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Abstract

We present a geometrical model of the functional architecture of the primary visual cortex (V1) and, more precisely, of its

pinwheel structure. The problem is to understand from within how the internal ‘‘immanent’’ geometry of the visual cortex can

produce the ‘‘transcendent’’ geometry of the external space. We use first the concept of blowing up to model V1 as a discrete

approximation of a continuous fibration p : R� P ! P with base space the space of the retina R and fiber the projective line P of the

orientations of the plane. The core of the paper consists first in showing that the horizontal cortico-cortical connections of V1

implement what the geometers call the contact structure of the fibration p, and secondly in introducing an integrability condition

and the integral curves associated with it. The paper develops then three applications: (i) to Field’s, Hayes’, and Hess’ psycho-

physical concept of association field, (ii) to a variational model of curved modal illusory contours (in the spirit of previous models

due to Ullman, Horn, and Mumford), (iii) to Ermentrout’s, Cowan’s, Bressloff’s, Golubitsky’s models of visual hallucinations.
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1. Introduction

Fine grained experimental results concerning the

structure of the first retinotopic areas of the visual cor-

tex are now sufficiently accurate to justify a modeling of
their functional architecture. The purpose of this article

is to present such a model for the most elementary level

of early vision, that of the pinwheel structure of the

primary visual cortex (V1). We want to show that this

functional architecture implements geometrical algo-

rithms which explain how the neural calculus is able to

integrate contours.

As neurons are local processors, we will have to solve
two main problems:

1. how are neurally implemented local geometrical data

such as ‘‘points’’ a, pairs ða; pÞ of a position a and of

an orientation p, etc.;
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2. how are these local data integrated in global geomet-

rical structures such as lines, figures, shapes, etc.

To be clear from the outset and avoid any misun-

derstanding, let us make some preliminary remarks.

1. This research is based on what we call neurogeometry.

The idea is that the geometrical structures which are

constitutive of perceptively construed objects are ne-

urally implemented in geometrically well behaved

functional architectures. As was often pointed out

by the logician Giuseppe Longo (see e.g. [44]) the

brain cannot be a universal Turing machine because
neural computations are highly dependent upon their

specific neural coding. The classical functionalist

hypothesis according to which cognitive ‘‘softwares’’

are essentially independent from the neural ‘‘hard-

ware’’ they are implemented in seems to be quite

wrong, as if, in neurocomputing, cognition was in

the coding and computation was the hardware.

2. The internal geometry of low level vision is very dif-
ferent from the classical Euclidean geometry of the

external objective world. It is a representation (a cod-

ing) of the proximal information transduced by the
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photoreceptors. This formatting of the external opti-
cal signal is a kind of filtering (already at the retinal

level the ganglion cells process a wavelet analysis of

the signal), but, due to the functional architecture,

these local measures of the signal by arrays of parallel

point processors are equivalent to a global geometriza-

tion.

3. We apply the analytic (‘‘cartesian’’) methodology

which is classical in mathematical physics: simplify
and idealize first a basic relevant phenomenon and

try to completely reconstruct it mathematically, and

then, but only in a second step, to reconstruct other

aspects of it and other phenomena depending upon

it. This methodology is rather rare in neurosciences

where the complexity of biological phenomena are of-

ten argued against the very idea of a mathematical

modeling.
4. We will restrict our analysis to the area V1. Of course

the model would have to be considerably complexi-

fied to take into account the other areas (V2, V4,

etc.) and their top-down feedbacks [79]. But we will

see that the neurogeometry of primitive geometrical

concepts such as that of a line is already rather com-

plex at the V1 level. In fact, we will adopt Mumford–

Lee’s ‘‘high-resolution buffer hypothesis’’ according
to which V1 is not a mere bottom-up ‘‘early-module’’,

but participates via a lot of top-down connections to

any higher levels of processing that requires high res-

olution, its functional architecture being therefore

essential to the entire visual system (see [42,51]).

Many specialists consider (see e.g. Robert Hess’ con-

tribution to this volume) that V1 is more important

than previously thought.
5. The mathematical elements we will use belong to

domains of modern (post-Riemannian) differential

geometry since Elie Cartan’s and Hermann Weyl’s

pioneering works: differential forms, integrals of inte-

grable systems of differential forms, contact struc-

tures, fibrations, jet spaces, connections, Lie groups,

sub-Riemannian metrics, etc. Some readers will per-

haps be surprised by this recourse to relatively mod-
ern and sophisticated mathematical structures, even if

some of them were already present in the seminal

works of William Hoffman and Jan Koenderink.

But we must emphasize again that one of the main

problem of early vision is to integrate local measures

in global Gestalts. Now, this problem has also been a

fundamental one in pure geometry and in physics for

a long time, and it is precisely for solving it that
geometers worked out such tools. It is why we think

relevant to introduce them into that new context.

6. Our perspective being foundational, it runs also into

philosophy of mathematics. Its horizon is to under-

stand in the framework of a neural materialism the

origin of the spatial intuition formalized by geometry

and, moreover, to bridge the gap between neural
activity and ideality of space. This aspect of the clas-
sical immanent/trancendent opposition is quite hard

to clarify: as far as the visual system can access only

its immanent structure we must understand ‘‘from

within’’ the ‘‘transcendent’’ geometry of the external

space. Since the deep works of Riemann, Helmholtz,

Poincar�e, Hilbert, Cartan, Husserl, and Weyl, this

problem of the cognitive origin of space is one of

the main enigma of epistemology. We think that, at
the beginning of this new century, neurogeometry

can become an alternative to the foundational axiom-

atic approach. Neural materialism will be perhaps the

future of logical idealism.

7. It is quite a long time (the early seventies) since I

began to work on the applications of differential

geometry and of singularity theory (in the sense of

Hassler Whitney, Ren�e Thom, Vladimir Arnold,
James Damon, etc.) to perception. During the nine-

ties I have been particularly interested in the works

of David Mumford, Jean-Michel Morel, Steven

Zucker, and Jan Koenderink who all strongly empha-

sized the interest of such geometrical tools for the

study of natural vision and image analysis. It is the

importance of many new exciting experimental re-

sults (such as those of Gregory De Angelis or William
Bosking) which persuaded me to develop for them

new neurogeometrical models.

After having presented briefly a model for the

receptive profiles of the simple cells of V1 and for the

way they act by convolution on the optical signal, we

work out a first elementary model of the functional

architecture of V1 as a fibration (in the geometric sense)
p : R� P ! P with base space the space of the retina R
and with fiber the projective line P of the orientations of

the plane.

Then we present a geometrical model of the pinwheel

structure of V1 using the geometrical concept of blowing

up and we show that this model can be considered as a

discrete approximation of the fibration model.

The core of the paper consists in showing that the
horizontal cortico-cortical connections of V1 implement

what the geometers call the contact structure of the fi-

bration p. We can therefore introduce the Frobenius

integrability condition canonically associated with this

contact structure, condition which defines integral curves

and explains how to globalize into global curves local

data ða; pÞ of a retinal position a and an orientation p.
The metric computed as the minimal length of integral
curves joining two points ða; pÞ and ðb; qÞ of V1 is an

example of what is called a sub-Riemannian Carnot-

Carath�eodory metric.

As a first application, we show that the integrability

condition––which gives a rigourous geometrical status

to the old Gestalt principle of ‘‘good continuation’’––

corresponds exactly to the psychophysical concept of
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association field introduced by David Field, Anthony
Hayes, and Robert Hess.

We show next that the same integrability condition

allows to work out a variational model of curved modal

illusory contours in Kanizsa’s sense. This improves pre-

vious models due to Ullman and Horn and is akin

to Mumford’s elastica model for amodal occluded con-

tours.

Finally, we show that the striking Ermentrout’s, Co-
wan’s, Bressloff’s, Golubitsky’s model for visual hallu-

cinations consists in encoding the contact structure of the

fibration into the synaptic weights of a continuous neural

net and analyzing the stability properties and the bifur-

cations of the associated partial differential equation.
2. Receptive fields and wavelet analysis

2.1. Receptive profiles

The receptive field (RF) of a visual neuron is classi-

cally defined as the domain of the retina to which it is

connected through the neural connections of the retino-

geniculo-cortical pathways (projecting from the retina to

the cortex through the thalamic way) and whose stim-
ulation elicitates a spike response. As was stressed by

Yves Fr�egnac and others such as Lamme and Maffei (see

e.g. [41,46]), this concept of ‘‘minimal discharge field’’

(MDF) has to be refined to take into account the sub-

threshold activity of the neurons [20].

In the following we will restrict our models to the RF

in the narrow sense of MDF.

Classically, an RF is decomposed into ON (positive
contrast) and OFF (negative contrast) zones according

to the type of response to light and dark luminance

Dirac stimulations. There exists therefore a receptive

profile (RP) of the visual neuron, which is simply its

transfert function as a filter. It is a function uðx; yÞ
(where x; y are retinal coordinates) u : D! R which is

defined on the RF D and measures the response

(+¼ON, )¼OFF) of the neuron to stimulations at the
point ðx; yÞ.

Sophisticated techniques enable the recording of the

level curves of the RPs (see e.g. De Angelis [12]). A light

and dark spot or bar is switched ON and OFF at dif-

ferent positions of the RF and the mean response is

measured. One uses for instance random sequences of

flashes (of 50 ms) distributed over a lattice of 20 · 20
positions, with 100 ms–1 s for each response after each
flash, and takes the mean value on 10 flashes at each

position (white noise analysis). The correlation of the

inputs (flashes) with the outputs (spikes) yields the

transfert function of the neuron.

It is a classical result of neurophysiology, already

strongly emphasized by David Marr in the late 1970s,

that the RF of the retinal ganglion cells are like Lapla-
cians of Gaussians DG. It is the same thing for the cells
of the lateral geniculate nucleus (Figs. 1–3).

More generally, there exist in the visual system RPs

which have the form of partial derivatives of Gaussians

DG up to order (at least) 3, and to order (at least) 4 if

one takes into account the temporal evolutions of the

RPs due to fast synaptic plasticity and adaptability to

stimuli. The simple orientation cells of V1 have an RP in

o3G=ox3 (Figs. 4–6).
Many neurophysiologists interpret these RPs as

Gabor patches (trigonometric functions modulated by a

Gaussian). Qualitatively it is effectively the same thing,

but there are many evidences in favor of the DG inter-

pretation (see Johnston’s, McOwan’s, Benton’s paper,

this volume). We prefer the DG interpretation for the

following reason.

2.2. Visual neurons as convolution operators

How do such visual neurons act on the signal? Let

Iðx; yÞ be the optical signal defined on the retina R. Let
uðx� x0; y � y0Þ be the RP of a neuron N whose RF is

defined on a domain D of the retina centered on ðx0; y0Þ.
N acts on the signal I as a filter. It computes the mean

value of I on D weighted by the weight u

Iuðx0; y0Þ ¼
Z
D
Iðx0; y 0Þuðx0 � x0; y0 � y0Þdx0 dy 0: ð1Þ

This is a measure at ðx0; y0Þ of the signal I by the neuron

N . A field of such neurons covering the whole retina R
acts therefore by convolution on the signal

Iuðx; yÞ ¼
Z
D
Iðx0; y 0Þuðx0 � x; y0 � yÞdx0 dy0

¼ ðI � uÞðx; yÞ: ð2Þ

In that sense, the processing can be thought of as a
neural implementation of a wavelet analysis of the sig-

nal.

As was emphasized by Florack [17], it is relevant to

treat the signal I (which is a geometrically very bad

behaved noisy function) as a distribution, that is as a

continuous linear functional hI jui defined on a space of

test functions u (regular C1 localized functions with

compact support or at least rapidly decreasing). One can
then treat the RPs uðx; yÞ––which are highly regular and

localized functions––as classes of test functions wired in

the visual system. The measure of the signal I by a

neuron of RP u provides then its representation hI jui in
the distributional sense.

Now, it is well known that the Dirac distribution d is

the basic operator of the distributional differential cal-

culus. Indeed, for every distribution T we have

d � T ¼ T ; d0 � T ¼ T 0; dðmÞ � T ¼ T ðmÞ ð3Þ
(where T ðmÞ is the mth derivative of T ) and, more gen-

erally



Fig. 6. The level curves of o3G=ox3 fit with the empirical results of

Fig. 4.

Fig. 3. The level curves of DG fit with the empirical results of Fig. 1.

Fig. 1. The receptive profile of a (ON-center) LGN cell. (Left) Struc-

ture with the + (ON) and ) (OFF) domains and (Right) record of the

level curves. It would be the same for the ganglion cells of the retina

(from [12]).

Fig. 4. The receptive profile of a simple cell of V1. (Left) Structure with

the + (ON) and ) (OFF) domains and (Right) record of the level

curves (from [12]).

Fig. 5. The o3G=ox3 model of the simple orientation cells of V1.Fig. 2. The Laplacian model DG of the ganglion and LGN (ON-center)

cells with the + center and the ) periphery.
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Dd � T ¼ DT ð4Þ
for every differential operator D (with constant coeffi-

cients).

To substitute a Gaussian Gr

Gr ¼ Gðx; rÞ ¼
1ffiffiffiffiffiffi
2p

p
r
exp

�
� x2

2r2

�
ð5Þ
for d is therefore equivalent to the choice of a certain

scale (a certain resolution) defined by the width r of Gr.

The family Gr expresses what becomes a point in a

multi-scale wavelet filtering, and this introduces the key
concept of scale-space (see e.g. [18]). The convolution



1 When we do not need to distinguish between R and M we will put

R ¼ M and q ¼ Id.
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product of Gaussians satisfies Gr � Gs ¼ G ffiffiffiffiffiffiffiffiffi
r2þs2

p , and

the composition law of scales u is therefore given by

rus ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2

p
; in other words it is the parameter r2

which satisfies an additive law. The Gaussian being the

heat kernel, the multi scale wavelet filtering consists in

taking the signal I as an initial condition for the heat

equation

o

os

�
� D

�
I ¼ 0 ðwith 2s ¼ r2Þ: ð6Þ

This diffusion equation links the ideal geometry

(infinite resolution) with its physical counterpart (finite

resolution). It expresses the operational constraint of

transforming the physical optical signal into a geomet-
rical observable. It substitutes local multi-scale concrete

measures for ideal infinitesimal ones.

If D is a differential operator of order p one has by

definition

hDI jui ¼ ð�1ÞphI jDui: ð7Þ

This fundamental equality shows that the main

function of RPs which are partial derivatives of Gaus-

sians is to derive the signal I in the distributional sense.

More precisely an RP of the form DG applies the dif-

ferential operator D at a certain scale. In that sense,

visual neurons implement multi-scale differential geo-

metry.

From the classical formula I � DG ¼ DðI � GÞ, the
convolution of the signal I by a DG RF amounts to

apply D to the smoothing I � G of the signal I at the

scale defined by G. At the scale 0 (infinite resolution) we

find of course the classical derivative DI because

I � Dd ¼ DðI � dÞ ¼ DI . For instance, the ganglion cells

whose RFs are Laplacians of Gaussian DG compute the

Laplacian of the signal DðI � GÞ ¼ I � DG at the scale

defined by G. It is well known that these cells detect
spatial contrasts (see e.g. [9,49]). This is due to the fact

that they perform a typical wavelet analysis whose

function is precisely to extract the encoded qualitative

discontinuities (see e.g. Mallat [48]). A well known cri-

terion is e.g. Marr’s zero crossing: a discontinuity cor-

responds to a crossing of 0 flanked by two very acute

peaks, respectively positive and negative. But this is

nothing else than the multi-scale version of the well
known dipole structure of the second derivative d00.

2.3. Feature detectors

With these types of methods one can easily construct

multi-scale detectors of geometric features more com-

plex than simple discontinuities. For instance a corner

detector must detect a strong curvature on a boundary.
Boundaries are well detected by the gradient norm jrI j.
The curvature of an isophote (a level line of I) being

given by the divergence of the normalized gradient
j ¼ div
rI
jrI j

� �
¼ 1

jrI j DI

 
� HðrI ;rIÞ

jrI j2

!
ð8Þ

(where H is the Hessian of I), a good corner detector is

the invariant jjrI j3. When one implements it, one gets

RPs which respond only to places where the signal I
smoothed by G presents a curve of discontinuity with a

discontinuity of the tangent (see e.g. Florack [17] and

Hamy [26]).
3. The functional architecture of V1

But, of course, filtering is radically insufficient, and a
functional architecture is absolutely necessary. As multi-

scale feature detectors remain local, the fundamental

problem of a geometric formatting is the continuation

from the local level to the global one and it requires a

whole structuration of the detectors arrays. It is the

global coherence of the architecture which generates

geometry.

3.1. Hypercolumns

We will focus on area V1. Neurophysiological studies

have discriminated three types of structures in V1,

respectively layered, retinotopic and (hyper)columnar.

ii(i) The layered structure (about 1, 8 mm thick) is con-

stituted of 6 ‘‘horizontal’’ layers, the most impor-
tant for our purpose being the layer 4 and more

precisely the sublayer 4C where most of the fibers

from the lateral geniculate body project.

i(ii) The retinotopy means that there exist mappings

from the retina to the cortical layers which preserve

retinal topography. If we note by R the retina and

by M the cortical layer, the retinotopy is then de-

scribed by a map q : R! M which is an isomor-
phism for a certain level of geometric structure

(Fig. 7). A model well fitting the empirical data is

given by the logarithmic conformal map Log½ðzþ
0:333Þ= ðzþ 6:66Þ� [1]. 1 (Fig. 8).

(iii) The columnar and hypercolumnar structure orga-

nizes the cells of V1 in columns corresponding to

parameters such as orientation, ocular dominance,

and color (blobs). It is the simple orientation cells
[74] which are of interest here. Due to their RP in

third derivative of Gaussian o3G
ox3 , they detect pre-

ferred orientations, that is, at a certain scale, pairs

ða; pÞ of a spatial (retinal) position a and of a local

orientation p at a. The hypercolumnar organization

means essentially that to each position a of the



Fig. 8. The conformal map Log½ðzþ 0:333Þ=ðzþ 6:66Þ� as a model of

the retinotopic map between the retina and the cortical layer 4C.

Fig. 7. The retinotopic map between the retina and the cortical layer

4C.
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retina R is associated a full exemplar Pa of the space
of orientations p at a. 2

Cells grouped in one column are strongly redundant:

their orientational preferences are similar and their

receptive fields strongly overlap. This redundancy allows

two things:

i(i) the variation of the phase (see [13], where De Ange-

lis and his co-workers show that in a column ‘‘spa-

tial phase is the single parameter that accounts for

most of the difference between receptive fields of

nearby neurons’’);

(ii) a ‘‘population coding’’ providing a greater accuracy

in the representation of the orientation and spatial

position of the stimulus, the resolution of the net-
work being greater than that of the individual detec-

tors (see e.g. Snippe and Koenderink [63]).
2 To every point in the visual field is associated the set of

orientations of a bar, the set of values of ocular dominance, the set

of wavelengths of a stimulus, and possibly other parameters (such as

movement direction, curvature, binocular disparity, etc.). For more

technical details about these parameters, and especially curvature

detection, see e.g. Zucker et al. [81].
3.2. The first geometrical model of V1 as a fibration

Given the model of the visual space as a 2-manifold,

how to take into account the ‘‘secundary’’ variables:

orientation, ocular dominance, color, direction of

movement (and possibly others)? The set of all possible

values of such variables are represented in each cortical

hypercolumn and a hypercolumn covers a small chart of

the visual field. We have to model the concept of ‘‘en-
grafting’’ variables on the basic retinal variables ðx; yÞ, in
the sense of Hubel:

What the cortex does is to map not just two but

many variables on its two-dimensional surface. It

does so by selecting as the basic parameters the

two variables that specify the visual field coordi-

nates (distance out and up or down from the fovea),
and on this map it engrafts other variables, such as

orientation and eye preference, by finer subdivi-

sions. [32, p. 131]

A hypercolumn can be modeled as the cartesian

product of its chart with the space of secundary ‘‘en-

grafted’’ variables. The overlap of receptive fields is

interpreted as gluing operators and the structural pro-
jection is implemented by the vertical connections

i(i) from the retina to the hypercolumns, and

(ii) within the hypercolumn itself.

