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Cortical neurons in vivo undergo a continuous bombardment due to
synaptic activity, which acts as a major source of noise. Here, we investi-
gate the effects of the noise filtering by synapses with various levels of
realism on integrate-and-fire neuron dynamics. The noise input is mod-
eled by white (for instantaneous synapses) or colored (for synapses with a
finite relaxation time) noise. Analytical results for the modulation of firing
probability in response to an oscillatory input current are obtained by ex-
panding a Fokker-Planck equation for small parameters of the problem—
when both the amplitude of the modulation is small compared to the
background firing rate and the synaptic time constant is small compared
to the membrane time constant. We report here the detailed calculations
showing that if a synaptic decay time constant is included in the synaptic
current model, the firing-rate modulation of the neuron due to an oscilla-
tory input remains finite in the high-frequency limit with no phase lag. In
addition, we characterize the low-frequency behavior and the behavior
of the high-frequency limit for intermediate decay times. We also char-
acterize the effects of introducing a rise time to the synaptic currents and
the presence of several synaptic receptors with different kinetics. In both
cases, we determine, using numerical simulations, an effective decay time
constant that describes the neuronal response completely.

1 Introduction

Noise has an important impact on the dynamics of the discharge of neurons
in vivo. Neurons in the cerebral cortex recorded in vivo show very irregular
firing in a large range of firing rates (Softky & Koch, 1993), and there is a wide
variability in the spike trains of neurons from trial to trial. There is evidence
that a large part of the noise experienced by a cortical neuron is due to the
intensive and random bombardment of synaptic sites. Neurons in cortical
networks in vivo in awake animals (Burns & Webb, 1976) and anesthetized
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animals (Destexhe & Paré, 1999) are spontaneously active and emit spikes
at rates of about 5–10 Hz in an approximately Poissonian way. Due to the
large number of synaptic contacts (around 10,000), a cortical neuron thus
receives a huge bombardment of spikes in an interval corresponding to its
integration time constant (about 20 ms; see McCormick, Connors, Lighthall,
& Prince, 1985).

The impact of noise on neuronal dynamics can be studied in detail in a
simple spiking neuron model, the integrate-and-fire (IF) neuron (Lapicque,
1907; Knight, 1972; Tuckwell, 1988). Knight (1972) pioneered the study of
the effect of noise on the dynamics of such a spiking neuron. The noise
model he studied was a simplified model in which the threshold is drawn
randomly after each spike. Gerstner (2000) extended these results and stud-
ied both slow noise models, in which either the threshold or the reset is
drawn randomly after each spike, and fast escape rate noise models. Phase
noise has also been used to study synchrony in networks of coupled oscilla-
tors (Abbott & van Vreeswijk, 1993). However, none of these noise models
can represent in a realistic way synaptic noise as experienced by cortical
neurons. Synaptic currents provoked by a single spike recorded in slice ex-
periments have a fast rise time (often less than 1 ms) and a slower decay time
(in the range of 2 to 100 ms depending on the type of receptor; Destexhe,
Mainen, & Sejnowski, 1998). Common synaptic currents are excitatory glu-
tamatergic currents, which can be mediated by either fast AMPA receptors
(decay of order 2 ms) or slower NMDA receptors (decay of order 50–100 ms)
and inhibitory GABAergic currents, whose fast component is mediated by
the GABAA receptor (decay of order 5–10 ms). Such synaptic currents can be
described by a simple system of ordinary differential equations (Destexhe
et al., 1998; Wang, 1999).

In this article, we study the impact of noise originating from realistic
synaptic models on the dynamics of the firing probability of a spiking neu-
ron. We explore three levels of complexity for the synaptic currents: (1)
instantaneous (delta function) synaptic current, (2) synaptic current with
an instantaneous jump followed by an exponential decay with time con-
stant τs, and (3) synaptic current described by a difference of exponentials,
with a rise time τr and decay time τs.

The dynamics of the firing probability of a neuron receiving a bombard-
ment of spikes through such synaptic currents is studied in the framework
of the diffusion approximation (see in the neuronal context Tuckwell, 1988;
Amit & Tsodyks, 1991). This approximation is justified when a large number
of spikes arrive through synapses that are weak compared to the magnitude
of the firing threshold, which is the relevant situation in cortex. In the diffu-
sion approximation, the random component in the synaptic currents can be
treated as white noise in the case of instantaneous synapses. On the other
hand, when synapses have a finite temporal width, as in the more realis-
tic models, synaptic noise has a finite correlation time and thus becomes
“colored” noise. Thanks to the diffusion approximation, the dynamics of
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firing probability can be studied in the framework of the Fokker-Planck
theory (Risken, 1984). The dynamics at the network level has been studied
analytically recently in the white noise case by Brunel and Hakim (1999)
and Brunel (2000). Similar population density approaches have been inves-
tigated by Knight, Omurtag, and Sirovich (2000), Nykamp and Tranchina
(2000, 2001), and Haskell, Nykamp, and Tranchina (2001).

Using the tools of the dynamical linear response theory (Knight, 1972;
Gerstner, 2000; Brunel, Chance, Fourcaud, & Abbott, 2001), we study the dy-
namics of the firing discharge in response to a synaptic current composed
of the sum of a stationary stochastic background current, which by itself
provokes a background firing rate ν0, and of a small oscillatory component
at frequency ω. The knowledge of the response at all frequencies allows us
to determine the response of the neuron to arbitrary stimuli, in the linear ap-
proximation. Knight (1972) had shown that integrate-and-fire (IF) neurons
have a finite response even in the high-frequency limit for the simplified
noise model investigated. Surprisingly, recent studies have shown that in
the case of white noise, the amplitude of the firing-rate modulation at high
frequencies decays as 1/

√
ω, with a phase lag that approaches 45 degrees

in that limit (Brunel & Hakim, 1999; Brunel et al., 2001); when a more re-
alistic synaptic noise is taken into account, the amplitude of the firing-rate
modulation is finite even in the high-frequency limit, and the phase lag is
eliminated (Brunel et al., 2001).

In this article, we study in more detail how the characteristics of the
synaptic currents affect the neuronal response. We start with a detailed
report of the calculations leading to the results in the colored noise case.
This is done with two types of IF neurons: with or without leak. Using
analytical calculations and numerical simulations, we then proceed to study
how the high-frequency limit depends on the synaptic decay time, the effect
of the synaptic rise time, and the effects of synaptic currents mediated by
different receptors with different kinetics, as is the case in neurons in the
cerebral cortex.

Section 2 describes the models we use. In the following sections, we
present the analytical calculations leading to the linear dynamical response
of the two types of IF neurons. In section 4, analytical methods are presented,
and the stationary firing probability is calculated. Then, in section 5, we
calculate analytically the linear dynamical responses in the low- and high-
frequency limits. Numerical simulations are used to obtain the response
in the full-frequency range and in the more complicated synaptic filtering
cases. Finally, we discuss our results in section 6.

2 Models

2.1 The Integrate-and-Fire Model Neurons. The IF model was intro-
duced long ago by Lapicque (1907). Due to its simplicity, it has become
one of the canonical spiking renewal models, since it represents one of the
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few neuronal models for which analytical calculations can be performed. It
describes basic subthreshold electrical properties of the neuron. It is com-
pletely characterized by its membrane potential below threshold. Details
of the generation of an action potential above the threshold are ignored.
Synaptic and external inputs are summed until it reaches a threshold where
a spike is emitted. The general form of the dynamics of the membrane po-
tential V(t) in IF models can be written as

C
dV
dt

= Il(V) + Is(V, t) + Ie(t), (2.1)

where Is is the synaptic current, Ie is an external current directly injected
in the neuron, Il is a leak current, and C is the membrane capacitance. In
the following, Is will represent the noisy inputs due to background synaptic
activity, and Ie will represent an oscillatory input. In vivo, oscillatory inputs
arrive through synapses and should therefore be incorporated into Is. How-
ever, for the purpose of the calculations detailed here, it is convenient to
extract the oscillatory component from the noise and inject it directly to the
cell. We will then come back in the discussion to the neuronal response to
oscillatory inputs filtered through synapses.

When the membrane potential reaches a fixed threshold θ , the neuron
emits a spike and is reset to Vr. We could also introduce an absolute refrac-
tory period (ARP) after the emission of a spike during which the neuron is
silent and does not sum the input signal. For simplicity, we set the ARP to
zero in the following. In the most interesting region of firing rates far from
saturation, the inclusion of ARP will affect the results only mildly.

Several variants of this model have been considered in the literature. The
simplest integrate-and-fire neuron (SIF) has no leak current: Il(V) = 0. Thus,
in the absence of inputs, the neuron stays indefinitely at its initial value.
The leaky, or forgetful, integrate-and-fire neuron (LIF) has a leak current
Il(V) = −g(V − VL), where g is the leak conductance and VL the resting
potential. We note C/g = τm where τm is the membrane time constant. In all
calculations, we set VL = 0. In simulations, we use VL = −70 mV.

Dividing both sides by g, we can reexpress equation 2.1 as

τm
dV
dt

= f (V) + Is(V, t) + Ie(t), (2.2)

where f (V) = 0 for the SIF, f (V) = −V for the LIF, and g has been absorbed
in the currents Is and Ie, which are now expressed in units of voltage. Note
that in the SIF, τm is an arbitrary parameter, used only to unify the description
with the LIF. Thus, results for the SIF will be completely independent of that
parameter.

2.2 Models of Synaptic Filtering. Many mathematical descriptions of
synaptic currents have been proposed, from overly simple to very realistic
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(for a review, see Destexhe et al., 1998). Realistic models of the synaptic
current Is(V, t) depend on the membrane potential V through Is(V, t) =
g(V − Vrev)s(t), where g is the synaptic conductance, Vrev is the reversal
potential of the synapse, and s(t) describes the temporal dynamics of the
synapse. In the following, we ignore the driving force V−Vrev for simplicity
and consider current rather than conductance changes at synaptic sites.
Thus, synaptic currents become independent on voltage.

The synaptic models we consider follow.

2.2.1 Instantaneous (Delta Function) Synapses. If we neglect the synap-
tic time constants compared to the neuronal time constants, postsynaptic
currents (PSCs) can be described by delta functions, and the synaptic input
Is(t) can be described by

Is(t) =
Ns∑
i=1

Ji

∑
k

δ(t − tk
i )τm. (2.3)

The sum over i corresponds to a sum over all synapses, Ns is the number of
synaptic connections (typically 10, 000), Ji is the efficacy of synapse i in mV
(amplitude of the postsynaptic potential), the sum over k corresponds to a
sum over presynaptic spikes of each synapse, and tk

i is the time where the
kth presynaptic spike arrives at the synapse i.

2.2.2 Synapses with Instantaneous Jump and Exponential Decay. In reality,
postsynaptic currents have a finite width that can be of the same order of
magnitude or even larger than the membrane time constant. A more ac-
curate representation of synaptic inputs consists of an instantaneous jump
followed by an exponential decay with a time constant τs. This can be de-
scribed by the following equation:

τs
dIs

dt
= −Is(t) +

Ns∑
i=1

Ji

∑
k

δ(t − tk
i )τm. (2.4)

In such a description, the rise time of the synaptic current is neglected. This
is justified by the observation that the rise time of a synapse is typically
very short compared to the relaxation time. Moreover, such a description
implicitly assumes τs to be the same for all synapses.

2.2.3 Synaptic Currents with Different Decay Time Constants. Synaptic
inputs to a cortical neuron come from different types of receptors with
different temporal characteristics. Common types of receptors are AMPA,
NMDA, and GABA receptors. AMPA receptors have synaptic time con-
stants of the order of 2 ms (Hestrin, Sah, & Nicoll, 1990; Sah, Hestrin, &
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Nicoll, 1990; Spruston, Jonas, & Sakmann, 1995; Angulo, Rossier, & Audi-
nat, 1999). GABAA receptors have longer time constants (typically 5–10 ms;
Salin & Prince, 1996; Xiang, Huguenard, & Prince, 1998; Gupta, Wang, &
Markram, 2000). Finally, NMDA currents are the slowest, with decay time
constants of about 100 ms (Hestrin et al., 1990; Sah et al., 1990). Thus, it is of
interest to consider synaptic inputs that are combinations of inputs coming
through different receptors.

