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STIMULUS-DRIVEN TRAVELING SOLUTIONS IN CONTINUUM
NEURONAL MODELS WITH A GENERAL SMOOTH FIRING RATE

FUNCTION∗
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Abstract. We examine the existence of traveling wave solutions for a continuum neuronal net-
work modeled by integro-differential equations. First, we consider a scalar field model with a general
smooth firing rate function and a spatiotemporally varying stimulus. We prove that a traveling front
solution that is locked to the stimulus exists for a certain interval of stimulus speeds. Next, we include
a slow adaptation equation and obtain a formula, which involves a certain adjoint solution, for the
stimulus speeds that induce locked traveling pulse solutions. Further, we use singular perturbation
analysis to characterize an approximation to the adjoint solution that we compare to a numerically
computed adjoint. Numerical simulations are used to illustrate the traveling fronts and pulses that
we study and to make comparisons with our analytically computed bounds for stimulus-locked wave
behavior.
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1. Introduction. Traveling waves in neural field models have been the subject
of extensive mathematical investigation (reviewed in [9, 7]). The motive for the study
of these waves comes from numerous experiments in brain slices. Putative roles for
these waves are discussed in [10, 24]. Early work [5, 14] showed that it is possible
to evoke propagation of traveling waves in brain slices that have been treated with
drugs that block inhibition. Recently, experimentalists have become interested in the
effects of heterogeneity and stimuli on these waves. For example, certain experiments
examined the induction of traveling waves in cortical slices in which there were varying
densities of cells [21, 6]. Reflections and blocking of these waves occur, as do changes
in preferred directionality. Stimuli can have dramatic effects on waves. Xu et al. [26]
show complex effects arising in visually evoked waves in rat cortex, and more recently,
Takagaki et al. have shown that stimuli at two different locations can modulate the
resulting waves (see [23, 25]). Richardson, Schiff, and Gluckmann [22] showed that
electrical fields could be used to block, speed up, and slow down evoked waves.

Neural field models represent reductions and approximations of more “realistic”
conductance-based models with the advantage of being much easier to analyze. Re-
cently, the emergence of traveling waves, and other spatiotemporal patterns, was
shown to occur in a neural field model to which a spatiotemporally varying stim-
ulus was applied [2, 12, 13]. As in much of the work in this area, a Heaviside firing
rate function was used in these papers. This simplification allows for the derivation of
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closed form solutions to the relevant field equations and analytical stability analysis,
yet biologically, it implies that at each moment in time, cells either are firing at a
unique nonzero constant rate or are not firing at all. The objective of this work is
to study the effects of a spatiotemporally varying stimulus on a neural field model
with a more realistic, smooth firing rate function. More specifically, we impose a small
stimulus, εI(x, t), where 0 < ε � 1 and I(x, t) = I(x− ct) for some constant speed c,
and we consider for what c values the field is able to follow the stimulus, in the sense
that it supports a traveling wave solution of the same speed.

We analyze both a scalar field model and a model with adaptation. In the former
case, our results build on the work of Ermentrout and McLeod [11], who proved
the existence of monotone traveling fronts for a neural field without spatiotemporally
varying stimulation, in one of the few rigorous works in this area allowing for a general
smooth firing rate function (see also [18, 3, 19]). In the case with adaptation, we
assume that the adaptation evolves slowly relative to the population firing rate and
build on the singular perturbation construction of a traveling pulse solution done
previously by Pinto and Ermentrout in the absence of spatiotemporally dependent
applied stimulation [20].

2. Traveling fronts for a scalar field equation.

2.1. Existence. Consider a single-layer neuronal network model distributed over
the real line with a small, spatiotemporally varying stimulus applied as follows:

(2.1) ∂u(x, t)/∂t = −u(x, t) +

∫ ∞

−∞
J(x− y)F (u(y, t)) dy + εI(x, t).

Here, u(x, t) denotes the mean membrane potential of a patch of tissue at position
x and time t, J(x) denotes the distance-dependent synaptic weight function that
measures the strength of excitatory synaptic connections between neurons, F (u) de-
notes the firing rate function that depends on the membrane potential u, and εI(x, t)
denotes the small, spatiotemporally varying stimulus, where 0 < ε � 1.

We consider the existence of a traveling front for (2.1) under the hypotheses on
J, F given in [11].

(H1) The function J(x) is defined, even, nonnegative, and absolutely continuous
on R, with J ′ ∈ L1(R) and

∫∞
−∞ J(x) dx = 1.

(H2) The function F (x) is defined and continuously differentiable on [0, 1], with
F ′ > 0, F ′(0) < 1, and F ′(1) < 1. Moreover, the function F (u)−u has precisely three
zeros, at u = 0, u = a, and u = 1, with 0 < a < 1.

To start, define the moving coordinate ξ = x− ct, and assume that the stimulus
term I takes the form of a traveling front,

(2.2) I(ξ) →
{

1, ξ → −∞,
0, ξ → ∞,

and I(ξ) ∈ (0, 1) for all ξ;

relevant I(ξ) may be monotone decreasing, but assuming that this property holds
is not necessary. We seek a traveling front solution u(x − ct) = u(ξ) of (2.1) with
the same speed c as the stimulus. Note that if ε = 0, or equivalently if I ≡ 0, then
the results in [11] yield the existence of a family of monotone decreasing traveling
fronts u0(ξ) = U(ξ − θ), parametrized by θ ∈ R (corresponding to translation), with
u0(ξ) → 1 as ξ → −∞ and u0(ξ) → 0 as ξ → ∞ for a special speed c = c0. We assume
that
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(H3)
∫ 1

0 (F (u) − u) du �= 0 such that c0 �= 0. The work in [11] can be used to
establish the following result.

Proposition 2.1. For the solution u0 of (2.1) with ε = 0, u′
0(ξ) ∈ L2(R).

Proof. F and u0 satisfy the equation ([11, p. 465])

−c0

∫ ∞

−∞
(u′

0)
2F ′(u0) dξ =

∫ 1

0

{−u0 + F (u0)} du0,

so
∫∞
−∞(u′

0)
2F ′(u0) dξ takes a nonzero finite value, say i0, by (H3). Moreover, by (H2),

F ′ is strictly positive and continuous on [0, 1] such that it has a positive lower bound;
call it m. Thus, i0 > 0 and

∫∞
−∞(u′

0)
2 dξ ≤ i0/m < ∞, as desired.

To find traveling front solutions in the presence of the stimulus term I(ξ), we
rewrite (2.1) in a moving frame, up to first order in ε, as

(2.3) −(c0 + εc1)du/dξ = −u+ J(ξ) ∗ F (u(ξ)) + εI(ξ),

where c = c0 + εc1 +O(ε2) and u = u0 + εu1 +O(ε2). The following theorem charac-
terizes traveling front solutions to (2.3).

Theorem 2.2. Let u0 denote the nontrivial traveling front solution to (2.1), with
ε = 0, and let c0 be the corresponding wave speed. There is a unique nontrivial function
u∗ ∈ L2(R) that satisfies the adjoint equation

(2.4) L∗u∗ := (c0d/dξ + 1)u∗ − F ′(u0(ξ))(J(ξ) ∗ u∗(ξ)) = 0

together with the normalization condition∫ ∞

−∞
u∗(ξ)u′

0(ξ) dξ = 1.

Moreover, (2.3) has a solution u0(ξ) + εu1(ξ), with

(2.5) u1(ξ) →
{

0, ξ → ∞,

(1− F ′(1))−1 ∈ (1,∞), ξ → −∞,

if and only if c1 ∈ [0, C), where

(2.6) 0 < C := sup
θ∈R

(
−
∫ ∞

−∞
u∗(ξ − θ)I(ξ) dξ

)
≤ C̄ := −

∫ ∞

−∞
u∗(ξ) dξ.

Proof. At lowest order in ε, (2.3) is satisfied by u0(ξ − θ) for any choice of θ. At
first order, for fixed θ ∈ R, the equation for u1 becomes

(2.7) −c0u1ξ(ξ) + u1(ξ) − J(ξ) ∗ [F ′(u0(ξ − θ))u1(ξ)] = c1u0ξ(ξ − θ) + I(ξ).

