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Abstract

We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural
organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the
activity of real brains through, e.g., optical imaging, and opens the door to the design of experiments to test these
hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be
represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps
within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-
Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups
which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the
structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical
Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict
the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that
are reminiscent of Euclidean planar waves and of the planforms that were used in previous work to account for some visual
hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or
acquired invariance of the neural organization to the action of the corresponding subgroups.
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Introduction

Visual perception, computational or biological, depends upon

the extraction from the raw flow of images incoming on the retina

of a number of image features such as edges, corners, textures or

directions of motion, at a variety of spatio-temporal scales. All

these features involve comparing some functions of the incoming

intensity values at nearby spatio-temporal locations and this points

very strongly to the notion of derivatives. The idea of constructing

the image representations from various derivatives of the intensity

flow is at the heart of the concept of the primal sketch put forward

in the seventies by the late David Marr [1] or the concept of k-jets

borrowed from mathematics by Jan Koenderink and his colleagues

[2,3]. A quick look at the computer vision or image processing

literatures will convince anyone of the universal use of image

derivatives in feature extraction algorithms [4,5,6,7]. There is also

strong evidence that the visual system of many species is organized

in such a way that quantities related to image derivatives are

extracted, and hence represented, by neuronal activity [8]. The

notion of derivative is misleading though because it often implies

in people’s minds the idea of linearity. But of course it does not

have to be the case, computer vision algorithms are usually highly

nonlinear even if they use derivatives, and nonlinearities are

omnipresent in the brain and in the parts of it that are dedicated to

visual perception.

If we accept these two ideas, 1) that image derivatives are

represented in the visual pathway and 2) in a nonlinear fashion,

this immediately raises the related questions of the coordinate

system(s) in which they are represented and the effect of changing

such coordinate system(s). Changes of coordinate systems are

described by group actions such as those of the familiar groups of

translations and rotations in the Euclidean plane. This leads

naturally to the idea of group invariance: one can argue that the

image features representations should be somewhat robust to these

groups actions. This is of course only a hypothesis albeit a likely

one, we think. In computer vision this idea is not new and there

was a time when a significant part of this community was actively

designing feature representations that were invariant with respect

to a variety of group actions [9]. What is interesting in the case of

biological vision is that this hypothesis has consequences that may

be testable experimentally: If the visual pathway is organized so as

to support invariance of feature representations at the mesoscopic

level, say the hypercolumn in V1, we may be able to predict the

appearance of certain patterns of activity in the involved neuronal

populations that are a direct consequence of the invariance

hypothesis.

In this article we begin the development of a mathematical theory

of the processing of image edges and textures in the hypercolumns of

area V1 that is based on a nonlinear representation of the image first

order derivatives called the structure tensor. Assuming that this
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tensor is represented by neuronal populations in the hypercolumns

of V1 that interact in a way that can be described by equations

similar to those proposed by Wilson and Cowan [10], bifurcation

theory allows us to predict the formation of specific patterns in the

cortical medium that are related to the assumed invariant properties

of the underlying cortical representation of the structure tensor.

Methods

The structure tensor as a representation of edges and
textures

The structure tensor is a way of representing the edges

and texture of a 2D image I(x,y) [11,12]. Let gs1
(x,y)~

1

2ps2
1

exp({(x2zy2)=2s2
1) be the two-dimensional Gaussian

function with 0 mean and variance s2
1. We consider the regularized

image Is1
obtained by convolving the image I with gs1

, we note

Is1
~gs1

? I , where the symbol ? represents the convolution

operation. The gradient +Is1
of Is1

is a two-dimensional vector

which emphasizes image edges: within a flat region +Is1
~0, at a

pronounced edge E+Is1
E, the Euclidean norm of +Is1

is large, and

+Is1
points in the normal direction of the edge. The parameter s1 is

called the local scale. One then forms the 2|2 symmetric matrix

T 0(+Is1
)~+Is1

6+Is1
~+Is1

t +Is1
, where 6 indicates the

tensor product and t indicates the transpose of a vector. By

convolving T 0(+Is1
) componentwise with a Gaussian gs2

we obtain

the matrix T s2
(+Is1

)~gs2
? T 0(+Is1

). It is not hard to verify that

this symmetric matrix is positive, i.e. tz T s2
(+Is1

)z§0 for all

vectors z in R2. It is called the structure tensor. When there is no

ambiguity we will use T instead of T s2
(+Is1

).

Note that the construction of the structure tensor involves two

spatial scales. The first one, defined by s1, is the one at which the

image derivatives are estimated. The structure tensor is insensitive

to noise and irrelevant details at scales smaller than s1. The second

one, defined by s2, is the one at which the averages of the

estimates of the image derivatives are computed, it is the

integration scale, and is related to the characteristic size of the

texture to be represented, and to the size of the receptive fields of

the neurons that may represent the structure tensor.

Being symmetric and positive, T has two orthonormal

eigenvectors e1 and e2 and two positive corresponding eigenvalues

l1 and l2 which we can always assume to be such that l1§l2§0.

The distribution of these eigenvalues in the (l1,l2) plane reflects

the local organization of the image intensity variations. Indeed,

one can establish a correspondence between local intensity

patterns and relative values of l1 and l2. For example constant

areas are characterized by l1~l2~0, straight edges give

l1&l2^0, their orientation being that of e2, corners yield

l1§l2&0. The difference l1{l2 becomes large for anisotropic

textures. These simple examples are intended to show the richness

of the structure tensor when it comes to representing textures and

edges at a given spatial scale, s2.

This representation of the local image orientations and textures

is richer than, and contains, the local image orientations model

which is conceptually equivalent to the direction of the local image

intensity gradient gs2
? +Is1

. The local image orientation is a one-

dimensional representation which can be obtained from the local

image intensity gradient, which is two-dimensional, as the ratio of

the gradient components. The structure tensor itself is three-

dimensional. Its three dimensions can be either pictured as its

three entries or as the collection of its two eigenvalues and the

direction of one of its eigenvectors, e.g. the one corresponding to

the largest eigenvalue. In particular, it should be clear from the

above that the structure tensor can discriminate local intensity

patterns that would be otherwise confused by the local orientations

model: For example, given an isotropic structure localized in an

image neighbourhood of size of the order of the integration scale

s2 with no preferred direction of gradient, the local gradients

average out resulting in a zero magnitude. An example of such an

isotropic structure is a black disk of diameter s2=2 on a white

background. There is clearly gradient information; however, since

there is no preferred phase, it zeros itself out as in the case of a

uniformly grey pattern. The eigenvalues of the structure tensor

turn out to be both equal to some strictly positive number in the

case of the disk and both equal to 0 in the case of the uniformly

grey pattern. This is an extreme example but one may also think of

a texture pattern made of short line elements pointing in roughly

the same direction. The local gradients average to a direction

roughly perpendicular to the average direction of the line

elements. The length of the resulting vector is an indication of

the average contrats across these line elements. In the case of the

structure tensor, the unit eigenvector, together with its corre-

sponding largest eigenvalue, contains the same information but the

second eigenvalue contains information about the spread in the

directions of the line elements, the difference between the two

eigenvalues being, as mentioned above, an indication of the

anisotropy of the texture. This discussion should have made it

clear that the structure tensor contains, at a given scale, more

information than the local image intensity gradient at the same

scale.

The question of whether some populations of neurons in such a

visual area as V1, can represent the structure tensor cannot be

answered at this point in a definite manner but we hope that the

predictions of the theory we are about to develop will help

deciding on this issue. We can nonetheless argue as follows. We

know that orientation hypercolumns in V1 represent local edge

orientations in receptive fields whose size vary between 0.5 and 2

degrees. This corresponds to values of s2 between 0.5 and 2

centimeters at a viewing distance of 57 centimeters. For a given

orientation h, the two orientations hzp=4 and hzp=2 are also

represented in the orientation hypercolumn and this is very much

Author Summary

Our visual perception of the world is remarkably stable
despite the fact that we move our gaze and body. This
must be the effect of the neuronal organization of the
visual areas of our brains that succeed in maintaining in
our consciouness a representation that seems to be
protected from brutal variations. We propose a theory to
account for an invariance that pertains to such image
features as edges and textures. It is based on the simple
assumption that the spatial variations of the image
intensity, its derivatives, are extracted and represented in
some visual brain areas by populations of neurons that
excite and inhibit each other according to the values of
these derivatives. Geometric transformations of the retinal
image, caused say by eye movements, affect these
derivatives. Assuming that their representations are
invariant to these transformations, we predict the appear-
ance of specific patterns of activity which we call
hyperbolic planforms. It is surprising that the geometry
that emerges from our investigations is not the usual
Euclidean geometry but the much less familiar hyperbolic,
non-Euclidean, geometry. We also propose some prelim-
inary ideas for putting our theory to the test by actual
measurements of brain activity.