Such synaptic inputs can be described by a system of equations,

Is(t) = Is1(t) + Is2(t) (2.5)

τs1

dIs1

dt
= −Is1(t) +

Ns1∑
i=1

J1i

∑
k

δ(t − tk
1i
)τm (2.6)

τs2

dIs2

dt
= −Is2(t) +

Ns2∑
i=1

J2i

∑
k

δ(t − tk
2i
)τm, (2.7)

where si, i = 1, 2 . . ., represent different types of synaptic receptors. In par-
ticular we will consider the situation in which two types of receptors are
present: AMPA and GABA.

2.2.4 Synapses with Rise and Decay Times. Finally, the effects of a finite
rise time can be included by a third variable in the system of equations
describing neuronal dynamics. A simple way to introduce a rise time is to
consider this system of equations:

τs
dIs

dt
= −Is(t) + Ir(t) (2.8)

τr
dIr

dt
= −Ir(t) +

Ns∑
i=1

Ji

∑
k

δ(t − tk
i )τm. (2.9)

Figure 1 shows different postsynaptic currents (PSCs) with different rise
times. Note that our description of the current with a rise time is similar to
other kinetic descriptions (see Destexhe et al., 1998 or Wang, 1999), except
that we do not take into account the saturation of Is. Neglecting saturation
is justified when presynaptic firing rates are low, which is the prevalent
situation during spontaneous activity in the cortex.

3 Analytical Methods

3.1 Diffusion Approximation. Neurons usually have synaptic connec-
tions from tens of thousands of other neurons. Thus, even when neurons
fire at low rates, a neuron receives a large amount of spikes in an interval
corresponding to its integration time constant. If we assume these inputs
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Figure 1: Single PSCs for synapses with τs = 2 ms and different rise time con-
stants τr = 0 ms (solid line), τr = 0.5 ms (dotted line), τr = 1 ms (dashed line),
τr = 2 ms (long-dashed line).

are Poissonian and uncorrelated and the amplitude of the depolarization
due to each input is small—〈Ji〉 � θ − Vr, where 〈.〉 is the average over
the input synapses—we can use the diffusion approximation. It consists in
approximating fluctuations around the mean of the total input spike train
by a gaussian white noise,

Ns∑
i=1

Ji

∑
k

δ(t − tk
i ) ≈ µ̃ + σ̃ η(t) (3.1)

where µ̃ is proportional to the mean of the synaptic input and η is a gaus-
sian random variable satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). σ̃

characterizes the amplitude of the noise.
If we assume the mean activation rate for each synapse is ν, we have

µ̃ = 〈Ji〉Nsν, σ̃ 2 = 〈J2
i 〉Nsν. (3.2)

Note that µ̃ is in units of mV.ms−1 and σ̃ in mV.ms− 1
2 .

Consequently, when synapses are instantaneous (relaxation synaptic time
equals zero), the noise in the current is equivalent to white noise, but when
the synaptic current has a temporal width, the noise is equivalent to colored
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noise. Using the diffusion approximation, the neuronal dynamics is fully
described by the following systems of stochastic equations:

Instantaneous Synapses:

τm
dV
dt

= f (V) + µ + σ
√

τmη(t) + Ie(t) (3.3)

in which µ and σ are:

µ = µ̃τm = 〈Ji〉Nsντm, and σ 2 = σ̃ 2τm = 〈J2
i 〉Nsντm (3.4)

and are both in mV.

Exponentially decaying synapses:

τm
dV
dt

= f (V) + Is(t) + Ie(t) (3.5)

τs
dIs

dt
= −Is(t) + µ + σ

√
τmη(t). (3.6)

3.2 Neuronal Frequency Response. The main goal of this article is to
determine the neuronal response to an oscillatory input in presence of a re-
alistic synaptic noise. Figure 2 shows an example of numerical simulations
of 2000 neurons receiving a common oscillatory current input but with noise
inputs that are uncorrelated from neuron to neuron (upper panel). We see
on the raster (middle panel) that the neurons do not emit spikes regularly
at the input frequency but discharge quite randomly. Actually, it is the in-
stantaneous firing rate (the firing probability) of each neuron that oscillates
in time (bottom panel). In the following, we compute the amplitude of the
oscillatory response and its phase shift.

The instantaneous firing rate ν(t) of the neuron is computed in two steps.
We start with a stationary input Ie(t) = 0. The resulting firing probability
is ν(t) = ν (see section 4). Then we introduce a small oscillatory input
Ie(t) = εµeiωt, ε � 1, and we compute the linear (first-order) correction to
the instantaneous firing rate ν(t) = ν[1 + εn̂(ω)eiωt] (see section 5). In both
cases, we first make calculations for instantaneous currents (τs = 0). Then
we compute the first-order correction due to the introduction of the synaptic
decay time (τs > 0).

In each section, we will present in the main text only the main steps and
the results. Details of the calculations can be found in the appendixes.

3.3 Fokker-Planck Equation and Its Boundary Conditions. The analyt-
ical methods we use consist of solving the dynamical Fokker-Planck equa-
tion associated with the stochastic equations given in section 3.1. We look
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Figure 2: Firing probability response to oscillatory current with noise. (A) Os-
cillatory current, Ie (dashed line), and noisy oscillatory current, Ie +Is (solid line).
(B) Raster of 2000 neurons subject to oscillatory current with uncorrelated noise.
(C) Firing probability of the neuron calculated in bins of 6 µs.
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for the probability density P(V, Is, t) of voltage V and synaptic current Is at
time t. We note

P(V, Is, t) = P(V, Is) + εP̂(V, Is, ω)eiωt + O(ε2),

where P is the stationary part ofP and P̂ describes the part ofP that oscillates
at the same frequency as the current input. Since we will consider the limit
of small perturbations around the stationary probability density function
ε � 1, we do not take into account higher-order terms in the expansion of
P , which would contain higher harmonics.

The dynamical Fokker-Planck equation can be written

∂P
∂t

+ ∂ JV

∂V
+ ∂ JIs

∂Is
= 0, (3.7)

where JV is the probability flux of P through V at fixed Is and JIs is the
probability flux of P through Is at fixed V. The instantaneous firing rate is
given by the sum of the probability flux through the firing threshold V = θ

over Is:

ν(t) =
∫

JV(θ, Is, t)dIs. (3.8)

In the case of instantaneous synapses (τs = 0), P depends on V only, and
the instantaneous firing rate simplifies to

ν(t) = JV(θ, t). (3.9)

When we introduce the synaptic relaxation time (τs > 0), we face a more
complex problem of solving a two-dimensional Fokker-Planck equation
with a boundary limit on a semi-infinite line, as we will see in sections 4.1.3
through 4.2.3. The equation can be solved recursively using an expansion
in

√
τs/τm, using analytical methods developed by Hagan, Doering, and

Levermore (1989).

4 Stationary Firing Probability

We describe in this section the calculation of the firing rate and the proba-
bility density function (p.d.f.) of the neuronal membrane potential when it
receives a stationary input: Ie(t) = 0. Note that the membrane potential of
the leaky IF neuron with white noise is described by an Ornstein-Uhlenbeck
process whose mean first passage time to threshold is well known (Tuck-
well, 1988; Amit & Tsodyks, 1991). The solution for the simplest IF neuron
with reflecting boundary condition at reset has been calculated by Fusi and
Mattia (1999).
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The calculation of the LIF stationary firing rate and of the p.d.f. when
noise is white is given in Brunel and Hakim (1999). The calculation of the
stationary firing rate when noise is colored has been performed in Brunel
and Sergi (1998), assuming that the probability density of synaptic currents
after the end of an absolute refractory period is gaussian. Here, we calculate
the stationary firing rate with colored noise relaxing the assumption that
Brunel and Sergi (1998) made. This gives a slight difference in the final
formula for the firing probability.

In the case of the SIF neuron, we can show that the mean firing rate does
not depend on the synaptic time constants (τr and τs) and depends only
on the mean synaptic input. This result is given in appendix A. Here, we
calculate the p.d.f. without and with relaxation time of the synapses. Indeed,
we will see that to determine the dynamic properties of the neuron, we will
need to know the first-order correction in τs of the stationary p.d.f.

4.1 White Noise. In this section, we calculate the p.d.f. of the IF neuron
membrane potential without relaxation time of the synapses.

The stochastic equation, 3.3, is equivalent to the Fokker-Planck (FP) equa-
tion for the p.d.f. of the membrane potential, P0(V),

τm
∂P0

∂t
= σ 2

2
∂2P0

∂V2 − ∂

∂V
[(µ + f (V))P0], (4.1)

where f (V) = 0 for the SIF neuron and f (V) = −V for the LIF neuron.
The probability flux through V at time t is

JV = µ + f (V)

τm
P0 − σ 2

2τm

dP0

dV
.

Since a spike is emitted each time V reaches θ and the neuron is then im-
mediately reset to Vr, the boundary conditions for JV are

JV(θ) = ν0 (4.2)

JV(Vr+) − JV(Vr−) = ν0, (4.3)

where ν0 is the stationary instantaneous firing rate.
Equation 4.2, together with P(V > θ) = 0, imply

P0(θ) = 0 (4.4)

∂P0

∂V
(θ) = −2ν0τm

σ 2 (4.5)

P0(Vr+) − P0(Vr−) = 0 (4.6)

∂P0

∂V
(Vr+) − ∂P0

∂V
(Vr−) = −2ν0τm

σ 2 . (4.7)
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For the SIF neuron, the results are (see Abbott & van Vreeswijk, 1993, and
appendix A.2 for details)

P0(V) = ν0

µ̃
[1 − e

2µ̃(V−θ)

σ̃2 − �(Vr − V)(1 − e
2µ̃(V−Vr)

σ̃2 )], (4.8)

where � is the Heaviside function, �(x) = 1 for x > 0 and 0 otherwise, and

ν0 = µ̃

θ − Vr
. (4.9)

The firing rate of the SIF neuron is independent on the magnitude of the
noise σ̃ .

For the LIF neuron, we have (Brunel & Hakim, 1999)

P0(V) = 2ν0τm

σ
exp

(
− (V − µ)2

σ 2

)

×
{∫ (θ−µ)/σ

(Vr−µ)/σ
exp(s2) ds if V < Vr∫ (θ−µ)/σ

(V−µ)/σ
exp(s2) ds if V > Vr,

(4.10)

in which the stationary firing rate ν0 is obtained through the normalization
condition,

1
ν0

= τm
√

π

∫ θ−µ

σ

Vr−µ

σ

es2
(1 + erf(s)) ds (4.11)

where erf is the error function (Abramowitz & Stegun, 1970).