Rewrite the left-hand side of (2.7) as Lu1 for L : L2(R) → L2(R). The operator L
has u′

0(ξ − θ) < 0 in its null space, based on differentiation with respect to ξ of the
equation satisfied by u0 and application of Proposition 2.1. Hence, by the Fredholm
alternative, there exists u∗(ξ − θ), a nontrivial solution to the corresponding adjoint
equation, L∗u = 0, satisfying u∗ ∈ L2(R).

Assuming that the solution u∗ is sign-definite, it can be normalized such that

(2.8)

∫ ∞

−∞
u∗(ξ)u′

0(ξ) dξ = 1,
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and (2.7) has a solution if and only if

(2.9) 〈u∗(ξ − θ), c1u0ξ(ξ − θ) + I(ξ)〉 = 0.

Condition (2.9) is equivalent, based on the normalization (2.8) and the fact that u0(ξ)
is monotone decreasing, to the condition

(2.10) c1 = −
∫ ∞

−∞
u∗(ξ − θ)I(ξ) dξ ≡ S(θ) > 0.

Thus, we expect to obtain a band of solutions, corresponding to c1 values between
the minimum and maximum values of S(θ). Based on the behavior of I(ξ) assumed
in (2.2), these values are 0 and C ∈ (0, C̄], as given in (2.6), respectively.

It remains to derive the adjoint equation (2.4) and to conclude that u∗ is indeed
sign-definite. If we write out the first order equation (2.7) in more detail, we see that

〈Lu, v〉 =
∫ ∞

−∞
[(−c0d/dξ+1)u(ξ)]v(ξ) dξ−

∫ ∞

−∞
v(ξ)

∫ ∞

−∞
J(ξ−η)F ′(u0(η−θ))u(η) dη dξ.

If we apply integration by parts to the first integral and rewrite the second by Fubini’s
theorem, then we obtain

〈Lu, v〉 =
∫ ∞

−∞
[(c0d/dξ +1)v(ξ)]u(ξ) dξ −

∫ ∞

−∞
u(η)

[
F ′(u0(η − θ))

∫ ∞

−∞
J(ξ − η)v(ξ) dξ

]
dη.

Hence, the relevant adjoint equation is

L∗
θu

∗ := (c0d/dξ + 1)u∗ − F ′(u0(ξ − θ))(J(ξ) ∗ u∗(ξ)) = 0.

Theorem 4.3 of [11] implies that for any fixed θ ∈ R, this equation has a solution that is
unique, up to multiplication by a nonzero constant, and is sign-definite, which justifies
the normalization (2.8). Finally, (2.5) follows from taking ξ → ±∞ in (2.7) and noting
that u1ξ(±∞) = u0ξ(±∞) = u0(∞) = I(∞) = 0, u0(−∞) = 1, I(−∞) = 1, and
F ′(1) < 1.

Remark 2.3. Note that since u∗ is sign-definite, the sign of c1 is determined by
the sign of the stimulus I. If I is replaced by −I, then the sign of c1 switches, but
its magnitude remains unchanged. Thus, the theory shows that application of small
stimuli can speed up or slow down traveling fronts by equal amounts. We shall see
that this is not the case when adaptation is included in the model in the next section.

In the next three subsections, we complement our analysis with some specific
examples. In subsection 2.2, we consider the special case of a Heaviside firing rate
function that, although it is not smooth, allows us to analytically compute the ad-
joint solution and thus to estimate the possible wave speeds as given by (2.10). Next,
in subsection 2.3, we illustrate stimulus-locked front solutions of the original integral
equation (2.1), computed numerically using a smooth firing rate function for appro-
priate stimulus wave speeds. Then, in subsection 2.4, we consider a special weight
function that allows us to numerically approximate the bounds for possible stimulus-
locked wave speeds given by (2.10) and compare them to the results obtained from
direct simulations of (2.1).

2.2. A special case: Comparison to previous results. Although it does
not have a derivative with a positive bound for u ∈ [0, 1], we formally consider the
special case of a Heaviside firing rate, F (u) = H(u− σ) for a threshold σ ∈ (0, 1), so
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that we can compare Theorem 2.2 to previous results [13]. Without loss of generality,
assume that u0(0) = σ; that is, θ = 0. In this case, the adjoint equation (2.4) formally
becomes

(2.11) c0w
′ + w = δ(u0(ξ)− σ)

∫ ∞

−∞
J(ξ − η)w(η) dη.

To solve (2.11) for w(ξ), use the integrating factor eξ/c0 and integrate to obtain

(2.12) w(ξ)eξ/c0 =
1

c0

∫ ξ

−∞
eζ/c0δ(u0(ζ) − σ)

∫ ∞

−∞
J(ζ − η)w(η) dη dζ.

Since ζ ∈ (−∞, ξ), it follows that δ(u0(ζ) − σ) ≡ 0 for ξ < 0. Using this observation
and switching the order of integration in (2.12) yields, for ξ > 0,

(2.13) w(ξ)eξ/c0 =
1

c0

∫ ∞

0

J(η)w(η)

|u′
0(0)|

dη ≡ B,

where B is a constant. That is, w(ξ) = BH(ξ)e−ξ/c0 for some constant B, where H
as usual denotes the Heaviside step function.

To check the consistency of this solution, assume ξ > 0 and substitute it into both
sides of (2.13) to obtain

(2.14) B =
B

c0

∫ ∞

0

J(η)e−η/c0

|u′
0(0)|

dη.

For consistency, the right-hand side of (2.14) should equal B. This is indeed the case
for the choice J(x) = e−|x|/2 since, using the corresponding calculation

(2.15) u′
0(ξ) = −e−ξ/(2(1 + c0))

from [11] or [13] evaluated at ξ = 0, we have

B

c0

∫ ∞

0

J(η)e−η/c0

|u′
0(0)|

dη =
2B(1 + c0)

c0

∫ ∞

0

1

2
e−ηe−η/c0 dη =

B(1 + c0)

c0(1 +
1
c0
)
= B,

as desired. Note that this solution of (2.4), applied for arbitrary θ, yields

(2.16) w(ξ − θ) = BH(ξ − θ)e−(ξ−θ)/c0 .

Now, to compute B, we use the normalization equation (2.8), with u∗ = w from
(2.16) and u′

0(ξ) from (2.15), to obtain

1 = B

∫ ∞

0

e−ξ/c0u′
0(ξ) dξ = −B

∫ ∞

0

e−ξ/c0
e−ξ

2(c0 + 1)
dξ.

After some calculation, we find B = −2(1 + c0)(
1
c0

+ 1).
Finally, the speed term c1 is given by (2.10). To compare to the speed obtained

previously for a stimulus with O(ε) amplitude [13], take I(ξ) = I0H(−ξ). Note that
the lower bound for c1 is 0, obtained from (2.10) for θ > 0. For θ < 0, (2.10) becomes

(2.17)
c1 =

∫∞
−∞ 2(1 + c0)(

1
c0

+ 1)H(ξ − θ)e−(ξ−θ)/c0I0H(−ξ) dξ

= 2I0(1 + c0)(
1
c0

+ 1)
∫ 0

θ e−(ξ−θ)/c0 dξ.
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Using the fact that c0 = (1− 2σ)/(2σ) from [11], evaluation of this integral and some
algebra yield

(2.18) c1 =
I0(1− eθ/c0)

2σ2
.

Thus, the upper bound for c1 is I0
2σ2 , which is approached as θ → −∞. According

to [13], the right boundary of the existence region in the (c, I0)-plane is given by
c = 1

2(σ−εI0)
− 1. Note that this speed is approached as ξ0 → −∞. Rewriting this

expression for c as c0 + εc1 with c0 = 1
2σ − 1 and solving for c1 results in

(2.19) c1 =
I0

2σ(σ − εI0)
=

I0
2σ2

+O(ε).

Consequently, our existence regions agree within O(ε) to those of [13]; that is, for
both techniques, c ∈ [c0 = 1

2σ − 1, c0 + ε( I0
2σ2 + g(σ, I0, ε))), where g(σ, I0, ε) = O(ε)

and 0 < σ ≤ 1/2.