H-planforms and Visual Perception
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the same as representing the three components of the stucture

tensor at this scale. Indeed, let us denote by +Ih
s1

the component of

the smooth gradient in the directions h. It is easy to show that

+Ihzp=4
s1

~
1ffiffiffi
2
p +Ih

s1
z+Ihzp=2

s1

� �
and it follows that the product

+Ih
s1

+Ihzp=2
s1

is a linear combination of +Ih
s1

� �2

, +Ihzp=4
s1

� �2

, and

+Ihzp=2
s1

� �2

. This remains true of the local averages of these

quantities obtained by convolution with the Gaussian of standard

deviation s2. We note that these three components are represented

in the Euclidean coordinate system defined by the orientation h
and the orthogonal direction hzp=2. So we may say that the joint

activity of the populations of neurons in the hypercolumn

representing these three orientations is in effect an encoding of

the structure tensor. This reasoning applies to any orientation h
and it follows that the joint activity of all triplets of populations of

neurons in the hypercolumn that encode the triplets of orientations

(h,hzp=2,hzp=4) for all possible values of h between 0 and p are

a representation of the structure tensor that is roughly invariant to

the choice of the orientation of the coordinate system in which it is

represented or more accurately that contains all such representa-

tions which differ by a rotation of the coordinate system, up to the

accuracy of the orientation representation in the orientation

hypercolumn.

Where in V1 could one find populations of neurons that encode

the structure tensor? Cytochrome oxydase (CO) blobs and their

neighbourhoods seem to be good candidates since their distribu-

tion appears to be correlated with a number of periodically

repeating feature maps in which local populations of neurons

respond preferentially to stimuli with particular properties

such as orientation, spatial frequency, brightness and contrast

[13,14,15,16,17,18,19]. It has thus been suggested that the CO

blobs could be the sites of functionally and anatomically distinct

channels of visual processing [20,21,22,23]. Recently Bressloff and

Cowan [24,25] introduced a model of a hypercolumn in V1

consisting of orientation and spatial frequency preferences

organized around a pair of pinwheels. One pinwheel is centered

at a CO blob and encodes coarse to medium coarse scales, the

other is centered at a region that encodes medium coarse to fine

scales. Despite the fact that these authors do not consider the

encoding of brightness and contrast, it has been suggested by other

authors [26] that this might also be the case. Such a hypercolumn

is therefore a good candidate for representing the structure tensor

at several scales as well as, as these authors claim, the local

orientations at various spatial frequencies. As a consequence of this

discussion we assume that the structure tensor is represented by

the activity of the populations of neurons in a hypercolumn, where

the word represented is to be understood as explained above.

Let therefore T be a structure tensor. We assume that there is

some quantity which we associate to an average membrane

potential, noted V (T ,t), and is a function of T and the time t abd

which is, e.g., high if T reflects the actual intensity values in the

column receptive fields and low otherwise. We assume that its time

evolution is governed by an equation of the Wilson and Cowan

[10] or Amari [27] type.

Vt(T ,t)~{aV (T ,t)z

ð
H

w(T ,T 0)S(V (T 0,t))dT 0zI(T ,t), ð1Þ

where the integral is taken over H, the set of possible structure

tensor. We provide below a precise mathematical definition of this

set. dT 0 is the corresponding area element, also defined below,

and I is an input current.

The positive coefficient a can be normalized to 1 by a suitable

choice of time scale. S is a sigmoidal function which after

normalization may be expressed as:

S(x)~
1

1ze{mx
x [ R, ð2Þ

where m is a positive coefficient which governs the stiffness of the

sigmoid.

The function w. called the connectivity function, is defined as

follows. If we assume further that the neuronal population

representing the value T of the structure tensor excites

(respectively inhibits) the neuronal population representing the

value T 0 if the distance d(T ,T 0) is small (respectively large), a

natural form of the connectivity function w is obtained from the

following function g, a difference between two pseudo-Gaussians:

g(x)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
1

q e
{

f (x)

2s2
1 {h

1ffiffiffiffiffiffiffiffiffiffi
2ps2

2

q e
{

f (x)

2s2
2 , ð3Þ

where s1vs2, hƒ1, and f is a monotonously increasing function

from the set Rz of positive real numbers to Rz. For example, if

f (x)~x2 we obtain the usual difference of Gaussians.

One then defines

w(T ,T 0)~g(f (d(T ,T 0)))

w is clearly invariant to the action of the isometries c of H:

w(c:T ,c:T 0)~w(T ,T 0) Vc

We will see that with such a choice of connectivity function, the

integral in (1) is well-defined because w is small at ‘‘infinity’’.

This is similar in spirit to the ring model described in [28,29],

see the Discussion Section.

There are of course many loosely defined terms in the

presentation so far, including the definition of the set of structure

tensors, of the distance between two such tensors that plays a

central role in the construction of the connectivity function w, and

the definition of the isometries of the set of structure tensors, i.e.

the transformations that leave the distance between two tensors

unchanged. We provide below precise answers to all these

questions. Before doing this we explain how equation (1) which

describes the dynamics of a neural mass, e.g. a hypercolumn of

V1, can be ‘‘spatialized’’ in order to provide a neural or cortical

field model (see [30,29] for reviews of neural fields) that could

describe the spatio-temporal activity of V1 related to the

representation of edges and textures.

Indeed let us assume the existence a continuous distribution of

such columnar systems in a regular bounded open set V of R2,

modeling a piece of a flat cortex. We note r the spatial variable.

Equation (1) can be generalized to the following

Vt(r,T ,t)~{V (r,T ,t)z

ð
V

ð
H

w(r,T ,r0,T 0)S(V (r0,T 0,t))dT 0dr0zI(r,T ,t), ð4Þ

where dr0 is the usual Euclidean area element. The average

membrane potential V depends on the position r in the

continuum, i.e. on the position of the hypercolumn in V1, on

the time t and on the possible local values of the structure tensor

T . The connectivity function w is now a function of the structure

tensors T at point r of the continuum and T 0 at point r0.

( 4 )

H-planforms and Visual Perception
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We do not deal any further with this equation, leaving it for

future work, but see the Discussion section.

Considering equation (1) we will study how its solutions change

when the slope parameter m increases from the value 0. This study,

together with the formulation of hypotheses about the invariance of

the average membrane potential with respect to the action of some

subgroups of the group of isometries of the set of structure tensors,

predicts, through bifurcations of the solutions to (1), the appearance

of certain patterns displaying the kind of symmetries described by

these subgroups. If such patterns can indeed be observed by actual

measurements, e.g., optical imaging [31], then this would be a

strong indication that the neural ‘‘hardware’’ is built in such a way

that its state is insensitive to the action of these subgroups. To say

things differently, bifurcation theory and pattern formation could

potentially become theoretical probes for the validity of various

hypotheses about the neural organization of the brain, allowing to

make predictions about the kinds of patterns that should be

observed in the activity of real brains, and opening the door to the

design of experiments to test these hypotheses. This is indeed an

exciting perspective. We now proceed to flesh up the theory.

The mathematical structure of the set of structure
tensors

We present some important properties of the set of structure

tensors. These properties are somewhat scattered in the literature

and are relevant to our forthcoming discussion of pattern

formation in cortical tissues.

The key observation is that the structure tensors naturally live in

a hyperbolic space of dimension 3 that can be peeled, like an

onion, into sheets of dimension 2, each sheet corresponding to a

constant value of the determinant of the elements inhabiting it. We

are therefore led to study hyperbolic spaces of dimension 2 which

turn out to enjoy a very simple representation in the open unit disk

D of the complex plane, the so-called Poincaré disk, with its

fascinating non-Euclidean geometry that arises from the Rieman-

nian structure of the set of structure tensors. This geometry has

been studied in depth by mathematicians and theoretical physicists

and is still a very active research area with many open difficult

questions. We then establish the dictionary that will allow us to

translate statements about the structure tensors of determinant

equal to one into statements about complex numbers of magnitude

less than or equal to 1. The fundamental new item in this section is

the group of isometries of the Poincaré disk, analog to the group of

rigid displacements in the Euclidean plane, whose action on

complex numbers can be translated (the technical word is lifted)

into meaningful actions on structure tensors. We explain in Text

S1 how to put things back together, that is to say, how to

reconstruct in a mathematically coherent fashion the onion

representing the whole set of structure tensors from the description

of one of its sheets, or peels, i.e. the one corresponding to the unit

determinant structure tensors. The final touch is a somehow

deeper analysis of some subgroups of the group of isometries of D
introduced previously. These subgroups arise naturally when one

examines the kinds of invariances that the cortical representations

of the structure tensors should enjoy. The mathematical structure

that emerges in this context is that of a Fuchsian group, introduced

by Henri Poincaré in 1882 [32].

Consider the set SDP(2) of 2|2 symmetric positive-definite

matrices (see glossary in table 1). Indeed, let

T~
a c

c b

� �
,aw0,ab{c2

w0 ð5Þ

be an element of SDP(2).

We refer to a (respectively b, c) as the a-coordinate (respectively

the b- c-coordinate) of T .

If we scale T by lw0, lT is also an element of SDP(2). Hence

SDP(2) is a positive cone. It is open because it is defined by two

strict inequalities.

It is also a three-dimensional Riemannian manifold in which the

distance is defined as follows [33].

Given T 1 and T 2 in SDP(2), the Riemannian distance

d0(T 1,T 2) can be expressed as the Frobenius norm (the Frobenius

norm of a real matrix is the square root of the sum of the squares

of its elements) of the principal logarithm of T {1
1 T 2:

d0(T 1,T 2)~E log T {1
1 T 2EF ~

X
i~1,2

log2 li

 !1=2

, ð6Þ

where the lis are the eigenvalues of the matrix T {1
1 T 2. This

expression is symmetric with respect to T 1 and T 2 since

T {1
2 T 1~ T {1

1 T 2

� �{1
and the li s are positive since T {1

1 T 2 is

conjugate to the symmetric positive definite matrix T 1=2
2 T

{1
1 T

1=2
2 .