The most simple and idealized model of V1 uses the

fundamental geometrical concept of a fibration (or fiber

bundle).

3.2.1. Fiber bundles and ‘‘engrafted’’ variables

The key notion of a fiber bundle was worked out by

mathematicians for rather deep reasons: how to deal
with processes which associate to every point of a

manifold M an entity of a certain type F (a scalar, a

vector, a covector, a tensor, an exterior form, a direc-

tion, a phase, a quantum number, a color, a texture,

etc.), depending on that point? A first (evident) solution

is to use maps u : M ! F , the result being called fields

on M . But in many cases, it is necessary to consider that

to every point of M is associated the complete set of
values in F . For example, in a very concrete technical

domain, at every pixel of a computer screen, the whole

set of grey levels (1 byte) or of RGB colors (3 bytes) is

represented.

Intuitively speaking, a fiber bundle is constituted by a

base space M (a differentiable manifold) and by a copy

of the same manifold F , called the fiber, ‘‘above’’ each of

its points. Globally, the total space E of the fiber bundle
(the fibers ‘‘glued’’ together) is not necessarily a trivial

cartesian product M � F . It results from the gluing of

several cartesian products Ui � F defined on local (open)



Fig. 10. The local triviality of a fibration. For every point x of M there

exists a neighborhood U of x whose inverse image p�1ðUÞ ¼ EU is the

direct product U � F with p the projection on the first factor.
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domains Ui of M . This local triviality has until now
interested geometers only to deal with situations where

the base M was not a globally trivial space Rn but a

manifold that might not be simply connected and might

present homotopy and homology. In our case, the fi-

brations are globally trivial, but their local structure is

imposed by neurophysiology (receptive fields).

By definition, a fiber bundle (or fibration) is a qua-

druple ðE;M ; F ; pÞ such that

1. E, M and F are differentiable manifolds, called

respectively the total space, the base space and the

fiber of the bundle.

2. p : E ! M is a surjective differentiable map, called

the structural projection of the bundle.

3. All inverse images Ex ¼ p�1ðxÞ (x 2 M) are isomor-

phic to F . Ex ’ F is called the fiber above the point
x (Fig. 9).

4. For every point x 2 M , there exists a neighborhood

U of x such that p�1ðUÞ is diffeomorphic to the prod-

uct U � F endowed with the canonical projec-

tion p : U � F ! U , ðx; pÞ 7!x (local triviality, see

Fig. 10).

A section of a fibration is a differentiable map which
lifts up the projection p, associating to every point x of
the base manifold M an element of the fiber Ex. If

s : M ! E is a section, we have therefore: p � s ¼ IdM
(see Fig. 11). Sections can of course be defined only

locally over open subsets U � M .

In the case of a globally trivial bundle p : E ¼
M � F ! M , a section over U is nothing else than a map

s : U ! F .
Fig. 11. A section of a fibration defined on an open set U of M
associates to every point x of U a value sðxÞ in the fiber Ex above x.

Fig. 9. The general schema of a fibration with base space M , fiber F
and total space E. Above every point x of M the fiber p�1ðxÞ ¼ Ex is
isomorphic to F .
3.2.2. V1 as a fiber bundle

If we idealize mathematically the functional archi-

tecture of the retino-geniculo-cortical way, the retino-

topic and hypercolumnar structure of V1 will be

naturally modeled by the fibration p : V ! R which

associates to every point a of the retina R a copy Pa of
the space P of the directions of the plane. Pa is isomor-

phic to the unit circle S
1 if we take into account the

sense of the directions, and to the projective line P1

(the quotient of S1 by the equivalence relation identi-

fying pairs of diametrally opposed points) if we do not

take it into account. The total space V of these copies of



Fig. 12. The fiber bundle E ¼ V with base space the retinal plane

M ¼ R (represented as a line for simplicity) and fiber the projective line

P1 of directions in M : (a) the elements of the fiber above a are repre-

sented as rotating horizontal segments in perspective and (b) the ele-

ments of the fiber above a are represented as points (the coordinate in

the fiber codes the angle h of the direction p).
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Pa, glued together by local coordinate changes in the

base space R, is a fiber bundle. We will see that it is in

fact the contact bundle CR of R, or in other words the

projectivization of the tangent bundle TR of R. The

points of V , namely pairs ða; pÞ of a point a of R and of
a direction p at a, are called contact elements of R (see

Fig. 12).

Via this functional architecture, a (discretized) copy

of the projective line P1 is retinotopically associated to

each retinal position a. There exists therefore a neural

implementation of the fibration p : R� P1 ! R. The set
of feed forward ‘‘projections’’ (in the neurophysiological

sense) of the retino-geniculo-cortical ways implements
the projection p (in the geometrical sense). 3
3.2.3. V1 as a 1-jet bundle

As we will see later, V1 can also be viewed as the

bundle of what are called 1-jets of curves in R. The idea
of a jet generalizes the classical notion of Taylor

expansion, and gives it an intrinsic geometric meaning.

Let us suppose that in a coordinate system ðx; yÞ of R a
curve c is the graph fx; f ðxÞg of a real-valued function f
on R. The 1st-order jet of f , referred to as j1f ðxÞ, is
characterized by three slots: the coordinate x, the value

of f at x, y ¼ f ðxÞ, and the value of its derivative

p ¼ f 0ðxÞ. The latter is the slope of the tangent to the

graph of f at the point a ¼ ðx; f ðxÞÞ of R. So, if we

identify R with a domain in R� R, a 1-jet is nothing else

but a pair c ¼ ða; pÞ. Conversely, to every pair c ¼ ða; pÞ,
we can associate the set of functions whose graph is
3 In the geometrical modeling of neural functional architectures, we

meet lexical conflicts. Lexical terms such ‘‘fiber’’, ‘‘projection’’,

‘‘connection’’, etc. are used with different meanings by mathematicians

and neurophysiologists. The context allows in general to clear the

ambiguity.
tangent to c at a, that is a 1-jet of curves. In this paper,
the bundle of 1-jets of curves in R will be referred to as

J 1R. 4

Jets are feature detectors specialized in the detection

of tangents. The fact that V1 can be viewed as J 1R ex-

plains why V1 is functionally relevant for contour inte-

gration. On the 2-dimensional manifold R, to determine

the direction p of the tangent to a contour at a point a
requires to compare the values of the curve within a
neighborhood of that point. But the system can access

directly this geometrical information as a single

numerical value in the 3-dimensional jet space. This

spares a local computation which would be very

expensive in terms of wiring.

Jan Koenderink [39] strongly emphazised this fun-

damental importance of the concept of jet. Without jets,

it is difficult to understand how the visual system could
extract geometric features such as the tangent or the

curvature of a curve at some point.

Geometrical features become multilocal objects, i.e.

in order to compute boundary curvature the pro-

cessor would have to look at different positions

simultaneously, whereas in the case of jets it could

establish a format that provides the information
by addressing a single location. Routines accessing

a single location may aptly be called point proces-

sors, those accessing multiple locations array pro-

cessors. The difference is crucial in the sense that

point processors need no geometrical expertise at

all, whereas array processors do (e.g. they have to

know the environment or neighbors of a given loca-

tion). [39, p. 374]

It is effectively the central point. The supplementary

variable p allows to convert a geometrical expertise into

a functional architecture of J 1R. Neurons are point

processors (at the scale defined by the size of their RFs)

and can only measure a value at a point. To do differ-

ential geometry with point processors, one needs new

variables evaluating partial derivatives of appropriate
degree.

Koenderink emphasized the fact that (hyper)columns

implement jet spaces (see also Johnston’s paper in this

volume):

The modules (like ‘‘cortical columns’’ in the physi-

ological domain) of the sensorium are local approx-

imations (Nth order jets) of the retinal illuminance
that can be addressed as a single datum by the point

processors. [39, p. 374]
4 The exact classical notation would be J 1ðR;RÞ.
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3.2.4. Generalization of the model

It is possible to extend this model to other charac-

teristic variables of the visual signal which are repre-

sented in the hypercolumns. For that purpose, we need

to consider the manifolds in which these variables vary:

½0; 1� for the rate of ocular dominance, the projective

plane P2 for color, the circle S1 for the set of the

directions of movement (for further information see e.g.

[80] or [76]). V1 will then be modeled as a fiber bundle
with base R and with fiber the cartesian product of the

spaces of secundary variables.

3.2.5. Some differences between neurophysiology and its

geometrical idealization

There exist important differences between the neuro-

physiological data and the geometrical idealization of

the fibration. Let us evoke three of them.

• To begin with, the RFs introduce a scale of resolution

and we need therefore a multi-scale theory of fiber

bundles. Moreover the RFs are adaptive and modu-

lated by the stimuli.

• Next, there exists a strong redundancy of the columns:

a ‘‘point’’ ða; pÞ of the fibration corresponds in fact to

an entire column. This ‘‘population coding’’ is essen-
tial for the adaptive property and the refinement of

the resolution. It allows also an oscillatory response

and therefore synchronizing and ‘‘phase locking’’ phe-

nomena.

• Finally, we have to tackle a fundamental dimensional

constraint. The fibration p : R� P ! R is intrinsically

of dimension 3 (2 degrees of freedom for the retinal

position a ¼ ðx; yÞ, 1 degree of freedom for the orien-
tation p), while the cortical layers are essentially of

dimension 2. There exists therefore a problem of

dimensional collapse. The visual system solved it via

the fascinating ‘‘pinwheel’’ structure analyzed (in par-

ticular) by Bonh€offer, Blasdel and Grinvald.

3.3. Pinwheels

3.3.1. Experimental data on pinwheels

The method introduced by Bonh€offer and Grinvald

[4] in the early nineties of ‘‘in vivo optical imaging based

on activity-dependent intrinsic signals’’ allowed to ac-
quire direct images of the activity of the superficial

cortical layers. High contrast gratings are presented

many times (20–80) with, e.g., a width of 6.25� for the

dark strips and of 1.25� for the light ones, a velocity of

22.5�/s, and eight different orientations. A window is

opened above V1 and the cortex is illuminated with an

infrared light. Differential absorption patterns, resulting

from spatial non-homogeneities in the local deoxyhe-
moglobin/oxyhemoglobin ratio, are observed according

to the grating’s orientation. One does the summation

of the images of V1’s activity for the different gratings
and constructs differential maps (differences between
orthogonal gratings). The low frequency noise is then

eliminated and the maps are normalized by dividing the

deviation relative to the mean value at each pixel by the

global mean deviation. One gets that way precise maps

of V1 orientation cells (Fig. 13).

In the following picture (Fig. 14) taken from the

seminal paper of William Bosking et al. [5], the orien-

tations are coded by colors and iso-orientation lines are
therefore represented by isocolor lines.

We note that there are three classes of qualitatively

different points:

1. Regular points, where the orientation field is locally

trivial in the sense that the iso-orientation lines are

approximatively parallel.

2. Singular points at the center of the pinwheels, where
all orientations converge. We see clearly the opposed

chirality (clockwise and counterclockwise) of adja-

cent singular points.

3. Saddle points, where iso-orientation lines bifurcate:

two near iso-orientation lines start from the same sin-

gular point but end at two different singular points.

If we idealize the situation, we get the model of a
lattice of singular points which are the centers of local

pinwheels globally glued together (Fig. 15).

We must emphasize the fact that in general the

direction of a ray of a pinwheel is not the orientation

associated with it. When the ray spins around the sin-

gular center with an angle h, the associated orientation

rotates with an angle h=2. This implies that two diam-

etrally opposed rays correspond to orthogonal orienta-
tions.

But how can this 2D pinwheel structure fit with the

more abstract 3D fibration model? We will see now,

using the geometrical concept of a ‘‘blowing up’’, that it

can be considered as a discrete approximation of it.

3.3.2. A ‘‘blowing up’’ model of pinwheels

In algebraic geometry, the blowing up of a manifold
at a point, e.g. of the plane M ¼ R2 at the origin O ¼
ð0; 0Þ, is the following operation. Let a ¼ ðx; yÞ 6¼ ð0; 0Þ
be a point in R2. We can associate the direction Oa to it

and define a map d
d : R2 � fOg ! P1;

a ¼ ðx; yÞ 7!dðaÞ ¼ p ¼ y
x
:

The graph of d is a 2D algebraic ruled surface H in

the 3D fibration V ¼ R2 � P1 whose topological closure

is an helico€ıd H . The restriction to H of the projection
p : R2 � P1 ! R2 is an isomorphism of H to R2 outside

O ¼ ð0; 0Þ. If d is the straight line Oa in R2 then its

inverse image d 0 ¼ p�1ðd � fOgÞ is constituted by the



Fig. 13. Maps of the activity of V1 for different orientations. The superposition of the maps provides a color map where colors code the orientation

(from [10]).

Fig. 14. The pinwheel structure of V1 for a tree shrew. The different orientations are coded by colors. Examples of regular points and of singularities

with opposed chiralities are zoomed in (from [5]).

Fig. 15. An idealized ‘‘cristal’’ model of pinwheels centered on a reg-

ular lattice of singular points. Some iso-orientations lines are repre-

sented. The saddle points in the centers of the domains are well visible.
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points ðka; dðaÞ ¼ pÞ of V ¼ R2 � P1, that is by the line

d at the height dðaÞ ¼ p ¼ y
x. When the line d rotates in

the plane R2, d 0 rotates in R2 but translates also in the P1

direction, hence the helico€ıdal movement. The inverse

image of the blown up point O is the entire projective

line P1 and therefore p is by no means an isomorphism

at O but a projection collapsing a 1D fibre onto a 0D

point. In that sense, the blowing up of the plane at a
point provides a geometrical structure which is, in some

sense, intermediary between a 2D plane and a 3D fi-

bration over it: it is the fibration V over O and the plane

R2 outside O. We can say that the blowing up

p : H ! R2 unfolds in a third dimension the orientation

wheel centered on O ¼ ð0; 0Þ (Figs. 16 and 17).

This construction can be viewed as an interpretation

of the polar coordinates in terms of the fibration p1 :



Fig. 16. The blowing of a plane at a point a. The directions at a are

unfolded in a third dimension and constitute an helicoidal surface.

Fig. 17. When the third dimension collapses, the blowing up of a plane

at a point becomes a pinwheel.

5 Private communication.
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R2 � S1 ! R2. Indeed, on the punctuated plane

R2 � fOg; the argument hðaÞ 2 ½0; 2p� of a point a is well
defined and we can therefore consider the section #1 of

p1 defined by #1 : a! #1ðaÞ ¼ ða; eihðaÞÞ. The fibration

p : R2 � P1 ! R2 is the quotient of the fibration

p1 : R
2 � S1 ! R2 by the identification of h with hþ p

(that is of eih with �eih) and #1 lifts to p1 the section of p
# : a! #ðaÞ ¼ ða; eihðaÞÞ where hðaÞ 2 ½0; p� is now con-
sidered modulo p. #1ðaÞ is constant on the rays h¼ cst

and, when it is lifted from R2 � P1 to R2 � S1, the sur-

face H becomes the image of #1.

The concept of blowing up was introduced at the

beginning of the 20th century by specialists of projec-

tive algebraic geometry under the name of ‘‘quadratic

transformation’’. It is one of the simplest case of bira-

tional transformation and is particularly useful for de-
singularizing singular curves. If a curve c in R2 has a

singular point in O presenting many branches with dif-

ferent tangents, then its lifting to H , C ¼ p�1ðcÞ, presents
branches of differents heights and therefore the crossing

has been removed.
We can localize this algebraic model and consider its
infinitesimal version where we look only at points a ¼
ðdx; dyÞ infinitely close to the blown up point O ¼ ð0; 0Þ.
This amounts to take what is called the germ of the

structure at O. As was pointed out to me by Pierre

Cartier, 5 to blow up a point is like to cut out an

infinitesimal disk centered on it. In the infinitesimal

model we have p ¼ dy=dx and the surface H is therefore

included in the kernel of the differential 1-form x ¼ dy�
pdx defined on V ¼ R2 � P1 (we will return on this key

point later in Section 4.2.3). Reciprocally, the algebraic

model can be considered as the tangent structure of the

infinitesimal one where infinitesimal vectors are substi-

tuted by tangent vectors.

We will use the blowing up model to represent the

empirical data of the previous section. As a first

approximation, we presented there the pinwheel struc-
ture omitting the redundancy of the cortical columns

orthogonal to the layer surface. This was legimitate since

the simple cells of a same column detect essentially the

same pair ða; pÞ (we do not take into account the varia-

tion of phase). But it is definitely no longer the case at the

center of a pinwheel. Maldonado et al. [47] have analyzed

the fine-grained structure of orientation maps at the

singularities in the cat striate cortex. They found that

orientation columns contain sharply tuned neurons

of different orientation preference lying in close

proximity.

In a certain sense, ‘‘all’’ orientations are present at the
singular point. Moreover, the orientation associated to a

ray of a pinwheel selects this orientation at the center,

which means that the operation of closure H of H is

neurally implemented. This result can be interpreted

saying that the singular point is blown-up inside the

thickness of the cortical layer. The existence of complex

cells without a specific orientation tuning is also an

argument in favor of the blowing up model.
We must emphasize again that this model is a model

of the functional geometry of a pinwheel and not of the

orientations associated to its rays. Indeed, as we stressed

at the end of the previous section, two diametrally op-

posed rays correspond to orthogonal orientations.

Therefore, orientations do not correspond to the section

# : a! #ðaÞ ¼ ða; eihðaÞÞ, hðaÞ 2 ½0; p�, of the fibration

R2 � fOg � P1 ! R2 � fOg but to the section w : a!
wðaÞ ¼ ða; eihðaÞ=2Þ of the fibration R2 � fOg � P1 !
R2 � fOg. We need two p-rotations (that is a 2p-rotation
of h) to get the same orientation again. Daniel Benne-

quin pointed out to me this could mean that pinwheels

implement in fact what is called in geometry a spin

structure.



Fig. 18. The parallel blowing up of a lattice of points in the plane.

Fig. 19. When the third dimension collapses, a parallel blowing up of a

lattice of points in the plane becomes a lattice of pinwheels.
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3.3.3. From the blowing up model to the fibration model

To recover the fibration model from the blowing up

model of a single pinwheel, we have to blow-up in par-
allel all the points of a lattice L. This is not possible in the

framework of algebraic geometry because, to iterate the

algebraic model, we have to embed successive blowings

up into embedding spaces of greater and greater dimen-

sion. But we can do it in the framework of differential

geometry by gluing together the local models for the

different points of the lattice. We get that way a rather

exact model of the pinwheel structure (Figs. 18 and 19).
Now, we can consider that, as the mesh of the lattice

L tends to 0, the limit of this parallel multi-blowing-up

is the fibration p : R2 � P1 ! R2 gluing together the

infinitesimal model of all the points of R2. In that sense,

the pinwheel structure can effectively be considered as a

discrete approximation of the fibration p and, recipro-

cally, p can be considered as the simultaneous blowing

up of all the points in the plane. In fact, we get that way
not only the fibration p : R2 � P1 ! R2 but also a sup-

plementary infinitesimal structure defined on it by the 1-

form x ¼ dy � pdx. We will see below that it is exactly

the contact structure of p.
But if we do not take the limit and keep the lattice L

with a finite mesh, we can consider the field of orienta-
tions #ðaÞ ¼ eihðaÞ of the simple cells of V1 as a section
of the fibration p : R2 � S1 ! R2 defined over R2 � L.
We can use the Fourier transform and look at linear

superpositions of the form

Xk¼N
k¼1

cke2ipðx cosð2pk=NÞþy sinð2pk=NÞ:

Fig. 20 (see p. 289), shows two examples for N ¼ 256,

the coefficients ck being random numbers in ½0; 1�.
We can also notice that the rays of the pinwheels

leave space for coding a supplementary parameter. It

seems (De Angelis et al. [13], Bressloff et al. [82]) that it
could be spatial frequency. At the limit, this parameter

disappears and we recover the fact that classical geom-

etry is an idealization having infinite resolution, no

scale, and no spatial frequency.
3.4. The neural implementation of the topological and

differentiable manifold structure

Let us be a little more precise concerning the imple-

mentation of the global geometric coherence of

the subjective, immanent, internal, phenomenal space

(which has to be carefully distinguished from the

objective, trancendant, external, physical space).