4.2 Synaptic Noise.

4.2.1 Fokker-Planck Equation and Boundary Conditions. We consider now
the system of equations 3.5 and 3.6. The Fokker-Planck equation becomes

∂P
∂t

= 1
τs

[
σ 2τm

2τs

∂2P
∂I2

s
+ ∂

∂Is
(Is − µ)P

]
− 1

τm

∂

∂V
[(Is + f (V))P]. (4.12)

The probability fluxes are

JV = Is + f (V)

τm
P (4.13)

JIs = −
(

Is − µ

τs

)
P + σ 2τm

2τ 2
s

∂P
∂Is

. (4.14)
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The boundary conditions are now

JV(θ, Is) = ν(Is) (4.15)

JV(Vr+, Is) − JV(Vr−, Is) = ν(Is), (4.16)

where ν(Is) is the instantaneous firing rate of the neuron at current Is. The
total firing rate of the neuron is

ν =
∫ +∞

−∞
ν(Is) dIs. (4.17)

Equation 4.13 and the fact that the probability flux must be nonnegative at
V = θ for every Is (no neuron comes back from above threshold) imply that
P(θ, Is) = 0 for any Is + f (θ) < 0, which in turn implies

ν(Is) = 0, for all Is + f (θ) < 0. (4.18)

On the other hand, P(θ, Is) must be positive for Is + f (θ) > 0 for firing to
occur. The boundary conditions on P can be written

(Is + f (θ))P(θ, Is) = ν(Is)τm (4.19)

(Is + f (θ))[P(Vr+, Is) − P(Vr−, Is)] = ν(Is)τm. (4.20)

We also need to specify boundary conditions on the Is variable. Since the
neuron can escape the phase plane only through V = θ , the flux through Is
is going to 0 for large |Is|. Thus, the boundary conditions on Is are

lim
Is→±∞

JIs(V, Is) = 0, (4.21)

which implies

lim
Is→±∞

∂P
∂Is

= 0 (4.22)

lim
Is→±∞

IsP = 0. (4.23)

4.2.2 The Small τs Limit: Strategy. The two-dimensional Fokker-Planck
equation, 4.12, can be solved using singular perturbation techniques in the
small τs limit (Hagan et al., 1989). In that limit, the variance of Is becomes

proportional to σ
√

τm
τs

. Thus, we define

k =
√

τs

τm
, (4.24)
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Figure 3: Sketch of the (V, z) plane with the boundary conditions and the areas
where different solutions are computed: the outer solution far from the bound-
aries and the boundary layer solutions in areas of width k around the boundaries
that satisfy the boundary conditions and match the outer solution outside the
gray areas.

which will be used as a small parameter in which we will expand the FP
equation, 4.12. We also define a new variable z:

Is = σz
k

− f (θ). (4.25)

The advantage of this new variable is that it keeps a finite variance in the
small τs limit.

The problem is complicated by the boundary conditions on the semi-
infinite lines (z < 0) at V = θ and V = Vr (see equation 4.18). The method
consists of two steps. First, we look for a solution of the equation far from
the boundaries: the outer solution. The outer solution is sufficiently far
from the boundaries not to be affected by them. Second, we concentrate
on narrow regions of width k around the boundaries (the boundary layers).
We determine boundary layer solutions that satisfy the boundary conditions
and reach exponentially the outer solution far from the boundaries. Figure 3
shows in the plane (V, z) the regions in which the different solutions will be
calculated.
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4.2.3 The p.d.f. of the SIF Neuron. The p.d.f. up to first order in k is (see
section A.3 for details)

P(V, z) =
(

Q0(V) +
√

τs

τe
Q1(V, z)

)
e−z2

√
π

, (4.26)

with

Q0(V) = ν0

µ̃
[1 − e

2µ̃(V−θ)

σ̃2 − �(Vr − V)(1 − e
2µ̃(V−Vr)

σ2 )], (4.27)

and

τe = σ̃ 2

µ̃2 (4.28)

represents the effective time constant of the SIF neuron.
Far from Vr and θ ,

Q1(V, z) = ν0

µ̃
[αe

2µ̃(V−θ)

σ̃2 + 2z − �(Vr − V)(αe
2µ̃(V−Vr)

σ̃2 + 2z)]. (4.29)

When the membrane potential is close to the reset, (V = Vr + O(k)), or to
threshold (V = θ + O(k)), we have, using the reduced variables,

v = (Vr − V)

σ̃
√

τs
, x = (θ − V)

σ̃
√

τs
,

QR−
1 (v, z) = ν0

µ̃
((e

2µ̃(Vr−θ)

σ̃2 − 1)(α + 2v) −
+∞∑
n=1

βnv+
n (

√
2z)e−√

2nv) (4.30)

QR+
1 (v, z) = ν0

µ̃
(e

2µ̃(Vr−θ)

σ̃2 (α + 2v) + 2z) (4.31)

QT
1 (x, z) = ν0

µ̃

(
α + 2x + 2z +

+∞∑
n=1

βnv+
n (

√
2z)e−√

2nx

)
, (4.32)

where QR−
1 (QR+

1 ) describes the p.d.f. in the boundary layer below (above)
reset, QT

1 (x, z) describes the p.d.f. in the boundary layer below threshold, α

and the βns are parameters given by equations A.45 and A.46, and the vns are
sets of functions given in terms of Hermite polynomials in equation A.47.

Note that there are two components in the boundary solutions: the terms
linear in v, x, and z match the outer solution close to reset (threshold), and the
sum of exponentially decaying terms in x or v is needed to satisfy the bound-
ary condition and vanish far from the boundaries. We show in Figure 4 an
example of such a p.d.f. Note that contrary to the white noise regime, the
probability density at threshold P(θ, z), integrated over z, is nonzero. This is
an important feature that will qualitatively change the dynamical properties
of this model, as we will see in section 5.
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Figure 4: Stationary p.d.f. of the SIF neuron integrated over z for τs/τe = 0.05,
µ̃ = 1.25 mV.ms−1, and σ̃ = 1.25 mV.ms− 1

2 . Solid line: numerical simulation.
Dashed line: outer solution, equations 4.26–4.29. Dotted line: p.d.f. for white
noise. Black circles: value of P just below threshold, computed from equation 4.32
at x = 0, and just below reset, computed from equation 4.30 at v = 0. Note
the good agreement between the analytical calculation (black dots) and the
numerical simulations at threshold and reset potential. For colored noise, there
is a finite fraction of neuron population near threshold.

4.2.4 The p.d.f. and Firing Rate of the LIF Neuron. The stationary firing
rate is, up to first order in k,

ν = ν0 −
√

τs

τm

α

τm2
√

π

�(
θ−µ

σ
) − �(

Vr−µ
σ

)(∫ θ−µ

σ
Vr−µ

σ

�(s) ds
)2 , (4.33)

where �(s) = es2
(1 + erf(s)).

Up to first order in k, the result for the firing rate is compatible with the
following simple expression:

1
ν

= τm
√

π

∫ θ−µ

σ
+ α

2

√
τs
τm

Vr−µ

σ
+ α

2

√
τs
τm

�(s) ds.
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Thus, the synaptic decay time effectively introduces an effective threshold

θ +σ α
2

√
τs
τm

and an effective reset potential Vr +σ α
2

√
τs
τm

. Note that in Brunel

and Sergi (1998), only the effective threshold appeared, due to the assump-
tion made there.

We can also express the outer reduced probability density of the mem-
brane potentials (the p.d.f. integrated over the synaptic current variable) by

P(V) = 2ντm

σ
exp

(
− (V − µ)2

σ 2

)

∫ θ−µ

σ
+ α

2

√
τs
τm

Vr−µ

σ
+ α

2

√
τs
τm

exp(s2) ds if V < Vr

∫ θ−µ

σ
+ α

2

√
τs

2τm
V−µ

σ

exp(s2) ds if V > Vr

.

The boundary layer p.d.f.s turn out to be quite similar to the ones of the SIF.
In particular, the threshold layer p.d.f. is, using the variable x = θ−V

σk , given
by the same expression as the SIF equation, 4.32.

Note that again, the main difference with the white noise case is that col-
ored noise introduces a finite probability density at firing threshold. This has
important consequences for the dynamics, as we will see in the following.

5 Dynamical Response

In this section, we consider an oscillatory input given by

Ie(t) = εµ cos(ωt). (5.1)

The firing rate of the neuron is now driven by the oscillatory input. In the
linear approximation, the firing rate is

ν(t) = ν[1 + εr(ω) cos(ωt + �(ω)], (5.2)

where r(ω) is the relative amplitude of the firing-rate modulation and �(ω)

is the phase lag.
Our technique to solve this problem is again to solve the Fokker-Planck

equation associated with the system of stochastic equations, using an ex-
pansion of the p.d.f. and the instantaneous firing rate at the first order in ε.

The dynamics of the leaky IF neuron in the presence of white noise
has already been discussed by Brunel and Hakim (1999) and Lindner and
Schimansky-Geier (2001) (see also Melnikov 1993 for the dynamics of a re-
lated system). We include here the results for completeness. Some of the
results for synaptic colored noise appear in Brunel et al. (2001).

5.1 White Noise. The problem can be solved exactly when τs = 0. The
stochastic equation, 3.3, is equivalent to the Fokker-Planck equation for the
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probability density P(V, t) (using complex input to simplify the calcula-
tions)

τm
∂P0

∂t
= σ 2

2
∂2P0

∂V2 − ∂

∂V
[ f (V) + µ(1 + εeiωt)]P0, (5.3)

and the boundary conditions are now

P0(θ, t) = 0 (5.4)
∂P0

∂V
(θ, t) = −2ν(t)τm

σ 2 (5.5)

P0(Vr+, t) − P0(Vr−, t) = 0 (5.6)
∂P0

∂V
(Vr+, t)) − ∂P0

∂V
(Vr−, t) = −2ν(t)τm

σ 2 . (5.7)

Our strategy is to solve equation 5.3 with its associated boundary conditions
using an expansion in the small parameter ε. Thus, we write

ν(t) = ν0[1 + εn̂0(ω)eiωt + O(ε2)] (5.8)

P0(V, t) = P0(V) + εeiωtP̂0(V, ω) + O(ε2), (5.9)

where n̂0(ω) = r0(ω) exp(i�(ω)) and P̂0(V, ω) are complex quantities de-
scribing the oscillatory component at the frequency input ω of the instanta-
neous firing rate and the voltage probability density.

The zeroth order in ε gives the stationary response obtained in section 4.
At the first order, we have

iωτmP̂0 = σ 2

2
∂2P̂0

∂V2 − ∂

∂V
[ f (V) + µ]P̂0 − µ

dP0

dV
, (5.10)

with the boundary conditions

P̂0(θ, ω) = 0

∂P̂0

dV
(θ, ω) = −2n̂0(ω)ν0τm

σ 2

P̂0(Vr+, ω) − P̂0(Vr−, ω) = 0

∂P̂0

dV
(Vr+, ω)) − ∂P̂0

dV
(Vr−, ω) = −2n̂0(ω)ν0τm

σ 2 . (5.11)

The response of the SIF neuron is given by (see details in Abbott & van
Vreeswijk, 1993, and section B.1)

P̂0(V, ω) = ν0

iω

[
e

2µ̃(V−Vθ )

σ̃2 − er+(ω)
2µ̃(V−Vθ )

σ̃2 − �(Vr − V)

×
(

e
2µ̃(V−Vr)

σ̃2 − er+(ω)
2µ̃(V−Vr)

σ̃2

)]
, (5.12)
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with

r+(ω) = 1 + √
1 + 2iτeω

2
, (5.13)

where τe is given by equation 4.28, and

n̂0(ω) =
√

1 + 2iτeω − 1
iτeω

. (5.14)

The neuron reproduces inputs at frequencies lower than 1
τe

with little atten-
uation and a small phase lag. Inputs at high frequencies are attenuated by

a factor
√

2
τeω

, with a phase lag that tends to −π
4 . The amplitude and phase

of n̂0(ω) are shown in figure 6A.
The response of the LIF neuron is (Brunel & Hakim, 1999; Brunel et al.,

2001)

n̂0(ω) = µ

σ(1 + iωτm)

∂U
∂y (yθ , ω) − ∂U

∂y (yr, ω)

U(yθ , ω) − U(yr, ω)
, (5.15)

where yθ = θ−µ
σ

, yr = Vr−µ
σ

, and U is given in terms of combinations of
hypergeometric functions (Abramowitz & Stegun, 1970):

U(y, ω) = ey2

�
(

1+iωτm
2

)M
(

1 − iωτm

2
,

1
2
, −y2

)

+ 2yey2

�
( iωτm

2

)M
(

1 − iωτm

2
,

3
2
, −y2

)
. (5.16)

In the high-frequency limit,

n̂0(ω) ∼
√

2
iωτe

. (5.17)

This is the same asymptotic behavior as observed for the SIF neuron.