2.3. Numerical simulations of the front. In this subsection, we present typ-
ical numerical simulations of (2.1). These results show examples of the successful
propagation of traveling fronts that track moving stimuli as well as examples of fail-
ures to track. Of course, it is not possible to simulate (2.1) on the whole real line
in space or time. For each example, we consider the domain x ∈ [−1, 1] with even
boundary conditions, and we choose a stimulus function I(ξ) and a relevant initial
condition u(x, 0) for x ∈ [−1, 1]. In some cases, we assume that the stimulus function
I(ξ) is the Heaviside step function H(−ξ − b) for some choice of b ∈ (0, 1) and c > 0,
with ξ = x− ct, such that (2.2) is satisfied. To approximate the arrival of a traveling
front solution of (2.1) to a particular interval of x values within a larger (e.g., infinite)
spatial domain, we simulate with initial conditions u(x, 0) > 0 for x near −1 and
u(x, 0) = 0 for all other x ∈ [−1, 1]. We predict that, for this initial configuration
with stimulus εI(ξ) applied for small ε > 0, we will observe activity propagating in
the direction of increasing x with speed c, the speed of the stimulus, if and only if c
is sufficiently close to the interval [c0, c0 + εC), where C is given by (2.6). Similarly,
we also consider stimuli −εI(ξ) = −εH(−ξ − b) to follow up on Remark 2.3, and we
expect to observe propagation on (c0 − εC, c0] in this case.

For our simulations, we use F (u) = 1/(1 + exp(−20u + 5)) and J(x) =
10 exp(−20|x|) and normalize the natural, unstimulated wave speed to c0 = 1. Con-
sider first a simulation in which we start with u activated in the leftmost 5% of the
domain by using initial conditions u(x, 0) = 0.9H(−x − 0.9) and with the front of
the stimulus, which will move with speed c, slightly ahead of the activated region,
choosing b = 0.8 such that I(x, 0) = H(−x− 0.8). We find that for a stimulus magni-
tude of ε = 0.01, the interval of speeds for which stimulus-locked traveling fronts exist
is roughly c ∈ [1, 1.2). For a stimulus speed of c = 1.1, for example, the front that
is initiated by the initial conditions succeeds in tracking closely behind the stimulus
and propagating from left to right with the same speed as the stimulus front. This is
illustrated in Figure 1(a), where we plot u(x, t)+10εI(x, t) to show the close tracking
of the wave front to the stimulus front. With all the same conditions and a faster
stimulus speed of c = 1.3, the simulated wave front fails to keep up with the faster
stimulus front, falling farther and farther behind as seen in Figure 1(b).

Next, we consider the case of a negative (inhibitory) stimulus of the same mag-
nitude. That is, we replace εI(x, t) with −εI(x, t) and keep all other conditions the
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same, and we find that the existence interval for stimulus-locked traveling fronts is
roughly c ∈ [0.8, 1). This is consistent with our analysis that shows that two stimuli
of the same magnitude but opposite sign can speed up or slow down traveling fronts
by the same amount (see Remark 2.3). A successful stimulus-locked traveling front is
shown in Figure 1(c) for c = 0.9; whereas a failure to track is shown in Figure 1(d)

(a) c=1.1 (b) c=1.3

(c) c=0.9 (d) c=0.7

Fig. 1. Stimulus-locked traveling fronts. (a), (c) Successful and (b), (d) failed propagation with
(a), (b) εI(x, t) = 0.01H(−(x− ct)− 0.8) and (c), (d) εI(x, t) = −0.01H(−(x− ct)− 0.8). For these
simulations, F (u) = 1/(1 + exp(−20u + 5)) and J(x) = 10 exp(−20|x|).
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with c = 0.7, where u(x, t) − 10εI(x, t) is plotted in each case to show the relation
of the traveling front to the stimulus front. We note that the successful, stimulus-
locked fronts in Figure 1(a) and (c) correspond to the analytically computed traveling
fronts. However, the frontlike solutions in Figure 1(b) and (d) that do not lock to
the stimulus do not represent true traveling wave solutions on the entire real line but
rather provide evidence that traveling wave solutions do not exist for those values of
c outside of the existence interval.

Remark 2.4. The particular interval of speeds c for which stimulus-induced wave
propagation succeeds depends on the form of I(ξ), in addition to its amplitude, as
indicated in (2.6). For example, suppose we replace the Heaviside stimulus with a
monotone increasing sigmoidal stimulus I(ξ) = 1/(1 + exp((−ξ − b)/ρ)), ρ > 0. Suc-
cessful stimulus tracking occurs on progressively larger intervals of c as ρ increases.
Tracking does not seem to be particularly sensitive to the precise value selected for b.

Remark 2.5. We have investigated the effect of varying the sigmoidal firing rate
function of the form F (u) = 1/(1+exp(−Au+B)). Our simulations focus on firing rate
functions consistent with hypothesis (H2) from subsection 2.1 of our analysis. Namely,
we focus on choices of A and B such that F (u)−u has zeros near 0 and 1 and at a where
0 < a < 0.5. The baseline case shown in Figure 1(a)–(d) has A = 20, B = 5, a ≈ 0.17,
and c0 ≈ 1.3, with successful tracking for the given positive and negative stimuli to
within about 10% of the normalized natural wave speed. For different choices of A,B
such that 0 < a < 0.5 (e.g., A = 10, B = 4, a ≈ 0.33, c0 ≈ 0.44; A = 40, B =
10, a ≈ 0.22, c0 ≈ 1.05; A = 7, B = 3, a ≈ 0.32, c0 ≈ 0.47), we find that successful
tracking occurs to within about 10% of the normalized natural wave speed as in the
baseline case. Thus, it appears that varying the shape of the sigmoidal firing rate
function changes the absolute range of speeds for which stimulus-locked fronts exist,
but the relative range of possible speeds remains approximately the same. For choices
of A,B such that F (u)−u has no zeros (e.g., A=10, B=6), no natural waves exist, but
stimuli of very large amplitude (e.g., 0.3) are able to induce stimulus-locked fronts.
An analysis of this scenario is beyond the scope of this paper since we are interested
in relatively weak stimuli that harness the natural wave-generating capability of the
medium rather than imposing a wave on the medium through application of a large
stimulus.

2.4. Numerical approximations of the front speed. In this subsection,
we use (2.10) and a numerical computation of the adjoint to approximate possible
stimulus-locked front speeds. We consider the special weight function

(2.20) J(x) =
1

2
e−|x|,

as this will enable us to reduce the computation of the front and the adjoint to an
ODE shooting problem. We recall that the integral equation for the natural wave
((2.3) with ε = 0) is

(2.21) −c0u
′ = −u+

∫ ∞

−∞
J(ξ − η)F (u(η)) dη,

and, given u(ξ), the corresponding adjoint equation is

c0(u
∗)′ = −u∗ + F ′(u(ξ))

∫ ∞

−∞
J(ξ − η)u∗(η) dη.
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We let

w(ξ) =

∫ ∞

−∞
J(ξ − η)F (u(η)) dη = J ∗ F (u)

such that application of the Fourier transform yields ŵ(k) = [F̂ (u)](k)/(1 + k2). In
this case, [F̂ (u)](k) = (1 + k2)ŵ(k) such that inversion of the Fourier transform gives
w − w′′ = F (u). Thus, establishing the existence of an unstimulated front is reduced
to solving

−c0u
′ = −u+ w,

w′ = z,(2.22)

z′ = w − F (u),

and finding a heteroclinic orbit from (u,w, z) ≈ (1, 1, 0) to (u,w, z) ≈ (0, 0, 0). We
solve this equation numerically via shooting, taking advantage of the one-dimensional
stable manifold at (u,w, z) ≈ (0, 0, 0).

Similarly, we let

p(ξ) =

∫ ∞

−∞
J(ξ − η)u∗(η) dη

to obtain an ODE for the adjoint

c(u∗)′ = −u∗ + F ′(u(ξ))p,
p′ = r,(2.23)

r′ = p− u∗.

The adjoint solution we seek corresponds to a homoclinic solution asymptotic to
(u∗, p, r) = (0, 0, 0) that satisfies the normalization condition

∫∞
−∞ u′(ξ)u∗(ξ) dξ = 1,

which we obtain through a proper choice of initial conditions for (2.23). For specific
simulations, we use F (u) = 1/(1+exp(−20u+5)). With these parameters, integration
of the discretized integral equation (2.21) yields c0 = 1.29158 while the shooting
method gives us c0 = 1.2941. We display the solutions u(ξ), u′(ξ), and u∗(ξ) from
(2.22) and (2.23) in Figure 2(A).