3.4.1. The problem of an immanent global space

The visual system constructs successive retinotopic
representations of the retinal space whose global ‘‘spa-

tial’’ structure is rather problematic. Indeed, when two

neighboring ganglion cells have overlapping RFs they

share common photoreceptors through intermediary

(horizontal and amacrine) cells, but when their RFs are

disconnected, it becomes impossible to compare their

activities directly. In that sense, the immanent retinal

space is very different from an Euclidean domain since
at the retinal level, there exists no global geometrical

structure. While two distant parts of the Euclidean plane

can always be compared by translations, there is no

possibility to compare immanently two non-overlapping

receptive fields. In other words, the Euclidean space

possesses a global structure of homogeneous space (the

group of its automorphisms acts transitively upon it)

while the retinal space results basically from ‘‘gluing’’
local domains (the receptive fields). Space is not given. It

must be constituted as a very special type of represen-

tation.

The same phenomenon holds for each of the succes-

sive levels of representation of the visual field: two cells

with non-overlapping receptive fields and no intercon-

nections would ‘‘ignore’’ each other. Long-range ‘‘ver-

tical’’ connections link successive levels of processing
but if ‘‘horizontal’’ connections within a single level

were only short-ranged, the continuation from local

structures to global ones would be impossible. We have



Fig. 21. A covering of a topological space by a set of open subsets. The

nerve of the covering is the simplicial structure defined by the inter-

sections.
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therefore to carefully distinguish two completely differ-
ent types of structure:

i(i) the local one which defines the differentiable mani-

fold structure, and

(ii) the global one which allows parallel transport and

other comparisons between two distant points.

3.4.2. The neural implementation of the topology

The idea of passing from local structures to global

ones by gluing processes has become fundamental in

modern geometry: since a long time 6 mathematicians

have been interested in the properties of spaces con-

structed by gluing local domains, to which they have

extended the powerful tools of differential calculus. To

this purpose they introduced the concept of a differen-

tiable manifold defined on an underlying topological
space. Intuitively, a differentiable manifold is a topo-

logical space locally homeomorphic to a standard space

Rn through systems of local coordinates (called local

charts), the coordinate transformations being differen-

tiable maps. 7

In what concerns the underlying topological space,

Koenderink [38] has shown how it can be constructed

from the functional relationships to which the system
has internally access. The gluing of local domains

(overlapping receptive fields) is coded by the temporal

correlations of the signals along the associated nervous

fibers. This fine grained temporal information (the only

one internally available to the system) encodes the
1 2 3 4 5 6

1 · ·
2 · · ·
3 · · ·
4 · · ·
5 · · ·
6 · ·
7 ·
8

9 ·
10 · · ·
11 ·
12 · · · ·

6 The idea comes back to Gauss at the beginning of the 19th century

(�1820–1830). Riemann introduced the concept of a Riemannian

manifold (Mannigfaltigkeit) in his 1854 Habilitationsarbeit ‘‘ €Uber die

Hypothesen, welche der Geometrie zu Grunde liegen’’ (see his

Gesammelte Mathematische Werke), and Hermann Weyl introduced

the concept of an abstract differentiable manifold at the beginning of

the 20th century (1913) in his masterpiece Die Idee der Riemannschen

Fl€ache (Leipzig, Berlin, B.G. Teubner).
7 We cannot rigorously define here the technical concept of a

differentiable manifold: see e.g. Spivak [65].
topological structure resulting from gluing: indeed the
intersection structure of any open covering of a space

characterizes its topology (it is the base of what is called

technically �Cech cohomology). More precisely, if

U ¼ ðUiÞi2I is an open covering of a manifold M , one

associates to it a combinatorial structure NðUÞ (a

simplicial complex called the ‘‘nerve’’ of U ) by consid-

ering the intersections Ui \ Uj, Ui \ Uj \ Uk, etc., which
are not empty (Fig. 21).

In Fig. 21, there are 12 open subsets Ui. For the

Ui \ Uj the intersection matrix is the following:
7 8 9 10 11 12

· ·
·
· ·

·
·

· · ·
· · ·
· · · ·

· · · ·
· · · ·

· · · · · ·
· · ·
For the intersections Ui \ Uj \ Uk we get the 13 tri-

ples: ð1; 2; 10Þ, ð1; 10; 9Þ, ð2; 3; 10Þ, ð3; 4; 12Þ, ð3; 10; 12Þ,
ð4; 5; 12Þ, ð5; 6; 12Þ, ð6; 11; 12Þ, ð6; 7; 11Þ, ð7; 8; 11Þ,
ð8; 9; 11Þ, ð9; 10; 11Þ, ð10; 11; 12Þ.

NðUÞ characterizes to a certain extent the structure

of M . Koenderink’s hypothesis is that, for M ¼ ‘‘the

visual field’’ and U ¼ ‘‘the covering of M by the recep-
tive fields of ganglion cells’’, NðUÞ is encoded in the
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temporal correlations of the signals along the fibers of
the optic nerve. Koenderink and his co-workers have

shown, through simulation, how such a structure can be

set up during the development of the visual system [67].
3.4.3. The neural implementation of the differentiable

structure

More structured than the concept of a topological

space, the concept of a manifold was introduced in order
to provide a class of generalized spaces on which it is

possible to do differential geometry. Since every point is

surrounded by a neighborhood isomorphic to a domain

of a classical space, all the operations of differential

geometry, which are local, can be transferred to mani-

folds. Koenderink [40] proposed the idea that the tan-

gent space at one point could be implemented by a

cortical hypercolumn above this point. According to
him, each of the cells in the hypercolumn would imple-

ment a tangent vector, while the connections within the

hypercolumn would implement the vectorial operations

of addition and scalar multiplication. To evaluate this

hypothesis, let us first define these mathematical notions

more precisely.

The classical dual notions of tangent and cotangent

vectors easily generalize to manifolds. If the local
parametric equation of a curve c in the n-manifold M is

xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ, then its tangent vector X ðtÞ at

xðtÞ will be
X ðtÞ ¼ ðX1ðtÞ; . . . ;XnðtÞÞ ¼
dx1ðtÞ
dt

; . . . ;
dxnðtÞ
dt

� �

¼ dxðtÞ
dt

: ð9Þ
It is obvious that these tangent vectors constitute a

vector space on R. It is noted TxM and called the tangent

space of M at x. The different TxM glue together and

constitute a fiber space P : TM ! M of base M and fiber
Rn.

If u is an observable, that is a function u : M ! R, its

derivative along the curve c is given by
du
dt
¼
Xn
i¼1

ou
oxi

dxi
dt
¼
Xn
i¼1
Xi

ou
oxi

¼
Xn
i¼1
Xi

o

oxi

 !
ðuÞ ¼ X ðuÞ; ð10Þ
8 The classical formula for a Gaussian G of width r on the plane is
1

2pr2 e
�ðr2=2r2Þ (where r is the length of the radius Oa). We have seen in

Section 2.2 that in scale-space geometry, the scale s is linked to the

width r of G by the formula 2s ¼ r2.
where X is the derivation operator X ¼
Pn

i¼1 Xi
o
oxi
. Thus

tangent vectors can be interpreted as derivation opera-

tors on observables. The particular derivations o
oxi

asso-

ciated to the local coordinates xi constitute a basis for

the vector space TxM .
Differential forms x are the dual entities of tangent
vectors and therefore are also called cotangent vectors:

they are linear forms on tangent vectors. If

X ¼
Pn

i¼1 Xi
o
oxi

is a tangent vector, then xðX Þ will be a

number depending linearly both on X and x. If

o
ox1

; . . . ; o
oxn

	 

is the basis of the tangent space TxM of M

at x associated to the local coordinates ðx1; . . . ; xnÞ; then
the dual basis of the cotangent space is ðdx1; . . . ; dxnÞ.

Thus dxj o
oxi

	 

¼ dji (where dji is the Kronecker symbol

dji ¼ 1 if i ¼ j and dji ¼ 0 otherwise), and if

x ¼
Pn

j¼1 xj dxj we get

xðX Þ ¼
Xn
i;j¼1

xjXidji ¼
Xn
i¼1

xiXi ¼ hx;X i: ð11Þ

If u is an observable, we can associate to it the differ-
ential form du ¼

Pn
j¼1

ou
oxj

dxj. Then we have the funda-

mental duality

duðX Þ ¼
Xn
i¼1

ou
oxi
Xi ¼ X ðuÞ: ð12Þ

Let us now consider a cell whose receptive profile is

(an approximation of) a Gaussian G. As we have seen in

Section 2.2, it operates on the signal I through the

convolution 8 A ¼ G � I . We have also seen that a fun-

damental property of convolution is its behavior relative
to derivation

o

ox
ðu � wÞ ¼ ou

ox
� w ¼ u � ow

ox
ð13Þ

for two distributions u and w. It follows that a cell with

an RP oG
ox operates via:

A0 ¼ oG
ox
� I ¼ G � oI

ox
¼ o

ox
ðG � IÞ ¼ oA

ox
: ð14Þ

The profile oG
ox operating on I provides therefore the

directional derivative X ðIÞ (with X ¼ o
ox).

But the neurophysiological data seem to invalidate

the hypothesis of a complete neural implementation of

the tangent and cotangent spaces of the retinal space.

Indeed:

1. Although all directions are represented within a hy-

percolumn, there is no such evidence for the vectors

themselves.

2. Even if the implementation of the vector structure

(vector addition and scalar multiplication) is theoret-
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ically possible, it would require lots of connections
which have not been observed.

3. As we will see, the main function of orientation

columns is to represent contours. Now, the tangent

vector to a curve at one point depends on the param-

etrization and has therefore no intrinsic geometric

meaning, while the tangent direction is an intrinsic

geometrical entity.

What seems to be represented over every point a of

the retinal field R via the pinwheels is therefore not the

tangent plane TaR itself, but only its projectivization,

namely the projective line P1 of tangent directions.
Fig. 22. Examples of cortico-cortical horizontal connections. The

orientation cells are symbolized by a square (their receptive field) and a

line (their preferred orientation). The H represents the reference cell.

Electrodes are placed on other cells N . For each pair ðH;NÞ the cross-
4. Horizontal connections and the contact structure of V1

Up to now, we have modeled the ‘‘vertical’’ structure

of connections defining the fibration p : M � P ! P
with base space M ¼ R and fiber P ¼ P1 or P ¼ S1. 9

But such a ‘‘vertical’’ structure is largely not sufficient.

As we already previously emphasized, to implement a

global coherence, the visual system must be able to

compare two retinotopically neighboring fibers Pa and Pb
over two neighboring points a and b of M . This is a
problem of parallel transport. It has been solved at the

empirical level by the discovery of ‘‘horizontal’’ cortico-

cortical connections (see e.g. [11]).
correlogram is shown. When there exists a peak, this means that the

two cells H and N are synchronized and therefore connected. We see

that the most strongly connected cells are those sharing the same

preferred orientation (from [69]).
4.1. Horizontal connections

Horizontal connections are long ranged (up to 6–8

mm) and connect cells of the same orientation in distant
hypercolumns. To detect them (see e.g. Ts’o et al. [69])

one can

ii(i) measure the correlations between cells belonging to

different hypercolumns;

i(ii) compare the preferred orientation of a reference cell

with the preferred orientation of other cells met

along a cortical penetration;
(iii) compute cross-correlograms.

One verify that cells with neighboring orientations are

strongly correlated while cells with sufficiently different

orientations are decorrelated (Fig. 22).

The beautiful next figure (Fig. 23, see p. 289) is due to

William Bosking [5]. It shows how biocytin injected lo-

cally in a zone of specific orientation (green–blue) dif-
fuses via horizontal cortico-cortical connections.
9 For greater generality, we use in the following the more generic

notations M and P . M is the retina R or the cortical layer and P is the

space of orientations.
The key experimental fact is that short range diffusion

is isotropic, while long range diffusion is, on the con-

trary, highly anisotropic and restricted to cortical zones

sharing essentially the same orientation (the same color)

as the injection site. These different types of connections

implement two different levels of structure:

i(i) the short range connections implement the local

triviality of the fibration p : M � P ! P , while
(ii) the long range connections implement a richer struc-

ture.

One could think that horizontal cortico-cortical

connections violate retinotopy. But in fact they reinforce
it by insuring its large scale coherence. Without them,

neighboring hypercolumns would become independent

and retinotopy would lose any immanent reality for the

system itself.

That cortico-cortical connections connect neurons of

the same orientation in different hypercolumns means

that the system is able to know, for b different from a, if
an orientation p at a is the same as an orientation q at b.
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Fig. 24. Cortico-cortical horizontal connections allow the system to

compare orientations in two different hypercolumns corresponding to

two different retinal positions a and b (schematic representation).

Fig. 25. While the retino-geniculo-cortical ‘‘vertical’’ connections give

a meaning to the relations between pairs ða; pÞ and ða; qÞ (different

orientations p and q at the same point a), the ‘‘horizontal’’ cortico-

cortical connections give a meaning to the relations between pairs

ða; pÞ and ðb; pÞ (same orientation p at different points a and b).

Fig. 26. Cortico-cortical connections connect preferentially neurons

detecting not only co-oriented but also co-axial pairs ða; pÞ and ðb; pÞ
where p is the orientation of the axis ab.
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In other words, while the retino-geniculo-cortical ‘‘ver-

tical’’ connections provide an internal meaning for the

system to the relations between pairs ða; pÞ and ða; qÞ
(different orientations p and q at the same point a), the
‘‘horizontal’’ cortico-cortical connections provide an
internal meaning for the system to the relations between

pairs ða; pÞ and ðb; pÞ (same orientation p at different

points a and b) (Figs. 24 and 25).

Moreover, it can be shown that cortico-cortical con-

nections preferentially connect neurons detecting not

only parallel (co-oriented) pairs ða; pÞ and ðb; pÞ, but

also co-axial pairs, that is pairs such that p is the ori-

entation of the axis ab (Fig. 26).
y

4.2. The contact structure of V1

We will now present in this section the most impor-

tant geometrical structure of the fibration p : M � P !
P , namely its contact structure C which models quite

exactly the functional architecture of V1. We are aware

that the topic is mathematically rather technical but we
think that, in order to understand really the concepts at

stake, it is necessary to describe their formal content.
x

p

Fig. 27. A 1-jet is a pair ða; pÞ ¼ ðposition; orientationÞ representing
the equivalence class of the differentiable curves going through a with

tangent p.
4.2.1. The contact bundle and the 1-jet space

In general, if M is a n-manifold, one can consider at

every point a of M , not the tangent vector space TaM ,

but the set of its hyperplanes (linear sub-spaces of co-

dimension 1), referred to as CaM . CaM is isomorphic to
the projective space Pn�1. The total space gluing these

fibers is the contact bundle of M and is referred to as
CM . In our case, M is 2-dimensional, the hyperplanes

are orientations and CM ¼ M � P . The set of contact

elements at a, CaM , is isomorphic to the projective line

P ¼ P1 (the set of plane directions).

We can interpret the coordinate p in terms of TaM . If

ðx; yÞ are local coordinates at a, the tangent plane TaM is

naturally endowed with the associated coordinates ðn; gÞ
in the natural basis o

ox ;
o
oy

	 

. Then, on an open set not

containing the ‘‘vertical’’ line n ¼ 0, a local coordinate

of CaM is p ¼ g
n (in the neighborhood of n ¼ 0, we can

choose the coordinate p ¼ n
g). An element c of CM is

therefore identified by the coordinates ðx; y; pÞ ¼ ða; pÞ,
and CM is a 3-manifold isomorphic to V ¼ M � P .

As we already sketched it in Section 3.2.3, in the case

where M is a domain of R� R, the contact bundle of M
is closely related to the bundle of 1-jets of curves in M ,

referred to as J 1M (Fig. 27). CaM is the compactification
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of J 1aM where the symbols1 and �1 are identified i.e.
where a point at infinity is added.

Let us emphasize once again that jet spaces are of

fundamental importance because they reduce local

computations to punctual ones. The counterpart of this

drastic simplification is to increase the number of vari-

ables: instead of considering the plane ðx; yÞ, and then

computing y0 ¼ dy
dx (which requires to know not only the

value y ¼ f ðxÞ of f at x but also the values of f in a
neighborhood of x), we consider the 3-dimensional

phase space ðx; y; pÞ endowed with the constraint y 0 ¼ p.
This deep idea is ubiquitous in mathematical physics

and comes back to Hamilton.
4.2.2. E(2)-invariance

To choose a frame ðx; y; pÞ of CM and identify CM
with (a compactification of ) J 1M is equivalent to choose
a point O of M (which becomes the origin) and the

contact plane C0 (which becomes the plane ðx; pÞ), the
third axis y being orthogonal to C0. But, when we

choose such a frame ðx; yÞ, we break the symmetry of R.
This symmetry breaking is compensated by the fact that

the structure of J 1M is invariant under the action of the

Euclidean group Eð2Þ ¼ SOð2ÞoR2 of rigid motions in

the plane (Eð2Þ is the semi-direct product o of the
rotation group SOð2Þ and of the translation group R2).

Let ðp; rhÞ be an element of Eð2Þ where p is a point of

M and rh the rotation of angle h. 10 ðp; rhÞ acts on a point

a of M by
ðp; rhÞðaÞ ¼ p þ rhðaÞ: ð15Þ
If ðp; rhÞ and ðq; ruÞ are two elements of Eð2Þ, their (non-
commutative) product is given by the formula
ðq; ruÞ � ðp; rhÞ ¼ ðqþ ruðpÞ; ruþhÞ: ð16Þ
The product is non-commutative for ðp; rhÞ � ðq; ruÞ ¼
ðp þ rhðqÞ; rhþuÞ. Of course ruþh ¼ rhþu, but qþ ruðpÞ 6¼
p þ rhðqÞ (Fig. 28).

The rotation rh acts on the fibration J 1M ! M by
rhða;uÞ ¼ ðrhðaÞ;uþ hÞ ð17Þ
(where u is the angular coordinate corresponding to p).
This particular form of action warrants the fact that the

alignment of preferred directions is Eð2Þ-invariant
(Fig. 29).
10 In this paragraph, p refers to a point of M acting by translation

on the current points of M (which remain referred to by a). This

notation must not be confused with p ¼ f 0ðxÞ which refers to the third

component of the jet space J1M .
4.2.3. Legendrian lifts and the condition of integrability

Let now c be a smooth curve plotted in the manifold

M . It can be lifted to a curve C in V ¼ J 1M . Indeed, let

us consider the 1-jet map j1 : c � M ! J 1M which

associates to every point a of c the 1-jet of c at that

point, that is the pair ða; paÞ where pa is the tangent of c
at a. C ¼ j1c is the image of c by j1 and is called the

Legendrian lift of c into J 1M (or CM ). C represents c as

the envelope of its tangents (Fig. 30).
If aðsÞ is a parametrization of c, we note a0ðsÞ ¼

y 0ðsÞ=x0ðsÞ and therefore C ¼ ðaðsÞ; pðsÞÞ ¼ ðaðsÞ; a0ðsÞÞ.
In terms of the coordinates x and y and of an equation

y ¼ f ðxÞ of c, the equation of C is then ðx; y; pÞ ¼
ðx; y ¼ f ; y0 ¼ f 0Þ.