This definition of the distance between two tensors can be

motivated from a biological viewpoint. A tensor is a symmetric 2|2
matrix, hence it can be thought of a a three-dimensional vector

(a,b,c). The ‘‘natural’’ distance between two such vectors

(representing the tensors T 1 and T 2) is the usual Euclidean distance

(a1{a2)2z(b1{b2)2z(c1{c2)2. This distance has the following

problem. A tensor T defines a quadratic form z?t zT z. If we

change the coordinate system in which we express the coordinates of

two tensors T 1 and T 2 they become tMT 1M and tMT 2M, where

M [ GL(2,R) is the matrix defining the change of coordinate

system. It can be verified that this transformation does not leave in

general the Euclidean distance invariant whereas it does leave d0

Table 1. A glossary of mathematical notations.

SDP(2,R) The set of two-dimensional symmetric definite positive real
matrixes.

SSDP(2,R) The subset of SDP(2,R) whose elements have a
determinant equal to 1.

U(1,1) The indefinite unitary group of two-dimensional complex
matrixes that leave invariant the sesquilinear form

jz1j2{jz2j2.

SU(1,1) The subgroup of U(1,1) whose elements have a
determinant equal to 1.

GL(2,R) The group of two-dimensional invertible real matrixes.

SL(2,R) The special linear group of two-dimensional real matrixes
with determinant equal to 1.

E(2,R) The group of Euclidean transformations of R2.

O(2) The group of two-dimensional real orthogonal matrixes.

SO(2) The special orthogonal group of the real orthogonal
matrixes with determinant equal to 1.

D4 The symmetry group of a square.

D6 The symmetry group of the hexagon.

D8 The symmetry group of the octagon.

D The open disk of radius 1.

LD The boundary of D, the unit circle.

H The hyperbolic space.

doi:10.1371/journal.pcbi.1000625.t001
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invariant. This invariance is a very desirable feature since the

measure of similarity between two tensors (their distance) should not

depend on the particular coordinate system used to evaluate their

components. Hence it is very likely that evolution would rather

select d0 than the simpler but sometimes misleading Euclidean

distance.

From yet another perspective it can be shown, see e.g. [34,

Volume 1, Chapter X, Theorem 9], that there exists a change of

coordinates, i.e., a 2|2 matrix Z such that in the new coordinate

system tZT 2Z~diag(l1,l2) and tZT 1Z~Id2. In other words,

the distance (6), is a measure of how well T 1 and T 2 can be

simultaneously reduced to the identity matrix by a change of

coordinate system. This change of coordinate system is not in

general a pure rotation but a combination of a pure rotation and a

scaling of the coordinates. If we picture the structure tensor T as

the elliptic blob defined by the equation tzT zƒ1, z~(x,y), the

two tensors T 1 and T 2 are represented by two elliptic blobs as

shown in the lefthand part of figure 1. After the coordinate

transform defined by Z, T 1 is represented by a unit disk and T 2

by an elliptic blob whose major axes are the eigenvalues l1 and l2

that appear in (6), as shown in the righthand part of the same

figure.

There is a unique geodesics (curve of shortest length) between

two elements of SDP(2). Its expression is given in Text S3.

If we now consider the two-dimensional submanifold SSDP(2)
of the special positive definite matrixes whose determinant ab{c2

is equal to 1, it is clear that SDP(2)~SSDP(2)|Rz. We detail

this point in Text S1.

It can be shown that SSDP(2) equiped with the Riemannian

metric induced by that of SDP(2) is a Riemannian surface with

constant sectional curvature equal to 21, see Text S1 for details.

This indicates that it is isomorphic to the two-dimensional

hyperbolic space, noted H2, for which we now provide three

different models.

There are three main models of H2, the two-dimensional

hyperbolic space. Each model has its advantages and disadvan-

tages. We first present the hyperboloid model which is the most

natural for the set of structure tensors, next the Poincaré disk

model which is the most convenient for carrying out analytic

computations. We relegate in Text S2 the third model, called the

Poincaré half-plane model and noted H, which is not as

convenient as the second for visualizing important geometric

transformations such as rotations.

The hyperboloid model is defined as the hyperboloid sheet in

R3 of equation

x2
0{x2

1{x2
2~1, x0w0,

associated to the quadratic form q(x)~x2
0{x2

1{x2
2 which yields

by polarization the bilinear form b(x,x’)~x0x0’{x1x1’{x2x2’.

The corresponding Riemannian distance is given by

d1(x,x’)~arccosh b(x,x’):

Geodesics are the curves intersections of the hyperboloid sheet

with planes through the origin.

The Poincaré disk model is conveniently obtained by stereo-

graphic projection on the plane of equation x0~0 through the

point of coordinates ({1,0,0) of the hyperboloid model. This

establishes a one to one mapping of the hyperboloid sheet onto the

open unit disk D. Given two points z and z’ of D corresponding to

the points x and x’ of the hyperboloid, the corresponding

Riemannian distance is given by

d2(z,z’)~arctanh
jz{z’j
j1{zz’j , ð7Þ

and satisfies d2(z,z’)~d1(x,x’). We may also write

d2(z,z’)~
1

2
log
j1{zz’jzjz’{zj
j1{zz’j{jz’{zj ð8Þ

Geodesics in D are either diameters of the unit circle or circular

arcs orthogonal to it.

The surface element in D is given by

ds2~
dzdz

(1{jzj2)2
:

In the rest of the paper we use the Poincaré disk model. This is a

subjective choice essentially driven by the fact that this model

exhibits in an obvious manner the rotational symmetry of the

hyperbolic plane.

We now detail the relationships between SSDP(2) and its

representation in the Poincaré unit disk D. We also describe how

the action of the direct isometries of D on this representation lifts

to SSDP(2). This is important since it allows us to give an

interpretation in terms of image-based operations, hence biological

and computational, of the action of an isometry in D. This will

turn out to be most important in the sequel.

A unit determinant structure tensor T is a 2|2 symmetric

positive definite matrix defined by (5) and satisfying ab{c2~1.

This implies azb§2 because azb§2
ffiffiffiffiffi
ab
p

~2
ffiffiffiffiffiffiffiffiffiffiffiffi
1zc2
p

. The

linear change of variables

x0~
azb

2
x1~

a{b

2
x2~c ð9Þ

establishes a one to one mapping from the set of structure tensors

to the hyperboloid model of H2 from which we deduce the

correspondences with the Poincaré disk D. The corresponding

point in D is represented by the complex number

z~
1

2zazb
(a{bz2ic): ð10Þ

z satisfies

0ƒjzj~ azb{2

azbz2
v1:

Figure 1. Geometric interpretation of the distance between
two tensors. The two structure tensors T 1 and T 2 are represented by
the elliptic blobs shown in the lefthand side of the figure. After the
change of coordinates defined by the matrix Z, T 1 is represented by
the unit disk and the principal axes of T 2 are equal to the eigenvalues
l1 and l2 that appear in (6), see text.
doi:10.1371/journal.pcbi.1000625.g001
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We note Tr the trace azb of T . This shows that the border of D,

the unit circle, corresponds to the tensors such that Tr??.

Conversely, given a complex number z~z1ziz2 representing a

point of D, the corresponding tensor coordinates are given by

a ~
(1zz1)2zz2

2

1{z2
1{z2

2

b ~
(1{z1)2zz2

2

1{z2
1{z2

2

c ~
2z2

1{z2
1{z2

2

8>>>>>>>><>>>>>>>>:
ð11Þ

Note that equation (10) is the ‘‘Tensor to D dictionary’’ that allows

us to translate statements about structure tensors to statements

about points in the unit disk and equations (11) are the ‘‘D to

Tensor’’ dictionary.

Also note that we have

d0(T ,T 0)~d1(y,y’)~d2(z,z’)~d3(u,u’)

for all pairs (T ,T 0) of unit determinant structure tensors

represented by (y,y’) in the hyperboloid model, (z,z’) in the

Poincaré disc model, and (u,u’) in the Poincaré half-plane model

(see Text S2). In particular, the distance (6) defined between two

structure tensors is equal to the Hyperbolic distance between their

representations in the Poincaré half-plane or unit disk.

We now describe the isometries of D, i.e. the transformations

that preserve the distance d2. Here again we recall some basic

facts, now focusing on the hyperbolic geometry of the Poincaré

disc. We refer to classical textbooks in hyperbolic geometry for

details, e.g., [35]. The direct isometries (preserving the orientation)

in D are the elements of the special unitary group, noted SU(1,1),
of 2|2 Hermitian matrices with determinant equal to 1. Given

c~
a

b

b

a

� �
such that jaj2{jbj2~1,

an element of SU(1,1), where z indicates the complex conjugate of the

complex number z, the corresponding isometry c in D is defined by

c:z~
azzb

bzza
, z [ D ð12Þ

Orientation reversing isometries of D are obtained by composing any

transformation (12)) with the reflection k : z. z. The full symmetry

group of the Poincaré disc is therefore (see table 1)

U(1,1)~SU(1,1)|k:SU(1,1):

The action of the group SU(1,1) on the Poincaré disc D, is equivalent

to the conjugation on the set of structure tensors. We call it the lifted

action of SU(1,1) to the set of structure tensors. Indeed, let

c~
a

b

b

a

� �
,a~a1zia2,b~b1zib2

be an element of SU(1,1), whose action on D is given by (12), then it

can be shown by an easy computation that the lifted action on the

corresponding structure tensor T is

~cc:T~t~ccT ~cc, ð13Þ

where

~cc~
a1zb1 a2zb2

b2{a2 a1{b1

� �
[ SL(2,R): ð14Þ

Equation (13) is important. It shows that the ‘‘lifted’’ action on a given

structure tensor T of an isometry c of D is simply a change of

coordinates ~cc in the image plane, where the relation between c and ~cc is

given by equation (14). We show below that these changes of

coordinate systems have very simple interpretations for many of the

subgroups that generate SU(1,1).
Because isometries are conformal maps, they preserve angles.