With this calculation of u∗(ξ), we can compute the range of values of c such that
we can lock to the stimulus, I(ξ). Recall that c = c0 + εc1 is, up to O(ε), the velocity
of the stimulus, with tracking predicted for c1 = − ∫∞

−∞ u∗(ξ − θ)I(ξ)dξ := S(θ) for
some θ. For the step-function stimulus, I(ξ) = H(−ξ), we compute S(θ) and illustrate
it in Figure 2(B). From the figure, it can be seen that there is an upper bound to
the velocity that can be followed, and that with positive stimuli only, velocities faster
than c0 can be followed. Furthermore, since S is effectively nonzero only when θ > 0,
this means that the front will always lag the stimulus by some amount.

In Figure 2(C) and (D), we show the results of a simulation of the full integral
equation (as in subsection 2.3) with a stimulus of amplitude I0 = 0.01 moving at
velocities of c = c0 + Δc with Δc plotted along the x-axis. Figure 2(C) shows that
the time difference (lag) Δt between the stimulus front and the wave front is an
increasing function of Δc, consistent with Figure 2(B). The two curves correspond to
two different spatial locations. The fact that there is not perfect overlap is likely due
to the slow speed of convergence of the wave to the stimulus (which should be O(1/ε)).
We can also quantitatively compare the simulation results in Figure 2(C) with the
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Fig. 2. (A) Numerical simulations of u(ξ), u′(ξ), and u∗(ξ) from (2.22)–(2.23). (B) Numerical
calculation of S(θ) using u∗(ξ) from (A) and (2.10). (C) Plots of time difference (lag) Δt between
the stimulus front and the wave front versus Δc at two different spatial locations. (D) Plots of the
velocities of the front (vf ) and stimulus (vs) versus Δc, suggesting that stimulus-locking behavior
will occur with the bounds of Δc = 0 and Δc ≈ 0.15.

results from Figure 2(B). For example, if we take Δc = 0.05, then since the magnitude
of the stimulus is 0.01, this corresponds to c1 = 5. We read from Figure 2(B) that
S(θ) = 5 for θ ≈ 1.5. Since the natural wave velocity is approximately 1.3, we would
expect a time difference between the leading edge of the stimulus and the front to be
about 1.5/1.3 = 1.15; whereas Figure 2(C) gives a similar value of about 1.2–1.3.

In Figure 2(D) we plot the velocities of the front (vf ) and stimulus (vs) versus
Δc to explore the limits of the stimulus-locking behavior. It is difficult to determine
precisely the limits of locking behavior from Figure 2(D), but we estimate, based on
where the curves start to become nonparallel, that the wave can be followed up to
about Δc = 0.15, which is consistent with the simulations shown in Figure 1. Since the
maximum of S(θ) from Figure 2(B) is about 13 and I0 = 0.01, our analysis yields an
estimate of 0.13 as the upper bound on speeds that can be followed. We might get even
better estimates for smaller I0; however, the comparison would become very difficult
in that case, since the small values of Δc would take very long spatial distances to
resolve.

3. Traveling pulses with slow adaptation. We now include a slow adap-
tation equation in the neural field model under consideration and seek to extend an
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earlier singular perturbation construction of a pulse solution [20] to allow for the inclu-
sion of a small, spatiotemporally pulsatile stimulus. Unlike the analysis in subsection
2.1, our approach here is not fully rigorous. In particular, we do not have sufficient
information about the derivative of the pulse solution to draw rigorous conclusions
about the existence and uniqueness of a solution to a relevant adjoint equation. We
will nonetheless proceed formally to derive a formula for the stimulus speeds for which
traveling pulses are predicted to exist. Furthermore, for numerical experimentation
and more precise estimation of the stimulus speeds that can be tracked, we will con-
sider solutions with the particular weight function J(x) = 1

2e
−|x| and approximate

the homoclinic solution corresponding to the pulse solution with a large amplitude
periodic solution.

With adaptation, the model equations that we consider become

(3.1)
∂u(x, t)/∂t = −u(x, t) +

∫∞
−∞ J(x− y)F (u(y, t)) dy − q(x, t) + εIa(x, t),

∂q(x, t)/∂t = κ(−βq(x, t) + u(x, t)),

where 0 < κ � 1, 0 < ε � 1, and q(x, t) represents a negative feedback recovery
mechanism such as spike frequency adaptation. We introduce the moving coordinate
ξ = x − ct and assume a pulsatile stimulus with Ia(x, t) = Ia(ξ) → 0 as ξ → ±∞.
We seek traveling pulse solutions that are locked to the stimulus. Using our earlier
notation for convolutions, traveling pulse solutions to (3.1) satisfy

(3.2)
−cu′(ξ) = −u(ξ) + J ∗ F (u(ξ))− q(ξ) + εIa(ξ),

−cq′(ξ) = κ(u(ξ)− βq(ξ)),

together with the boundary conditions (u, q)(ξ) → 0 as ξ → ±∞.

3.1. Fredholm alternative gives expression for relevant wave speeds.
Write c = c0+εc1, u = u0+εu1, q = q0+εq1 to leading order in the small parameter
ε, with

(3.3) u1, q1 → 0 as ξ → ±∞.

With this notation, system (3.2) becomes

(3.4)
−(c0 + εc1)(u0ξ + εu1ξ) = −(u0 + εu1) + J ∗ F (u0 + εu1)− (q0 + εq1) + εIa,

−(c0 + εc1)(q0ξ + εq1ξ) = κ[(u0 + εu1)− β(q0 + εq1)].

We take as a given the existence of a pulse (u0(ξ), q0(ξ)) in the unstimulated case
with ε = 0, as was shown analytically to exist in the κ ↓ 0 singular limit in [20], and
we solve for the O(ε) correction terms introduced by the stimulus. At O(ε), we find

(3.5)
−c1u0ξ − c0u1ξ = −u1 + J ∗ F ′(u0)u1 − q1 + Ia,

−(c1q0ξ + c0q1ξ) = κ(u1 − βq1).

Rewrite (3.5) as

(3.6)

La

(
u1

q1

)
:=

( −c0u
′
1 + u1 − J(ξ) ∗ F ′(u0)u1 + q1
−c0q

′
1 − κu1 + κβq1

)
=

(
c1u

′
0 + Ia
c1q

′
0

)

=

(
Ia
0

)
+ c1

(
u′
0

q′0

)
.
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Let (u∗(ξ − θ), q∗(ξ − θ)) denote any solution to the adjoint equation L∗
a

(
u∗

q∗
)
= 0,

parametrized by θ ∈ R, corresponding to translation invariance of traveling wave
solutions of (3.1). According to the Fredholm alternative, system (3.6) has a nontrivial
solution if and only if for some such (u∗, q∗),

(3.7)

∫ ∞

−∞
c1(u

′
0(ξ− θ)u∗(ξ− θ) + q′0(ξ− θ)q∗(ξ− θ))dξ +

∫ ∞

−∞
Ia(ξ)u

∗(ξ− θ)dξ = 0.

Normalizing such that

(3.8)

∫ ∞

−∞
(u′

0(ξ − θ)u∗(ξ − θ) + q′0(ξ − θ)q∗(ξ − θ))dξ = 1

yields the result that traveling pulses exist for speeds c = c0 + εc1 +O(ε2), where

(3.9) c1 = −
∫ ∞

−∞
u∗(ξ − θ)Ia(ξ)dξ ≡ S(θ).

Thus, we expect to obtain a band of solutions, corresponding to c1 values between
the minimum and maximum values of S(θ), i.e., for c1 ∈ [Cm, CM ], where

(3.10)

Cm := inf
θ∈R

(
−
∫ ∞

−∞
u∗(ξ − θ)Ia(ξ) dξ

)
< c1 < sup

θ∈R

(
−
∫ ∞

−∞
u∗(ξ − θ)Ia(ξ) dξ

)
:= CM .

Remark 3.1. In subsection 3.2, we approximate the traveling pulse by a singular
periodic orbit consisting of segments along a slow manifold and fast jumps between
these segments. The adjoint solution corresponding to this periodic orbit is unique up
to constant multiplication, suggesting that the nontrivial solution (u∗, q∗) of L∗

a

(
u∗
q∗
)
=

0, appearing in (3.8) and (3.9), is unique as well.
Remark 3.2. Our subsequent calculations, in subsection 3.2, and numerical sim-

ulations, in subsection 3.3, illustrate that u∗ need not be sign-definite, unlike the case
of traveling fronts without adaptation. Hence, in the presence of a particular stimulus,
waves may exist for an interval of speeds that is not symmetric about the unstimulated
speed c0. Moreover, (3.9) and (3.10) suggest that when a stimulus is replaced with
one of opposite sign but equal amplitude, the existence interval for stimulus-locked
pulses can be obtained by a reflection about the natural wave speed. For example, an
existence interval of the form (c0 − a, c0 + b) with a, b > 0 for a stimulus εIa suggests
an existence interval of the form (c0 − b, c0 + a) for a stimulus −εIa.