5.2 Synaptic Noise: Analytical Calculations. We now introduce the re-
laxation time τs of the synaptic current. We proceed along the lines of sec-
tion 4.2.2. P(V, Is, t), the probability density of finding the neuron at poten-
tial V and synaptic current Is at time t, and ν(t), the instantaneous firing rate,
are expanded in k (see equation 4.24). There are now two small parameters,
k and ε. The goal of this section is to obtain the first order in both parameters,
that is, in kε.
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The stochastic system we have to solve is given by equations 3.5 and 3.6.
As in the computation of the stationary p.d.f., we prefer to use a synaptic
variable that keeps a finite variance in the small synaptic time limit. Thus,
we use here

z = k
σ

(Is(t) + f (θ) + εµeiωt), (5.18)

which describes the input of the neuron (synaptic and external). Moreover,
since z represents the complete input of the neuron, it simplifies the descrip-
tion of the boundary conditions.

The FP equation associated with equations 3.5 and 3.6 is

∂P
∂t

= −∂ JV

∂V
− ∂ Jz

∂z
(5.19)

JV = 1
τm

(
f (V) − f (θ) + σz

k

)
P (5.20)

Jz = − 1
k2τm

[
1
2

∂P
∂z

+ zP
]

+ 1
kτm

(
f (θ) + µ

σ
+ ε

µ

σ
(1 + k2iωτm)eiωt

)
P . (5.21)

As in equation 4.17, the instantaneous firing rate is given by the proba-
bility flux in the z direction through θ integrated over z,

ν(t) =
∫ +∞

−∞
JV(θ, z, t) dz, (5.22)

where JV(θ, z, t) is given by

JV(θ, z, t) = σz
kτm

P(θ, z, t). (5.23)

Note that due to the factor 1
k in the expression of JV(θ, z, t), we have to

expand P to the second order in k to obtain the first-order correction to the
instantaneous firing rate.

The boundary conditions at firing threshold and reset are again (compare
with equation 4.18),

JV(θ, z, t) = 0, for z < 0 (5.24)

JV(V+
r , z, t) = JV(V−

r , z, t), for z < 0. (5.25)

The other boundary conditions at z = ±∞ or V = −∞ are the same as in
the case without synaptic relaxation and hold for both P and P̂.
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At first order in ε, equation 5.19 gives

k2iωτmP̂ = 1
2

∂2P̂
∂z2 + ∂(zP̂)

∂z
− k

∂

∂z

[(
f (θ) + µ

σ

)
P̂
]

− k2 ∂

∂V

[(
f (V) − f (θ) + σz

k

)
P̂
]

− k
µ

σ
(1 + k2iωτm)

dP
dz

. (5.26)

We again solve the equation by expanding the density probability in k. We
note

P = P0 + kP1 + k2P2 + · · · (5.27)

P̂ = P̂0 + kP̂1 + k2P̂2 + · · · (5.28)

ν = ν0 + kν1 + · · · (5.29)

n̂ = n̂0 + kn̂1 + k2n̂2 + · · · (5.30)

Analytical solutions can be found in two opposite limits: at low frequencies
ω ∼ 1

τe
and at high frequencies ω � 1

τs
. To connect these two limits, we

resort to numerical solutions:

Low-frequency regime. The solution of the problem is very similar to
the stationary case (see section 4.2.2). The details of the computation
can be found in section B.1. We find that in this regime, the correction
at the first order in k of the firing-rate oscillation amplitude vanishes
for both models of neurons. Thus, the synaptic decay time has little
effect on the dynamics of the firing probability at low frequencies.

High-frequency regime. When ω � 1
τs

, equation 5.26 simplifies to

P̂ = −k
µ

σ

dP
dz

+ o
(

1√
ωτs

)
. (5.31)

Thus, the high-frequency modulation of the probability density is re-
lated in a simple way to the derivative with respect to the current
variable of the stationary probability density.

The firing probability is

ν(t)=
∫ +∞

−∞
JV(θ, z, t) dz= σ

kτm

∫ +∞

−∞
z(P(θ, z)+εP̂(θ, z)eiωt) dz. (5.32)

We already know the contribution of the term at the order zero in ε (see
section 4.2). According to equation 5.31, to obtain the limit at large ω for the
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first order in k of n̂, we need to compute

−
∫ +∞

−∞
z

dP1

dz
(θ, z) dz =

∫ +∞

−∞
P1(θ, z) dz. (5.33)

Using equations 5.32 and 4.32, we obtain for high-input frequency modu-
lation

n̂ = k
µ

σ
A + O(k2) = Ak′ + O(k2), (5.34)

where we have defined

k′ = k
µ

σ
=
√

τsµ̃2

σ̃ 2 =
√

τs

τe
,

where τe is given in equation 4.28, and

A =
√

2
∣∣∣∣ζ
(

1
2

)∣∣∣∣− 1√
2

∑
n

N(
√

n)n
n−1

2 e− n
2

n!
� 1.3238. (5.35)

ζ is Riemann’s zeta function, and N(
√

n) is given by equation A.48.
We see that introducing the synaptic relaxation time τs drastically changes

the behavior of the neuron with respect to high-frequency components in
the inputs (larger than 1/τs). In this regime, the amplitude of the modulation
of the output firing rate is proportional to

√
τs/τe, and there is no phase shift.

Qualitatively, this behavior can be understood from equation 5.33. It
shows that the firing-rate modulation in this regime is proportional to the
cumulative probability density at the threshold. We have seen in section 4.2.3
that there is a finite fraction of the neuron population close to the threshold
as soon as the synaptic decay time is finite. This finite fraction is responsible
for the instantaneous response to fast changes in the inputs.

5.2.1 The Large Synaptic Time, High-Frequency Limit. The large synaptic
time limit corresponds to the limit in which noise vanishes. The noiseless
dynamical response was computed by Knight (1972).

SIF neuron. In the absence of noise, the SIF neuron reproduces exactly
the synatic input:

lim
ω→+∞,k→+∞

n̂(ω) = 1. (5.36)

LIF neuron. Taking the high-frequency limit, we find after some algebra
a simple expression for the high-frequency limit of the response:

lim
ω→+∞,k→+∞

n̂(ω) = µ

µ − θ
. (5.37)

Note that the noiseless high-frequency response is now in general different
from the low-frequency one, contrary to the SIF neuron.
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5.3 Synaptic Noise: Numerical Simulations. We performed numerical
simulations to obtain the neuronal response function in the whole input fre-
quency range. The stochastic equations were simulated with a Euler method
for different values of the parameters. We used a neuron with a reset poten-
tial Vr = −56 mV and a firing threshold θ = −50 mV. The integration time
step was chosen to be small compared to the time constants of the problem
(τs, 1/ν0 and 1/ω).

5.3.1 SIF Neuron. The parameters characterizing the input, σ̃ and µ̃,
were held constant, respectively equal to σ̃ = 1.25 mV.ms− 1

2 and µ̃ =
0.28 mV.ms−1, which gives τe = 20 ms and ν0 = 46.6 Hz. In this case,
we found that the dependence of the gain function of the neuron on ε is
linear even for large-input oscillation amplitudes. Thus, we usually choose
ε = 0.5 in the simulations.

5.3.2 LIF Neuron. Since the stationary firing rate of the LIF neuron de-
pends on τs, all curves were plotted keeping the mean firing rate constant.
To keep the firing rate constant, the mean input µ was varied.

5.3.3 High-Frequency limit versus k. The high-frequency limit of the mod-
ulation amplitude was determined by choosing ω = 105 Hz. This value was
chosen because it is much larger than the inverse of the synaptic decay times
for any τs for which simulations were made. The neuronal response func-
tion is shown in Figure 5. The graphics show a linear dependence for small
values of k.

For the SIF neuron (see Figure 5A), a fit of the curve (computed at ω = 105

Hz here) in the small k′ region (from k′ = 0.1 to k′ = 1) by a quadratic function
gives

r(ω = 105 Hz, k) � 1.32 ± 0.02k′ − 0.46 ± 0.05k′2, (5.38)

which is in good agreement with the analytical result, equation 5.35. More-
over, we find that the full curve (from k′ = 0 to k′ = 7) is well described by
the following function,

rHF(τs) = lim
ω→∞ r(ω, τs) � 1 − e−2Ak′

1 + e−ak′ , (5.39)

where A � 1.32 is given by equation 5.35 and a one-parameter fit gives
a = 2.2 ± 0.1. The function on the right-hand side of equation 5.39 is the
simplest function we could find that has the behavior predicted by theory
for small k (i.e., ∼ Ak), has the correct behavior at large k (see equation 5.36),
and provides a good fit of all the simulation data.

For the LIF neuron (see Figure 5B), we find that the behavior of the high-
frequency-modulation amplitude versus k is again well described by the
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Figure 5: High-frequency limit of the gain (estimated at ω = 105 Hz) versus
k′. (A) SIF neuron with τe = 20 ms. Note the linear relation for small values of
k′. Solid line: fit given by equation 5.39, dashed line: fit for small k′ given by
equation 5.38. (B) LIF neuron with ν = 50 Hz, τm = 20 ms, εµ = 2 mV kept
constant, and two values of σ : σ = 1 mV (◦), 5 mV (✷). The solid line is the
prediction of the theory, equation 5.35, with a slope equal to 1.3238. We also
show the fits given by equation 5.40 (dashed lines) and the asymptotic limit at
low noise and high frequencies given by equation 5.37 (dotted-dashed line).
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Table 1: Values Obtained by Fitting the Response Module with Equation 5.41.

τs(ms) l(τs) b c p

1.8 0.349 ± 2 0.10 ± 1 0.14 ± 15 3.6 ± 10
3.2 0.459 ± 1 0.099 ± 2 0.004 ± 4 5.9 ± 9
7.2 0.624 ± 2 0.111 ± 9 0.019 ± 31 5.5 ± 16

12.8 0.747 ± 1 0.110 ± 5 0.07 ± 3 5.2 ± 6
16.2 0.793 ± 2 0.102 ± 8 0.06 ± 6 5.2 ± 14

Note: The error bars are on the last digits.

following function,

rHF(τs) = B
1 − e− 2A

B k′

1 + e−c(ν,σ )k′ , (5.40)

with A given by equation 5.35, B by equation 5.37, and c determined by
a one-parameter fit. Contrary to the SIF, this parameter depends on ν and
σ . For example, c(ν = 50 Hz, σ = 1 mV) = 0.34 ± 0.01 and c(ν = 50 Hz,
σ = 5 mV) = 0.47 ± 0.01. These fits are sketched in Figure 5B.

5.3.4 Response vs. Frequency. In Figure 6, we show the amplitude and
phase of the firing-rate modulation as a function of the frequency of the
modulation in the input for different values of τs. Simulations confirm the
high-frequency behavior obtained in the analysis, as we showed in Figure 5.
The high-frequency limit of the response is finite, and the phase tends to
0 for any nonzero τs. Simulations also confirm that the behavior at low
frequencies is affected very little by the synaptic filtering.

In the SIF neuron case in the high-frequency regime, simulation results
indicate that the modulation amplitude is well described by a function of
the form rHF(τs) + b

ωτs
, where rHF is the high-frequency limit of the response.