However they do not transform straight lines into straight lines.

Given two points z=z’ in D, there is a unique geodesic passing

through them: the portion in D of the circle containing z and z’
and intersecting the unit circle at right angles. This circle

degenerates to a straight line when the two points lie on the same

diameter. Any geodesic uniquely defines the reflection through it.

Reflections are orientation reversing, one representative is the

complex conjugation k (reflection through the geodesic R): k:z~z.

Let us now describe the different kinds of direct (orientation

preserving) isometries acting in D. Thanks to (13), they induce

some interesting lifted actions on the set SSDP(2) of structure

tensors that we also describe. We first define the following one-

parameter subgroups of SU(1,1):
Definition 1.

K~fr ~
ei =2 0

0 e{i =2

" #
, [ S1g

A~fat~
cosh t sinh t

sinh t cosh t

� �
, t [ Rg

N~fns~
1zis {is

is 1{is

� �
, s [ Rg

8>>>>>>>>><>>>>>>>>>:
Note that r :z~ei z for z [ D and also, at

:0~tanh(t). The

elements of A are sometimes called ‘‘boosts’’ in the theoretical

Physics literature [36]. The corresponding, lifted, elements of

SL(2,R) are, according to (14),

~rr ~
cos

2
sin

2

{ sin
2

cos
2

264
375

~aat~
et 0

0 e{t

� �
~nns~

1 0

{2s 1

� �
,

8>>>>>>>>>>><>>>>>>>>>>>:
ð15Þ

They generate three subgroups, noted ~KK , ~AA and ~NN, of SL(2,R)
Then the following theorem holds (Iwasawa decomposition, see

[37]).

Theorem 1.

SU(1,1)~KAN SL(2,R)~ ~KK ~AA ~NN
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This theorem allows us to decompose any isometry of D as the

product of at most three elements in the groups K , A and N. The

group K is the orthogonal group O(2) which fixes the center O of

D. Its orbits are concentric circles. The orbits of A converge to the

same limit points of the unit circle LD b+1~+1 when t?+?.

They are the circular arcs in D going through the points b1 and

b{1. In particular the diameter (b{1,b1) is an orbit. The orbits of

N are the circles inside D and tangent to the unit circle at b1.

These circles are called horocycles with base point b1. Because of this

property, N is called the horocyclic group. These orbits are shown

in figure 2.

Any direct isometry which is not +Id2 (Id2 is the 2|2 identity

matrix) falls into one of the following three classes (representatives

of which being given by elements of K , A and N respectively):

(i) Elliptic elements: one fixed point in D;

(ii) Hyperbolic elements: two (and only two) fixed points on the

unit circle;

(iii) Parabolic elements: one and only one fixed point on the unit

circle.

Let us interpret the meaning of (13) in particular in view of the

above definition of the three groups K , A, N and equations (15),

i.e., what is the corresponding action on the unit determinant

structure tensor T represented by the point z of D when z is acted

upon by the two groups K and A (note thatt there is no

corresponding intuitive interpretation for the horocyclic group N).

1. The action r :z of an element r of K on an element z of D lifts

to the conjugation ~rrTT ~rr of the structure tensor T represented

by z. This is equivalent to say that we rotate by =2 the

orthonormal basis (e1,e2) in which the coordinates of T are

expressed.

2. The action at
:z of an element at of A on an element z of D lifts

to the conjugation ~aaT
t T ~aat of the structure tensor T represented

by z. This is equivalent to saying that we scale the first vector of

the orthonormal basis (e1,e2) in which the coordinates of T are

expressed by et and the second by e{t.

At this point the reader may wonder what is the biological an/

or computational relevance of imposing on the structure tensors

the constraint that their determinant be equal to 1. This is indeed

a somewhat unnatural assumption. In Text S3 we propose a

spherical model of the whole set, SDP(2), of structure tensors that

is obtained by piecing together into a sphere the scaled Poincaré

disk models of each subset of structure tensors of constant

determinant, see Figure S1. Because of this model we can restrict,

without loss of generality, our attention to the set SSDP(2) of unit

determinant structure tensors.

A question which will be important in our subsequent analysis of

pattern formation is that of the periodic tilings of the hyperbolic

plane, i.e., the existence of a compact domain F of D and of a

discrete subgroup C (a so-called Fuchsian group [35]) of the isometry

group of D, such that (F
0

is the interior of the closed set F , i.e. the

largest open set included in F ):

(i) F
0

\(c:F )~1 for all c [ C,c=Id

(ii)D~
[
c[C

c:F

Such an F is called a fundamental domain for C which is furthermore

called co-compact if F is compact. This property is relevant to the

upcoming discussion about the eigenvalues and the eigenfunctions

of the restriction to their Dirichlet regions of the Laplace-Beltrami

(the Laplace-Beltrami operator is the generalisation of the Laplace

operator to operate on functions defined on surfaces, or more

generally on Riemannian manifolds) operator.

This definition is similar to the one which holds for the discrete

subgroups of the isometry group, noted E(2,R), of the Euclidean

plane. It is well-known that periodic tilings of the Euclidean plane

are associated with lattice subgroups of the translation group R2,

i.e. discrete subgroups C defined by a vector basis (e1,e2) and

C~fme1zne2,(m,n) [ Z2g. The maximal subgroup of O(2)
which leaves the lattice invariant is called the holohedry of the

lattice. If Ee1E~Ee2E, the only possibilities are when these two

vectors make a right angle (square lattice, holohedry D4), an angle

equal to p=3 or 2p=3 (hexagonal lattice, holohedry D6), or an

angle different from those ones (rhombic lattice, holohedry D2). A

‘‘degenerate’’ case is when any period is allowed in one direction,

in other words C~fme1zye2,e2\e1,(m,y) [ Z|Rg. In this case

the fundamental domain is non compact and fills a ‘‘strip’’

between two parallel lines orthogonal to e1 and distant of length

Ee1E. Since the quotient R2=Z2 is a torus, harmonic analysis for

functions which are invariant under the action of C reduces to

Fourier series expansion for bi-periodic functions in the plane.

In the hyperbolic case the problem is more complex. The

reason is that the Euclidean plane, which can be viewed as the

symmetric space E(2,R)=O(2), is an Abelian group, while the

Poincaré disc D^SU(1,1)=SO(2) is a symmetric space but has no

such group property. It was shown by Poincaré in 1880 that any

regular polygon (in fact, the size of the polygon is important as

described in a theorem due to Poincaré [35, Theorem 4.3.2]) in D

generates a periodic tiling by acting recursively with reflections

along the edges of the ‘‘tiles’’ [35].

Figure 2. The orbits in the Poincaré disk D of the three groups K , A and N .
doi:10.1371/journal.pcbi.1000625.g002
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Harmonic analysis for C-invariant functions in D is difficult and

relies upon the theory of modular functions and associated

concepts (see [38,37]).

One special and important case for our purpose is the following.

Let us consider the horocycle, noted j0, with base point b1 [ LD
and passing through the center O of D. Let jt be the image of j0

under the hyperbolic transformation at (see the definition above),

i.e. the circle tangent to LD at b1 and going through the point

at
:O. The map t [ R.at is a group homomorphism. Therefore,

given Tw0, the set fanT ,n [ Zg is a discrete subgroup of the

group A whose fundamental (non compact) domain is delimited,

for example, by the horocycles j0 and jT . This ‘‘croissant’’ shaped

domain is the analogue the ‘‘strip’’ in the Euclidean case. The

‘‘lines’’ perpendicular to the horocycles are the geodesics

emanating from the point b. Any function in D which is invariant

under the action of the horocyclic group N and which is

‘‘periodic’’ with respect to a subgroup of A as above, can therefore

be developed in Fourier series in the variable t. We shall come

back to this later in more details.

Fundamental regions may be unnecessarily complicated, in

particular they may not be connected. An alternative definition is

that of a Dirichlet region of a Fuchsian group. Given two points z
and z’ of D we recall that the perpendicular bisector of the

geodesic segment ½z,z’� is the unit geodesic through its midpoint

(for the hyperbolic distance in D) orthogonal to ½z,z’�. If z is a point

of D which is not fixed by any element of a Fuchsian subgroup

C{fIdg of SU(1,1) (such points exist according to [35, Lemma

2.2.5]) the Dirichlet region for C centered at z is the set noted

Dz(C) defined by

Dz(C)~fp [ Djd2(p,z)ƒd2(p,c(z)) Vc [ Cg

It can be shown that Dz(C) is a connected fundamental region for

C, [35, Theorem 3.2.2], that generates a periodic tiling of D.