3.2. Behavior of the solution to the adjoint equation. To gain more infor-
mation about our estimate of c1, given by (3.9), we seek to characterize the behavior
of nontrivial solutions (u∗, q∗) to the adjoint equation corresponding to (3.6). To do
so, it is convenient to approximate the traveling pulse solution by a periodic orbit
of large period so that we can use certain theoretical results obtained for adjoint
solutions to such periodic solutions. Previous work has established that the singular
perturbation construction of traveling pulses to a reaction-diffusion analogue of (3.1)
on the real line, in the absence of stimulation, generalizes directly to give the existence
of a periodic solution on a finite spatial domain with periodic boundary conditions
[4]. Indeed, the argument for the existence of traveling pulses in [20] shows how to
generalize the construction in [4] to the unstimulated form of (3.1), and the extension
to the periodic case follows immediately.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STIMULUS-DRIVEN TRAVELING SOLUTIONS 3051

Let w = J ∗ F (u), the convolution term from system (3.1). As in subsection 2.4,
we will consider the special case of

(3.11) J(x) =
1

2
e−|x|

such that application of the Fourier transform yields ŵ(k) = [F̂ (u)](k)/(1 + k2).
Recall that this case gives [F̂ (u)](k) = (1+ k2)ŵ(k) such that inversion of the Fourier
transform yields F (u) = w − w′′ for ′ = d/dξ. With this notation in place, traveling
pulse solutions to the unstimulated form of (3.1), namely, solutions to (3.2) with ε = 0,
correspond to homoclinic solutions of

(3.12)

−cu′ = −u+ w − q,

−cq′ = κ(u− βq),

w′ = z,

z′ = w − F (u),

with 0 < κ � 1. We seek periodic solutions of this system that approximate the
homoclinic solution. An example of such a solution, computed numerically and pro-
jected into (u, q)-space, is shown in Figure 3(a). To find this periodic orbit, we used
shooting with time reversed, because the spectrum of the linearization of the system
features three positive eigenvalues and one negative eigenvalue in forward time. These
become one positive and three negative eigenvalues in reversed time, rendering the
shooting problem more tractable. Two additional periodic orbits, computed similarly
but with longer periods, are shown in Figure 3(b). Note that these orbits extend closer
to the projection of the critical point of (3.12) with increasing period, supporting the
validity of the periodic approximation to the homoclinic solution.

To move forward analytically, we will use the fast subsystem defined from (3.12)
by setting κ = 0, which consists of the u,w, z equations from (3.12) together with
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Fig. 3. Numerically estimated periodic solutions of (3.12), projected to the (u, q)-plane. (a)
Periodic solution (solid), slow manifold S (dashed), and graph of (u, F (u)) (dash-dotted). Here,
c = 0.38, κ = 0.02, β = 0.25, F (u) = 1/(1 + exp(−20u + 5)). The flow along the periodic orbit with
respect to ξ or ζ is clockwise. (b) Periodic orbits of higher periods approach closer to the projection
of the critical point of (3.12), with u ≈ 0.06 and q ≈ 0.024, as marked with an asterisk.
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q′ = 0 such that q is constant. We will also use the slow formulation of system (3.12),
given by

(3.13)

−cκu̇ = −u+ w − q,

−cq̇ = u− βq,

κẇ = z,

κż = w − F (u),

where differentiation is with respect to ζ = κξ. The singular slow flow for this system
is given by setting κ = 0 in (3.13) to obtain

(3.14) −cq̇ = u− βq.

This flow is relevant on the slow manifold S defined by u−w+q = 0, z = 0, w = F (u)
or, equivalently, {(u, q, w, z) : z = 0, q = F (u) − u}, in the κ → 0 limit. Projected to
(u, q)-space, S takes the form of the dashed curve shown in Figure 3(a). Note that
the flow along the periodic with respect to ξ or ζ is clockwise, given that d/dζ =
(−1/cκ)(d/dt), if we consider the case c > 0.

Before we proceed further, we make two important observations. First, note that
the adjoint system to (3.12), reordered to put the slow q equation last, is

(3.15) (x∗)′ = M∗x∗,

where x∗ = [u∗ w∗ z∗ q∗]T and

(3.16) M∗ =

⎡
⎢⎢⎣

−1/c 0 F ′(u) κ/c
1/c 0 −1 0
0 −1 0 0

−1/c 0 0 −βκ/c

⎤
⎥⎥⎦ .

If we instead directly consider the equation La

(
u
q

)
= 0, with La from (3.6), then the

corresponding adjoint equations are

(u∗)′ = (F ′(u)J ∗ u∗ − u∗ + κq∗)/c,

(q∗)′ = (−u∗ − κβq∗)/c.

Now, let z∗ = (J ∗ u∗)/c. Using the form of J given in (3.11), the Fourier trans-
form yields û∗(k) = c(1 + k2)ẑ∗(k) such that u∗/c = z∗ − (z∗)′′. Finally, if we set
w∗ = −(z∗)′, then we recover the adjoint system (3.15) and (3.16). Thus, the (u∗, q∗)
components to solutions to the adjoint equations for system (3.12) satisfy the adjoint

equation L∗
a

(
u∗

q∗
)
= 0 that is relevant for speed estimation through (3.8) and (3.9) and

vice versa.
By construction, solutions of (3.2) with ε = 0 satisfy system (3.12). The second

observation that we make here is that all solutions to (3.12) also satisfy (3.2) with ε =
0. This can be seen by direct solution of the equation w′′−w = −F (u) with variation
of parameters. Indeed, when done on the real line, for example, this calculation yields
w(ξ) = 1

2

∫∞
−∞ F (u(ξ))e−|η−ξ| dη = J ∗ F (u), as desired.

Next, we would like to apply Theorem A.1 from [15] to characterize the limit
to which the solution (u∗(ζ), q∗(ζ), w∗(ζ), z∗(ζ)) to the adjoint equations (3.15) and
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(3.16), expressed with respect to the slow time ζ = κξ, tends as the singular pertur-
bation parameter κ ↓ 0. As it is stated, this theorem applies to a relaxation oscillation
solution that, in the singular limit, makes fast jumps from the knees of an underlying
cubic-shaped slow manifold. The theorem provides explicit formulas for the jumps
in the components of the adjoint solution that occur when the underlying relaxation
oscillation jumps up and down. These formulas depend on the direction tangent to
which the jumps originate. This direction is given by a left eigenvector of the Jacobian
matrix of a fast subsystem, corresponding to the eigenvalue λ = 0 that exists precisely
at the knees. In our notation, the knees are those points on S such that F ′(u) = 1.
However, since we consider a traveling pulse solution, the relevant jumps do not occur
where F ′(u) = 1. Nonetheless, we can easily generalize the theorem and its formulas
by picking out the tangent eigenvector to the jump directions. Further details of the
relevant calculations are given in the appendix.

Let u = gα(q) denote the solutions to q = F (u)− u on the left branch of S, with
α = L, and on the right branch of S, with α = R. Implicit differentiation on S yields

(3.17) 1 = (F ′(gα(q))− 1)g′α(q).

On S, the slow flow (3.14) becomes

q̇ = (βq − gα(q))/c.

Moreover, from the slow formulation of (3.15) and (3.16) in the κ → 0 limit and
equation (3.17), it follows that the corresponding slow adjoint equation is

(3.18) q̇∗ = −(β/c)q∗ + (1/c)g′α(q)q
∗,

with corresponding normalization condition [15]

(3.19) q∗(βq − gα(q))/c = 1.