The low-frequency regime is given by the white noise gain function n̂(ω, 0).
Then it is natural to interpolate between these two regimes by a sigmoid
function. We find that the complete amplitude response function can be well
described by

r(ω, τs) = r(ω, 0) + (ωτs)
p

c + (ωτs)
p

(
rHF(τs) + b

ωτs
− r(ω, 0)

)
. (5.41)

The values of rHF(τs) obtained by fitting the curves over the whole range of
frequency are the same as the values obtained with a fit only in the high-
frequency range. We give the results of fits over the whole parameters for
different values of τs (note the error bars are on the last digits) in Table 1.
b, c, and p are essentially independent of τs, and we show two examples of
these fits in the left panel of Figure 7 with b = 0.1, c = 0.06, and p = 5.
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Figure 6: Numerical simulations of the amplitude and phase of the response
function for different values of τs. (A) SIF neuron: τs = 0 ms (solid line—
amplitude of equation 5.14), 1.8 ms (✷), 7.2 ms (✸), 12.8 ms (�), 16.2 ms (< ). (B)
Low noise. (C) High noise. LIF neuron, response normalized to 1 at ω = 0.1 Hz
with ν0 = 50 Hz and τm = 20 ms. τs = 0 ms—white noise (solid line), τs = 2 ms
(dashed line), 5 ms (dotted line), 10 ms (dot-dashed line). In all cases we have
ν0 = 50 Hz and τm = 20 ms. The size of the error bars is of the order of the size
of the symbols.

Similarly, the phase lag � can be well described by

�(ω, τs) = �(ω, 0)

(
1 − (ωτs)

q

a + (ωτs)
q

)
. (5.42)

We give the results of fits over the whole parameters for different values of
τs in Table 2.
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Figure 7: Fits of the gain function of the SIF neuron for different values of τs:
τs = 1.8 ms (✷), τs = 16.2 ms (✸). (A) Amplitude. (B) Phase. The solid lines are
equation 5.41 with b = 0.1, c = 0.06, and p = 5 (amplitude), and equation 5.42,
with p = 0.8 and the value of a obtained by the fit given in Table 2 (phase). The
dashed line is the white noise neuronal response.

Table 2: Values Obtained by Fitting the Response Phase Lag with Equation 5.43.

τs(ms) a q

1.8 0.82 ± 2 0.87 ± 3
3.2 0.698 ± 8 0.87 ± 1
7.2 0.56 ± 2 0.81 ± 2

12.8 0.408 ± 8 0.70 ± 1
16.2 0.34 ± 1 0.59 ± 2

Note: The error bars are on the last
digits.

The parameter q is also essentially independent of τs over a large interval.
For τs of order τe or larger, the phase becomes close to 0 for all input fre-
quencies. Examples are shown in the right panel of Figure 7. When τs = 16
ms, the phase lag is less than π/30 for any input frequency.

Simulations of the LIF response are plotted in Figure 6 as a function of fre-
quency. In a small noise case (σ = 1 mV, in Figure 6B), there are pronounced
resonant peaks at frequencies equal to or multiples of the background fir-
ing rate. In a large noise case (σ = 5mV in Figure 6C), the resonances have
almost disappeared. It shows that as it has been found in the analytical cal-
culation, the low-frequency regime is not affected by the synaptic filtering.
In particular, the resonant peaks in the small noise regime are still present.
Moreover, we can note that in the small noise case, the high-frequency re-
sponse of the neuron is greater than its low-frequency response with realistic
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synaptic time constants. The response in the large noise case is very similar
to the curve response of the SIF neuron. An important difference is that the
resonant peaks appear again when τs increases. This is to be expected in the
light of the results of Knight (1972), who showed that without noise (infinite
τs limit), the LIF neuron response has infinite resonant peaks.

5.4 Synaptic Currents with Rise Time. When a rise time is introduced,
the FP equation becomes three-dimensional. Tackling such a problem ana-
lytically is beyond the scope of this article; thus, we resorted to numerical
simulations. We simulated equations 2.1, 2.8, and 2.9 using the diffusion
approximation, 3.1. We used the same method as described in section 5.3
and kept the same value of µ and σ to compare with the case without rise
time, τr = 0.

The simulations show that the important parameter controlling the re-
sponse is the sum of rise and decay times, τr + τs. It shows that the system
behaves essentially like a neuron with instantaneous rise and a decay time
constant τ ′

s = τr + τs. Figure 8 shows results of simulations with different
values of τr and τs keeping their sum τ ′

s fixed.
This result can be understood by the following simple argument. One of

the factors controlling the effects of noise on neuronal dynamics is the stan-
dard deviation of the synaptic inputs Is. When the neuron has no rise time,
this standard deviation is proportional to

√
τm/τs = 1/k (see equation 4.25).

If we take into account the rise time, we find

√
�Is

2 ∼
√

τm

τr + τs
. (5.43)

Thus, it is natural to define an effective relaxation time τ ′
s = τr+τs. As shown

in Figure 8, this relationship describes particularly well the numerical results
for all input frequencies.

5.5 Two or More Distinct Synaptic Currents. Synaptic currents in the
nervous system have different temporal dynamics due to the variety of the
receptors giving rise to such currents. We consider here the case of two
types of synaptic currents with decay times τs1 and τs2 . The variance of the
input noise due to these synaptic currents is noted σ1 and σ2. The neuron is
described by the system of equations,

τm
dV
dt

= f (V) + Is1(t) + Is2(t) + εµeiωt (5.44)

τs1

dIs1

dt
= −Is1(t) + µ1 + σ1

√
τmη1(t) (5.45)

τs2

dIs2

dt
= −Is2(t) + µ2 + σ2

√
τmη2(t), (5.46)
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Figure 8: Amplitude and phase of the gain function of the neuron with different
values of τr and τs. Here, we keep τr + τs constant; the curves are almost super-
imposed. (A) SIF neuron: ◦: τs = 1.8 ms, τr = 0 ms. ✷: τs = 1.6 ms, τr = 0.2 ms.
✸: τs = τr = 0.9 ms. The solid line corresponds to the white noise regime. (B)
LIF neuron, with ν0 = 50 Hz and σ = 5 mV, response normalized to 1 at ω = 0.1
Hz: τs = 2 ms and τr = 0 ms (◦), τs = 1.8 ms and τr = 0.2 ms (✸), τs = τr = 1 ms
(✷). Note that the size of the error bars is of the order of the size of the symbols.

where 〈ηi(t)〉 = 0 and 〈ηi(t)ηi(t′)〉 = δ(t − t′). We also note σ̃i
√

τm = σi,
µ̃iτm = µi.

Numerical simulations were performed as in section 5.3. We used µ1 +
µ2 = µ and σ 2

1 + σ 2
2 = σ 2 with µ and σ as in the previous simulations in

order to compare the results in the small τs1 and/or τs2 limits. We also chose
τs1 > τs2 . Results are shown in Figure 9. In most cases, we can completely
describe the response with an effective relaxation time given by

τ ′
s = σ 2

1 + σ 2
2

σ 2
1

τs1
+ σ 2

2
τs2

or
σ 2

1 + σ 2
2

τ ′
s

= σ 2
1

τs1

+ σ 2
2

τs2

. (5.47)

An intuitive understanding of this result can again be obtained with the
same argument as in section 5.4. The standard deviation of Is is indeed
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Figure 9: Amplitude and phase of the gain function of the neuron for different
values of τs1 , τs2 , σ1, and σ2. We keep constant the effective relaxation time τ ′

s
given by equation 5.47. (A) SIF neuron: ◦: single synaptic current, τs = 1.8 ms.
✷: τs1 = 20 ms, τs2 = 0.39 ms, σ̃1 = 1.12 mV.ms− 1

2 , and σ̃2 = 0.56 mV.ms− 1
2 .

✸: τs1 = 20 ms, τs2 = 1.72 ms, σ̃1 = 0.28 mV.ms− 1
2 , and σ̃2 = 1.22 mV.ms− 1

2 . (B)
SIF neuron, crossover with τs1 � τs2 and a very unbalanced noise case. Square:
τs1 = 16.2 ms, τs2 = 0.041 ms, σ̃1 = 1.248 mV.ms− 1

2 , and σ̃2 = 0.07 mV.ms− 1
2 .

We show here the curves with only one synaptic current with τs = 16.2 ms (�)
and τs = 7.2 ms (✸), to highlight the crossover around ω ∼ 1

τs2
. (C) LIF neuron

with ν0 = 50 Hz and τ ′
s = 2 ms, response normalized to 1 at ω = 0.1 Hz: normal

case: τs1 = 5 ms, σ1 = 3.5 mV and τs2 = 1.25 ms, σ2 = 3.5 mV (�); extreme case:
τs1 = 5 ms, σ1 = 4.9 mV and τs2 = 0.13 ms, σ2 = 1 mV (✸). We also show the
curves with a single synaptic current σ = 5 mV and τs = 5 ms (◦) and τs = 2 ms
(✷). Error bars when not visible are of the order of the size of the symbols.
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proportional to

√
�2Is ∼

√
τm

τ ′
s
, (5.48)

with τ ′
s given by equation 5.47. Numerical simulations indicate that this

value of τ ′
s gives a very good estimate of the high-frequency limit.

If relaxation times are different by at least one order of magnitude and
the variance of the noise is mostly concentrated on the slower synapses,
we start to see differences from the simple picture governed by the single
effective time. For input frequencies around 1

τs1
, the neuron feels as if all the

noise was filtered with the slower relaxation time τs1 . Thus, the response
is as if only this current was present. Then, for input frequencies around

1
τs2

, the neuron starts to feel the faster noise due to synaptic filtering with
time constant τs2 . There is a crossover of the response function to a response
governed by the effective synaptic decay time τ ′

s . Thus, at high frequencies,
we recover the response of a neuron with only one type of synaptic input
and τs = τ ′

s . Examples of this extreme case are shown in Figures 9B and 9C.
These arguments can be generalized to an arbitrary number of synaptic

currents. In general, the response will be simply described by an effective
decay time equal to

τ ′
s =

(∑
i

σ 2
i

)(∑
i

σ 2
i

τi

)−1

. (5.49)

When there is a large gap between two sets of time constants, the response
function of the neuron will experience a crossover at frequencies of the
order of this gap. For frequencies lower than the crossover frequencies, the
response of the neuron will be governed by an effective decay time given by
equation 5.49, where the sums take into account only the slowest currents.
For higher frequencies, the response of the neuron will be governed by the
effective time constant taking into account all the currents. This scenario can
be easily generalized to several large gaps between sets of time constants,
where several crossovers show up.

6 Discussion

We have studied the influence of the filtering of noise by realistic synaptic
dynamics on the dynamics of the instantaneous firing rate of IF neurons.
Brunel et al. (2001) showed that filtering of noise with a finite synaptic time
constant leads to a finite high-frequency limit of the response, and hence
to an instantaneous component of the response of the instantaneous firing
rate to any input. In this article, we first presented a detailed description of
analytical methods that lead to results given in Brunel et al. (2001) on the
high limit frequency of the neuronal response.