Let us assume now that we do not have access to what

happens in the base M , and that we are trying to recover

it only from what we observe in the total space
V ’ J 1M ’ R3. To every curve c in M is associated a

curve C in V . But the converse is definitely false. The
crucial question is therefore to characterize, among all

the skew curves C in V , those which result from the

lifting of smooth curves c lying in the base space M . Let

C ¼ vðsÞ ¼ ðaðsÞ; pðsÞÞ be a (parametrized) curve in V .
The projection aðsÞ of C is a curve c in M and C is the

lifting of c iff pðsÞ ¼ a0ðsÞ. Equivalently, if C is locally
defined by equations y ¼ f ðxÞ, p ¼ gðxÞ, there exists a

curve c inM such that C ¼ j1c if and only if gðxÞ ¼ f 0ðxÞ,
that is p ¼ y0.

In differential geometry, this condition is called a

Frobenius integrability condition. It says that to be a

coherent curve in V , C must be an integral curve of the

contact structure of the fibration p in the following sense.

Let t ¼ ða; p; a; pÞ ¼ ðx; y; p; n; g; pÞ be a tangent vector
to V at the point v ¼ ða; pÞ ¼ ðx; y; pÞ. If t is tangent

to a curve of equation y ¼ yðxÞ and p ¼ pðxÞ, we have

t ¼ ðx; y; p; 1; y0; p0Þ. If p ¼ y 0, that is if the integrability

condition is satisfied, we have therefore t ¼ ðx; y; p;
1; p; p0Þ. Due to this very special form, t belongs to the

kernel of the differential form x ¼ dy � pdx on V ¼ J 1M .

Indeed, from the general formula xðtÞ ¼
P

xiti, (where
ti and xi are the respective components of t and x rel-
ative to the bases of TJ 1M and T �J 1M associated to the

local coordinates ðx; y; pÞ), we get xðtÞ ¼ �p � 1þ
1 � p þ 0 � p0 ¼ �p þ p ¼ 0 (we have x ¼ �pdxþ 1dyþ
0dp and dx (respectively, dy, dp) applied to ð1; p; p0Þ
selects the first (respectively, the second, the third)

component 1 (respectively, p, p0)). Now, the kernel of a

differential form on a 3-dimensional space is a plane. t
belongs therefore to a plane Cv, tangent to V ¼ J 1M at v
(i.e. Cv � TvV ) (Fig. 31). 11
11 Cv must not be confused with Ca. Ca is the fiber over a 2 M of the

contact bundle CM and is a subspace of CM , while Cv is the contact

plane of CM at v 2 TCM and is a linear subspace of TvCM .
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Fig. 28. The non-commutativity of the Euclidean group Eð2Þ.

Fig. 29. The Eð2Þ-invariance of the contact structure.

Fig. 30. The Legendrian lifting of a curve c, y ¼ f ðxÞ, in the base space

M to the fibration V ¼ M � P . Above every point ðx; y ¼ f ðxÞÞ of c we

take the tangent direction p ¼ f 0ðxÞ.
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Thus, the tangents to the curves in V ¼ J 1M of the

form j1c belong to the field of planes C : v! Cv. This
field is called the contact structure of J 1M , and x its

contact form. Since the curves of the form j1c are tangent
at each of their point to this field of planes, they are

called integral curves of the contact structure (Fig. 31).

Conversely, let us consider a skew curve C in J 1M of

equations y ¼ f ðxÞ and p ¼ gðxÞ. Then, on C; we have
x ¼ ðf 0 � gÞdx (for dy ¼ f 0 dx and pdx ¼ gdx). If C is

an integral curve of the contact structure, we have x ¼ 0

on C, then f 0 ¼ g and C is effectively of the form j1c.
The contact structure C is therefore exactly what dis-

criminates the Legendrian lifts of planar curves among the

other skew curves in the jet space V ¼ J 1M . Through the

transformation u! �p, v! x, w! y, it corresponds to
the well known classical standard example on R3 (with
coordinates ðu; v;wÞ) given by x ¼ udvþ dw.
4.2.4. The complete non-integrability of the contact

structure, non-holonomy, and the Frobenius condition

We must stress a very important fact concerning the

contact structure C. It is defined as the field of planes
v 2 V 7!Cv � TvV which is the field of kernels of the 1-
form x ¼ dy � pdx. It is then natural to ask if this 2D

field Cv which possesses plenty of 1D integral curves,

could itself be integrable in the sense that it would exist

surfaces S of J 1M tangent to Cv at every of their point v,
so that we would have TvS ¼ Cv. But this is impossible.

The field v 7!Cv is a prototypical example of a com-

pletely non-integrable field because it is too ‘‘twisted’’

(Fig. 32).
More technically, one can remark that if t 2 TvV

is a tangent vector to V of components t ¼ ðn; g; pÞ,
the vanishing condition xðtÞ ¼ 0 defines the plane

�pnþ g ¼ 0 i.e. g ¼ pn. Through the identification

V ’ R3, Cv becomes the ‘‘vertical’’ plane above the

‘‘horizontal’’ line of slope p. When one moves along the

fiber Pa ¼ J 1aM , this plane rotates with p. The non-inte-

grability of the field Cv results from the fact that the
2D Frobenius integrability condition x ^ dx ¼ 0 (i.e.

dxðt; t0Þ ¼ 0 for all t and t0 such that xðtÞ ¼ xðt0Þ ¼ 0) is

not satisfied. The general theorem says that a necessary

and sufficient condition of integrability is that, for every

basis ft1; t2g of Cv, the Lie bracket ½t1; t2� belongs to Cv,
or in other words that Cv is a Lie sub-algebra of TvJ 1M .

But for x ¼ dy � pdx we have



Fig. 31. The contact structure of the contact bundle (or the 1-jet

bundle) of a base manifold M . Let a 2 M and p a hyperplane of the

tangent plane TaM . p corresponds to a point in the fiber P ¼ CaM of

CM above a. Let t ¼ ða; pÞ be a tangent vector to CM at v ¼ ða; pÞ.
t ¼ ða;pÞ belongs to the contact plane CvM of CM at v iff the projection

p�ðaÞ of the ‘‘horizontal’’ component a of t is aligned with p.

Fig. 32. The field of contact planes is too twisted to be integrable.
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dx ¼ �dp ^ dx ¼ dx ^ dp ð18Þ
and therefore

x ^ dx ¼ ð�pdxþ dyÞ ^ dx ^ dp ¼ dy ^ dx ^ dp

¼ �dx ^ dy ^ dp: ð19Þ
But this 3-form is nothing else than the volume form of
J 1M and it is therefore impossible for it to vanish. We

can also remark that for the natural basis

t1

�
¼ o

ox
þ p o

oy
¼ ð1; p; 0Þ; t2 ¼

o

op
¼ ð0; 0; 1Þ

�

of Cv we have ½t1; t2� ¼ t3 ¼ � o
oy ¼ ð0;�1; 0Þ and

t3 ¼ ð0;�1; 0Þ 62 Cv because for this vector �pnþ g ¼
�0þ ð�1Þ ¼ �1 6¼ 0.

The consequence of the 2D non-integrability––also

called non-holonomy––of the contact structure C is that

its integrals are necessarily 1-dimensional. In other

words, C is functionally dedicated to the integration of
curves. Moreover, the non-integrability of the contact

structure expressed by its Lie brackets implies that the

geometry of V which models the functional architecture

of V1 in terms of C is completely different from a classical
Euclidean geometry, even at the infinitesimal level.

4.2.5. Contact and Lie structures

It is interesting to note that the contact structure of
V ¼ J 1M can in fact be easily recovered as a translation-

invariant structure in an appropriate Lie group. Indeed,

let us define a product on V by the formula

ðx; y; pÞ � ðx0; y 0; p0Þ ¼ ðxþ x0; y þ y 0 þ px0; p þ p0Þ: ð20Þ
It is immediate to verify that this composition law is

associative, that the origin ð0; 0; 0Þ is a neutral element,

and that the inverse of v ¼ ðx; y; pÞ is v�1 ¼ ð�x;�yþ
px;�pÞ. But, due to the asymmetry of the term px0, the
product is non-commutative.

The Lie algebra of V is the vector space v ¼ T0V
endowed with the Lie bracket

½t; t0� ¼ ½ðn; g; pÞ; ðn0; g0; p0Þ� ¼ ð0; n0p� np0; 0Þ: ð21Þ
Let us consider the left translation Lv defined by

Lvðv0Þ ¼ v � v0. It is a non-linear diffeomorphism of V
whose tangent application at 0 is the linear map

T0Lv : T0V ! TvV

t ¼ ðn; g; pÞ 7!T0LvðtÞ ¼ ðn; gþ pn;pÞ:

The matrix of T0Lv is

T0Lv ¼
1 0 0
p 1 0

0 0 1

0
@

1
A:

That shows that the basis o
ox ;

o
oy ;

o
op

n o
of the tangent

bundle TV ¼ TJ 1M associated to the coordinates system

fx; y; pg is not left-invariant. It is the origin of non-

holonomy. To get a left-invariant basis we must trans-

late the basis o
ox ;

o
oy ;

o
op

n o
0
at 0 and this yields the basis

o
oxþ p o

oy ;
o
oy ;

o
op

n o
that is ft1;�t3; t2g.

Let us now consider a vector t of C0. As g ¼ pn and

p ¼ 0, we have g ¼ 0. Its transform T0LvðtÞ is therefore
given by ðn; pn; pÞ. As g ¼ pn, T0LvðtÞ is an element of the



12 dvðvÞðtvÞ is the value on tv of the 1-form dv taken at v.
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contact plane Cv and the contact structure C ¼ fCvg is
nothing else than the left invariant field of tangent planes

generated by left translating C0. Equivalently, we can say

that C is the field of kernels of the 1-form x which is left

invariant. Indeed, at the origin 0, x ¼ dy � pdx is sim-

ply x0 ¼ dy. If we translate x0 to the point v we get xv ¼
T0L�vðx0Þ defined by the formula xvðtÞ ¼ x0ðT0L�1v ðtÞÞ for
t ¼ ðn; g;pÞ 2 TvV . But

T0L�1v ¼
1 0 0

�p 1 0

0 0 1

0
@

1
A

and

T0L�1v ðtÞ ¼
1 0 0

�p 1 0

0 0 1

0
@

1
A n

g
p

0
@

1
A ¼ n

�pnþ g
p

0
@

1
A:

So

xvðtÞ ¼ dyðn;�pnþ g; pÞ ¼ �pnþ g

¼ dyðtÞ � pdxðtÞ ¼ xðtÞ: ð22Þ

Let us examplify on this very simple case some gen-

eral features of general Lie groups on which we will

return in Section 8. The left translation Lv translate the
situation at 0 to a situation at v. We can return to 0

using the right translation Rv�1 . We get that way an inner

automorphism of the Lie group V ¼ J 1M (it is trivial to

verify that it is effectively a morphism of the group

structure)

Av : v0 7!v � v0 � v�1;
ðx0; y0; p0Þ7!ðx0; y 0 þ px0 � p0x; p0Þ:

ð23Þ

As 0 is a fixed point of Av, the tangent application

Adv ¼ T0Av of Av at 0 is an automorphism of the Lie

algebra v ¼ T0V . Its matrix (the Jacobian of Av at 0) is
given by

Adv ¼
1 0 0

p 1 �x
0 0 1

0
@

1
A: ð24Þ

It is trivial to verify that this map v 7!Adv from V
to AutðvÞ is a representation (that is a morphism of

groups). It is referred to as the adjoint representation of

V . Its tangent map is a morphism of Lie algebra, re-

ferred to as adt, from the Lie algebra v to the Lie algebra

EndðvÞ of AutðvÞ. If t ¼ ðn; g; pÞ 2 v ¼ T0J 1M , the ma-

trix of adt is

adt ¼
0 0 0
p 0 �n
0 0 0

0
@

1
A: ð25Þ

We have therefore adtðt0Þ ¼ ð0; n0p� np0; 0Þ ¼ ½t; t0� and
the Lie bracket can be recovered from the adjoint rep-
resentation.

The orbits of the adjoint representation are easy to

compute. If v ¼ ðx; y; pÞ varies in V ¼ J 1M , and if
t ¼ ðn; g; pÞ 2 v ¼ T0V is fixed, AdvðtÞ ¼ ðn; pnþ g�
xp; pÞ generates the line ~t ¼ ðn;R; pÞ when n 6¼ 0 or

p 6¼ 0. When n ¼ p ¼ 0, AdvðtÞ ¼ t and all the elements

t ¼ ð0; g; 0Þ are fixed points: ~t ¼ ftg.
It is easy to dualize these constructions. Let

fdx; dy; dpg be the basis of the vector space of 1-forms

on V ¼ J 1M associated to the coordinates system

fx; y; pg. At the point 0 we get a basis of the dual v� of

the Lie algebra v ¼ T0M , so if h is a 1-form on v it can be
expressed as h ¼ adxþ bdy þ ddp ¼ ða; b; dÞ. If t 2 v, it

is conventional to note hh; ti the value hðtÞ to emphasize

the duality between tangent vectors and 1-forms (also

called co-vectors). We define then the co-adjoint repre-

sentation by hAd�v ðhÞ; ti ¼ hh;AdvðtÞi. It is easy to show

that this is a representation of the group V on v�. As

hh;AdvðtÞi ¼ adx
�

þ bdy þ ddp;

n
o

ox
;

�
ðpnþ g� xpÞ o

oy
; p

o

op

��
¼ anþ bðpnþ g� xpÞ þ dp

¼ ðaþ bpÞnþ bgþ ðd� bxÞp; ð26Þ

we get Ad�v ðhÞ ¼ ðaþ bp; b; d� bxÞ.
The orbits of the co-adjoint representation are the

planes ðR; b;RÞ if b 6¼ 0 (planes parallel to the plane

ða; dÞ with ordinate b). If b ¼ 0, all the points ða; 0; dÞ of
the plane ða; dÞ are fixed points.

Taking the tangent application of the co-adjoint
representation we get the adjoint ad� of the ad map. It is

a morphism of algebra of v to Endðv�Þ defined by

ad�t ðhÞðt0Þ ¼ had�t ðhÞ; t0i ¼ hh; adtðt0Þi ¼ hh; ½t; t0�i
¼ hadxþ bdy þ ddp; ð0; n0p� np0; 0Þi
¼ bðn0p� np0Þ: ð27Þ

But as n0 ¼ dxðt0Þ and p0 ¼ dpðt0Þ, we get ad�t ðhÞ ¼
ðbp; 0;�bnÞ.

Let us also say a word on what is called the Maurer–
Cartan form K of a Lie group. Let dv ¼ ðdx; dy; dpÞ. It
can be considered as a 1-form dv 2 T �V � v (where � is

the tensorial product) with values in the Lie algebra

v ¼ T0V in the sense that, if tv ¼ ðn; g; pÞ 2 TvV is a

tangent vector of V at v, dvðvÞðtvÞ is a tangent vector of

V at 0. 12 But dv is not left-invariant. The Maurer–

Cartan form K consists in taking the 1-form dvð0Þ on
T0V and in translating it in order to get a left-invariant
1-form. By definition, KðvÞ ¼ ðTvLv�1Þ� dvð0Þ where

TvLv�1 ¼ T0L�1v : TvV ! T0V . Therefore we have by defi-

nition

KðvÞ : TvV !
TvLv�1 T0V !

dvð0Þ
R: ð28Þ
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But for t ¼ ðn; g; pÞ 2 T0V , dvð0ÞðtÞ is nothing else than t
itself since dx, dy, and dp pick up the components of t.
Therefore, we get KðvÞðtÞ ¼ T0L�1v ðtÞ ¼ ðn;�pnþ g; pÞ.
This shows that

K ¼ ðdx;x; dpÞ:
Using this expression of the Maurer–Cartan form K,

it is easy to verify that K satisfies the Maurer–Cartan

equation

dK ¼ � 1

2
½K;K�; ð29Þ

which is a universal equation for Lie groups. Indeed K
can be written

K ¼ dx� ox þ x� oy þ dp � op 2 T �V � v:

As d2x ¼ d2y ¼ 0 and dx ¼ dx ^ dp by Eq. (18), we get
dK ¼ ðdx ^ dpÞ � oy . On the other hand, by definition of

the exterior product of 1-forms with values in a Lie

algebra, we have

½K;K� ¼ ðdx ^ dxÞ � ½ox; ox� þ ðdx ^ xÞ � ½ox; oy �
þ ðdx ^ dpÞ � ½ox; op� þ ðx ^ dxÞ � ½oy ; ox�
þ ðx ^ xÞ � ½oy ; oy � þ ðx ^ dpÞ � ½oy ; op�
þ ðdp ^ dxÞ � ½op; ox� þ ðdp ^ xÞ � ½op; oy �
þ ðdp ^ dpÞ � ½op; op�: ð30Þ

But dx ^ dx ¼ x ^ x ¼ dp ^ dp ¼ 0 and ½ox; ox� ¼
½oy ; oy � ¼ ½op; op� ¼ 0 for general reasons of antisymme-

try; dx ^ x ¼ dx ^ dy and dp ^ x ¼ dp ^ dy � pdp ^ dx
by definition of x; ½ox; oy � ¼ ½oy ; op� ¼ 0 and ½ox; op� ¼
�oy due to the Lie algebra structure. These equations

imply immediately ½K;K� ¼ �2dK.

4.2.6. Connections, sub-Riemannian geometry, Carnot

groups, and Carnot-Carath�eodory metrics
A very interesting aspect of the interaction between

the contact structure C and a Lie group structure is that

one can consider C and the left invariant 1-form

x as defining a connection (in Elie Cartan’s sense) on

V ¼ J 1M . In general, a connection on a manifold con-

sists in a way of comparing neighboring tangent planes

via a parallel transport of tangent vectors. It can be
shown that this connection is compatible with the

projection pr : V ! V =W , where W is the isotropy

subgroup of x0 ¼ dy ¼ ða ¼ 0; b ¼ 1; d ¼ 0Þ for the

coadjoint representation. 13 By definition, W is the set

W ¼ fv 2 V s.t. Ad�v ðx0Þ ¼ x0g. It is a 1-dimensional Lie

group and its Lie algebra w is the set w ¼ ft 2 v s.t.

ad�t ðx0Þ ¼ 0g. As x0 ¼ dy ¼ ða ¼ 0; b ¼ 1; d ¼ 0Þ, for

v ¼ ðx; y; pÞ, we have Ad�v ðx0Þ ¼ ðaþ bp; b; d� bxÞ ¼
ðp; 1;�xÞ. To satisfy the identity Ad�v ðx0Þ ¼ x0 ¼
ð0; 1; 0Þ we must have x ¼ 0 and p ¼ 0. Therefore W is
13 x0 ¼ dy ¼ ða ¼ 0; b ¼ 1; d ¼ 0Þ is the value of the 1-form

x ¼ dy � pdx ¼ ða ¼ �p; b ¼ 1; d ¼ 0Þ at the point 0 ¼ ðx ¼ 0;

y ¼ 0; p ¼ 0Þ.
the y axis, the group law restricted to it being simply the
addition y þ y0. We verify that, as ad�t ðx0Þ ¼ ðp; 0;�nÞ
since b ¼ 1, the identity ad�t ðx0Þ ¼ ðp; 0;�nÞ ¼ 0 leads

to n ¼ 0 and p ¼ 0 which is also the y axis, but con-

sidered as the Lie algebra w of W .

This representation via a connection is in some sense

dual to the classical one. In the classical case, the base

plane is the plane ðx; yÞ and the fiber is the axis of tan-

gents p. Curves c are given as function y ¼ f ðxÞ and the
tangent p is computed via derivation. In the alternative

perspective, the base plane is the plane ðx; pÞ and the

fiber is the axis of y values. Curves c are given as func-

tions p ¼ gðxÞ, that is as envelopes of tangents, and y is

computed via integration since the lifting of c in V is

given by y ¼
R
y0 dx ¼

R
pdx.