Assume that a periodic orbit of system (3.13) has period ζp, let ζ1 < ζ2 ∈ (0, ζp)
denote the two jump times associated with the orbit, and suppose that each jump takes
off from a point aj and lands at a point bj . For any function f , let f(ζ−j ) = limζ↑ζj f(ζ)
and f(ζ+j ) = limζ↓ζj f(ζ). The generalization of Theorem A.1 of [15] implies (see the
appendix) that

(3.20) q∗(ζ+j ) = q∗(ζ−j )− c

(
G(bj)−G(aj)

G(aj)G(bj)

)
, j = 1, 2,

where G(x) = (βq − gα(q))|(u,q,w,z)=x. Moreover,

(3.21)⎡
⎣ u∗

w∗

z∗

⎤
⎦(ζ) =

⎡
⎣ 1/(1− F ′(u))

0
1/(c(1− F ′(u)))

⎤
⎦ q∗(ζ) +

⎡
⎣ c2

cλ/(1− λ2)
c/(1− λ2)

⎤
⎦(

G(bj)−G(aj)

G(aj)G(bj)

)
δ(ζ − ζj),

where λ is a certain eigenvalue of the Jacobian matrix of the fast subsystem of (3.12).
Since we are not concerned with the jumps in w∗, z∗, we do not give an explicit
formula for λ. Importantly, our original hypothesis that F ′ > 0, within (H2), implies
that λ �= 1; see the appendix for further details.

Remark 3.3. A transversality assumption is made in Theorem A.1 of [15] that
here amounts to λ �= 1. In fact, we shall see in the appendix that λ �= 1 is guaranteed
by our assumption that F ′(u) �= 0.
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At the jump up of the periodic solution,

(3.22)
G(b1)−G(a1)

G(a1)G(b1)
=

gL(q(ζ1))− gR(q(ζ1))

(βq(ζ1)− gL(q(ζ1)))(βq(ζ1)− gR(q(ζ1)))
> 0,

which yields q∗(ζ+1 ) < q∗(ζ−1 ) from (3.20). At the jump down,

(3.23)
G(b2)−G(a2)

G(a2)G(b2)
=

gR(q(ζ2))− gL(q(ζ2))

(βq(ζ2)− gR(q(ζ2)))(βq(ζ2)− gL(q(ζ2)))
< 0,

which yields q∗(ζ+2 ) > q∗(ζ−2 ). Between these jumps, q∗ experiences an exponential
ζ-dependence, as specified by (3.18). The magnitudes and signs of the jumps in u∗,
namely, u∗(ζ+i ) − u∗(ζ−i ) for i = 1, 2, will depend on the comparison of F ′(u(ζ+i ))
with F ′(u(ζ−i )), as specified in (3.21). Interestingly, it can also be seen from (3.21),
(3.22), and (3.23) that in the singular limit, the signs of the δ-function excursions of
u∗ at the two jumps will be in opposite directions to each other, and each will be in
the opposite direction to the corresponding jump of q∗.

We can get additional insight from the periodic orbit shown in Figure 3(a). In this
example, the take-offs and landings of both jumps occur from points where F ′(u) ≈ 0.
Hence, we expect that each jump in u∗ will be of a very similar magnitude to that in
q∗, since (3.21) implies that

u∗(ζ+i )− u∗(ζ−i ) =

(
1

1− F ′(u(ζ+i ))

)
q∗(ζ+i )

−
(

1

1− F ′(u(ζ−i ))

)
q∗(ζ−i ) ≈ q∗(ζ+i )− q∗(ζ−i ).(3.24)

More precisely, note (see also Figure 4) that for each jump, the landing point is closer
to a knee of S than is the corresponding take-off point. We thus have F ′(u(ζ+i )) >
F ′(u(ζ−i )) for each i. Since q∗(ζ+2 ) > q∗(ζ−2 ) from (3.20) and (3.23), corresponding to
the jump down, it therefore follows from (3.24) that u∗(ζ+2 ) > u∗(ζ−2 ). On the other
hand, since q∗(ζ+1 ) < q∗(ζ−1 ) from (3.20) and (3.22), corresponding to the jump up,
(3.24) does not allow us to analytically guarantee the direction of the jump in u∗ at ζ1.
However, each jump in u∗ is predicted to be in the same direction as the corresponding
jump in q∗ for F ′(u(ζ±i )) sufficiently small, and these values are certainly small in
Figure 3(a), so we can at least predict that these directions will agree.

3.3. Numerical simulations of the pulse. In theory, (3.20)–(3.23), together
with the exponential behavior of q∗ between jumps as given by (3.18), characterize
the function u∗(ξ − θ) for any fixed θ and, hence, fix the speed c1 through (3.9). In
this subsection, we consider some numerical simulations of traveling pulse solutions of
(3.1). In the next subsection, we turn to some simulations that illustrate the properties
of u∗ and their use in estimating the range of stimulus speeds that can be tracked,
based on (3.9).

As in the case of fronts, we perform simulations here on x ∈ [−1, 1] with even
boundary conditions, and we retain the same functions F and J used in subsection 2.3,
but we now assume that each stimulus function is a hat-shaped pulse with εI(ξ) =
I0H(−ξ − 0.8)H(ξ + 1) with I0 ∈ {±0.01,±0.05} for some choice of c > 0 and
ξ = x − ct. Also, in (3.1) we choose β = 0.25 and κ = 0.02. The parameters used
yield an unstimulated pulse speed of c0 ≈ 1.25. We activate the leftmost 5% of the
domain with initial conditions u(x, 0) = 0.7H(−x − 0.9) and initiate the stimulus
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u
F(u)

u
u uLK RK

Fig. 4. Illustration of F ′(u) at jump points. The knees of S occur at the values u = uLK and
u = uRK , where F ′(u) = 1, as indicated by the corresponding dashed segments. The directions of the
jumps up and down are illustrated by the dashed lines with arrows. The jump up shown here occurs
in the direction of increasing u, from a point below uLK to a point above, but closer to uRK , leading
to an increase in F ′(u) across the jump. The jump down occurs in the direction of decreasing u,
from a point above uRK to a point below, but closer to uLK , also leading to an increase in F ′(u)
across the jump.

pulse with its leading edge at x = −0.8, slightly ahead of the activated region. With
I0 = 0.05 and a stimulus speed of c = 1.8, for example, the pulse that is initiated by
the initial conditions appears to succeed in tracking closely behind the stimulus and
propagating from left to right with the same speed as the stimulus pulse. This result is
illustrated in Figure 5(a), where we plot u(x, t)+18εI(x, t) to show the close tracking
of the wave pulse to the stimulus pulse. With all the same conditions and a faster
stimulus speed of c = 2.0, the simulated wave pulse fails to keep up with the faster
stimulus pulse, as shown in Figure 5(b). Unlike for the case of fronts, stimulus-locked
pulses also occur for stimulus speeds that are slower than the natural wave speed. A
successful stimulus-locked pulse for c = 1.2 is shown in Figure 5(c), whereas a failure
for c = 1.1 is shown in Figure 5(d).

For a negative (inhibitory) stimulus pulse with I0 = −0.05 and all other conditions
unchanged, successful stimulus-locked traveling pulses are shown in Figures 6(a) and
(c) for c = 1.3 and c = 0.85, respectively. Failures to obtain stimulus-locked pulses
are shown in Figure 6(b) and (d) with c = 1.4 and c = 0.75, respectively. In Figure 6,
u(x, t) − 22εI(x, t) is plotted in each case to show the relation of the traveling pulse
to the stimulus pulse.