2088 Nicolas Fourcaud and Nicolas Brunel

In particular, we presented the joint p.d.f. of voltage and synaptic cur-
rent up to first order in k for both neuronal models and the link between
the properties of the p.d.f. at threshold and the high-frequency response.
Then we proceeded to investigate extensions of this result, mostly through
numerical simulations:

• Characterization of low- and intermediate-input frequency regimes

• Characterization of the high-frequency response at all synaptic times
τs

• Extension of these results to more realistic biological conditions, in-
cluding either a rise time of postsynaptic currents or the presence of
different types of synaptic receptors

Our calculations show that the probability density of the membrane poten-
tial is finite and of order

√
τs/τe at the firing threshold, for both types of

IF neuron models. When τs > 0, the linear dynamical response of the IF
neuron remains finite in the high-frequency limit, with no phase lag. This
high-frequency behavior is intimately related to the finite probability den-
sity at firing threshold. An intuitive interpretation of this result is that when
the probability to be at threshold is finite, there is an instantaneous compo-
nent to the response of the firing probability to arbitrarily fast variations in
input currents. In turn, the fact that the probability at threshold is finite is
related to the fact that with a finite synaptic time constant, there is no dif-
fusive term in the probability current going through threshold, contrarily
to the white noise case, for which we get a 1/

√
iωτe attenuation at high fre-

quencies (Brunel & Hakim, 1999; Brunel et al., 2001). Numerical simulations
allowed us to characterize the response function of the neuron at intermedi-
ate frequencies. For the simplest IF neuron, we found empirically compact
descriptions of the response (for both amplitude and phase), which show
that the crossover between the low- and high-frequency regime occurs at
input frequencies of the order of 1/τs. More realistic synaptic current dy-
namics have been investigated. The introduction of a rise time τr does not
change qualitatively the neuronal response. We showed how an effective
relaxation time τ ′

s = τs + τr can describe well the neuron response at all
frequencies for both the simplest and leaky IF neuron models. In the case of
several synaptic currents with different relaxation times, we defined again
an effective relaxation time that describes well the high-input frequency
regime. Overall, we obtained a fairly complete picture of how the dynami-
cal response of IF neurons depends on synaptic timescales, including fairly
realistic descriptions used in detailed biophysical models.

These results were obtained under certain conditions. First, we assumed
no correlation between synaptic inputs. Correlations in the inputs to an IF
neuron affect the firing rate (Salinas & Sejnowski, 2000) since they lead to
an effective increase or decrease of the variance of the noise, depending on
the type of correlation. However, we do not expect qualitative changes in
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the neuron dynamical response. Second, we considered synaptic current
rather than conductance changes. Qualitative differences between current
and conductance inputs were recently pointed out by Tiesinga, Jose, and
Sejnowski (2000). As far as the dynamical response is concerned, we do not
expect any qualitative difference if conductance-based inputs are consid-
ered. Quantitatively, the effective membrane time constant will be reduced
by conductance inputs, leading to an increase of the magnitude of the in-
stantaneous component in the response. The two IF neuronal models we
investigated show similar qualitative behaviors at high frequencies. The
main difference between both models is the presence in the LIF neuron
dynamical response, n̂(ω) of resonant peaks at input frequencies that are
multiples of its stationary firing rate. These resonant peaks occur when the
background firing rate is high and for low noise, when firing is close to
being periodic. They tend to disappear as noise increases. Within the range
of firing rate we considered in our simulations (10–50 Hz), the resonant
peaks disappear completely at a noise strength σ of order 2 to 5 mV. This
corresponds roughly to the orders of magnitude of the noise variance found
in measurements in vivo (Destexhe & Paré, 1999). Therefore, the simplest
IF neuron could give a good approximation to the dynamics of the leaky IF
neuron in conditions similar to in vivo conditions. In the low-noise regime,
these resonant peaks give rise to an oscillatory behavior of the instantaneous
firing rate in response to step current increase (Marsalek, Koch, & Maunsell,
1997; Burkitt & Clark, 1999; van Rossum, 2001).

Another attempt to include synaptic dynamics into a population density
approach has recently been done by Haskell et al. (2001). To get a compu-
tationnally efficient description, they reduced the multidimensional partial
differential equation describing the dynamics of the population to a one-
dimensional one. However, their resulting reduced dynamical equation for
the population density does not capture the high-frequency response of the
neuron. Indeed, in their model, the mean and the variance of the input are fil-
tered by the synaptic dynamics, but the input variance is still associated with
white noise. Consequently, they find that the probability density near thresh-
old is zero for any τs. Thus, their approximation can capture the dynamics
in response to slowly varying inputs but not the high-fequency behavior.

Our work adds elements to the old debate concerning the dichotomy
between spiking and firing-rate neuron models. An important question is
whether spiking neuronal models can be reduced to descriptions in terms of
firing rates and in which conditions this reduction is possible. In firing-rate
neuronal models, the input Iin(t) of the neuron usually acts on the firing rate
of the neuron ν(t) through a low-pass filter,

τ
dν

dt
= −ν(t) + φ[Iin(t)],

where φ is the neuronal transfer function, but the value of the time constant τ

to be used in such a description has been the subject of debate (Treves, 1993;
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Abbott & van Vreeswijk, 1993; Gerstner, 1995; Pinto, Brumberg, Simons, &
Ermentrout, 1996; Ermentrout, 1998). We showed that in presence of realistic
noise, when the synaptic timescale is of the same order as the membrane
time constant, the firing rate is able to follow instantaneously current inputs
directly injected into the soma. In these conditions, we would essentially
have

ν(t) = φ[Iin(t)]. (6.1)

In real neurons, inputs come through synapses, and therefore the response to
oscillatory inputs is low pass filtered, with an additional factor of 1/(1+iωτs)

in the response in the simplest case of a single synaptic decay time. Thus,
instead of the instantaneous response given by equation 6.1, the dynamics
will be purely governed by the synaptic decay time,

τs
dIs

dt
= −Is(t) + Iin(t)

ν(t) = φ[Is(t)].

Such a relationship is valid for small modulations around a finite back-
ground firing rate. When the current is such that the firing rate becomes
essentially zero, deviations to this behavior are expected (Chance, 2000).
We emphasize that the other conditions for which we expect such a reduc-
tion to be valid (presence of a finite background firing rate and synaptic
time constants of the same order as the membrane time constant) seem
to be the typical conditions of a cortical neuron in vivo. For conductance-
based synaptic inputs, the bombardment due to spontaneous activity acts
to reduce the membrane time constant. This will also contribute to a faster
response to external input. Furthermore, when the synaptic timescales are
shorter than the membrane timescale, the dynamics of the firing probability
can still be reasonably approximated by

ν(t) ∼ rHFIin(t) + (1 − rHF) exp(−t/τ)

∫ τ

−∞
exp(u/τ)Iin(u)

du
τ

, (6.2)

where rHF is the high-frequency limit of the dynamical response (see equa-
tion 5.39) and τ is a time constant typically between τs and τe for small τs.
We show examples of this kind of approximation in Figure 10 for the SIF
neuron.

The noise model we have studied provides an interpolation between two
previously studied noise models: at large τs, the rapid changes in response
to sharp input transient are similar to what was found in slow noise models
(Knight, 1972; Gerstner, 2000), and, at small τs, the response is fast only at
low noise strengths, as in the fast noise, escape noise model (Gerstner, 2000).

Finally, the methods presented in this article are a prerequisite for an
analysis of the dynamics of recurrent neuronal networks in the presence of
realistic noise.
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Figure 10: Instantaneous firing rate of the SIF neuron in response to a periodic
step input. We show the simulation results for three synaptic times: τs = 0 ms
(white noise) (◦), τs = 5 ms (✷), and τs = 20 ms (✸). In all cases τe = 20 ms. Bin
size: 1 ms. Note that for finite τs, there is an instantaneous jump of the firing rate
in response to a discontinuity in the input current. We also plot (dashed lines)
an approximation of the response given by equation 6.2 with T = 14.9 ms for
τs = 5 ms and T = 16.4 ms for τs = 20 ms.

Appendix A: SIF Neuron: Stationary Input

A.1 Firing Probability. The membrane potential obeys

dV
dt

= Is(t). (A.1)

Each time V reaches the threshold θ , it is immediately reset to Vr. Below the
threshold, the membrane potential of the neuron is

V(t) = V(0) +
∫ t

0
Is(u) du.

From this equation, it is straightforward to determine the time at which the
nth spike is fired. It occurs at the first time t that satisfies

∫ t

0
Is(u) du = n(θ − Vr) + Vr − V(0).
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Thus, the number of spikes the neuron has emitted at time t is given by

n(t) = E

(
sup
u≤t

(
V(0) − Vr + ∫ u

0 Is(v) dv
θ − Vr

))
, (A.2)

where E(x) is the integer part of x. Writing Is as the sum of its mean µ and
of its fluctuations �Is ≡ Is − µ, we obtain

n(t) = E

(
V(0) − Vr

θ − Vr
+ sup

u≤t

µu + ∫ u
0 �Is(v) dv

θ − Vr

)
. (A.3)

The firing probability is computed as

lim
t→∞

n(t)
t

= lim
t→∞

1
t

E

(
sup
u≤t

µu + ∫ u
0 �Is(v) dv

θ − Vr

)
. (A.4)

We show in the next paragraph that the mean of the random variable

X = lim
t→∞

1
t

E

(
sup
u≤t

µu +
∫ u

0
�Is(v) dv

)
(A.5)

is µ. Thus, the mean firing rate is

ν = lim
t→∞

n(t)
t

= µ

θ − Vr
. (A.6)

The firing rate of the SIF neuron is independent of the synaptic time τs and
the magnitude of the noise σ .

We now compute the mean of the random variable (see equation A.5):

X = lim
t→∞

1
t

E

(
sup
u≤t

(
µu +

∫ u

0
�Is(v) dv

))
.

The quantity inside the parentheses can be bounded above by

sup
u≤t

(
µu +

∫ u

0
�Is(v) dv

)
≤ sup

u≤t
(µu) + sup

u≤t

(∫ u

0
�Is(v) dv

)
(A.7)

and below by

sup
u≤t

(
µu +

∫ u

0
�Is(v) dv

)
≥ sup

u≤t
(µu) + inf

u≤t

(∫ u

0
�Is(v) dv

)
, (A.8)
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with supu≤t(µu) = µt. Since �Is(v) is a random process symmetric around
0, we need to look only at the upper bound.

First, consider the case where �Is(v) is a gaussian white noise (instanta-
neous synaptic current). We can define

Wt =
∫ t

0
�Is(v)dv =

∫ t

0
η(v) dv,

which is a Brownian motion with the well-known probability density

p(Wt = x, t) = 1√
2πσ 2t

e− x2

2σ2 t .

The running maximum of Wt,

St = sup
u≤t

Wu,

obeys (Karatzas & Shreve, 1988)

P(St = x) = 2P(Wt = x) = 2p(x, t).

The mean of St is

〈St〉 = σ

√
t

2π
. (A.9)

Hence, it directly follows that 〈X〉 = µ.
If we now consider the case where we have synaptic currents with relax-

ation time τs,

�Is(v) = 1
τs

∫ v

0
e

w−v
τs η(w) dw,

we define

W′
t =

∫ v

0
�Is(v) dv

and

S′
t = sup

u≤t
W′

u.

�Is is an Ornstein-Uhlenbeck process, and we can compute the probability
density of W′

t,

p(W′
t = x) = 1√

2πσ 2�(t)
e
− x2

2σ2�(t) , (A.10)
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with �(t) = t − 2τs tanh
(

t
2τs

)
+ τs

2 (1 − e− t
2τs ) tanh

(
t

2τs

)2
. Since �(t) < t, it

follows that the probability density of W′
t will be more peaked than when

�Is is white noise. Thus, 〈S′
t〉 < 〈St〉, and therefore we again find

〈X〉 = µ. (A.11)

A.2 P.d.f.—White Noise. For simplicity, it is useful to define the adi-
mensional variable and constants:

u = 2µ̃V
σ̃ 2 , uθ = 2µ̃θ

σ̃ 2 , ur = 2µ̃Vr

σ̃ 2 . (A.12)

The Fokker-Planck equation (see equation 3.10) written with this variable is

τe

2
∂P0

∂t
= ∂2P0

∂u2 − ∂P0

∂u
, (A.13)

where

τe = σ̃ 2

µ̃2 (A.14)

is a time constant that depends on the signal-to-noise ratio of synaptic in-
puts. It is the only time constant when synaptic timescales are absent and
plays the role of the membrane time constant of the leaky IF neuron, as we
will see. Note that if we come back to the original variables, we have in the
case Ji = J for all i, τe = 1/Cν (see equation 3.2).