We noted that the action of ~KK on the set of structure tensors was

equivalent to a rotation of the Euclidean coordinate system. If we

consider the discrete subgroup ~KKn of ~KK (respectively Kn of K )

generated by the rotations of angles p=n, n [ Nz. Kn is a Fuchsian

group because it is obviously discrete. It is easy to find a non-

compact Dirichlet region for this group showing that it is not co-

compact. Nonetheless, the quotient group D=Kn can be

interpreted in terms of retinal properties. An element of D=Kn is

an equivalence class of structure tensors which are the same tensor

expressed in orthonormal Euclidean coordinate systems that are

rotated by multiples of p=n with respect to each other. This makes

perfect sense in terms of a discrete organisation of a visual area as

an arrangement of such elements as hypercolumns at the vertixes

of a periodic (Euclidean) lattice. For example, a square lattice

corresponds to n~2 or 4, a hexagonal lattice to n~6.

In a similar manner, the action of ~AA is the multiplication of the

a-coordinate of the tensor by l~e2t and of the b-coordinate by

1=l, leaving c unchanged. Remember that a has the interpretation

of the spatial average of the square of the spatial derivative Ix of

the image intensity in the x direction, b of the average of the

square of the spatial derivative Iy of the image intensity in the y

direction, and c of the spatial average of the product IxIy, see

figure 3. Ix is approximated by the cortical structure by such

quantities as (I(xzDx,y){I(x,y))=Dx, and a similar expression

for Iy involving a distance Dy. This requires that the distances Dx

and Dy be known to the neuronal elements something unlikely to

happen. Their product DxDy has the dimensionality of an area

proportional to the average area of the tiles of the periodic

(Euclidean) lattice formed by the hypercolumns. The action of ~AA

on a structure tensor is therefore equivalent to changing Dx and

Dy while preserving their product, the tile area.

For a given value T of the real parameter t we note AT

(respectively ~AAT ) the cyclic subgroup of A (respectively of ~AA)

generated by the group element aT (respectively ~aaT ).

We consider the free product (the free product of two groups G

and G’ is the set of ‘‘words’’ composed of ‘‘letters’’ that are

elements of G and G’, see [39] for details) Cn,T~Kn � AT of the

two groups Kn and AT . It is an infinite subgroup of SU(1,1). It is

generated by the elliptic element r2p=n (see equations (15)) and the

hyperbolic element aT . Why is this group important? If we

consider the quotient group D=Cn,T an equivalence class ~zz is the

orbit of z, a point of D, under the action of Cn,T or, equivalently,

an equivalence class T of the unit determinant structure tensor T
represented by z under the action of the lifted subgroup
~CCn,T~ ~KKn � ~AAT of SL(2,R). All tensors in T are representations

of the same ‘‘intrinsic’’ tensor in coordinate systems that differ only

by finite iterations of rotations of p=n and scalings by eT . In other

words this equivalence class reflects the kind of geometric

‘‘ignorance’’ that we may expect from the neuronal populations

that deal with structure tensors. Continuing the analysis, if the

group Cn,T is Fuchsian for some values of T and n then we are

naturally led to consider one of its fundamental domains or

Dirichlet regions. As mentioned above it defines a periodic tiling of

D which can be used to define functions in D that are invariant

with respect to the action of Cn,T and hence functions of structure

tensors that are invariant with respect to the action of ~CCn,T .

The question of whether Cn,T is a Fuchsian group depends on

the respective values of T and n. The question has been answered

in general for two elements of SU(1,1) [40,41,42]. It can be cast as

an algorithm whose complexity is polynomial [43]. For the values

of the rotation angle of interest to us we have the following

proposition whose proof can be found in Text S4.

Proposition 1. C2,T is a Fuchsian group for all T=0. C4,T

(respectively C6,T ) is a Fuchsian group if cosh T§

ffiffiffi
2
p

(respectively if

cosh T§2).

Figure 3. Simple transformations in the image plane. The
coordinate system (e1,e2) which is used to estimate the image
derivatives and some of its transformations under the action of some
elements of ~CCn,T (see text).
doi:10.1371/journal.pcbi.1000625.g003
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At this point we do not know whether some of these Fuchsian

groups are co-compact.

Results

The dynamics of equation (1) depends on the input signal I(T ,t),
the sigmoid function S and the connectivity function w(T ,T 0). In

the Poincaré disk this equation reads, with a slight abuse of notations

Vt(z,t)~{aV (z,t)z

ð
D

w(z,z’)S(V (z’,t))dm(z’)zI(z,t), ð16Þ

where z and z’ are the representations of T and T 0 and

dm(z’)~
dz1’ dz2’

(1{jz’j2)2
z’~z1’ziz2’, ð17Þ

is the Poincaré disk model area element.

We only consider this equation in the sequel. The reader can

easily convert all the results to the set of tensors using the

dictionary previously developed.

Let us assume from now on that I~0. This corresponds to an

isolated set of neural populations, which however interact among

themselves and may have non trivial states and dynamics. Our aim

is to analyse this problem from the point of view of the bifurcation

from a trivial state. Indeed, assuming that a solution V of this

equation is homogeneous, meaning that it does not depend upon

the structure tensor, it follows that the equation to solve reduces to

a single real equation of the form

{VzW0S(V )~0

where W0~
Ð

D
w(0,z’)dm(z’). This equation has a single solution

whatever W0 and mw0 (see equation (2)). We may perform a

simple change of coordinates to shift this solution to 0. This is

equivalent to the choice of a sigmoid function of the form

S0(x)~
1{e{mx

2(1ze{mx)
ð18Þ

in equations (1) and (16), which we will assume in the following. A

fundamental property of this new equation is that its symmetries

are preserved by this change of variables.

With these choices V~0 is a solution for all values of W0 and m.

Note that, when m is small, this solution is dynamically stable against

perturbations, at least against those which are small in L2-norm. We

may therefore ask what happens when m is increased. In order to

answer this question we perform a bifurcation analysis of the solution

of equation (16) with S~S0 with respect to the parameter m.

Hyperbolic waves in the Poincaré disc
We therefore consider equation (16). The next step in the

analysis of the bifurcations of its solutions is to look at the

linearized equation and determine the critical values of the slope m
at which the trivial solution V~0 is destabilized under the

influence of some biologically admissible (hence bounded)

perturbations. For this we would like to proceed as in the

Euclidean case, that is, by looking for perturbations in the form of

elementary plane waves, the superposition of which defines a

periodic pattern in the space D (or R2 in the Euclidean case).

Let us first recall the Euclidean setting. In this case plane waves

are called planforms and have the general form eik:r where k is

any vector in R2 (the ‘‘wave vector’’). Each planform is an

eigenfunction of the Laplace operator D corresponding to a real

eigenvalue (EkE is the Euclidean norm of the vector k):

Deik:r~{EkE2eik:r,r [ R2:

The fact that the eigenvalue does not depend upon the direction of

the wave vector reflect the rotational invariance of the Laplace

operator. Moreover, a given planform eik:r is clearly invariant

under translations in R2 by any vector e satisfying the condition

k:e~2np where n [ Z (it clearly does not depend upon the

coordinate along the axis orthogonal to k). It is an elementary but

fundamental fact of Euclidean geometry that given any two vectors

k1, k2 of equal length, we can define the periodic lattice L spanned

in the plane by e1 and e2 such that ki
:ej~2pdij , and that any

smooth function in the plane which is invariant under translations

in L can be expanded in a Fourier series of planewaves

ei(mk1znk2):r, m,n [ Z. Therefore in a suitable space of lattice

periodic functions the spectrum of the Laplace operator is discrete

with real eigenvalues of finite multiplicities, the corresponding

eigenfunctions being planforms, and we can proceed to classical

bifurcation analysis if the equations do not have additional

degeneracies or singularities (this was the approach of [44] for the

analysis of visual hallucinations formation in the cortex).

Our aim is to apply similar ideas to the case when the problem

is defined in the Poincaré disc instead of the Euclidean plane. A

first remark is that we cannot define a periodic lattice in D by just

assigning two basic wave vectors (D is not a vector space). There

exist however a large number of periodic lattices in D. Those are

defined by discrete subgroups of SU(1,1), and there are many

such groups (called Fuchsian groups, see above). We may therefore

consider functions which are invariant under the action of a

Fuchsian group. Thanks to their invariance under the action of

U(1,1) we know that our equations can be restricted to such

functions. Moreover, if the fundamental domain of a Fuchsian

group is compact (see above), it is known that the Laplace-Beltrami

operator restricted to this class of functions has a discrete spectrum

of real eigenvalues with finite multiplicities. However before we go

further in this direction, we first need to analyze the effect of

perturbations in the form of elementary waves, the hyperbolic

counterpart of planforms.