As with fronts, we note that the successful stimulus-locked pulses in Figures 5–
6 correspond to traveling pulses on the real line while the pulselike solutions that
fail to lock to the stimulus do not represent true traveling pulse solutions on the
real line but rather provide evidence that traveling pulse solutions do not exist for
those values of c outside of the existence interval. Also, as in the case of fronts,
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(a) c=1.8 (b) c=2.0

(c) c=1.2 (d) c=1.1

Fig. 5. Stimulus-locked traveling pulses with stimuli of positive amplitude. (a), (c) Successful and
(b), (d) failed propagation with εI(x, t) = 0.05H(−(x− ct)− 0.8)H(x− ct+1) for specified stimulus
speeds. For these simulations, F (u) = 1/(1 + exp(−20u+5)), J(x) = 10 exp(−20|x|), β = 0.25, and
κ = 0.02.

successful stimulus tracking occurs over larger intervals of speeds for stimuli that
are sigmoidal approximations to the Heaviside function, with interval size growing
as the slope of the sigmoid decreases. Unlike the case of fronts, we find that for
a fixed I0, pulses can track various stimuli with speeds that are slower or faster
than the unstimulated speed, consistent with the idea that u∗ is not sign-definite
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(a) c=1.3 (b) c=1.4

(c) c=0.85 (d) c=0.75

Fig. 6. Stimulus-locked traveling pulses with stimuli of negative amplitude. (a), (c) Successful
and (b), (d) failed propagation under the same conditions illustrated in Figure 5, except εI(x, t) =
−0.05H(−(x − ct)− 0.8)H(x− ct+ 1).

in (3.9). It is difficult to judge by inspection just when successful stimulus tracking
is or is not occurring in our simulations, particularly since we are restricted to a
domain of finite size. It is apparent, however, that the interval about the natural
wave speed for which stimulus-locked pulses exist when I0 = 0.05 is approximately
reflected about the natural wave speed when I0 = −0.05, as shown in Figures 5
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and 6. Furthermore, when the magnitude of I0 decreases, say from 0.05 to 0.01,
the interval of speeds for which stimulus-locked traveling pulses exist shrinks, and
progressively better agreement between intervals for positive and negative I0 emerges,
again consistent with (3.9) and Remark 3.2.

3.4. Numerical approximations of the pulse speed. For the pulse equations
(3.1), it is very difficult to compute the adjoint, and we do not know of a numerical
method for doing it since we cannot really accurately compute the pulse with shooting.
However, as in subsection 3.2, we can put the system on a large periodic domain of
length L. The idea behind this step is that the resulting wave train will be similar
to the solitary pulse if the distance between waves is sufficiently large such that the
adaptation has time to wear off, and it is as if the pulse is moving into a resting medium
each time it recurs. This approach has an additional advantage in that it allows us
to make the stimulus move around the domain at some velocity c so that it becomes
temporally periodic with period T = L/c and frequency ω = c/L. The result is that
our system becomes like an intrinsic oscillator subject to weak periodic forcing. If L
is large enough relative to c, then this system is a good approximation to the driving
of a pulse with a traveling stimulus on an infinite domain. For example, we simulated
a domain of length L = 300 and, without a stimulus, find a pulse solution with a
temporal period of T = 243. The corresponding baseline pulse velocity c0 = 1.2345679
(with frequency ω0 = 0.004115) is not too far from the front velocity of 1.3, which the
pulse velocity on the infinite domain should approach as κ ↓ 0, so we conclude that
the domain length is reasonable for our approximation.

We next apply the following stimulus:

Ia(x, t) = I0 exp(−K(1− cos(x/L− ωt))),

with K = 100. Figure 7(A) shows simulations of the pulse u(x, t) together with the
scaled stimulus εIa(x, t), with εI0=0.05 and F (u)=1/(1+exp(−20u+5)) as previously,
at a fixed spatial location for two different stimulus velocities c, one above and one
below the natural frequency c0. In these examples, for a velocity (frequency) faster
(higher) than the natural one, the stimulus leads the pulse, but only by a very short
time, as seen in the bottom of Figure 7(A). For a lower velocity, the stimulus lags
the pulse, and the wave is still able to lock to the stimulus, as seen at the top of
Figure 7(A).

We estimate the range of velocities over which tracking occurs by direct numerical
simulation and by our analysis from subsection 3.1. First, we systematically vary c
and numerically compute a solution to the full spatiotemporal wave model on the ring
of length L = 300 for each fixed value, using εI0 = 0.05. For each, we calculate the
timing difference between the arrival times of the stimulus and the pulse at a fixed
spatial location on each of several cycles on which the stimulus and pulse pass through
that location. If the pulse is tracking the stimulus, then the same time difference at
this location should arise on each cycle. The results of these simulations are displayed
in Figure 7(D). Although it is difficult to judge by eye, especially because delayed
convergence may cause some differences across cycles for values where tracking occurs,
we estimate roughly that tracking occurs over a range of velocities from cmin = 1.23
to cmax = 1.66. This means that c1 must lie between (cmin − c0)/(εI0) ≈ −0.1 and
(cmax− c0)/(εI0) ≈ 8.5. We observe that for a pulse to track a stimulus that is slower
than the natural velocity, the stimulus velocity has to be quite close to the natural
velocity, in agreement with what was found for the Heaviside case in earlier work [13].

According to the analysis in subsection 3.1, the equations for the values of c1 such
that tracking occurs for speeds c = c0+εc1+ . . . are given by the Fredholm alternative
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Fig. 7. Numerical simulations for the pulse and its adjoint. Relevant parameter values are
εI0 = 0.05, β = 0.25, κ = 0.02, with F (u) = 1/(1 + exp(−20u + 5)). (A) Pulse component u (broad
peaks) and scaled stimulus εIa (narrow peaks) from (3.1), given as functions of time. The stimulus
lags the pulse for c = 1.23 < c0 and slightly leads the pulse for c = 1.53 > c0. (B) Spatial lag θ
between the stimulus and pulse as a function of stimulus speed c at a fixed spatial location (x = 0).
The dashed line marks the baseline speed c0 (a lag occurs here because presenting a stimulus at this
speed does affect the velocity of the resulting pulse). Imperfect tracking can yield different θ values on
different cycles, as seen for the smallest and largest c values here, although this can also occur due
to transients before perfect tracking is achieved. (C) Numerically calculated S(θ), with dash-dotted
lines at θ = 0 and θ = 300, the domain period. (D) Numerically calculated u(ξ) (broad peak) and
u∗(ξ) (narrow peak) used to compute S(θ).

expression (3.7), and on the periodic domain this becomes

−c1

∫ L

0

(u∗(ξ)u′(ξ) + q∗(ξ)q′(ξ)) dξ =

∫ L

0

Ia(ξ − θ)u∗(ξ) dξ.

With the normalization condition
∫ L

0
(u∗(ξ)u′(ξ) + q∗(ξ)q′(ξ)) dξ = 1 from (3.8), we

obtain

(3.25) c1 = −
∫ L

0

Ia(ξ − θ)u∗(ξ) dξ := S(θ).

We have used XPPAUT [8] to calculate the adjoint for the long periodic orbit at a
certain location in space—say x = 0. This is the “timelike” adjoint; whereas (3.25)
incorporates the spacelike adjoint, so we use a change of variables to evaluate the
integrals in (3.25). The resulting S(θ) is shown in Figure 7(C), with corresponding
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functions u(ξ), u∗(ξ) used to compute S(θ), displayed in Figure 7(D). The maximum
and minimum of S(θ) give us theoretical bounds on the range of c1 for which there is
a spatial translation θ at which tracking occurs.

To interpret these results, consider first the case of θ = 0, or no lag. According
to Figure 7(B), this should occur at about c = 1.32, or c1 ≈ (c − c0)/(εI0) ≈ 1.71.
From Figure 7(C), S(0) ≈ 2.1, showing a good agreement between theory (C) and
direct simulation (B). Starting from θ = 0, increases in θ yield decreases in c1 = S(θ)
in Figure7(C), until eventually, S(θ) goes negative, corresponding to stimuli that are
slower than the baseline velocity c0. This result also agrees with Figure 7(B), where
we see speeds below 1.32 giving lags θ > 0, with θ growing sharply larger as speeds
become less than c0 ≈ 1.235, marked with the vertical dashed line in the Figure 7(B).
Interestingly, the size of the first negative peak in S(θ), near θ = 50, agrees with
the numerically computed lower bound c1 = −0.1. Thus, we conjecture that the part
of S(θ) from that peak up to θ ≈ 275, including the large negative peak of S(θ),
corresponds to waves that we do not observe numerically and are perhaps unstable.

Returning to θ = 0, if we decrease θ, we enter a regime where the stimulus leads
the pulse, and Figure 7(C) predicts increasing speeds c1 = S(θ) up to a peak of about
5.5. This prediction matches up with the results in Figure 7(B) for c > 1.32, where
θ becomes more negative as c increases. Although the predicted maximum c1 from
Figure 7(B) exceeds that predicted by Figure 7(C), the two agree qualitatively, and
both predict that tracking with positive c1 will involve only a very narrow range of lags
θ. Finally, the θ values below the positive peak in S(θ) were not observed numerically
and could correspond to unstable solutions.