In this section, we consider the stationary problem ∂P0/∂t = 0. Thus, we
have to solve

∂2P0

∂u2 = ∂P0

∂u
, (A.15)

and the new boundary conditions are

P0(uθ ) = 0

∂P0

∂u
(uθ ) = −ν0τe

2
P0(ur+) − P0(ur−) = 0

∂P0

∂u
(ur+) − ∂P0

∂u
(ur−) = −ν0τe

2
. (A.16)

The solution of equations A.15 and A.16 is

P0(y) = ν0τe

2
[1 − eu−uθ − �(ur − u)(1 − eu−ur)], (A.17)

where � is the Heaviside function. The normalization of the probability
density P0 to 1 gives the stationary firing rate given by equation 4.9.
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A.3 P.d.f.—Synaptic Noise. In this section, we derive the first-order cor-
rection in k to the SIF neuron p.d.f. A summary of the results is given in sec-

tion 4.2.3. Note that for these calculations, we use k =
√

τs
τe

with τe defined
in equation A.14.

A.3.1 FP Equation and Boundary Conditions. We can rewrite the FP equa-
tion (see equation 4.12) using the rescaled variables u and z defined in equa-
tions A.12 and 4.25 as

1
2

∂2P
∂z2 + ∂(zP)

∂z
− k

∂P
∂z

− 2kz
∂P
∂u

= 0. (A.18)

The boundary conditions with these new variables are

zP(uθ , z) = kτeν(z)
2

(A.19)

z[P(ur+, Is) − P(ur−, z)] = kτeν(z)
2

(A.20)

lim
z→±∞ zP(u, z) = 0 (A.21)

lim
z→±∞

∂P
∂z

= 0, (A.22)

with the particular condition

ν(z) = P(uθ , z) = 0 for all z < 0. (A.23)

We then define

P(u, z) = Q(u, z)√
π

e−z2
. (A.24)

Inserting equation A.24 in A.18, we obtain

LQ + 2kz
(

Q − ∂Q
∂u

)
− k

∂Q
∂z

= 0, (A.25)

where L is a differential operator defined by

L. = 1
2

∂2.

∂z2 − z
∂.

∂z
. (A.26)

To solve equation A.25 with boundary conditions given by equations A.19
through A.23, we use recent analytical methods described in Hagan et al.
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(1989) and Klosek & Hagan (1998) and in the neuronal context in Brunel and
Sergi (1998). Q and the firing probability ν are expanded in powers of k,

Q =
∑

n
knQn, ν =

∑
n

knνn.

Q and ν can then be obtained by recurrence:

LQ0 = 0 (A.27)

LQn = ∂Qn−1

∂z
− 2z

(
Qn−1 − ∂Qn−1

∂u

)
. (A.28)

A.3.2 Solution far from the Boundaries.

Order 0. The solution of equation A.27 is

Q0 = f (u)

∫
ez2

dz + g(u), (A.29)

where f and g are functions of u only. Since zP must vanish in both limits
z → ±∞, we necessarily have f (u) = 0. Then at order 0 in k, the problem is
equivalent to the white noise case, and we have

Q0(u) = P0(u), (A.30)

where P0 is given by equation A.17.

Order 1. We obtain from equation A.28

LQ1 = 2z
(

∂Q0

∂u
− Q0

)
. (A.31)

Q1 can be written as a sum of the solution of the homogeneous equation
LQ = 0 and of a particular solution of equation A.31, Qp

1. The general solu-
tion of equation LQ = 0 is again

Q1 = f (u)

∫
ez2

dz + g(u). (A.32)

Since the right-hand side of equation A.31 is polynomial in z and

Lzn = −nzn + n(n − 1)

2
zn−2,

we look for a particular solution Qp
1 that is polynomial in z:

Qp
1 = Q1

1(u)z + Q0
1(u). (A.33)
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Inserting equation A.17 in the right-hand side of equation A.31, we find

Q1
1(u) = ν0τe�(u − ur). (A.34)

Since zP must vanish in both limits z → ±∞, we have again f (u) = 0 in
equation A.32. Thus, we have, absorbing g(u) in Q0

1(u),

Q1(u, z) = Q1
1(u)z + Q0

1(u), (A.35)

where Q0
1 is still to be determined.

Order 2. Using the same method, we find

Q2(u, z) = Q0
2(u) + 2

(
1 − ∂

∂u

)
Q0

1(u)z + �(u − ur)ν0τez2. (A.36)

Order 3. At this order, we find that to satisfy the boundary condition
A.21, we need Q0

1 to obey the condition

∂2Q0
1

∂u2 = ∂Q0
1

∂u
. (A.37)

To get Q0
1(u), we still need to specify the boundary conditions it satisfies.

These will be provided by the boundary layer solutions.

A.3.3 Threshold Layer Solution. The second step is to determine the so-
lution of equation A.31 near the threshold uθ . Since the area close to the
threshold where the boundary solution departs from the outer solution is
expected to be of width k (Hagan et al., 1989), we define

x = uθ − u
k

, (A.38)

and we look for a solution QT(x, z) that matches the boundary condition at
x = 0 and the outer solution for large x. We also expand this function in k,
and the equations for the first orders in k, QT

0 and QT
1 , are

LQT
0 + 2z

∂QT
0

∂x
= 0 (A.39)

LQT
1 + 2z

∂QT
1

∂x
=
(

∂QT
0

∂z
− 2zQT

0

)
. (A.40)

According to equation 4.18, we know that QT(x = 0, z) = 0 for any z < 0.
The x → ∞ limits of QT(x, z) are given by the boundary conditions of the
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outer solution Q0 in uθ . Using equations 4.8 and A.35, we find that

lim
x→+∞ QT

0 (x) = Q0(uθ ) = 0 (A.41)

lim
x→+∞ QT

1 (x, z) = Q1(uθ , z) − x
∂Q0

∂u
(uθ )

= Q0
1(uθ ) + ν0τe

2
(x + 2z). (A.42)

The solution of equations A.39 through A.42 is (Hagan et al., 1989)

QT
0 (x, z) = 0 (A.43)

QT
1 (x, z) = ν0τe

2

(
α + x + 2z +

+∞∑
n=1

βnv+
n (

√
2z)e−

√
n
2 x

)
, (A.44)

with

α =
√

2
∣∣∣∣ζ
(

1
2

)∣∣∣∣ (A.45)

βn = − N(
√

n)√
2n!

√
n

(A.46)

v+
n (z) = e

z2
4 e− (z+2

√
n)2

4 Hen(z + 2
√

n), (A.47)

where ζ is the Riemann zeta function, Hen is the nth Hermite polynomial
(Abramowitz & Stegun, 1970), and

N(s) =
∞∏

k=1

(
1 + s√

k

)
e−2s(

√
k−√

k−1)

(
k + 1

k

) s2
2

. (A.48)

Note that α and βns differ from those used in Hagan et al. (1989) by a
factor

√
2.

A.3.4 Reset-Layer Solution. To complete the description of the first-order
correction of the p.d.f., we have to look at the boundary solution near u = ur.
As in equation A.38, we define

v = ur − u
k

, (A.49)

and we look for solutions QR+
1 (v, z) and QR−

1 (v, z) matching the boundary
condition at v = 0 and the outer solution for large v, respectively, for v < 0
and v > 0. The equation for QR

1 is

LQR
1 − 2z

∂QR
1

∂v
=
(

∂QR
0

∂z
− 2zQR

0

)
. (A.50)
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Using equations A.17 and A.35, we find

lim
v→±∞ QR±

0 (v) = Q±
0 (ur) = 0 (A.51)

lim
v→−∞ QR+

1 (v, z) = Q+
1 (ur, z) − v

∂Q+
0

∂u
(ur) = Q0+

1 (ur)

+ ν0τe

2
(2z + eur−uθ v) (A.52)

lim
v→+∞ QR−

1 (v, z) = Q−
1 (ur, z) − v

∂Q−
0

∂u
(ur) = Q0−

1 (ur)

+ ν0τe

2
(eur−uθ − 1)v. (A.53)

According to equations 4.19 and 4.20, we know that QR+
1 (0, z) − QR−

1 (0, z)
= QT

1 (0, z). We find

QR±
0 (v, z) = 0 (A.54)

QR+
1 (v, z) = Q0+

1 (ur) + ν0τe

2
(eyr−yθ v + 2z) (A.55)

QR−
1 (v, z) = Q0−

1 (ur) + ν0τe

2

×
(

(eur−uθ − 1)v −
+∞∑
n=1

βnv+
n (

√
2z)e−

√
n
2 v

)
. (A.56)

According to equation A.37, we have

Q0
1(u) = A0

1eu + B1. (A.57)

Then, knowing the boundary conditions (given by equation A.42) and that
the sum of Q0

1 over y should be 0 since it is a correction to a probability
density, we find

Q0+
1 (ur) = ν0τe

2
αeur−uθ (A.58)

Q0−
1 (ur) = ν0τe

2
α(eur−uθ − 1), (A.59)

where α has been defined in equation A.45.



2100 Nicolas Fourcaud and Nicolas Brunel

Appendix B: SIF Neuron: Oscillatory Input

B.1 White Noise. We can rewrite the FP equation using the variable u
(see equation A.12) as

τe

2
∂P
∂t

= ∂2P
∂u2 − (1 + εeiωt)

∂P
∂u

, (B.1)

and the boundary conditions are now

P(uθ , t) = 0 (B.2)

∂P
∂u

(uθ , t) = −ν(t)τe

2
(B.3)

P(ur+, t) − P(ur−, t) = 0 (B.4)

∂P
∂u

(ur+, t)) − ∂P
∂u

(ur−, t) = −ν(t)τe

2
. (B.5)

Our strategy is to solve equation B.1 with its associated boundary conditions
using an expansion in the small parameter ε. Thus, we write

ν(t) = ν0[1 + εeiωtn̂(ω) + O(ε2)] (B.6)

P(u, t) = P(u) + εeiωtP̂(u, ω) + O(ε2), (B.7)

where n̂(ω) and P̂(u, ω) are complex quantities describing the oscillatory
component at the frequency input ω of the instantaneous firing rate and the
voltage probability density.

The zeroth order gives the stationary response ν0 and P(u) given by
equations A.6 and A.17.

At the first order in ε, we have

iτeω

2
P̂(u, ω) = ∂2P̂

∂u2 − ∂P̂
∂u

− dP
du

, (B.8)

with the boundary conditions

P̂(uθ , ω) = 0

∂P̂
du

(uθ , ω) = − n̂(ω)ν0τe

2

P̂(ur+, ω) − P̂(ur−, ω) = 0

∂P̂
du

(ur+, ω)) − ∂P̂
du

(ur−, ω) = − n̂(ω)ν0τe

2
. (B.9)
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Solutions of equation B.8 are linear combinations of two exponentials exp(r±
(ω)) where

r±(ω) = 1 ± √
1 + 2iτeω

2
, (B.10)

plus the particular solution

P̂p = − 2
iτeω

dP
du

.

The coefficients of the exponentials are obtained using the boundary con-
ditions, equation B.9. We obtain

P̂(u, ω)= ν0

iω
[eu−uθ −er+(ω)(u−uθ )−�(ur − u)(eu−ur −er+(ω)(u−ur))] (B.11)

and

n̂(ω) =
√

1 + 2iτeω − 1
iτeω

. (B.12)

B.2 Synaptic Noise. Note that for these calculations, we use k =
√

τs
τe

with τe defined in equation A.14.

B.2.1 FP Equation and Boundary Conditions. The FP equation associated
with see equations 3.5 and 3.6, using again the variables u, equation A.12,
and z, equation 5.18, is

k2τe
∂P
∂t

= 1
2

∂2P
∂z2 + ∂(zP)

∂z
− k

∂P
∂z

− εeiωtk(1 + k2iωτe)
∂P
∂z

− 2kz
∂P
∂u

. (B.13)

As in equation 4.17, the instantaneous firing rate is given by the probability
flux in the z direction through uθ integrated over z,

ν(t) =
∫ +∞

−∞
Ju(uθ , z, t) dz, (B.14)

with Ju defined by

∂P
∂t

+ ∂ Ju

∂u
+ ∂ Jz

∂z
= 0 (B.15)
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and so

Ju = 2z
kτe

P . (B.16)

Note that due to the factor 1
k in the expression of Ju, we have to expand P to

the second order in k to obtain the first-order correction to the instantaneous
firing rate.

