(ψi−ψj), h

(6)
ijjl = − (16.5 ǫ+ 96 τ) e−ı(2ψi+ψj)

h
(6)
iijl = h

(6)
ijli = − (16.5 ǫ+ 96 τ) eı(ψi+2ψj)

Stability matrix

In this appendix we state the stability matrix M , defined by

∂t




ReAi
ReAi−
ImAi
ImAi−


 =M




ReAi
ReAi−
ImAi
ImAi−


 =

(
M1 M2
M3 M4

)



ReAi
ReAi−
ImAi
ImAi−




for the uniform solutions Eq. (60). We separate the uncoupled contributions from the inter-map coupling
contributions i.e. M1 =M1(u) +M1(α). The uncoupled contributions are given by

M1(u) = rzI+A2




−13 −3 3 −2c −3c−
√
3s 3c−

√
3s

−3 −23/2 0 −3c−
√
3s −2c 0

3 0 −23/2 3c−
√
3s 0 −2c

−2c −3c−
√
3s 3c−

√
3s −12− cos 2∆ −2− 2u 2 + 2v

−3d+
√
3s −2d 0 −2− 2u −12− cos(2∆ + 10π/3) −4d2

3c−
√
3s 0 −2c −2− 2v −4s2 −12 + u




M2(u) = A2




0
√
3

√
3 2s 2 cos(∆− π/6) 2 cos(∆ + π/6)√

3
√
3/2 0 2 cos(∆− π/6) 2s 4s√

3 0 −
√
3/2 2 cos(∆ + π/6) 4s 2s

−2s
√
3d− 3s

√
3d+ 3s − sin 2∆ 2x 2y√

3d− 2s −2d 0 2x y 2 sin 2∆√
3d+ 3s 0 −2s 2y 2 sin 2∆ −x




M3(u) = A2




0
√
3

√
3 2s 2 cos(∆− π/6) 2 cos(∆ + π/6)√

3
√
3/2 0 2 cos(∆− π/6) 2s 4s√

3 0 −
√
3/2 2 cos(∆ + π/6) 4s 2s

−2s
√
3c− 3s

√
3c+ 3s − sin 2∆ 2x 2y√

3d− 3s −2s 0 2x y 2 sin 2∆√
3c+ 3s 0 −2s 2y 2 sin 2∆ −x
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M4(u) = rzI+A2




−11 −1 1 −2c 2w 2z
−1 −25/2 −4 2w −2c −4c
1 −4 −25/2 2z −4c −2c

−2c 2w 2z −12 + cos 2∆ 2(u− 1) 2(1 + v)
2w −2c −4c 2(u− 1) −12 + cos(2∆ + 10π/3) −4c2

2z −4c −2c 2(v + 1) −4c2 −12 + cos(2∆ + 8π/3) ,




where I denotes the 6 × 6 identity matrix and s = sin∆, c = cos∆, u = sin(2∆+, π/6), v = sin(2∆ −
π/6), x = cos(2∆ + π/6), y = cos(2∆− π/6), w = sin(∆− π/6), z = sin(∆ + π/6).
The coupling part in case of the low order product-type inter-map coupling energy is given by

M1(α) = α




−(6B2 + δ2) 2B2 −2B2 −B2 2B(B − δ) −2B(B − δ)
2B2 −(6B2 + δ2) 2B2 2B(B − δ) −B2 2B(B − δ)
−2B2 2B2 −(6B2 + δ2) 2B(−B + δ) 2B(B − δ) −B2

−B2 2B(B − δ) −2B(B − δ) −(6B2 + δ2) 2B2 −2B2

2B2(B − δ) −B2 2B(B − δ) 2B2 −(6B2 + δ2) 2B2

2B(−B + δ) 2B(B − δ) −B2 −2B2 2B2 −(6B2 + δ2)




M4(α) =M1(α),M2(α) =M3(α) = 0.
The coupling part in case of the low order gradient-type inter-map coupling energy is given by

M1(β) = βB2




3 −5/4 5/4 1 −5/4 5/4
−5/4 3 −5/4 −5/4 1 −5/4
5/4 −5/4 3 5/4 −5/4 1
1 −5/4 5/4 3 −5/4 5/4

−5/4 1 −5/4 −5/4 3 −5/4
5/4 −5/4 1 5/4 −5/4 3




M4(β) =M1(β),M2(β) =M3(β) = 0.
The coupling part of the high order gradient-type coupling energy is given by
The stationary amplitudes A are given in Eq. (63), Eq. (68), Eq. (81), and Eq. (83). The stationary
amplitudes B and the constant δ are given by Eq. (116) and Eq. (94), respectively.
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