Such hyperbolic plane waves have been introduced by Helgason

[45] and are defined as follows: Let b be a point on the circle LD,

which we may take equal to b1~1 by a suitable rotation. For

z [ D, we define the ‘‘inner product’’ Sz,bT to be the algebraic

distance to the origin of the (unique) horocycle based at b going

through z. This distance is defined as the hyperbolic (algebraic)

length of the segment Oj where j is the intersection point of the

horocycle and the line (geodesic) Ob, see figure 4. Note that Sz,bT
does not depend on the position of z on the horocycle. In other

words, Sz,bT is invariant under the action of the one-parameter

group N (see definition above). One can check that the functions

el,b(z)~e(ilz1)Sz,bT,l [ C,

are eigenfunctions of the Laplace-Beltrami operator D in D with

eigenvalues {l2{1. Helgason [45] used these functions to define

the Fourier transform in D pretty much like the elementary

functions eilx:v, x,v[ R2, EvE~1, are used to define the usual

Fourier transform in the plane.

We now define the Helgason hyperbolic planforms (or H-planforms) as

the functions el,b with l [ R or l~azi, a [ R. The first case

corresponds to a real eigenvalue of D. In the second case, the

eigenvalue is complex and equal to {a2{2ia. The reasons for
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introduction of these H-planforms will become clear from the

following properties:

(i) they are by construction invariant under the action of the

subgroup N (i.e. along the horocycles of base point b1). They

correspond therefore to wavy patterns along the geodesics

emanating from b1. These geodesics are parallel to each

other and orthogonal to the horocycles. In that sense, these

patterns are hyperbolic counterparts of the Euclidean

planforms which correspond to trains of waves orthogonal

to parallel straight lines in the plane (geodesics for the

Euclidean metric).

(ii) Let us express z [ D in ‘‘horocylic’’ coordinates: z~nsat
:O,

where ns are the (parabolic) transformations associated with

the group N (s [ R) and at are the (hyperbolic) transforma-

tions associated with the subgroup A (t [ R), see definition

above and figure 4.

It is readily seen from the definitions and formula (8) that

Snsat
:O,b1T~t. Therefore, in these coordinates, the H-planforms

with base point b1 read el,b1
(z)~e(ilz1)t. In particular if l~azi,

then eazi,b1
is periodic with respect to the coordinate t with period

2p=a. Of course the same property holds at any base point b by

simply rotating the planform by the angle (b1,b). The H-planform

is said to be periodic in this case. Figure 5 shows the pattern of a

periodic H-planform. If l [ R, the eigenfunction el,b1
is not

periodic due to the factor et in front of eilt. It does however

correspond to a physically relevant wavy pattern in the sense that

its ‘‘energy density’’ is expressed as el,b1
(t)e{l,b1

(t)e{2tdt~dt and

is therefore bounded (here we applied the expression e{2tdtds for

the surface element in horocyclic coordinates, see [45]).

We now proceed with the linear step of our bifurcation analysis.

The eigenvalue problem for equation (16)
The linearisation of equation (16) at the trivial solution V~0,

with no input and with V : D|R?R, reads

Vt(z,t)~{V (z,t)zm

ð
D

w(z,z’)V (z’,t)dm(z’) ð19Þ

where m~S0’(0) and dm(z’) is the ‘‘hyperbolic’’ measure in D

defined in equation (17. Since equation (16) is invariant with

respect to the isometries of D, we can look for solutions which

are invariant under the action of the subgroup N. It is then

appropriate to express z,z’ [ D in horocyclic coordinates:

z~nsat
:O, z’~ns’at’

:O. The hyperbolic surface element in these

coordinates is expressed as [45]

dm(z’)~e{2t’dt’ds’ ð20Þ

The invariance then reads

V (nsat
:O)~V (at

:O), for all (s,t) [ R2 ð21Þ

The integral term in (19) defines a linear operator, noted L, on the

set of average membrane potential functions V , which can be

expressed as follows (the last identity following from the change of

variable s’{s~xe2t’ and the relation atnx~nxe2t at [45]):

(L:V )(nsat
:O)~

ð
R

ð
R

w(nsat
:O,ns’at’

:O)V (at’
:O)ds’e{2t’dt’

~

ð
R

ð
R

w(at
:O,ns’{sat’

:O)V (at’
:O)ds’e{2t’dt’

~

ð
R

ð
R

w(at{t’
:O,nx

:O)dx

� 	
V (at’

:O)dt’

This shows that L:V does not depend on the coordinate s (as

expected).

We have reduced the problem to an integro-differential

equation in the single coordinate t. Moreover, if we define

eww(j)~

ð
R

w(aj
:O,nx

:O)dx

and assume that the integral is convergent for j [ R (this is the

Figure 4. Horocyclic coordinates. The horocyclic coordinates of the
point z of D are the real values s and t such that z~nsat

:O. The
horocycle through z is the circle tangent to LD at b1 and going through
z. Sz,b1T is equal to the (hyperbolic) signed distance d2(O,at

:O)
between the origin O and the point at

:O which is equal to t and is
negative if O is inside the circle of diameter (O,at

:O) and positive
otherwise.
doi:10.1371/journal.pcbi.1000625.g004

Figure 5. A periodic H-planform. A representation of the periodic
H-planform eazi,b1

. The color represents the value of the magnitude of
eazi,b1

(z) for z varying in D. The periodicity is to be understood in terms
of the hyperbolic distance d2 . The hyperbolic distance between two
consecutive points of intersection of the, say yellow, circles with the
horizontal axis is the same. It does not look so to our ‘‘Euclidean’’ eyes
and the distances look shorter when these points get closer to the point
b1 on the right and to the point b{1 of LD on the left. These points are
actually at an infinite distance from the center O of D.
doi:10.1371/journal.pcbi.1000625.g005
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case with w defined by the function g in (3)), then equation (19)

leads to the eigenvalue problem

seVV~{eVVzmeww?eVV ð22Þ

where ? is a convolution product and we have set eVV (t)~V (at
:O).

This problem can be solved by applying the Fourier transform in

D which is defined as (see [45]):

ĥh(l,b)~

ð
D

h(z)e({ilz1)Sz,bTdm(z)

for a function h : D?C such that this integral is well-defined.

Thanks to the rotational invariance we can restrict ourselves to the

case b~b1~1, which gives, in horocyclic coordinates:

ĥh(l,b1)~

ð
R

ð
R

h(nsat
:O)e({il{1)tdtds ð23Þ

Rotational invariance implies that the same equations would be

obtained if an H-planform with another base point b were chosen.

This can be seen directly on the expression of H-planforms from

the relation (see [45])

el,b(z)~el,r :b(r :z),r [ K ,z [ D:

It follows that for a given l and eigenvalue s, there is in fact a full

‘‘circle’’ of eigenfunctions el,b, b [ LD.

Bifurcation of periodic H-planforms
We assume l~azi in this section. This means that we are

looking for solutions of (22) of the form esteazi,b1
(z)~esteiat, a [ R.

The H-planforms are not only invariant along horocycles, but also

2p=a periodic with respect to the coordinate t as shown above. If a

bifurcation occurs with such a planform, the corresponding

solutions of equation (16) will be s-invariant and t-periodic. We

first look at the critical eigenvalue problem for such H-planforms.

Applying the Fourier transform to (22) leads to the following

expression for the eigenvalues:

s(a)~{1zmŵw(a) ð24Þ

where ŵw is the Fourier transform of eww. Numerical calculation has

been performed to compute ŵw in the case when w is defined by the

‘‘Mexican hat’’ g given in (3)). Note that the function eww is not even

(hence the operator L is not symmetric). The following two

properties of ŵw are therefore not surprising (they would be false if the

system were defined in the Euclidean plane instead of the Poincaré

disc, because in this case L would be a symmetric operator): (i) the

eigenvalues are complex in general, (ii) the graph of ŵw shows

maxima and minima. Figure 6 below shows the graph obtained with

s1~0:9, s2~1, h~0:6, and f : x?x2 in equation (3.

All eigenvalues come in pairs of complex conjugates and of course

ŵw({a)~ŵw(a). The most unstable eigenvalues are those corre-

sponding to the maximum of Re(ŵw), that is, in the case of Figure 6,

with jaj~ac&0:76. The critical value mc of m is obtained by setting

the real part of {1zmŵw(ac) equal to 0. The corresponding critical

eigenvalues are +iv0 with v0~mcIm(ŵw(ac)) (with the parameter

values of Figure 6, v0&0:04 and m~mc&0:65). When mvmc, small

fluctuations around the trivial state of equation (16) are damped,

while as m crosses the critical value, perturbations with period 2p=ac

will grow. In fact a continuum of wave numbers close to ac may also

give rise to unstable modes, however we now restrict our analysis to

functions which are T -periodic in t with period T~2p=ac. This

allows us to reduce the problem to an equation bearing on functions

U of the time t and the single variable t, which are square integrable

in the interval of periodicity ½0,T �.
It follows that a Hopf bifurcation occurs from the trivial state of

equation (1) at m~mc. Applying a procedure which is classical in

the Euclidean case [46], we formulate the problem in operator

terms as follows. Let r~m{mc be close to 0, then

dU

dt
~L0

:UzrL1
:UzC(U)zR(U ,r) ð25Þ

where the operators L0, L1 and NL are defined as follows

L0
:U~{Uzmceww?U

L1
:U~eww?U

C(U)~
mc

12
eww?U3,

U3 is the function (t,t)?(U(t,t))3, and R(U ,r) stands for the

higher order terms in U and r. These operators are defined in the

Hilbert space F of square integrable,
2p

ac

-periodic functions

F~L2(R=(
2p

ac

Z),R). L0 and L1 are compact operators in F
and NL,R [ C?(F ,F ). The critical eigenvalues +iv0 of L0 are

simple. It follows from general Hopf bifurcation theory [47] that a

branch of periodic solutions bifurcates from the trivial state at

m~mc, i.e at r~0, with a period 2p=v where v is close to v0, and

the leading order of which has the form

U0(t)~e ei(vtz )eaczi,b1
ze{i(vtz )eaczi,b1


 �

Figure 6. Color representation of the complex valued function
ŵw. Real (blue) and imaginary (red) parts of ŵw defined in equation (24) for
eazi, b H-planforms, a [ R, see text. We chose s1~0:9, s2~1, h~0:6 and
f (x)~x2 in equation (3.
doi:10.1371/journal.pcbi.1000625.g006
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where is an (arbitrary) phase. Plugging this into equation (25)

and passing in Fourier space at the value a~ac we obtain the

bifurcation equation

iv~iv0zŵw(ac)er{
1

4
ŵw(ac)e3zh:o:t:

from which it follows that

e~+2
ffiffiffi
r
p

zO(r)

and v{v0 is readily deduced from this by taking the imaginary

part of the bifurcation equation. The branching is therefore

supercritical (for rw0) and the bifurcated, periodic solutions are

stable against perturbative modes which respect the symmetries of

the solutions (‘‘exchange of stability principle’’, [48]). At this stage

however, no general stability statement can be made.