The particular boundary condition is again (compare with equation 4.18)

Ju(uθ , z, t) = 0, for all z < 0. (B.17)

The other boundary conditions at equal z or u are the same as in the case
without synaptic relaxation and hold at any time t.

We look at the linear response to the oscillation and have at the first order
in ε,

k2iωτeP̂ = 1
2

∂2P̂
∂z2 + ∂(zP̂)

∂z
− k

∂P̂
∂z

− k(1 + k2iωτe)
∂P
∂z

− 2kz
∂P̂
∂u

. (B.18)

We again solve the equation by expanding the density probability in k. We
note

P = P0 + kP1 + k2P2 + · · · (B.19)

P̂ = P̂0 + kP̂1 + k2P̂2 + · · · (B.20)

Analytical solutions can be found in two opposite limits: at low frequencies
ω ∼ 1

τe
and at high frequencies ω � 1

τs
. To connect these two limits, we

resort to numerical solutions.

B.2.2 Outer Solution. We first define Q by

P(u, z, t) = Q(u, z, t)
e−z2

√
π

. (B.21)

Then we expand Q in ε and k,

Q = Q + εeiωtQ̂ + O(ε2) =
∑

n
kn(Qn + εeiωtQ̂n) + O(ε2). (B.22)

By inserting equation B.21 into equation 5.26, we find the equation for Q̂:

LQ̂ = k
∂Q̂
∂z

+ 2kz

(
∂Q̂
∂u

− Q̂

)
+ k2iωτeQ̂

+ k(1 + k2iωτe)

(
∂Q
∂z

− 2zQ
)

. (B.23)
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The operator L has been defined in equation A.26, and the first orders of Q
are given in section 4.2.3.

Order 0. At the zeroth order in k, we have

LQ̂0 = 0. (B.24)

Since Q̂ must vanish for z → ±∞, we necessarily have

Q̂0(u, z, ω) = P̂(u, ω), (B.25)

where P̂(u, ω) is given by equation B.11.

Order 1. Q̂1 is given by

LQ̂1 = 2z

(
∂Q̂0

∂u
− Q̂0

)
− 2zQ0. (B.26)

By noting

Q̂1(u, z, ω) = Q̂0
1(u, ω) + zQ̂1

1(u, ω) (B.27)

and inserting it in equation B.26, we find

Q̂1
1 = 2

(
Q̂0 − ∂Q̂0

∂u

)
+ 2Q0. (B.28)

The expansion of Q̂ until the third order leads to an equation for Q̂0
1,

∂2Q̂0
1

∂y2 − ∂Q̂0
1

∂u
= iωτe

2
Q̂0

1 + ∂Q0
1

∂u
. (B.29)

We will solve it later after we have specified the boundary conditions for Q̂0
1.

Order 2. Then Q̂2 is given by

LQ̂2 = ∂Q̂1

∂z
+ 2z

(
∂Q̂1

∂u
− Q̂1

)
+ ∂Q1

∂z
− 2zQ1 + iωτeQ̂0. (B.30)

Again, we look for a solution polynomial in z, and we note

Q̂2(u, z, ω) = Q̂0
2(u, ω) + zQ̂1

2(u, ω) + z2

2
Q̂2

2(u, ω). (B.31)



2104 Nicolas Fourcaud and Nicolas Brunel

By inserting it into equation B.30, we find for the terms proportional to z2

and z,

Q̂2
2(u, ω) = 2Q̂1

1 − 2
∂Q̂1

1

∂u
+ 2Q1

1 (B.32)

Q̂1
2(u, ω) = 2Q̂0

1 − 2
∂Q̂0

1

∂u
+ 2Q0

1. (B.33)

Since L.1 = 0, the resting terms should vanish, and we have the equation

∂2Q̂0

∂u2 − ∂Q̂0

∂u
= iωτe

2
Q̂0 + ∂Q0

∂u
. (B.34)

Note that a comparison of the above with equation B.8 confirms the result,
equation B.25. We could obtain a similar equation for Q̂0

2 by looking at the
fourth order in k, but we do not need it since Q̂0

2 will not intervene in the
calculation of the firing rate.

B.2.3 Threshold Solution. Following the method developed in section
4.2.2, we now look at the threshold solution noted Q̂T. We define

x = uθ − u
k

. (B.35)

Then equation B.23 becomes

LQ̂T + 2z
∂Q̂T

∂x
= k

∂Q̂T

∂z
− 2kzQ̂T + k2iωτeQ̂T

+ k(1 + k2iωτe)

(
∂QT

∂z
− 2zQT

)
. (B.36)

We first solve this equation at the order 0 and 1 in k. The equations for Q̂T
0

and Q̂T
1 are

LQ̂T
0 + 2z

∂Q̂T
0

∂x
= 0 (B.37)

LQ̂T
1 + 2z

∂Q̂T
1

∂x
= ∂Q̂T

0

∂z
− 2zQ̂T

0 − 2zQT
0 . (B.38)

Moreover, according to equations B.25, 5.12, and B.27, we have

lim
x→∞ Q̂T

0 = Q̂0(uθ ) = 0 (B.39)

lim
x→∞ Q̂T

1 = Q̂1(uθ ) − x
∂Q̂0

∂u
(uθ ) = Q̂0

1(uθ ) + ν0τen̂(ω)

2
(x + 2z). (B.40)

Thanks to equation 5.24, we know that Q̂(u, z, ω) = 0, for all z < 0.
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According to Hagan et al. (1989), the solutions are

Q̂T
0 = 0 (B.41)

Q̂T
1 = ν0τen̂(ω)

2

(
α + x + 2z +

∑
n

βnv+
n (

√
2z)e−

√
n
2 x

)
, (B.42)

where α, βn, and v+
n have been defined in section A.3.3.

We now look at the second order in k. We have

LQ̂T
2 + 2z

∂Q̂T
2

∂x
= ∂Q̂T

1

∂z
− 2zQ̂T

1 + ∂QT
1

∂z
− 2zQT

1 . (B.43)

Since {1,
√

2z, v±
n (

√
2z)} form a complete set of eigenfunctions of L (Hagan

et al., 1989), we seek a solution of the form

Q̂T
2 (x, z)=α

(
x√
2

)
+α̃

(
x√
2

)√
2z+

∑
n,ε=±

αε
2n

(
x√
2

)
vε

n(
√

2z). (B.44)

By inserting it into equation B.43 and projecting it on the various orthogonal
functions, we find

dα

dx
(x) − α̃(x) = ν0τe√

2
(1 + n̂(ω))

×
(∑

n
βn〈z, v+′

n (z)〉e−√
nx − (α + x)

)

dα̃

dx
(x) = 0 (B.45)

dαε
2n

dx
(x) + ε

√
nαε

2n(x) = ν0τe√
2

(1 + n̂(ω)) . . .

×
(〈

1
z
, vε

n(z)
〉

+
∑

n
βn

〈
vε

n(z),
v+′

n (z)
z

− v+
n (z)

〉
e−√

nx

)
,

where 〈., .〉 is an inner product defined by

〈u(z), v(z)〉 = 1√
π

∫ +∞

−∞
e−z2

u(z)v(z) dz. (B.46)

To achieve the derivation of the first order of the firing-rate expansion
in this regime, we need to know only the coefficient α̃(x). According to
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equation B.45, we know it is a constant. It can be determined by looking
at the limit x → ∞ where the threshold solution needs to match the outer
solution,

lim
x→∞ α̃(x) = Q̂1

2(uθ ). (B.47)

According to equation B.33, we need to compute Q̂0
1, which can be done

by solving equation B.29. The boundary conditions for Q̂0
1 are given by

equation B.42 and by using equations 4.19 through 4.21. We also need to use
the fact that the sum of Q̂0

1 over y is zero. Finally, we find

Q̂0
1(u, ω) =

√
2ν0α

iω
[r+(ω)er+(ω)(u−uθ ) − eu−uθ . . .

− �(ur − u)(r+(ω)er+(ω)(u−ur) − eu−ur)], (B.48)

where r+(ω) has been defined in equation B.10.
Introducing this last equation in equations B.33 and B.47, we find

α̃(x) = 0. (B.49)

We can now compute the first order of the correction,

n̂1(t) =
∫ +∞

−∞
2z
τe

P̂2(u, z, t) dz = 2
τe

〈z, Q̂T
2 (0, z)〉eiωt = 0. (B.50)

The last result rises because we have 〈z, vε
n(z)〉 = 0 for all n and ε.

Appendix C: LIF Neuron

C.1 Stationary Input—Synaptic Noise. We follow the same method as
for the SIF case (see section A.3)

C.1.1 Outer Solution. We note

y = V − µ

σ
.

The probability density P(y, z) is

P(y, z) = e−z2

√
π

[Q0(y) + √
τsτm(Q0

1(y) + zQ1
1(y))],

where Q0 is given by equation 4.10,

Q0
1(y) = αν0τm

√
2[−(�(yθ ) − �(yr))Q0(y)

+ e−y2
(ey2

θ − ey2
r �(yr − y))] (C.1)
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and Q1
1 by

Q1
1(y) = −2yθ Q0(y) − ∂Q0

∂y
.

C.1.2 Boundary-Layer Solutions. The threshold and reset solutions are
identical to the SIF, equations 4.32.

C.2 Oscillatory Input—White Noise. The stochastic equation we con-
sider is now

τm
dV
dt

= −V(t) + µ(1 + εeiωt) + σ
√

τmη(t), (C.2)

where η(t) is a gaussian white noise defined as in equation 3.1. The equiv-
alent Fokker-Planck equation is

τm
∂P0

∂t
= σ 2τm

2
∂2P0

∂V2 + ∂

∂V
[V − µ(1 + εeiωt)]P′. (C.3)

The boundary conditions are again identical to the SIF case. We expand
both p.d.f. and firing rate in the modulation amplitude ε. The amplitude of
the modulation in the probability P̂0(V, ω) is given by the first order in that
expansion,

σ 2τm

2
∂2P̂0

∂V2 + ∂

∂V
[V − µ]P̂0 − iωτmP̂0 − µ

∂P0

∂V
= 0. (C.4)

The main difficulty compared to the SIF case is that the general solution to
equation C.4 that gives P̂ is no longer a linear combination of exponentials
(see equations B.8 and B.10) but rather a linear combination of confluent
hypergeometric functions (Brunel & Hakim, 1999). Note that these solutions
can also be expressed in terms of parabolic cylinder functions (Melnikov,
1993; Lindner & Schimansky-Geier, 2001). However, these functions share
the asymptotic properties of the exponentials found in the SIF case; in the
high-frequency limit, they behave as exp(

√
2iωτm(V−µ)/σ). The dynamical

linear response of the neuron is

n̂(ω) = µ

σ(1 + iωτm)

∂U
∂y (yθ , ω) − ∂U

∂y (yr, ω)

U(yθ , ω) − U(yr, ω)
, (C.5)

where yθ = θ−µ
σ

, yr = Vr−µ
σ

and U is given in terms of combinations of
hypergeometric functions (Abramowitz & Stegun, 1970),

U(y, ω) = ey2

�
(

1+iωτm
2

)M
(

1 − iωτm

2
,

1
2
, −y2

)
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+ 2yey2

�
( iωτm

2

)M
(

1 − iωτm

2
,

3
2
, −y2

)
. (C.6)

In the high-frequency limit,

n̂(ω) ∼
√

2
iωτe

. (C.7)
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