It can be shown that the curvature dx of the con-

nection x is a symplectic form on V =W . In our case this
is evident since dx ¼ dx ^ dp is the standard symplectic

form on the base plane fx; pg ¼ V =W .

A connection C on a manifold V allows to redefine

differential calculus using the parallel transport defined

by the field of hyperplanes C which are the kernels of the

connection 1-form x. For instance, for the exterior

derivative of differential forms, the key idea is to define

the new derivative, called the covariant derivative, as the
exterior derivative restricted to the C-components of the

tangent vectors. Namely, if h(t1; . . . ; tk) is a k-form, its

covariant derivative Dh will be given by Dhðt1; . . . ;
tkþ1Þ ¼ dhð�t1; . . . ;�tkþ1Þ, where �t is the projection of

t 2 TvV onto the plane Cv. It is the same thing for other

geometrical entities. For instance if f : V ! R is a real

function on V , its gradient relative to C will be given by

rCðf Þ ¼ t1ðf Þt1 þ t2ðf Þt2; ð31Þ

where t1 and t2 constitute the left-invariant basis of C.
By construction, rC is tangent to the contact structure

C and defines therefore a vector field whose trajectories

are all integral curves of C. In the same vein, if

X ¼ ut1 þ wt2 is a contact vector field on V , its diver-
gence relative to C will be given by

divCX ¼ t1ðuÞ þ t2ðwÞ: ð32Þ

In fact, a very strong general theory can be developed

from the fact that we have a Lie group V with a Lie

algebra v with only one non-vanishing commutator

½t1; t2� ¼ t3 (in our case, t1 ¼ o
oxþ p o

oy, t2 ¼ o
op, t3 ¼ � o

oy)

and a left invariant 1-form x which is a contact form

(x ^ dx 6¼ 0). t3 ¼ v is called the characteristic field of
the field C of contact planes ft1; t2g.

These data allow to define special metrics on V called

by Gromov [24], Lafontaine, and Pansu [54] Carnot-

Carath�eodory metrics. 14 The idea is to consider a metric
14 This name come from the theory of adiabatic processes in

thermodynamics.
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gC defined only on the planes of C, and not on the
complete tangent bundle TV , for instance the metric

making t1 and t2 a left-invariant orthonormal basis, and

to restrict the consideration of curves C in V to curves

which are tangent to C, that is to integral curves of C.
We distinguish and select therefore a class of special

curves. Let v and v0 be 2 points of V . To take into ac-

count the integrability constraint, it is natural to define

their distance dCðv; v0Þ as the inf of the gC-length of the
integral curves joining v to v0 (it can be shown that such

curves always exist due to the fact that the Lie brackets

of C generate all the tangent bundle TV ). More precisely,

we define dC by the formula

dCðv; v0Þ ¼ inf

Z
I
kC0ðsÞkds for

C integral curve of C;
Cð0Þ ¼ v;Cð1Þ ¼ v0

ð33Þ

A geodesic between v and v0 for the Carnot-Carath�eod-
ory metric is then an integral curve of C which realizes

the distance dCðv; v0Þ.
The Carnot-Carath�eodory metric gC is a ‘‘path-met-

ric’’ called sub-Riemannian for it is defined only on the

sub-bundle C of the tangent bundle TV [2,24]. Of course,

it can be extended to a Riemannian metric g by con-

sidering the characteristic field of C as unitary and

orthogonal to C, the contact structure becoming what is

called a polarization of g. But it is nevertheless com-

pletely different from g. It can be considered as a limit of
Riemannian geometries on V which penalize more and

more the defect of integrability of the curves, that is the

defect of tangency to C, the non-integral curves

becoming prohibited at the limit. It is highly non-iso-

tropic and non-homogeneous, singular and even fractal.

Indeed, it can be shown that, although V is topologically

of dimension 3, its Hausdorff dimension relative to gC is

4.
For our purpose here, it is extremely important to

note that the sub-Riemannian metric gC is a limit of

more and more anisotropic Riemannian metrics ge de-

fined by introducing a difference of scale between the

directions respectively tangent and orthogonal to the Cv
planes. Indeed, we can easily implement this difference if

the connections connecting neurons ða; pÞ corresponding
to the Cv planes are ‘‘strong’’, while those connecting
neurons ða; pÞ corresponding to the characteristic

direction vv are ‘‘weak’’.

4.2.7. The problem of ‘‘regular’’ surfaces in V
If f : V ! R is a regular function, f ¼ 0 defines a

surface S of V . Its unitary normal vector relative to C at

the point v 2 S is nCðvÞ ¼ rCðf ÞðvÞ
krCðf ÞðvÞk. nC is the normalized

projection on Cv of the classical normal unitary vector

nðvÞ ¼ rðf ÞðvÞ
krðf ÞðvÞk. It is not defined if rCðf ÞðvÞ ¼ 0, that is if

TvS ¼ Cv at v. Such points are called characteristic points
of S. They will exist in general even if S is without any
singular points in the classical sense, that is if

rðf ÞðvÞ 6¼ 0 everywhere. But as the contact structure C
is completely non-integrable they will necessarily be ra-

ther exceptional.

4.3. Contact structures and vision

Up to now, almost no specialist of vision has really
investigated the striking relations existing between the

orientation hypercolumns of the primary visual cortex

and geometrical notions such as fibrations, jet spaces, or

contact structures. But, as far as I know, there are two

distinguished exceptions: Jan Koenderink (see Section

3.2.3) and William Hoffman.

William Hoffman has been a pioneer of the applica-

tions of differential geometry and of Lie group theory to
vision. In his seminal paper ‘‘The visual cortex is a

contact bundle’’ [30] he introduced the idea that con-

tours lift discontinuities of the retinal stimulus:

A path on one manifold [the retina] is ‘‘lifted’’ via a

fibering to another manifold [the cortex] in a coher-

ent fashion. (p. 145)

In another paper [29] he claimed

Fibrations (. . .) are certainly present and operative

in the posterior perceptual system if one takes

account of the presence of �orientation’ micro-

response fields and the columnar arrangement of

cortex. (p. 645)

He developed also the idea that the retinal RFs pro-

vide local charts, the transition maps between overlap-

ping charts being implemented by the fine connectivity

of the retina. He considered also that the RFs of the

simple orientation cells of V1 implement a connection

on the fiber bundle.

4.4. Pinwheels and ocular dominance

The relation between pinwheels and domains of

ocular dominance (DODs) is very interesting (see e.g.

H€ubener [33]). Many iso-orientation lines cross the
boundaries of DODs close to right angles and, as was

shown by Michael Crair [10], the peaks of ocular dom-

inance are localized near the centers of the pinwheels in

the middle of these DODs (Figs. 33 and 34).

H€ubener’s results show that there exist quasi-qua-

druple points on the boundaries of the DODs. This

morphological cue prompts us to think that if we ide-

alize the structure using, as in Section 3.3, a regular
lattice of pinwheels, we will get the geometry of Fig. 35.

It is interesting to note that this geometrical config-

uration of pinwheels and DODs is as if there existed a



Fig. 37. A deformation of the regular physical model of Fig. 36.

Fig. 36. The idealized geometrical lattice model of Fig. 35 interpreted

as a physical model where the pinwheel singularities generate a scalar

field whose gradient lines give the iso-orientation lines and whose level

lines give the boundaries of DODs.

Fig. 35. The domains of ocular dominance in the idealized geometrical

‘‘crystal’’ model of Fig. 15.

Fig. 34. The peaks of the domains of ocular dominance coincide

roughly with the centers of the pinwheels (from [10]).

Fig. 33. Relation between the pinwheels and the domains of ocular

dominance (DODs). Many iso-orientation lines cross the boundaries

of DODs close to right angles (from [33]).
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sort of scalar field underlying the functional architecture

of V1: the centers of the pinwheels of respectively left

and right chirality would become respectively + and )
topological charges, the level lines would become the

boundaries of the DODs and the gradient lines would

become the iso-orientation lines, these two families of

lines being orthogonal. In Figs. 36 and 37 we show

how the idealized geometrical model interpreted as a
physical model, deforms into a H€ubener type configu-

ration.

4.5. The dynamics of pinwheels and the development of

functional architecture

Up to now, we have treated the pinwheel neurogeo-

metry as a given fixed architecture and we proposed for
it a geometrical and a physical model. But it is of course

the result of a learning process (see e.g. [66]). We have
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seen in Section 3.3.2 that we can consider the field of
orientations #ðaÞ ¼ eihðaÞ of the simple cells of V1 as a

section of the fibration p : M � P ! P defined outside

the lattice L of pinwheels’ centers. In the same perspec-

tive, Fred Wolf and Theo Geisel [78] have worked out a

beautiful learning theory of orientation selectivity,

starting from an initial state unselective to orientation.

They model the columns by a complex field zðaÞ ¼
qðaÞeihðaÞ where the spatial phase hðaÞ codes the orien-
tation preference and where the module qðaÞ ¼ jzðaÞj
codes the selectivity to orientation. z is therefore a sec-

tion of the fibration of base M and fiber C and the

singular points correspond to the zeroes of z.
The authors introduce also two other fields

1. dðaÞ for the ocular dominance: dðaÞ > 0 (respectively,

<0 ) if the left (respectively, right) eye is dominant;
2. rðaÞ for the position of the receptive field on the ret-

ina (distorsion of the retinotopy, see Figs. 7 and 8 in

Section 3.1).

They show that after a period of proliferation of

pinwheels, the number of pinwheels decreases via

movements, collisions and annihilations of pairs of

pinwheels of opposed chirality, and that DODs slow
down and stabilize the process (Fig. 38).

This dynamics of pinwheels is consistant with the

physical model of the previous Section 4.4, + and )
charges annihilating each other.
15 In Tondut, Petitot [68], we analyze other experiments of this type:

Polat and Sagi [60], Kapadia et al. [35], Gilbert et al. [22].
5. Application 1: the association field of Field, Hayes and

Hess

5.1. Field’s, Hayes’ and Hess’ experiments

The Frobenius integrability condition in Section 4.2.3

is an idealized mathematical version of the Gestalt

principle of good continuation. Its psychophysical

empirical counterpart has been studied in great detail by

David Field, Anthony Hayes and Robert Hess in their
celebrated 1993 paper ‘‘Contour Integration by the

Human Visual System’’ [16], where they introduced the

key concept of association field.

Their experimental protocol consists in briefly pre-

senting (typically during 1s) a grid made up of 256

oriented elements ða; pÞ to subjects. They use Gabor

patches because these spatially oriented bandpass filters

select a single spatial frequency (their Fourier transform
is a narrow peak). The line segments used by other ex-

perimentalists (e.g. [35]) have the drawback of exciting

cells responding to different spatial frequencies. In half

cases, the grid contains 12 elements whose centers are

aligned along a smooth line c, the others being randomly

oriented (Fig. 39). In the other cases, all the elements are

randomly oriented. The task (method of the forced
choice between two alternatives) consists in determining
whether there exists or not an alignment in the presented

grid. 15 The results show that the subjects perceive quite

easily the alignment if the elements ða; pÞ are aligned

‘‘tangentially’’ to c and if the slope variation between

two consecutive elements is not too large (6 30�). This
phenomenon of perceptual saliency, or pop-out, is

characteristic.

The key point is that the elements of the grid are too

distant from each other to belong to a single RF:

It is clear that this �association field’ covers a con-

siderably wider area than would be covered by the

receptive field of a mammalian cortical cell. [16,

p. 185]

But despite their distance, subjects group spontane-

ously the aligned elements. An automatic mechanism

connecting several RFs must therefore operate as a low

level integration. It is why the authors looked for a local

to global integration process:

A useful segregation process for real scenes may be

based on local (rather than global) integration. (. . .)
The general theme of these algorithms is that the

points along the length of a curved edge can be

linked together according to a set of local rules that

allow the edge to be seen as a whole, even though

different components of the edge are detected by

independent mechanisms. [16, p. 174]

It is really the core of the problem. Grouping is global
in a sense completely different from that associated to

large RFs:

In our stimuli, there does not exist any �global’ fea-
ture that allows the path to be segregated from the

background. It is not possible to segregate the path

by filtering along any particular dimension. Our

results imply that the path segregation is based on
local processes which group features locally. [16,

p. 191]

But if feature detectors remain point processors how

can their measures be globalized?

Experiments provide two other striking results:

• if the slope variation between two consecutive
elements is too large, no alignment is perceived

(Fig. 40);



Fig. 20. Two examples of a superposition of orientation ‘‘waves’’

yielding a pinwheel structure.

Fig. 23. Connections between cortico-cortical horizontal cells marked

by biocytin’s diffusion. The short range diffusion is isotropic, while the

long range diffusion is anisotropic and restricted to iso-orientation

domains (from [5]).
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• it is the same if the orientations p of the elements are

no longer tangent but transverse (e.g. orthogonal) to

the curve c described by their centres (Fig. 41).

In these two cases the pop-out vanishes and the paths

are no longer perceptively but only cognitively and

inferentially detected.
Fig. 38. Annihilations of pinwheels of opposed chir
5.2. Explanation through the concept of association field

According to Field, Hayes and Hess, the tendency of

elements ci ¼ ðai; piÞ to be perceived as aligned is due to

the existence, around each element, of a region in which

other elements tend to be perceived as grouped. This

region, called the association field, is defined by joint

conditions of position and orientation. Its structure is

described in Figs. 42 and 43.
The authors have described very acutely the geo-

metrical nature of the association field. First, association

is not simply

a general spread of activation, linking together all

types of features within the field. [16, p. 185]

It manifests a correlation between position and orien-
tation:

Elements are associated according to joint con-

straints of position and orientation. [16, p. 187]

Whence the key conclusion:

There is a unique link between the relative positions
of the elements and their relative orientations. (. . .)
The orientation of the elements is locked to the orien-

tation of the path; a smooth curve passing through

the long axis can be drawn between any two succes-

sive elements. [16, p. 181]

This affirmation is a discrete formulation of the inte-

grability condition. The contact elements ci ¼ ðai; piÞ
embedded in a background of distractors generate a

perceptively salient curve (pop-out) iff the orientations pi
are tangent to a curve c interpolating between the

positions ai. This is due to the fact that the co-activation

of approximatively co-axial simple orientation cells

(detecting pairs ða; pÞ and ðb; qÞ with b roughly aligned

with a in the direction p and q close to p), co-activates,
via the horizontal cortico-cortical connections, inter-
mediary cells (Fig. 44).

When the distance between the positions ai tends to 0,

the ‘‘joint constraints’’ and the ‘‘unique link’’ between
ality simplify pinwheel geometry (from [78]).



Fig. 43. The field lines of the association field.

Fig. 40. If the variation of slope between consecutive elements ðai; piÞ
of the path is too large, then the subjects do not perceive the alignment

anymore.

Fig. 39. The path on the upper left corner is embedded in a back-

ground of randomly oriented distractors. In such an array of Gabor

patches ða; pÞ, the subject can observe the pop-out of the components

ðai; piÞ of the path if they are suitably aligned (from [16]).

Fig. 41. If the orientations pi of the elements ðai; piÞ of the path are not

tangent but transverse (e.g. orthogonal) to the curve c interpolating

between their centers ai, the subjects do not perceive the alignment

anymore.

Fig. 42. Schema of the association field. The elements are pairs

ða; pÞ¼ (position, orientation). Two elements ða1; p1Þ and ða2; p2Þ are
connected (thick strokes) if one can interpolate between positions a1
and a2 a curve c tangent to p1 at a1 and to p2 at a2. If it is not the case,
the two elements are not connected (thin strokes).

Fig. 44. The co-activation of two co-axial cells ða; pÞ and ðb; qÞ (with
p ¼ q ¼ ab by definition of co-axiality), co-activates intermediary co-

axial cells.
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positions a and orientations p become exactly the

Frobenius integrability constraint p ¼ f 0ðxÞ of Section

4.2.3.

5.3. The association field as a discrete version of the

contact structure

Yannick Tondut [68] has shown that the association

field can effectively be interpreted as a discretized version

of the contact structure C of the contact bundle V . As

the contact structure is an idealization of the pinwheel

structure corresponding to a 0 scale, it is natural to
discretize it.

We choose then a particular scale, a step of discreti-

zation approximating dx (infinitesimal variation) by Dx
(finite variation). But what scale? The visual system

processes the retinal signal at several scales simulta-
neously. Now, the local information (for example the

direction of the tangent to a curve) can be completely

different from scale to scale (e.g. in the case of a fractal

boundary). Field and his co-workers made an interesting

hypothesis: the visual system could solve the continuity

problem separately at each scale. The association field

will then correspond to the solution of the problem at a

given scale.



Fig. 45. Discretization of the Frobenius integrability condition.
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In our model, this hypothesis amounts to fix the step

of discretization. We will refer to it as Ds. We also dis-

cretize the orientation, using a step Dp. We thus consider

the contact bundle with local coordinates ðx; y; pÞ, and a

curve C in it, locally defined as before by equations

y ¼ f ðxÞ, p ¼ gðxÞ. As we have seen in Section 4.2.3, C
lifts the base curve c of equation y ¼ f ðxÞ iff the

Frobenius condition p ¼ gðxÞ ¼ f 0ðxÞ ¼ dy
dx is satisfied.

In order to discretize this equation, let us consider

two consecutive points A and B on c. 16 They satisfy the

metrical relation dðA;BÞ ¼ Ds (d being the Euclidean

distance on the visual field 17). We will refer by h to the

angle of the vector AB with the x-axis, so that (Fig. 45)

xB � xA ¼ Ds � cos h and yB � yA ¼ Ds � sin h: ð34Þ

In this discrete framework, the tangent to c at A can
be approximated by the line AB, which amounts

to approximate the derivative f 0ðxÞ by the ratio
yB�yA
xB�xA ¼ tan h. The equation corresponding to the contact

structure at A takes then the following discretized form:

jpA � tan hj6Dp:

Symmetrically, we have also: jpB � tan hj6Dp. By add-

ing these two inequations, we get the symmetrical form:

jpA � tan hj þ jpB � tan hj6 2Dp: ð35Þ

If we graphically represent the oriented elements

which are admissible, in the sense of inequality (35), as
consecutive to a given one, we get the expected result:

they are laid out according to the structure of Field,

Hayes and Hess association field (Fig. 45). The value of

the threshold 2Dp is about tanðp=6Þ. Moreover, in-

equality (35) accounts for the tolerance experimentally

observed as the orientation of the bar is slightly deviated

from that of the field. We conclude therefore that the

association field is a discrete version of the Frobenius
integrability condition and results from the fact that the

pinwheel structure discretizes the contact structure.
16 In the following, caps A and B refer to end points of curves.
17 The system accesses this distance through the covariance of the

neural firings.
Let us remark that an important effect of discretizing
the contact structure is to induce a limitation of the

curvature that the visual system may admit at a given

scale.

We can also give a probabilistic interpretation to the

association field. Association is more or less probable

depending on the relative positions and orientations of

the consecutive elements. Instead of being compared to

a threshold, the function jpA � tan hj þ jpB � tan hj can
be seen as a measure of the probability of association

between two elements (psychophysical aspect), or as the

activity of one of the elements induced by the other

(physiological aspect).

It is very easy to explain the third experiment in terms

of the contact structure (Fig. 41): the curve C in V is non-

integrable. Fig. 46(a) shows a curve in J 1M which is a

Legendrian lift. Fig. 46(b) corresponds to the case of the
third experiment where one adds to p ¼ f 0ðxÞ a constant

p0 (here a p=2 angle, the orientations p are therefore

perpendicular to the curve c described by the positions

a). Fig. 46(c) and (d) show two other examples of non-

integrable curves in V , the first because p is constant

while f 0 is not, the second because p varies much faster

than f 0. In each of these three cases the pop-out of the

curve c described by the positions a is impossible be-
cause the integrability condition (the ‘‘joint constraints

of position and orientation’’) is not satisfied.
Fig. 46. The association field as a condition of integrability. (a) The

integrability condition is satisfied and (b)–(d) the condition is not

satisfied. (b) We add a constant angle to the tangent (i.e.

p ¼ f 0ðxÞ þ p0). (c) p is constant while f 0 is not. (d) p rotates faster than
f 0.
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5.4. The link with horizontal connections in Lorenceau’s
experiments

In their paper, Field, Hayes and Hess present some

‘‘physiological speculations’’ concerning the implemen-

tation of the association field via horizontal connections.