One last remark should be made about these periodic solutions.

In a suitable space of time-periodic functions (as chosen to perform

the Hopf bifurcation analysis, see [46]) the invariance under time

translations of the problem induces a ‘‘temporal’’ symmetry by the

action of the group S1~R=Z. This group simply acts by time

shifts mod 2p=v (the time period of the bifurcated solutions). On

the other hand, another copy of S1 acts on (25) by shifts along the t
coordinate mod 2p=ac (‘‘spatial’’ periodicity). These two groups

act as follows on the leading term ei(vtzact) of the bifurcated

solutions:

( ,y) [ S1|S1.ei(vtz zactzy)

Therefore this term, which is also the complex eigenmode for the

linear part of the equation, is fixed under the action of the one-

parameter subgroup of S1 defined by setting ~{y. By the

general theory of Hopf bifurcations with symmetry [49]), this

property propagates to the full solutions of (25). The interpretation

is that, for an observer moving along the t coordinate with velocity

{v=ac, the solution looks stationnary. Solutions which have this

property are called relative equilibria [50,46], and in the present

case they can also be named H-traveling waves. These solutions

resemble a train of H-planforms propagating from the ‘‘source’’ at

infinity which is the tangency point b of the horocycles, see Video

S1.

Bifurcation of periodic patterns in D
In the previous section we found bifurcated solutions which

were periodic along the geodesics emanating from a point at

infinity (i.e. on LD) and invariant along the orthogonal direction

(that is, along the horocycles). This pattern corresponds to the

Euclidean ‘‘strip’’ or ‘‘roll’’ pattern, with the noticeable difference

that the latter are usually steady, while in our case they are

uniformely traveling from the source at infinity. Is it possible to go

further in the analogy with the Euclidean case? Is it possible to find

bifurcating patterns which are invariant with respect to a periodic

lattice (or ‘‘tesselation’’) in D, in other words patterns which are

invariant under the action of a discrete subgroup C of U(1,1) with

a compact fundamental domain. This would be of physical

relevance because it would correspond to bounded states.

Moreover periodic tilings with certain types of compact ‘‘tiles’’

related for example to the groups Cn,T may be specially relevant to

our problem as described above.

However the occurence of such groups and the requirement of

compactness of their fundamental domain obeys very strict rules.

In particular, an important difference with the Euclidean tilings is

that fundamental polygons for a given group have a fixed area:

applying some rescaling to the domain will in general destroy the

tiling property.

In any case, it results from general spectral theory on the

hyperbolic plane that the spectrum of the Laplace-Beltrami

operator restricted to C-invariant eigenfunctions, C with a

compact fundamental domain, is discrete and its eigenvalues have

finite multiplicity [38,37]. Any smooth (square integrable) C-

invariant function (or ‘‘automorphic function’’) in D can be

expanded in a series of eigenfunctions of D. These eigenfunctions

can be expressed in terms of el, b H-planforms (l [ R) as follows:

Yl(z)~

ð
LD

e(ilz1)Sz,bTdT(b)

where T is a distribution defined on the boundary LD of the unit

disc D which in addition satisfies certain equivariance relations

with respect to the action of C on LD. Here Yl is an eigenfunction

for the eigenvalue {l2{1, but the values of l depend on C and

there is no known simple or explicit way to compute these values

and the corresponding distribution T .

We can nevertheless determine the threshold at which

perturbations along the elementary H-planforms el, b will lead to

instability of the trivial state for equation (19). The method is

completely similar to the one for periodic H-planforms. The

eigenvalues are given by equation (24). Figure 7 shows an example

of the function ŵw(l). As expected it takes only real values

corresponding to the fact that the eigenvalues are real in this case.

The most unstable eigenvalue corresponds to the maximum of the

blue curve, the corresponding abscissa being the ‘‘critical’’ wave

number lc. The critical value of the parameter m is then defined by

the relation 0~{1zmcŵw(lc), for which all eigenvalues are

negative but one, the critical eigenvalue, which is at 0. Therefore

when m crosses this threshold the system undergoes a steady-state

bifurcation.

The next question is to look for discrete groups C such that this

critical value also corresponds to C invariant eigenfunctions. We

have not carried out this program yet.

Figure 7. Color representation of the complex valued function
ŵw. Real (blue) and imaginary (red) parts of ŵw defined in equation (24) for
el, b H-planforms, l [R, see text. We chose s1~0:8, s2~1, h~0:7 and
f (x)~x2 and f (x)~x2 in equation (3.
doi:10.1371/journal.pcbi.1000625.g007
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The computation of the eigenvalues and C invariant eigenfunc-

tions can only be achieved by numerical approximation. Only a

few cases have been investigated in detail, for example the case

when C is the octagonal Fuchsian group (see [51,36]). This group,

which we note C8, is spanned by four ‘‘boosts’’ (hyperbolic

elements of SU(1,1)) gk with g0~
1z

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2z2
ffiffiffi
2
ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2z2
ffiffiffi
2
pp

1z
ffiffiffi
2
p

" #
and

gk~rkp
4

g0r
{

kp
4

, k~1,2,3. Its fundamental domain is the regular

octagon which defines a tesselation of D, of which two elements

are shown as black continuous lines in Figure 8.

In order to illustrate what an eigenfunction for the regular

octagonal group does look like, we have computed one such

eigenfunction following the method exposed in [36]. The result is

shown in Figure 8. Note the pattern which consists of pairs of blue

and red spots uniformly distributed around the central octagon

(which is materialized by a dark line as well as the image under the

generator g0 of this octagon). This pattern is reproduced at infinity

toward the boundary of the disc (which, in hyperbolic geometry, is

at infinity) by acting with the elements of C8. In this figure the

resolution becomes rapidly bad when approaching the boundary,

but in Figure 9 we show a magnification of the sector in which the

transformed octagon under g0 lies. In this figure we can nicely see

how the pattern inside the central octagon has been transformed

under g0. If one is interested in the interpretation of these images

in terms of structure tensors rather than in terms of points in the

Poincaré disk, one can use the ‘‘D to Tensor dictionary’’ defined

by equations (11). As an example, looking at figure 9, we see that

the centers z and z’ of the red and blue blobs in the ‘‘main

octagon’’ are symmetric with respect to the horizontal axis and

such that z~0:55z0:1 i and z’~0:55{0:1 i. This corresponds to

the two structure tensors

T~
3:51 0:29

0:29 0:31

� �
T 0~

3:51 {0:29

{0:29 0:31

� �
,

whose distance is equal to 0.81.

We should now take into account the symmetry group of the

octagon, isomorphic to the dihedral group D8 which contains 16

elements generated by the rotation r ~
def

rp
4

and by the reflection k
through an axis of symmetry of the octagon. These transforma-

tions are all elements of U(1,1). The fundamental domain of D8 in

the octagon is 1=16th piece of the cake. It follows from the

calculations of [36] that the eigenvalues of D in this fundamental

domain (with suitable boundary conditions) are simple, therefore

the eigenvalues in the octogon with suitable periodic boundary

conditions are either simple or double depending on the way in

which the rotation r acts on these eigenvectors. From the

bifurcation point of view, this means that we may look for

solutions in D which are invariant under the action of C8 and

which transform like these eigenvectors under the action of D8,

henceforth reducing the problem to a simple or double eigenvalue

problem with D8 symmetry.

The theory of Dn symmetry breaking bifurcations (n an integer)

is well established, see [49]. We list below the generic situations

which can occur according to the type of action of rotations and

reflections in D8 on the eigenvectors at a critical parameter value.