We note that for negative stimulus pulses of equal amplitude, the graph of S(θ)
gets reflected about the θ-axis, and the theoretical bounds for stimulus-locked pulse
speeds should be reflected about the natural wave speed as noted in Remark 3.2. Our
direct simulations analogous to those in Figure 7(B) for a negative pulse of equal
magnitude are consistent with this finding. Also, the existence intervals for stimulus-
locked pulse speeds obtained by the direct simulations on the ring in this section are
consistent with those on [−1, 1] suggested by Figures 5–6.

Our numerical calculations have yielded an example of u∗(ξ), as shown in Figure
7(D). To conclude this section, we recall that we have done calculations based on
periodic solutions of system (3.12) to derive analytical expressions relating to the
adjoint solution, and we can now compare our numerical and analytical results. Figure
8 shows u∗(ξ), q∗(ξ) for our numerically computed adjoint solution; u∗(ξ) is the same
function shown in Figure 7(D). The analytical calculations in subsection 3.2, based
on (3.20)–(3.24), suggested that (1) q∗ would decrease at the front and increase at
the back, (2) the jumps in u∗ would be in the same direction as these jumps in q∗,
(3) the jumps in u∗ and q∗ would be of comparable magnitude, and (4) the δ-function
excursions in u∗ would be in the opposite directions to these jumps. In Figure 8, the
front occurs near ξ = 170 and the back near ξ = 120, where a small deflection in the
curves occurs. To a great extent, the predictions of the analysis match the numerical
results. Note in particular that, while the δ-excursion of u∗ at the front is in the
positive direction, the net change in u∗ across the front is negative, as is the jump
in q∗. The only possible discrepancies are that we cannot resolve the direction of the
jump in u∗ at the back, since it is so small and the δ-excursion cannot be cleanly
distinguished from the jump away from the singular limit, and the magnitude of the
jump in u∗ is significantly smaller than the jump in q∗ at the front, although this may
also relate to effects of the δ-excursion away from the singular limit.
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Fig. 8. Numerically computed adjoint solution components u∗(ξ) (trace with narrow peak) and

q∗(ξ) (trace with broad valley). Parameters and functions are as in Figure 7. The back occurs near
ξ = 120, where the δ-function excursion in u∗ is downward and q∗ exhibits a positive jump, and
the front occurs near ξ = 170, where the δ-function excursion in u∗ is upward and both u∗ and q∗
exhibit negative jumps.

4. Conclusions. In this work, we have considered the existence of traveling so-
lutions in continuum neuronal models that include a propagating applied stimulus
εI(x, t) = εI(x − ct), where the amplitude parameter ε is small. We work with two
forms of neuronal models, one lacking adaptation that yields traveling front solutions
and another with adaptation that supports traveling pulse solutions. Past work by
Bressloff et al. [2] and Folias and Bressloff [12, 13] analyzed traveling solutions in
stimulated neuronal media with Heaviside firing rate functions. Papers by Ermen-
trout and McLeod [11] and Pinto and Ermentrout [20] considered the existence of
traveling front and pulse solutions, respectively, in related models with more general,
smooth firing rate functions, in the absence of spatiotemporally dependent applied
stimulation. The current paper brings together these research directions, allowing for
smooth firing rate functions in the stimulated case.

Our analysis shows that the Fredholm alternative can be used to leverage the
existence of a traveling solution in a model lacking stimulation to ascertain the exis-
tence of a related, stimulus-locked traveling solution when a small amplitude stimulus
is applied. Similar methods were also used by previous authors in the study of wave
propagation in inhomogeneous media for a bistable equation [16] and for neural field
equations [1, 17], as well as to study front bifurcations in neural fields with adaptation
[3]. The range of speeds over which a solution exists, corresponding to successful track-
ing of the stimulus, can be estimated using this approach and depends on the form of
the stimulus, although a general upper bound that does not depend strongly on this
form can be derived in the traveling front case. This range of speeds also depends on
the properties of a solution to an adjoint equation. We were not able to fully char-
acterize the relevant adjoint solutions, but we do provide theoretical and numerical
results that clarify some of their properties as well as numerical examples illustrating
the intervals of speeds over which waves successfully track propagating stimuli and the
success of the analytical estimates. Interestingly, the analysis and simulations show
that the nature of these intervals differs between the case of a traveling front stimulus
in a model lacking neuronal adaptation and the case of a traveling pulse stimulus in
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a model including adaptation. In particular, in the case with adaptation, a stimulus
of positive amplitude can induce a traveling pulse with speed slower than that of the
unstimulated pulse, while positive amplitude stimuli always speed fronts up in the
absence of adaptation.

5. Appendix. Here, we extract from Theorem A.1 of [15] the specific quantities
used to compute the expressions in (3.20) and (3.21) and present a brief summary of
the corresponding calculations. For a more complete statement and discussion of this
theorem, see [15].

The vector field for the slow q equation is given by (βq−u)/c. Using u = gα(q), α ∈
{L,R}, to denote the solutions of q = F (u) − u as previously, we obtain the slow
equation q̇ = (βq − gα(q))/c on the slow manifold S. From this expression, the corre-
sponding adjoint equation is q̇∗ = −(β/c)q∗ + (1/c)g′α(q)q∗, as given in (3.18). Note
that this is the same equation as we obtain from the system (3.15) and (3.16), together
with (3.17), in the singular limit κ → 0.

To compute the jumps in the solution of (3.18), we need to find the left eigenvector
wj of the Jacobian matrix of the fast subsystem of (3.12) to which the jump take-offs
are tangent. The relevant matrix is given by

J =

⎡
⎣ 1/c −1/c 0

0 0 1
−F ′(u) 1 0

⎤
⎦ .

If we let λ denote any eigenvalue of J , then a corresponding left eigenvector is given
by

(5.1) wj = [c− cλ2 λ 1].

We shall see below that we will get the same jump directions and magnitudes no
matter what nonzero constant multiple of wj we use to compute them.

Remark 5.1. Note that the characteristic equation of J is λ3−λ2/c−λ+(1/c)(1−
F ′(u)) = 0 such that λ = 1 is an eigenvalue if and only if F ′(u) = 0. If F ′(u) =
0, then the eigenvalues of J are λ = ±1, 1/c. In fact, it can be shown that the
eigenvalue corresponding to the left eigenvector governing the jump direction, in the
limit F ′(u) → 0, tends to λ = 1. If this limit is reached, then the jump calculations
break down, since wj = [0 1 1] results, but the only q∗ dependence appears in the
u∗ equation.

Besides wj , the jump calculations also use the vector fq, corresponding to the

vector of partial derivatives of the fast subsystem vector field with respect to q, given

by fq = [1/c 0 0]T . This quantity, (5.1), and (3.19) can be substituted into the
following formula:

cj := wT
j

(
q∗(ζ−j )g(bj)− 1

wjfqg(bj)

)
=

⎡
⎣ c− cλ2

λ
1

⎤
⎦
⎛
⎜⎜⎜⎜⎜⎜⎝

G(bj)

G(aj)
− 1

[c− cλ2 λ 1]

⎡
⎣ 1/c

0
0

⎤
⎦ [ (βq − gα(q))

c

]∣∣∣∣
bj

⎞
⎟⎟⎟⎟⎟⎟⎠

= c

⎡
⎣ c− cλ2

λ
1

⎤
⎦( G(bj)−G(aj)

(1− λ2)G(aj)G(bj)

)
,(5.2)

where G(x) = (βq− gα(q))|(u,q,w,z)=x as previously. Note that multiplication of wj by
a nonzero constant does not change this result, as claimed above.
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Now, Theorem A.1 of [15] specifies that

(5.3) q∗(ζ+j ) = q∗(ζ−j )− fT
q cj = q∗(ζ−j )− c

(
G(bj)−G(aj)

G(aj)G(bj)

)
.

If we set y∗ = [u∗ w∗ z∗]T , then the theorem also gives y∗(ζ) =

−(Dyg(ζ)Dyf(ζ)
−1)T q∗(ζ) for ζ �= ζj , where Dy denotes differentiation with respect

to the fast variables (u,w, z). At the jump points ζj , y
∗(ζ) behaves as a δ-function,

in the sense that

(5.4)

∫ ζ+
j

ζ−
j

q̇∗(ζ)dζ = −
∫ ζ+

j

ζ−
j

fT
q y∗(ζ)dη.

From (5.3), the integral on the left-hand side of (5.4) evaluates to −fT
q cj such that

(3.21) results from formula (5.2).
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