They have been confirmed by Jean Lorenceau and col-

leagues [21] using the method of apparent speed of fast

sequences (speed¼ 64�/s) of oriented Gabor patches.
The apparent velocity is greater (overestimated) when

the successive elements are aligned in the direction of the

motion path (collinear sequences), and smaller (under-

estimated) when the motion is orthogonal to the orien-

tation of the elements. Moreover, in the first case, the

increase of the apparent velocity measured with psy-

chophysical methods is approximatively the same as the

velocity of propagation of horizontal activation in the
cortico-cortical connections measured with electrophys-

iological methods (about 0.2 m/s) [19].
5.5. Binding

The pop-out of the curve generated by the contact

elements ci ¼ ðai; piÞ is a typical Gestalt phenomenon

which results from a binding induced by their co-acti-
vation. Neurons detecting approximatively aligned

contact elements synchronize their firings through the

horizontal connections. The temporal coherence of the

correlated firings results in the binding of the features

they code, and this explains why elements aligned along

a smooth contour would be perceived as a whole (for a

critique of binding see [71]). In other words, the inte-

grability condition is the geometrical condition of a
binding. As was emphasized by Lee [43], we could think

that a V2-feedback is necessary for binding to be effi-

cient. But according to the high-resolution buffer

hypothesis, it is the underlying geometry of V1 which is

essential.
18 The typical size of a receptive field tuned to a wavelength k is 2k.
5.6. Comparison with other data

As was stressed by Tondut, this model of the asso-

ciation field also accounts for other results obtained by

Polat, Sagi, and Westheimer which show that the facil-

itation zone induced by an oriented element ða; pÞ
implements the contact plane at the corresponding point

of the contact bundle.

Polat and Sagi [60] considered phenomena of facili-

tation and suppression in target detection tasks. Using
also Gabor patches, they studied the detection of a low-

contrast stimulus (the target) when surrounded by two

high-contrast stimuli (masks), aligned with it. Varying

the distance between the target and the masks, they

observed a facilitation effect for distances between 2k
and 10k where k is the wavelength of the stimuli,
therefore far outside the receptive field. 18 They also
compared different configurations of relative positions

and orientations of the stimuli: facilitation mainly oc-

curs when the orientation of the three stimuli coincides

with that of their alignment, in agreement with the re-

sults obtained by Field and his co-workers.

The experiments carried out by Westheimer co-

workers [35,36] have confirmed these results. Using

simple oriented bars as stimuli, the authors observed
facilitated detection of a low-contrast target when

aligned with a similar high-contrast bar. Two results are

especially interesting:

1. when the two bars are parallel, a very small deviation

from collinearity rapidly decreases the facilitation ef-

fect, until it reverses it;

2. the facilitation effect persists when the orientation of
the inducing bar is modified while preserving the con-

tinuity of the path constitued by the two bars; but it

decreases with the discrepancy between the orienta-

tions of the two bars (or, rather, with the curvature

of the path), and reduces to zero beyond 30�.

Another interesting comparison could be drawn with

Steven Zucker’s works [55,81]. In order to detect curves,
Zucker uses a coarse estimate of their geometrical

coherence based on the compatibility of neighboring

tangents. This compatibility is estimated either directly

from the difference of their orientations or through a

systematical measurement of the local curvature by

means of specialized detectors. Zucker’s model is rather

rich, and goes beyond the association field. It is never-

theless possible to compare both models in what con-
cerns the compatibility of line elements, that is their

probability to be tangent to a same curve, and therefore

to be ‘‘associated’’. Indeed, Zucker’s compatibility cri-

terion is very similar to the association field.

It would also be interesting to study the relationships

between the association field and the cooperation/com-

petition processes used in Grossberg and Mingolla’s

celebrated models [25]. These authors introduce a
cooperation between aligned elements, materialized by

oriented ‘‘dipole cells’’ with large receptive fields taking

into account approximate alignments. The weight of an

element in the receptive field of a dipole cell depends on

its relative position and orientation. The set of weights

defines a cooperation field, whose similarity with Field,

Hayes and Hess association field is striking.

Another application of the contact structure of V1
concerns the classical problem of Kanizsa subjective

contours [34] which are typical examples of filling-in

based on the Gestalt law of ‘‘good continuation’’. The

local mechanisms of association have indeed deep con-
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sequences upon the global shape of contours. Principles
of interpolation can be conceived of by considering

curves having a natural geometrical significance in the

bundle of 1-jets. We will tackle this point in the following

section.
Fig. 48. In the following figures, the 2 discs represent the stimulus (bar

or grating) with orientation 0� and 90�. The lines displayed in the

rectangles record the responses of the neuron (time¼X -axis) to the

stimulus rotated from 0� to 180� (Y -axis). V1 neurons respond only to
6. Application 2: Kanizsa subjective modal contours

The objects we investigate now are not classical

straight Kanizsa contours but curved ones, when the

sides of the internal angles of the pacmen are not aligned

(Fig. 47).

the real orientation of the bars and not to the illusory contour gen-

erated by their ends (from [72]).

Fig. 49. A V2 neuron can respond to the illusory contour generated by

the ends of a set of bars if the illusory orientation is its preferred one

(B). Its response is as good as for an isolated real bar (A). This shows
that in case (B) it does not respond to the real orientations even if they

correspond to its preferred one (from [72]).
6.1. Some experimental data

The influence of the various parameters controlling
the formation of illusory contours began to be investi-

gated in the late 1980s, but the results were rather scarse

as is shown by the surveys of Peterhans and von der

Heydt [57] or Spillman and Dresp [64].

There are different methods for measuring the extre-

mum of a Kanizsa contour (K-contour). For instance we
can use the Dresp-Bonnet ‘‘sub-threshold summation’’

method: the threshold for the detection of a small sub-
liminar segment parallel to the K-contour decreases

suddenly when the segment is located exactly on the K-
contour [14]. These summation effects, as well as other

results, prove that real and illusory modal contours

share common neural mechanisms and are in part

functionally equivalent.

In what concerns the neural underlying processes, one

must distinguish between V1 and V2. For V2, R€udiger
von der Heydt and Esther Peterhans [72,73] have shown

that a neuron of V2 can respond to a virtual contour

created by a series of end-points aligned with its pre-

ferred orientation (the lines are therefore orthogonal to

its preferred orientation). For V1 it is not the case (Figs.

48 and 49).

But this does not entail that V1 is not active in the

construction of illusory contours. If one compares sys-
tematically the responses in V1 and V2 using optical

techniques (see [62] for the cat), one observes reponses
Fig. 47. An example of a Kanizsa curved illusory modal contour.
to illusory contours in the two areas. One of the differ-

ence between V1 and V2 is that the response of V1 to

illusory contours is masked by the response to real ones

while that of V2 is more salient. One can make the

hypothesis of a progressive construction of illusory

contours, starting at the V1 level and becoming richer

and richer in the further areas with top down feedbacks.

According to the high-resolution buffer hypothesis, V1 is
strongly implied in illusory contours.
6.2. Classical models for subjective contours 19

We will use the contact structure of V1 for working

out a model of K-contours. But let us first recall some

previous models inspired by the classical models of

Grossberg and Mingolla [25], and von der Heydt and
Peterhans [72].

In the first model, an illusory contour is generated

by the interaction between approximatively collinear

boundaries and is oriented along their common
19 This survey section is due to Yannick Tondut.



Fig. 50. Curved Kanizsa triangles used for the experiment with Ninio.

Fig. 51. Curved Kanizsa squares used for the experiment with Ninio.
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direction. With regard to them, Heitger [27] speaks of
‘‘paragrouping’’. For explaining the illusory contours

constituted by the end points of parallel segments,

Grossberg and Mingolla suppose that the end points

induce a piece of boundary orthogonal to the segments,

these induced elements being able to cooperate.

For von der Heydt and Peterhans, and for those in-

spired by their model [37], the illusory contours result

from the interaction between ‘‘end-stopped’’ cells (see
[27]), and are formed orthogonally to the orientation of

boundaries. With regard to them, Heitger [27] speaks of

‘‘orthogrouping’’.

All these models were conceived of to explain straight

contours. To adapt them to the case of curved contours

is rather problematic since it would imply a combina-

torial explosion of the detectors.

Another interesting model is that of Heitger and von
der Heydt [28] which uses at the same time ‘‘para

grouping’’ and ‘‘ortho grouping’’. It works also for

curved contours. Their principle is to detect singulari-

ties. They are constituted by oriented cells endowed with

two large lobes. When each lobe contains a singularity,

the cell sends a local signal for the construction of an

illusory contour and generates a small oriented segment.

This signal adds to the outputs of the detectors of real
contours at the same location. The contour is then

determined by the local maxima of activation. This

‘‘grouping field’’ is quite similar to the association field.

All these models can be easily interpreted geometri-

cally in terms of fibrations if one considers fibers whose

elements are no longer simple orientations p but pairs of
orthogonal orientations ðp; p?Þ, that is frames in the

base space M . The projective fiber bundle
p : M � P ! M is then substituted for by the bundle of

frames q : M � F ! M . We will return to this point later

in Section 8.1.

6.3. An experiment on K-curves

In collaboration with our colleague Jacques Ninio (a

specialist of vision, see [52]), we carried out an experi-

ment on curved K-contours. Our purpose was to mea-

sure the precise position of the extremal point of the

contour and to compare it with the prediction of simple

models. We used families of K-curves with

two configurations: triangle, square;

two sizes of configurations;

two sizes of pacmen;

four orientations;

five angles (Figs. 50 and 51).

As for method of detection we asked the subjects to
place correctly a marker (the extremity of an orthogonal

line, a small segment, the axis of a small stripe) at the

extremum of the contour (Fig. 52).
For different cases (triangle/square and small/large

pacmen size) we compared three positions:

• the piecewise linear position (intersection of the sides

of the two pacmen);

• the position chosen by the subjects;
• the circle position (extremum of the arc of circle tan-

gent to the sides of the pacmen) (Fig. 53).

We show in Fig. 54 the results of the experiment

for the case of the squares with small pacmen. We see

that the model of the arc of circle becomes rapidly quite

bad.

6.4. The first variational models

We look for models of K-contours based on the

functional architecture of V1. We can suppose that the

induction of activity propagated along the horizontal

connections decreases when the angle between the pre-

ferred orientations pA and pB of the source and the target

neurons increases, that is when the local curvature of the
contour increases. The two properties of the propaga-

tion of activity: decay and curvature dependance, lead to

look for variational principles. The models must be for-

mulated in the fiber bundle V ¼ J 1M or V ¼ CM and

have to satisfy the two constraints:

1. a ‘‘geodesic’’ principle of length minimization;

2. a principle imposing the decreasing of the induced
activity when the discrepancy between the two

boundary angles hA and hB increases.



Fig. 54. The results of the experiment for the case of squares with small pacme

the extremum of the K-contour to the center of the configuration as a func

rectilinear case. Five aperture angles are considered: #2 corresponds to the cla

(d1 > d2 ¼ 1), #0 to a more concave one (d0 > d1 > d2 ¼ 1), #3 to a slightly

We see that the observed empirical K-contour is clearly situated between the

Fig. 52. The method of detection of the extremal point of a curved K-
contour. The subject is asked to place a marker (the extremity of an

orthogonal line, a small segment, the symmetry axis of a small stripe)

as exactly as possible at the extremum.

Fig. 53. Comparison of 3 K-contours: the piecewise rectilinear one

(intersection of the corresponding sides of the two pacmen), the one

chosen by the subjects, the circular one (arc of circle tangent to the

sides of the pacmen).
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After having evoked the early models proposed by
Ullman and Horn, we will present three classes of

models:

1. the ‘‘elastica’’ models introduced by David Mumford

where the constraint 1 is realized through a geodesic

principle in M and the constraint 2 through a princi-

ple of minimization of the curvature (also in M);

2. our model of ‘‘Legendrian geodesics’’ where the con-
straint 1 is formulated in the fiber bundle J1M and

where the constraint 2 corresponds to the choice of

a metric in J1M which penalizes the discrepancy be-

tween hA and hB;
3. analog models in the fiber bundle M � S1.

As far as I know, Shimon Ullman [70] was the first to

introduce the key idea of variational models in his 1976
seminal paper ‘‘Filling-in the gaps: the shape of sub-

jective contours and a model for their generation’’. He

remarked first that the problem of the global shape of

modal illusory contours had not yet (at that time) being

tackled:

An important but hitherto neglected problem posed

by the filling-in phenomena concerns the shape of
the filled-in contours and trajectories.

He developed then the variational hypothesis

that a network with the local property of trying to

keep the contours �as straight as possible’ can pro-

duce curves possessing the global property of min-

imizing total curvature.

His conclusion was that the contour would be com-

posed of two joined arcs of circle.

Among Ullman’s hypotheses, the hypothesis of local-

ity is rather problematic. It says that the continuation of
n (parameter ps¼ pacmen size¼ 1). The graphic plots the distance d of
tion of the aperture angle. d is measured by its ratio to the piecewise

ssical case of a straight K-contour (d2 ¼ 1), #1 to a slightly concave one

convex one (d3 < d2 ¼ 1), #4 to a more convex one (d4 < d3 < d2 ¼ 1).

piecewise rectilinear one and the circular one.



Fig. 55. Some examples of elastica.

296 J. Petitot / Journal of Physiology - Paris 97 (2003) 265–309
a contour at a given point depends only on the orien-
tation of the contour at this point, and not on the global

shape of the contour. Brady et al. [6] renounced it and

looked for contours minimizing the total curvature. By

approximating the curvature j of a curve y ¼ f ðxÞ

j ¼ f 00ðxÞ
ð1þ f 0ðxÞ2Þ3=2

ð36Þ

by f 00ðxÞ when the contours deviate little from the

straight line f 0ðxÞ ¼ 0, they found classical interpolating

curves, namely cubic splines. When the configuration is

symmetric, the solution is degenerate and gives a

parabola. Webb and Pervin [75] ended also at a para-

bola in generalizing Ullman’s locality hypothesis to a

problem of parallel transport: starting from a contour
extrapolated between two limits, this contour must not

change if the limits are moved along it.

In 1983, Horn [31] introduced the curve of least

energy. But it was only in later works of Mumford,

Nitzberg, Shiota, Williams and Jacobs [50,53,77] that

non-trivial and theoretically well based models were

worked out.

6.5. David Mumford’s elastica model

In his 1992 celebrated paper on ‘‘Elastica and Com-

puter Vision’’ [50] David Mumford introduced the

elastica which are curves minimizing the integral of the

square of the curvature j i.e. the energy

E ¼
Z

c
ðaj2 þ bÞds; ð37Þ

where c is a curve with element of arc length ds.
This model can be justified in the following way. Due

to the cortico-cortical horizontal connections, the

inductive ends of the pacmen induce a propagation of
activity along chains of neurons corresponding to

approximatively co-axial contact elements ðai; piÞ. The
effective virtual contour will then correspond to the

chain whose ‘‘leakages’’ are the weakest. But such a loss

of activity has essentially two causes:

• a linear weakening equal to the number N of the neu-

rons of the chain, with a constant factor b.
• a curvature weakening, equal to the sum of the devi-

ations of orientation between consecutive neurons,

with a constant factor a. If hi is the angle of the slope
pi, we can take for instance

Pi¼N�1
i¼1 ðhiþ1 � hiÞ2.

At the continuous limit, the number of neurons in the

first term becomes the length
R

c ds, and the sum of the

deviations Dh in the second term becomes the integral of
curvature

R
c j2 ds for we have by definition j ¼ dh

ds.

Minimizing the ‘‘leakage’’ terms leads therefore to the

variational problem
min

Z
c
ðaj2

�
þ bÞds

�
ð38Þ

with the boundary conditions

f ðxAÞ ¼ yA; f 0ðxAÞ ¼ tan hA;
f ðxBÞ ¼ yB; f 0ðxBÞ ¼ tan hB;

�
ð39Þ

where A and B are the ends of c.
This variational problem is well known in elasticity

theory and comes back to Euler. Its solutions are called

elastica. Elastica are not simple algebraic curves but they

can be given an explicit form using elliptic functions.

Fig. 55 represents some examples.

David Mumford developed a deep stochastic expla-

nation of the role of elastica in vision. Let us suppose

that the curvature jðsÞ of the curve c (parametrized by

its arc length s) is a white noise. As jðsÞ ¼ _hðsÞ (where
_hðsÞ ¼ dhðsÞ

ds ), this entails that hðsÞ is a Brownian move-

ment, and that at each moment the movement is a

Gaussian random variable with vanishing mean and

variance r. If we suppose that the length l of c is a

random variable obeying an exponential law ke�kl dl (l
is therefore constant for k ¼ 0), the probability PrðcÞ of
a curve c is given by
PrðcÞ ¼ e
�
R
ðaj2þbÞ ds ð40Þ
with a ¼ 1
2r2 and b ¼ k. Elastica are therefore the most

probable curves. As explains Mumford [50, p. 496].

Thus we see that elastica have the interpretation of
being the mode of the probability distribution

underlying this stochastic process restricted to

curves with prescribed boundary behavior, e.g.,

the maximum likelihood curve with which to recon-

struct hidden contours.

Elastica are solutions of a second order differential

equation in the curvature j. Let us give a sketch of
Mumford’s proof. One starts from the well known fact

that if tðsÞ and nðsÞ are respectively the unitary tangent

and normal vectors to c at the point aðsÞ, then
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_aðsÞ ¼ tðsÞ;
_tðsÞ ¼ jðsÞnðsÞ;
_nðsÞ ¼ �jðsÞtðsÞ:

8<
: ð41Þ
One considers then a deformation adðsÞ ¼ aðsÞþ dðsÞnðsÞ
of aðsÞ (i.e. of c) where dðsÞ is a small perturbation.

Taking the derivative and expressing the condition of

preservation of lengths, one gets a first-order estimation

of the perturbed curvature jdðsÞ
Fig. 56. Comparison of the extremal point of K-contours for triangles
and squares with the same boundary conditions. Their difference

shows that the visual system computes rather minimal surfaces than

minimal arcs.
jdðsÞ ¼ jðsÞ þ €dðsÞ þ dðsÞjðsÞ2: ð42Þ

By computing anew the integral
R

jðsÞ2 ds, developing at

first order, and making an integration by parts with the

condition
R

dðsÞjðsÞds ¼ 0 (expressing the constancy of

the length
R
ds), one finally gets the constraint
Z
ð2€jðsÞ þ jðsÞ3ÞdðsÞds ¼ 0 if

Z
dðsÞjðsÞds ¼ 0:

ð43Þ
As dðsÞ is an arbitrary perturbation, this implies that

2€jþ j3 must be proportional to j. Hence the differential

equation
2€jðsÞ þ jðsÞ3 ¼ bjðsÞ: ð44Þ
Multiplying by _jðsÞ and integrating, one gets

_jðsÞ2 þ 1

4
jðsÞ4 ¼ b

2
jðsÞ2 þ c; ð45Þ

where c is an integration constant.