We show in table 2 the generic bifurcations of C8-periodic

patterns. We note f an eigenvector of the Laplace-Beltrami

operator D at a critical parameter value. Note that the octagon has

two different types of symmetry axes: those joining opposite

vertices and those joining the middle of opposite edges. The first

case corresponds to points which are fixed under the reflection k

Figure 8. An example of an H-planform which is invariant with
respect to the octagonal Fuchsian group. We have superimposed
two fundamental domains: in the center the ‘‘main’’ one containing the
origin, to its right another fundamental domain that shows the
Euclidean distorsion due to the increase in the hyperbolic distance. In
effect these two octagons can be exactly superimposed through the
action of a hyperbolic isometry. The color encodes the value of the H-
planform, blue indicates negative values, red indicate positive values,
green indicates values close to 0.
doi:10.1371/journal.pcbi.1000625.g008

Figure 9. Zoom on the first ‘‘octant’’ of the Poincaré disk. It is at
a higher spatial resolution than figure 8. In particular for the second
octagon, the one to the right of the ‘‘main’’ one, it shows better the
relationship between the intensity patterns within the two octagons.
doi:10.1371/journal.pcbi.1000625.g009
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(or a conjugate of k in D8). The second case corresponds to points

which are fixed under the reflection k’~rp
8
krp

8
(or a conjugate of k’

in D8).

Note that the periodic pattern illustrated in Figure 8 corre-

sponds to what a bifurcated state would look like in the case of the

second line of table 2.

We are however unable at this stage to tell without further and

quite involved computations, which type of symmetry breaking

will occur as the parameter m crosses the stability threshold.

Discussion

Our investigations are somewhat related to some of the issues

raised by Ermentrout [29]. They are also related to the work of

Bressloff, Cowan, Golubitsky, Thomas and Wiener [52,44] on a

model where either the connectivity kernel w does not depend at

all on the image features or is only sensitive to the (local) direction

of the lines in it. This has led to beautiful results on the

‘‘spontaneous’’ occurence of hallucinatory patterns under the

influence of psychotropic drugs. In further studies, Bressloff and

Cowan have attempted to extend the theory to models taking into

account not only the directional feature but also the spatial

frequency in the images [53,54,24]. Based on the experimental

observation that hypercolumns seem to be organized around

‘‘pinwheels’’ in the visual cortex (points at which neurons are

sensitive to any direction), they derived a model where direction

and frequency define a point on the unit sphere S2 and the

connectivity kernel is invariant under the group SO(3) of rotations

of the sphere.

Our approach differs in that we model edges and textures

simultaneously at a given scale through the structure tensor. The

underlying feature space and its transformations are more

complicated than the sphere S2 and its rotation group SO(3).
We showed that they can be represented by the Poincaré disk and

its group of hyperbolic isometries. This naturally leads to a model

of visual edges and textures where the equations are invariant by

isometries in the (hyperbolic) space of structure tensors. Spatial

scale can probably be included as well, this is the subject of future

work.

There are also connections between our work and some

previous work by Ben-Shahar, Zucker and colleagues [55] who

discuss the representation and processing in V1 of a larger set of

visual features including edges, textures, shading, stereo. They do

not deal at all with the problems of group invariance and of

bifurcations of neural states, most likely because their underlying

mathematical machinery, relaxation labelling [56,57], cannot

easily address these questions. Ben-Shahar and Zucker pursue

these ideas of ‘‘good continuation’’ of the texture flow from a more

engineering viewpoint in [58] and in [59] from the viewpoint of

differential geometry as beautifully described in the book by Petitot

[60] and in some of his earlier papers [61]. It is clear that these

complementary approaches should be brought together at some

point and unified but this is the subject of future work.

The previous analyses and results use the assumption that the

average voltage V (T ,t) is invariant with respect to the action of

the subgroup N of SU(1,1). Thanks to this hypothesis we were

able to reduce the dimension of the neural mass equation (1) from

2 to 1 and to use classical Fourier analysis to describe the process

of pattern formation and of bifurcation of the solutions.

One may argue that the action of the subgroup ~NN on the set of

structure tensors does not have a natural interpretation, unlike that

of ~KK and ~AA and, for that matter, that of ~CCn,t. On the other hand

the subgroup N features a very simple set of invariant functions,

the H-planforms that can be used to represent the solutions of (1)

that are invariant with respect to its action. As far as we know

similar functions are not known for the groups Cn,t whose action on

the set of structure tensors does have a nice interpretation. This

implies that the putative invariance of the average voltage V (T ,t)
with respect to this action would be most interesting to test

through an analysis of the bifurcations of the solutions of (16) in

the line of what we did for the group N but is currently hampered

by the lack of good functions for representing these solutions.

Another remark is that the ‘‘energy density’’ of these solutions

tends exponentially fast to ? as t tends to {?, due to the e{2t

term in the expression of the hyperbolic surface element in

horocyclic coordinates, see equation (20). Such solutions may

therefore not be physically admissible. This objection drops out for

the H-planforms of the form e(1zil)Sz,bT with l [ R, as noted

previously. Unfortunately one cannot carry out a simple

bifurcation analysis for these H-planforms.

On the other hand we have seen above that such H-planforms

can be associated, in a non trivial way, to periodic patterns with

respect to the action of a discrete subgroup of U(1,1). This

problem needs further investigation. The preliminary discussion

about the octagonal group could a priori be transposed to many

other kinds of hyperbolic patterns, and we do not know which one

would be preferred, if any.

These examples are a few among many of an analysis that

would have important implications in terms of the actual neural

representation of the structure tensor (and at bottom of the image

intensity derivatives). For example, given a subgroup C of SU(1,1),
assume that the mathematical analysis of the bifurcations of the

solutions of equation (16) that are invariant with respect to the

action of C predicts the formation of certain patterns having the

kind of symmetries represented by C. If such patterns can indeed

be observed by actual measurements, e.g., optical imaging [31],

then this would be a strong indication that the neural ‘‘hardware’’

is built in such a way that its state is insensitive to the action of C.

For example, in equation (16), the state is the average membrane

potential V (z,t). The observation of the above pattern formation

would come in support of the hypothesis that V(c:z,t)~V (z,t) for

all elements c of the group C, for all structure tensors z and for all

time instants t. In other words, bifurcation theory and pattern

formation can be considered as theoretical probes of various

hypotheses about the neural organization of the brain, allowing to

make precise predictions about the kinds of patterns that should be

observed in the activity of real brains, and opening the door to the

Table 2. Generic bifurcations of C8-periodic patterns.

D8 acts
trivially on f

simple eigenvalue, transcritical branch of states with
full D8 symmetry

r:f~f, k:f~{f and
k’:f~{f

simple eigenvalue, pitchfork branch of rotationally
invariant states with broken k or k’ symmetry

r:f~{f and
either k:f~{f or
k’:f~{f

simple eigenvalue, pitchfork branch of states with

partially broken rotational symmetry (since r2:f~f
the state keeps a 4-folds symmetry)

r:f~f’ where f’ is
not colinear to f

several subcases can occur, for example if rf’~{f the
problem reduces to one with D4 symmetry breaking.
The critical eigenvalue is double, rotational symmetry
is broken and there are generically two pitchfork
branches of bifurcated solutions: those which keep
the symmetry under reflection k and those which
keep the symmetry under k’

Each case in the table corresponds to an irreducible representation of the group
D8.
doi:10.1371/journal.pcbi.1000625.t002
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design of experiments to test these hypotheses. Specific examples

of such groups are the groups Cn,T we gave a few examples of and

the octagonal group C8 discussed previously.

The restriction to the hyperbolic plane instead of the three-

dimensional space of structure tensors looks like an oversimplifi-

cation, which should be only considered a useful first step. Our

plan is to extend this analysis to the full tensor space, making use if

necessary (and this will certainly be the case) of numerical

simulations in order to get a better idea of the phenomenology.

As mentioned in the Methods Section, it is natural to consider a

spatial extension of our analysis that would analyze a spatial

distribution of the kind of structure tensor hypercolumns that we

have described in this paper, see equation (4). This would lead in

particular to an analysis of ‘‘hyperbolic hallucinatory patterns’’

that could be compared against those described in the work of

Bressloff, Cowan, Golubitsky and collaborators [52,44]. This

requires first to better understand our a-spatial model and is the

subject of some of our future investigations.

One may also speculate what such an array of structure tensors

would offer compared to an array of orientations. Even if this has

not yet been worked out to our knowledge in the context of neural

fields, it is likely that an array of orientations can support the

perception of extended contours in an otherwise ‘‘flat’’ image, like

a cartoon [62,63]. This can be achieved by such connectivity

functions as those that enforce the Gestalt law of good

continuation. As mentioned above some of these ideas can be

found in the work of Steve Zucker and his associates. An array of

structure tensors would add to this the possibility of perceiving

extended texture edges such as those encountered in natural

images where sharp variations in the texture are likely to indicate

boundaries between objects. This is certainly a very important

area of investigation from the psychophysical, neurophysiological

and mathematical perpectives.

A final remark is that all this analysis assumes a perfectly

invariant problem under the group of isometries in the space of

structure tensors, a situation which is of course very unlikely, but

which has the great advantage to allow for computations and to

highlight fundamental properties and features of the problem at

hand. A next step would be to look at the ‘‘imperfect’’ case in

which symmetries are not perfectly satisfied, but this, even in the

simplified context of the Poincaré disc, may be a formidable

challenge.
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Text S4 Proof of a proposition in the main text.

Found at: doi:10.1371/journal.pcbi.1000625.s005 (0.06 MB PDF)

Video S1 Traveling H-wave. A train of H-planforms propagat-

ing from the ‘‘source’’ at infinity which is the tangency point b of

the horocycles.

Found at: doi:10.1371/journal.pcbi.1000625.s006 (9.84 MB AVI)
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