The relation between j and s is therefore given by the
elliptic integral

s ¼
Z

2djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j4 þ 2bj2 þ 4c

p : ð46Þ
If E is the elliptic curve of equation
v2 ¼ �u4 þ 2bu2 þ 4c; ð47Þ
the map s 7!ðjðsÞ; 2 _jðsÞÞ sends the elastica c onto E.
Using the classical theory of elliptic curves, Mumford

has shown how elastica can be parametrized by theta

functions.
6.6. Illusory contours and the contact bundle

6.6.1. From elastica to variational problems in jet spaces

Up to now, we have considered modal illusory con-

tours as plane curves in the base space M . But V1

implements a contact bundle. It is therefore natural to
look for curves minimizing some functional defined on

that space.

In the geometrical framework of the fibration

p : V ¼ M � P ! R idealizing V1, we can explain the

Kanizsa problem in a principled way. Two pacmen of

respective centers A and B with a specific aperture angle

define two contact elements ða; pÞ ¼ ðA; pAÞ and
ðb; qÞ ¼ ðB; pBÞ of V . A K-curve interpolating between

ða; pÞ and ðb; qÞ is

1. a curve c from a to b inM with tangent p at a and tan-

gent q at b (we will suppose that c is defined by an

equation y ¼ f ðxÞ);
2. a curve minimizing some Lagrangian, that is a func-

tional defining some sort of ‘‘energy’’ for c (varia-
tional problem).

If we lift the problem to V , we must find in V a curve

C of the form ðx; y ¼ f ðxÞ; p ¼ gðxÞÞ interpolating be-

tween ða; pÞ and ðb; qÞ in V , which is at the same time:

1. ‘‘as straight as possible’’, that is ‘‘geodesic’’ in V ; as
the variation of p measures the curvature j of c, this
is a condition on minimizing in some way the curva-

ture;

2. an integral curve of the contact structure, that is which

satisfies the integrability condition gðxÞ ¼ f 0ðxÞ.
6.6.2. Illusory contours and minimal surfaces

In fact, the problem of modeling modal illusory

contours is rather more complex. Indeed, the experiment
with Ninio shows that the deflections for the triangle

and for the square are not the same (Fig. 56).

This is a very interesting global effect which shows

that the visual system constructs not only virtual curves

but also virtual surfaces [45,61], which are solutions of a

far more complex variational model defined on V en-

dowed with its contact-Lie structure C and its sub-Rie-

mannian Carnot-Carath�eodory metric dC (see Sections
4.2.5 and 4.2.6). Now, even the problem of minimal
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surfaces with predefined boundaries is quite difficult.
Some results are already available, especially those of

Scott Pauls [56]. The first point is to define an appro-

priate area measure for surfaces in V . Misha Gromov

[23] proposed to take the 3-dimensional Hausdorff

measure H 3 (associated to dC) of the surfaces. Pansu [54]

has shown that

H 3ðSÞ ¼
Z
krCðf Þkdr;

where f ¼ 0 is an equation for S, and dr is the Rie-

mannian area element induced by the left-invariant
metric g making the left-invariant basis ft1; t2; t3g
orthonormal.

The reader will find in Pauls [56] a variational setup

for minimal surfaces in V which uses as for Lagrangian

the projection n0C of the normal vector n of S onto C (the

vector nC of Section 4.2.6 is the normalization of n0C).
Here we will simplify the problem and restrict ourselves

to minimal curves.
6.6.3. Illusory contours and minimal curves

We must define appropriate Lagrangians on V and

study the curves C which are solutions of the associated

Euler–Lagrange equations. We will work out three

cases, one very natural but analytically complex, two

less natural but easier to formulate analytically. We will

see that the projections of these curves on the base space
M present strong analogies with elastica.

To define Lagrangians in the contact bundle CM or

the 1-jet space V ¼ J 1M (or any other fiber bundle

coding the orientation of tangents to curves c in M) we

must define first a Riemannian metric which reflects the

weakening of the horizontal cortico-cortical connections

when the discrepancy between the boundary values hA
and hB increases. If h is measured relatively to the axis
AB (h has an intrinsic geometric meaning), the weaken-

ing must vanish for h ¼ 0 and h ¼ p, and diverge for

h ¼ p
2
. The function p ¼ f 0 ¼ tan h being the simplest

function sharing this properties, it seems justified to test

first the Euclidean metric of V ¼ J 1M . We will therefore

use a frame Oxy ofM where the x axis is identified to AB.
The invariance under a change of frame is then ex-

pressed by the action of the Euclidean group Eð2Þ on V
(see Section 4.2.2).
6.6.4. ‘‘Legendrian geodesics’’ in the contact bundle and

sub-Riemannian geometry

According to the sub-Riemannian setup associated to

a class of distinguished curves, we look then for curves

of minimal length in V among those which are Legen-

drian lifts, that is which satisfy the Frobenius integra-
bility condition and are integrals of the contact structure

C. We will call ‘‘Legendrian geodesics’’ the solutions of

this constrained variational problem.
Let ðx; y; p; n; g; pÞ be local coordinates in the tangent
space TV of V ¼ J 1M ’ R3. We have to minimize the

length of c expressed by the functional
R xB
xA

ds where ds is
given by

ds2 ¼ dx2 þ dy2 þ dp2: ð48Þ

The energy is therefore E ¼
R xB
xA
LðxÞdx, where the

Lagrangian L is given, for a curve C of the form

ðx; f ðxÞ; f 0ðxÞÞ, by the formula LðxÞdx ¼ ds, that is

LðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ p2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q
: ð49Þ

We have to solve the constrained Euler–Lagrange (E–

L) equations. The non-constrained E–L equations are
oL
oy
� d

dx
oL
og

� �
¼ 0;

oL
op
� d

dx
oL
op

� �
¼ 0:

8>><
>>: ð50Þ
They cannot be applied as such for we must take into

account the integrability constraint p ¼ f 0ðxÞ, i.e. p ¼ g,
which can be written: R ¼ 0, with R ¼ p � g (this is also

equivalent to the integral constraint
R xB
xA
ðp � gÞ2 dx ¼ 0).

The constrained E–L equations are then
o

oy
� d

dx
o

og

� �
ðLþ kRÞ ¼ 0;

o

op
� d

dx
o

op

� �
ðLþ kRÞ ¼ 0;

8>><
>>: ð51Þ
where kðxÞ is a function, called a Lagrange multiplier.

The idea is that the E–L equations with the constraint

R ¼ 0 are the same as the non-constrained E–L equa-

tions for the Lagrangian Lþ kR.
If we substitute their expression for L and R and if we

express the variables y, p, g, p as functions of x, we get

d

dx
oL
og
� kðxÞ

� �
¼ 0;

kðxÞ � d

dx
oL
op
¼ 0;

8><
>: ð52Þ

that is
d

dx
f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðxÞ2 þ f 00ðxÞ2
q � kðxÞ

2
64

3
75 ¼ 0;

kðxÞ � d

dx
f 00ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðxÞ2 þ f 00ðxÞ2
q ¼ 0:

8>>>>>><
>>>>>>:

ð53Þ

Let us integrate the first differential equation, and

eliminate kðxÞ with the second equation. There exists a

constant A such that
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Fig. 57. Evolution of the derivative g ¼ f 0 of Legendrian geodesics

when the parameter k varies from 1 to 1.65 by steps of 0.5.
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oL
of 0

¼ Aþ kðxÞ ¼ Aþ d

dx
oL
of 00

; ð54Þ

that is

f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q ¼ Aþ d

dx
f 00ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðxÞ2 þ f 00ðxÞ2
q :

ð55Þ
Let us develop the total derivative

dL
dx
¼ oL

ox
þ oL
of
f 0 þ oL

of 0
f 00 þ oL

of 00
f 000

¼ oL
of 0

f 00 þ oL
of 00

f 000: ð56Þ

As we have

d

dx
f 00

oL
of 00

� �
¼ f 000 oL

of 00
þ f 00 d

dx
oL
of 00

� �

¼ f 000 oL
of 00

þ f 00 oL
of 0

�
� A

�
; ð57Þ

according to Eq. (54) we get

dL
dx
¼ d

dx
f 00

oL
of 00

� �
þ Af 00; ð58Þ

that is

d

dx
L
�
� f 00 oL

of 00

�
¼ Af 00 ð59Þ

and, after a second integration

L� f 00 oL
of 00

¼ Af 0 þ B: ð60Þ

In our case, we get

f 0ðxÞf 00ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q

¼ Af 00ðxÞ þ d

dx
f 00ðxÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðxÞ2 þ f 00ðxÞ2
q

� f 00ðxÞf 000ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q ð61Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q

¼ Af 0ðxÞ þ Bþ f 00ðxÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q ; ð62Þ

that is

1þ f 0ðxÞ2 ¼ ðAf 0ðxÞ þ BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

q
: ð63Þ
If we take the square of this equation and put g ¼ f 0, we
get the final equation

ðg0Þ2 ¼ ð1þ g
2Þ2 � ð1þ g2ÞðAg þ BÞ2

ðAg þ BÞ2
; ð64Þ

whose solution is given by the elliptic integral (express-

ing x as a function of g and not g as a function of x)

x ¼ C þ
Z
a

gðxÞ At þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ t2Þ½ð1þ t2Þ � ðAt þ BÞ2�

q dt: ð65Þ

The solutions f ðxÞ of the E–L equations for the

Legendrian geodesics are therefore integrals of elliptic

functions associated to elliptic curves of equation

v2 ¼ ð1þ u
2Þ½ð1þ u2Þ � ðAuþ BÞ2�

ðAuþ BÞ2
: ð66Þ

We can greatly simplify the solution of the equation
when the function f is even, and the curve c symmetric
under the symmetry x$ �x. Indeed, this condition

implies immediately A ¼ 0, whence, putting k ¼ 1=B, the
simpler differential equation for g ¼ f 0

ðg0Þ2 ¼ ð1þ g2Þ½k2ð1þ g2Þ � 1�: ð67Þ

The parameter k is correlated to curvature. In fact (see

below), k2 � 1 ¼ jð0Þ2. As (if f is differentiable at 0)

symmetry implies f 0ð0Þ ¼ gð0Þ ¼ 0, we must have

f 00ð0Þ2 ¼ g0ð0Þ2 ¼ k2 � 1P 0, whence kj jP 1. We get
therefore

x ¼ C þ
Z gðxÞ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ t2Þ 1þ k2

k2�1 t
2

# $q dt; ð68Þ

which is a well-known elliptic integral of the first kind.

Fig. 57 shows how the solution g ¼ f 0 evolves when k
varies from 1 to 1.65 by steps of 0.5. We see that the

module of the slopes of the tangents at the end points
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Fig. 58. Evolution of Legendrian geodesics f when the boundary

tangents become more and more vertical.
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Fig. 59. The Legendrian geodesic is intermediary between, on the one

hand, the arc of circle and, on the other hand, the arc of parabola and

the piecewise linear solution.
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pA ¼ tan hA and pB ¼ tan hB increases. Fig. 58 shows the

evolution of the integral f of g.
Fig. 59 shows in the base space M and in the bundle

J 1M how the Legendrian geodesic corresponding to

k ¼ 1:5 is situated relatively to the arc of circle, the arc

of parabola and the piecewise linear solution defined by

the same boundary conditions. The following table

shows that the geodesic minimizes the length:
Curves Geodesic Circle

arc

Parabole

arc

Peathwise

linear

Length 7.02277 7.04481 7.50298 12.9054

20 As gð0Þ ¼ 0, these equations give g0ð0Þ2 ¼ k2 � 1 and the relation

jð0Þ2 ¼ k2 � 1 evoked above.
As for elastica, we can try to deduce a differential

equation for the curvature. Let us recall (see Section 6.5)

that, if s is the arc length and a ¼ ðx; y ¼ f ðxÞÞ a point of

c, the unitary tangent vector at a is given by

t ¼ da
ds ¼ _a ¼ ð1;f 0Þffiffiffiffiffiffiffiffiffiffiffi

1þðf 0Þ2
p (because ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf 0Þ2

q
dx). The

unitary normal vector n at a is therefore given by

n ¼ ð�f 0;1Þffiffiffiffiffiffiffiffiffiffiffi
1þðf 0Þ2

p , and, from the formula dt
ds ¼ jn ¼ ð�f 0f 00 ;f 00Þ

ð1þðf 0Þ2Þ2 ,

we deduce the curvature
j ¼ f 00

ð1þ ðf 0Þ2Þ3=2
: ð69Þ

If g ¼ f 0, we get therefore the system of equations: 20

j ¼ g0

ð1þg2Þ3=2
;

ðg0Þ2 ¼ ð1þ g2Þ½k2ð1þ g2Þ � 1�:

(
ð70Þ

To eliminate g and g0, we replace first ðg0Þ2 by its value in
j2, whence j2 ¼ k2ð1þg2Þ�1

ð1þg2Þ2 . Next, we derive j and the

second equation, which allows to express j0 and _j as

functions of g. We get _j ¼ " g½2�k2ð1þg2Þ�
ð1þg2Þ2 . Finally, we

eliminate g between j2 and _j and we get the equation for

_j2 ¼ dj
ds

# $2
:

_j4 þ _j2ð2jþ k2Þð2j� k2Þð2j2 � k2ðk2 � 1ÞÞ

þ j2ð2jþ k2Þ2ð2j� k2Þ2ðj2 � ðk2 � 1ÞÞ
¼ 0; ð71Þ

whose solutions are

_j2 ¼ 1

2
k2ðk2
h

� 1Þ � 2j2 " ðk2 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � 2jÞðk2 þ 2jÞ

p i
;

ð72Þ
to be compared to that of elastica presented in Section

6.5 (Eq. (45))

_j2 þ 1

4
j4 ¼ b

2
j2 þ c: ð73Þ

For k2 ¼ 2, we get the simplified equation

_j2 ¼ ð1� j2Þ "
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p
: ð74Þ



Fig. 60. Comparison between the families g ¼ f 0 solutions of equations
(67) and (85).

Fig. 61. Comparison between the solutions f of Eqs. (67) and (85).
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6.6.5. The circle bundle model

We can apply the precedent computations to the

case of the fibration M � S1 whose tangent bundle has

local coordinates ðx; y; h; n; g;uÞ and whose metric is

given by

ds2 ¼ dx2 þ dy2 þ dh2: ð75Þ

The Lagrangian is now

LðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ u2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2 þ f 00ðxÞ2

ð1þ f 0ðxÞ2Þ

s
: ð76Þ

Indeed, h ¼ Arctanðf 0Þ and u ¼ h0 ¼ f 00ðxÞ
1þf 0ðxÞ2. The con-

straint is now R ¼ 0, with R ¼ h�ArctanðgÞ, and the

E–L equations are

d

dx
oL
og
þ k

oR
og

� �
¼ 0;

k
oR
oh
� d

dx
oL
ou
¼ 0

8>><
>>: ð77Þ

with oR
oh ¼ 1 and oR

og ¼ � 1
1þg2. We get therefore

oL
of 0

¼ A� k
oR
og
¼ A� oR

oh

� ��1
d

dx
oL
ou

� �
oR
og

: ð78Þ

We develop the total derivative

dL
dx
¼ oL

ox
þ oL
of
f 0 þ oL

of 0
f 00 þ oL

ou
u0

¼ oL
of 0

f 00 þ oL
ou

u0; ð79Þ

we write

d

dx
u
oL
ou

� �
¼ u0

oL
ou
þ u

d

dx
oL
ou

� �

¼ u0
oL
ou
þ u A

�
� oL
of 0

�
oR
og

� ��1
; ð80Þ

whence

dL
dx
¼ d

dx
u
oL
ou

� �
þ oL
of 0

f 00

� u A
�

� oL
of 0

�
oR
og

� ��1
: ð81Þ

But as oR
og ¼ � 1

1þg2,
oR
og

	 
�1
¼ � 1þ g2ð Þ, we have

�u oR
og

	 
�1
¼ f 00 and therefore

d

dx
L
�
� u

oL
ou

�
¼ Af 00; ð82Þ

equation to be compared with Eq. (59). An integration

yields
L� u
oL
ou
¼ Af 0 þ B: ð83Þ

The same computation as before gives (with g ¼ f 0)

ðg0Þ2 ¼ ð1þ g
2Þ4 � ð1þ g2Þ3ðAg þ BÞ2

ðAg þ BÞ2
; ð84Þ

equation to be compared with the previous equation

(64). In the symmetric case A ¼ 0, we get (with k ¼ 1=B)

ðg0Þ2 ¼ ð1þ g2Þ3½k2ð1þ g2Þ � 1�; ð85Þ
to be compared with Eq. (67).

Figs. 60 and 61 compare the solutions of this equa-
tion (on the interval ð�0:56; 0:56Þ for singularities ap-

pear on larger intervals) to those of Eq. (67).

We see that for admissible boundary conditions (not

too large boundary slopes), the solutions of the two

equations are very close. But they depart clearly from

each other when the boundary slopes become more

pronounced, those of the first equation rising higher

than those of the second equation.
In what concerns the differential equation for the

curvature, it is simpler than in the previous case. We get

j2 ¼ ðg0Þ2

ð1þ g2Þ3
¼ ð1þ g

2Þ3½k2ð1þ g2Þ � 1�
ð1þ g2Þ3

¼ k2ð1þ g2Þ � 1;

_j ¼ k2gð1þ g2Þ

8><
>:

ð86Þ
and the elimination of g gives the equation
_j2k2 ¼ ðj2 þ 1� k2Þð1þ j2Þ2 ð87Þ
to be compared with Eqs. (74) and (75).
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This equation can be explicitly integrated. We get
(with C an integration constant)

jðsÞ ¼ " ðe2s � e2CÞ2ðk2 � 1Þ
ðe2s � e2CÞ2 � k2ðe2s þ e2CÞ2

" #1=2
: ð88Þ
Fig. 63. Comparison between the solutions of three variational models.

From top to bottom: elastica computed numerically with the algorithm

of Nitzberg et al. [53] (a ¼ 1=10), projection of the Legendrian geodesic

in the jet space J 1M , projection of the curve of least energy in J 1M .
6.6.6. Curves of least energy

The integration of the differential equation for
Legendrian geodesics is rather difficult due to the pres-

ence of square roots. This obstacle disappears if we

consider another functional whose Lagrangian is the

square of that of geodesics.

The new Lagrangian is

LðxÞ ¼ n2 þ g2 þ p2 ¼ 1þ f 0ðxÞ2 þ f 00ðxÞ2: ð89Þ

The constrained variational problem gives the E–L

equations

d

dx
½2f 0ðxÞ � kðxÞ� ¼ 0;

kðxÞ � d

dx
½2f 00ðxÞ� ¼ 0:

8><
>: ð90Þ

If we integrate the first equation and eliminate kðxÞ, we
get (with C an integration constant)

g ¼ f 0ðxÞ ¼ 1

2
kðxÞ þ C ¼ f 000ðxÞ þ C: ð91Þ

This second-order differential equation in f 0 is easy to

integrate and gives for f functions of the form

f ðxÞ ¼ Aex þ Be�x þ Cxþ D; ð92Þ

where A, B, C, D are constants of integration fixed by the

boundary conditions (which impose 4 independant
equations corresponding to the values of f and f 0 at the
two end points of c). Fig. 62 gives an example.

Analog curves has been evoked by David Mumford

in his study of elastica where he uses in dimension 3 the

Lagrangian

LðxÞ ¼ cþ bð1þ zf 0ðxÞ2Þ þ af 00ðxÞ2: ð93Þ
6.6.7. Comparison between the different models

We have seen that the Legendrian geodesics satisfy a
differential equation (72) for the curvature j which is
Fig. 62. An example of a curve of least energy.
rather complex compared to that of elastica. But, recip-

rocally, elastica are solutions of a variational problem

which becomes in its turn rather complex when expressed

in the contact bundle CM or the 1-jet bundle J 1M .

As we have seen before, the local curvature of a plane

curve of equation y ¼ f ðxÞ is given by j ¼ f 00ðxÞ
ð1þf 0ðxÞ2Þ3=2

. If

we take for a the quotient a
b in Eq. (38) (i.e. if we take

b ¼ 1), elastica minimize the functional:Z sB

sA

ð1þ aj2Þds

¼

Z
xA

xB

1

 
þ a

f 00ðxÞ2

ð1þ f 0ðxÞ2Þ3

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2

q
dx

¼

Z xB

xA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2

q 
þ a

f 00ðxÞ2

ð1þ f 0ðxÞ2Þ5=2

!
dx: ð94Þ

The lifting of an elastica in the 1-jet bundle minimizes

a functional whose Lagrangian presents strong ana-

logies with the Lagrangians studied above. Fig. 63

compares, in the symmetric case and for the same

boundary conditions, the elastica, the projection of the
Legendrian geodesic and the projection of the minimal

energy curve.
7. Application 3: Spontaneous geometric visual patterns

As a third application of the contact structure of V1,

we will establish a link with the beautiful results worked
out by Bressloff et al. [7] concerning the explanation of

some geometric visual hallucinations from the func-

tional architecture of the striate cortex.

Extending previous results of Ermentrout and Cowan

[15], the authors work in the fibration p : V ¼
R2 � S1 ! R2 with local coordinates ða; hÞ (h ¼ the

angular coordinate of the orientation p). Neurons

parametrized by pairs ða; hÞ present an activity zða; hÞ
and are connected by connections with weights

wha; hja0; h0i. Their dynamics select then specific patterns

of activity. As in physics, such models include two parts



21 Concerning the ‘‘sense of movement’’, see Alain Berthoz’s

fundamental work [3]. In what concerns geometric models for the

phenomenological description of perception and kinesthesy in Husserl,

see Petitot [59].
22 As in Section 4.2.2, we indicate here by p or q a point of M which

is the origin of a moving frame. A current point of M will remain

indicated by a.
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i(i) a geometrical understructure;
(ii) an activity field governed by a field equation.

Let zða; h; tÞ be the function expressing the activity of

V1 at time t. Generalizing the classical Hopfield equa-

tions of a neural net, the authors show that the partial

differential equation (PDE) governing the evolution of z
has the form

ozða; h; tÞ
ot

¼ �azða; h; tÞ

þ l
p

Z p

0

Z
R

wha; hja0; h0irðzða0; h0; tÞÞda0 dh0

þ hða; h; tÞ; ð95Þ

where r is a gain function (with rð0Þ ¼ 0), h an external
input, and wha; hja0; h0i the weight of the connection

linking ða; hÞ to ða0; h0Þ.
The key point is that the functional architecture of

V1––that is its contact structure––can be expressed by the

weights w.

1. The local vertical connections inside a single hyper-

column yield a term

wha; hja0; h0i ¼ wverðh� h0Þdða� a0Þ; ð96Þ

where d is the Dirac function and the factor d (a� a0)
imposes therefore a ¼ a0.

2. The lateral horizontal connections between different

hypercolumns yield a term

wha; hja0; h0i ¼ whorða� a0Þdðh� h0Þ; ð97Þ

where the factor dðh� h0Þ imposes h ¼ h0 and ex-

presses the fact that the horizontal cortico-cortical

connections connect pairs ða; pÞ and ðb; qÞ with p ¼ q.
3. Moreover, the coaxiality condition p ¼ q ¼ ab is ex-

pressed by the fact that

whorða� a0; hÞ ¼ whorðsÞdða� a0 � sehÞ; ð98Þ

where eh is the unit vector in the direction h.

This is a good example of what we explain in Section

4.2.6 concerning sub-Riemannian Carnot-Carath�eodory
metrics dC as limit of Riemannian metrics de. If we take

instead of a Dirac function d Gaussians Ge we can
implement a metric de. When at the limit the Gaussians

Ge become d functions, we implement the sub-Rie-

mannian metric dC.
As the contact structure, the weights w are Eð2Þ-

invariant and the PDE is therefore Eð2Þ-equivariant. Its
spectral analysis shows that the initial activation state

z # 0 (which is a stable solution for l ¼ 0 if the external

input h ¼ 0) can become unstable and bifurcate for
critical values of the parameter l. The new stable acti-

vation states present highly structured spatial patterns

generated by a Eð2Þ-symmetry breaking.
In more recent papers (see this volume), the authors
use more complex fibrations to take into account the

dimension of spatial frequency.
8. ‘‘Geodesic’’ models and Lie groups

As we have shown in Petitot [58], the variational

model for Legendrian geodesics can be formulated in a
deeper way on the Lie group G ¼ Eð2Þ ¼ SOð2ÞoR2 of

displacements in M . This amounts to use the celebrated

moving frame method due to Elie Cartan (see Fig. 64), a

method geometrically relevant since the group G char-

acterizes the Euclidean geometry of the plane, but also a

method neurophysiologically relevant since:

1. the functional architecture of V1 is G-invariant;
2. it is probably G which is neurally implemented if we

take into account areas V1 and V2; we have seen that

when an element of contour is activated it is also the

case for the orthogonal direction; we can think there-

fore that V1 and V2 implement together the fibration

G! M with fiber SOð2Þ ’ S1;

3. the geometry of G is universal for the contour pro-

blem; it idealizes geometrically a functional architec-
ture which, as was deeply anticipated by Poincar�e
and Husserl, couples perception with the kinesthe-

sic sense of movement; 21 concretely, the transla-

tions of G can be kinesthesically interpreted, the

motor control of vision allowing a change of moving

frame.

The topic is mathematically too technical to be trea-
ted here, but let us nevertheless sketch some of its as-

pects.
8.1. Moving frames and the principal bundle of the

Euclidean group

Let us first say some words concerning the structure

of the Lie group G. Let R0 ¼ ðO; e1; e2Þ be a fixed
orthonormal frame of the plane M (coordinates ðx; yÞ).
Let c be a curve in M . At every point p ¼ ðx; yÞ of M , 22

we can consider an orthonormal moving frame––also

called a Fr�enet frame––R ¼ ðp; e1; e2Þ ¼ ðp; rhÞ with



Fig. 64. Elie Cartan’s concept of moving frame.
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center p and basis ðe1; e2Þ, the unitary vectors respec-

tively tangent and normal to c at p (coordinates ðu; vÞ)
(Fig. 64). 23 rh is the rotation of angle h transporting,

with the translation p, the fixed frame R0 onto the

moving frame R. In terms of coordinates ðx; y; hÞ we

have therefore

p ¼ ðx; yÞ;
e1 ¼ ðcos h; sin hÞ;
e2 ¼ ð� sin h; cos hÞ:

8<
: ð99Þ

The moving frame R ¼ ðp; rhÞ is a displacement of the
plane M , and then an element of G, acting on a point a
of M by the formula

RðaÞ ¼ ðp; rhÞðaÞ ¼ p þ rhðaÞ; ð100Þ

where rhðaÞ ¼ rhðOaÞ. If R ¼ ðp; rhÞ and S ¼ ðq; ruÞ are
two displacements, their composition is given by the

semi-direct product

S � R ¼ ðq; ruÞ � ðp; rhÞ ¼ ðqþ ruðpÞ; rhþuÞ: ð101Þ

This non-commutative group law can easily be ex-

pressed as a matrix multiplication. Let us consider the

vector space R3 ¼ R� R2 ¼ R� C and the complex

forms p ¼ xþ iy, w ¼ uþ iv, rh ¼ (complex multiplica-

tion by eih). 24 It is trivial to verify that the displacement

R ¼ ðp; rhÞ of M can be identified with the restriction to

vectors
1

w

� �
of the linear endomorphism of R� C

whose matrix is g ¼ 1 0

p eih

� �
, 25 the semi-direct law

becoming simply matrix multiplication.
23 We suppose that frames share a positive orientation.
24 Complex multiplication by eih in C corresponds in R2 to the

rotation matrix
cos h � sin h
sin h cos h

� �
. The link with de Moivre formula

eih ¼ cos hþ i sinh is done through the standard identification of i with

the Pauli matrix
0 �1
1 0

� �
(whose square is )1).

25 g is a 3 · 3 real matrix, p being the translation vector
x
y

� �
and eih

the rotation matrix
cos h � sin h
sin h cos h

� �
.

It is also easy to verify that the inverse g�1 of g is
given by the formula
g�1 ¼ 1 0

�pe�ih e�ih

� �
: ð102Þ
In other words, if we interpret R2 as the affine

plane of the vector space R3 ¼ R� C which is paral-

lel to the base C at height 1, the non-commutativity

of the semi-direct product G ¼ Eð2Þ ¼ SOð2ÞoR2

becomes simply induced by that of the rotation group

SOð3Þ.
We will therefore identify G to the group of matrices

g and R0 ¼ ð0; r0Þ to the identity element e ¼ 1 0

0 1

� �
.

The stabilizer of O (i.e. the set of g leaving the origin O
invariant) is the subgroup H ¼ SOð2Þ of matrices g with
p ¼ 0 (pure plane rotations without translation), i.e. of

the form g ¼ 1 0

0 eih

� �
. The quotient G=H is isomor-

phic to R2 (i.e. the base spaceM) and G is the semi-direct

product HoðG=HÞ. As H ¼ SOð2Þ, we recover a fibra-

tion q : G! M ¼ G=H having as fiber a group operat-

ing on the unit circle S
1 of orientations. q is called a

principal bundle (on the plane M). Above every point p
of M , there is an exemplar of the rotation group SOð2Þ.
The fibration q acts on the fibration p : V ¼
M � S1 ! M having as fiber the orientations of the

plane: if p 2 M , the exemplar of SOð2Þ above p acts on

the fiber Vp ¼ p�1ðpÞ by rotating the direction. One says

that the fiber bundle p is associated with the principal

bundle q.
8.2. The Lie algebra g of G and the adjoint and co-adjoint
representations

A Lie group G is by definition a differentiable mani-

fold endowed with a group structure whose operations

are differentiable maps. There exists subtle interactions

between the algebraic and differentiable structures. The
group law of G admits an infinitesimal version, which

endows the tangent plane TeG of G at the unit element e
with a structure of Lie algebra g. Moreover, G acts on

itself according to its own group law, and the infinites-

imal version of this action provides a natural represen-

tation of G on g, called the adjoint representation. By

duality, one gets the Lie co-algebra g� of G and a natural

representation of G on g�, called the co-adjoint repre-
sentation. We already investigated an example in Sec-

tion 4.2.5.

These remarkable properties are due to the fact that

any Lie group G is ‘‘homogeneous’’––identical at every

point––because it acts on itself by left and right trans-

lations. Let g 2 G; one associates to g the left translation
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Lg in G defined by Lg : h 7!gh. 26 Lg is simply a change of
frame, h being considered no longer in the fixed frame e
but in the moving frame g. If g ¼ ðp; rhÞ and h ¼ ðq; ruÞ,
we have

LgðhÞ ¼ ðp þ rhðqÞ; rhþuÞ ¼
1 0

p þ eihq eiðhþuÞ

� �
: ð103Þ

Left translations are diffeomorphisms of G, but they
are not automorphisms of its group structure since they

do not preserve the identity e. They are nevertheless

compatible with the group law since their composition

satisfies Lg � Lf ¼ Lgf . They provide a global canonical

trivialization of the tangent bundle TG. This bundle is
not given as such as the direct product G� T with

T ¼ TeG, but it can be canonically identified with G� T
by means of the Lg. Many of the geometric properties of

Lie groups proceed from this fact. In particular, by

translating everywhere in G a frame of g ¼ TeG we get a

global G-invariant frame of G. One says that G is a

parallelizable manifold.

The translations in G are essential. G is not a flat
space since its G-invariant metric presents curva-

ture. There exists therefore what is called a problem

of holonomy. If we start from an orthonormal basis

of g ¼ TeG associated with local coordinates at e, the
bases of the neighboring tangent planes TgG associ-

ated to the same local coordinates will no longer be

orthonormal, and, reciprocally, a local field of ortho-

normal bases cannot derive from a system of local
coordinates. But translations allow the construction of

such fields.
8.3. Elie Cartan’s formalism

Let g ¼ 1 0

p eih

� �
be the current element of G. We

consider its differential dg ¼ 0 0

dp ieih dh

� �
and we

interpret it as a 1-form on G with values in g, that is as an

element dg 2 T �G� g. This means that the components
of dg are 1-forms on G, but that the values dgðhÞð1hÞ of
dg at a point h of G on the tangent vector 1h 2 ThG to G
at h shares the type of an element of g. It is easy to show

that, for h ¼ e, dgðeÞ is the identity of g ¼ TeG. dgðeÞ is a
1-form on TeG ¼ g which takes as inputs vectors 1 2 g

and, as it is g-valued, outputs also vectors dgðeÞð1Þ 2 g.

Identity means simply that dgðeÞð1Þ ¼ 1.
The fundamental idea of Elie Cartan was to start

from the natural g-valued 1-form dg on G and to make

it G-invariant under the action of the left translations

Lg. Indeed, dg is not G-invariant because, as we

have seen, TG is not given as such as the direct product
26 One must not confuse the translation Lg in G and the component

p of g ¼ ðp; rhÞ which is a translation in M .
G� T . dg is the identity map of TG but not of TG
as globally trivialized by the left translations Lg. A

G-invariant 1-form on G must be constant in the bases

of T �g G dual to the G-invariant bases of the tangent

spaces TgG. But it is easy to see that it is not the case

for dg.
Cartan’s idea was then to translate dgðeÞ in order

to obtain a 1-form on G which would be G-invariant
by construction. Let KG : TG! g be this 1-form. It
is called the Maurer–Cartan form of G and can be

interpreted geometrically very easily. By definition,

KGðgÞ ¼ ðTgLg�1Þ�dgðeÞ. 27 If 1 2 TgG is a tangent vector

to G at g, KGðgÞð1Þ ¼ TgLg�1ð1Þ and KG transports 1 in g

by means of the global trivialization provided by the left

translations Lg. In our case, we verify promptly that

we have: KGðgÞ ¼
0 0

e�ihdp idh

� �
. Traditionally, KG is

written
KG ¼ g�1 dg; ð104Þ

where g�1 symbolizes ðTgLg�1Þ�.
The Lie algebra structure of g can be easily recovered

from the Maurer–Cartan form KG through a universal

formula. The idea is to compute the exterior derivative

dKG of KG, which is a G-invariant g-valued 2-form on G.
One shows that

dKG ¼ �
1

2
½KG;KG�: ð105Þ

These universal Maurer–Cartan equations encode the
geometry of every Lie group (see the example of Section

4.2.5).
8.4. Variational problems on Lie groups according to

Bryant and Griffiths

The Euclidean group of displacements Eð2Þ ¼ G, with
its principal bundle structure, its adjoint and co-adjoint
representations, and its Maurer–Cartan form is uni-

versal and geometrizes a neurally implemented func-

tional architecture. It is therefore natural to formulate

our variational models of modal illusory contours in this

deeper framework.

In an exciting paper ‘‘Reduction for constrained

variational problems and
R

j2

2
ds’’, Bryant and Griffiths

[8] have developed this new approach of variational
problems and applied it to David Mumford’s theory of

elastica.

Let us return to the curves c in the base plane M . If,

when the point p ¼ ðx; yÞ wanders along c, we track the
27 We have TgLg�1 ¼ ðTeLgÞ�1 : TgG! TeG and, by duality,

ðTgLg�1 Þ� : T �e G ¼ g� ! T �g G.
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Fr�enet moving frame R ¼ ðp; e1; e2Þ ¼ ðp; rhÞ (where
ðe1; e2Þ are the tangent and normal unitary vectors of c
at p), we get a curve ~c which lifts c in G and is called its

Fr�enet lifting.
As G is a principal bundle to which the contact

bundle of M is associated, we can interpret in this new

framework the Legendrian lifting of c in J 1M studied in

Section 4.2.3. The problem is the same: we must char-

acterize, but this time in G, the skew curves C which are
Fr�enet liftings ~c of curves c in M . The idea is to express

an infinitesimal displacement dR ¼ ðdp; de1; de2Þ of the
moving frame R ¼ ðp; e1; e2Þ in two different ways: the

first will be general and universal, and associated di-

rectly to G, the second will be more particular and

associated to c. Comparing the two, we can then show

that C must satisfy an integrability condition which, as

the Frobenius integrability condition of Section 4.2.3, is
expressed by the vanishing of a system of differential 1-

forms on an appropriate space X derived from G, what
is called a Pfaff system.

We can then select certain curves c in M by means of

a variational principle applied to their Fr�enet lifting. For
this purpose we have to introduce a Lagrangian L and

look at the 1-form on X : u ¼ Ldt. If C : I ! X
(I ¼ ½0; 1�) is a curve in X , we associate to it the ‘‘energy’’
U

UðCÞ ¼
Z
I

C�u ð106Þ

(where the 1-form C�u on I is the inverse image by C
of the 1-form u on X ), and we look for curves C
minimizing U. For that, we have to solve anew con-

strained E–L equations. In our case, the Lagrangian

1-form u is

u ¼ ðdp2 þ ðtan2 hÞ0dh2Þ
1
2 ð107Þ

The computation (rather complex) returns the results of

Section 6.6.4.

We investigate that way 3 different levels of structure

linking the universal geometry of G to particular families

of curves in M .

1. The Lie group G and its associated structures: g,

g�, KG, as well as the adjoint and coadjoint repre-

sentations. This first level concerns a universal

geometric framework implemented in a functional

architecture.

2. Paths ~c in G which are Fr�enet liftings of curves c in

the base M . This second level concerns the coding

of particular stimuli in this universal framework.
3. Finally, for the modal illusory contours, those curves

C which are solutions of a variational problem. This

third level concerns the variational interpretation of

the completion problem.
9. Conclusion

We have shown how experimental results on pin-

wheels and lateral cortico-cortical connections of V1

allow to develop a detailed neurogeometrical model of

their functional architecture as a discrete approximation

of the contact structure of the fibration p : R� P ! P .
We have also shown how this contact structure allows to

understand typical Gestalt phenomena such as good
continuation (association field) and modal illusory

contours.

This neurogeometrical model is as elementary as

possible. It would have to be considerably complexified

in order to take into account other retinotopic and non-

retinotopic areas with their feedback top-down projec-

tions on V1. But, as elementary as it may be, it already

makes use of non-trivial mathematical concepts such as
blowing-up, contact structures, Frobenius integrabil-

ity condition, sub-Riemannian geometry, Carnot-

Carath�eodory metrics, Euler–Lagrange equations, Lie

groups, Maurer–Cartan form, etc. It highlights a fun-

damental fact. The geometrical formatting of the optical

signal requires an integration of local data into global

structures. But how such an integration can be per-

formed via fields of neural point processors processing
in parallel only point measures (of course at a certain

scale of resolution)? The solution which was selected by

evolution and theoretically conceived of by the main

post-Riemannian geometers is to introduce supplemen-

tary local degrees of freedom (orientations p for V1)

with the constraint that they have to be interpreted as

differential entities (p ¼ a0 for V1).
The existence of such a functional architecture ex-

plains how a neural calculus is able to solve non-trivial

integration problems. A synchronized wave of activity

propagating in the functional architecture is equivalent

to the integration of a specific differential equation. It is

in that sense that computation is the hardware.

We see that an idea emerges, which brings neurosci-

ences close to physical sciences. It is not a new idea since

there exists already the case of the Hopfield neural
networks. Spin glass models coming from statistical

physics of magnetic media are relevant for the connec-

tionist perspective since they express in a general way

the dynamical macroproperties (global attractors,

bifurcations, etc.) of interacting systems of elementary

micro-units coupled via positive and negative couplings.

We meet here the same situation. Modern fundamental

physics rests on formalisms of the type we have used
here. A physical field is a section of a fiber bundle with

the space–time as base space and as fiber an algebraic

type (scalar, vector and spinor) on which acts the group

G of internal symmetries. In gauge theories, interactions

between particles are described by connections on these

fiber bundles. The origin of the necessity of such for-

malisms is the same as in our case: to understand the
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physical origin of space as a global framework for
phenomena, in other words, to explain the material

genesis of the ideality of space.
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