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The visual cortex as a crystal
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Abstract

A theory of pattern formation in primary visual cortex (V1) is presented that takes into account its crystalline-like structure.
The cortex is partitioned into fundamental domains orhypercolumns of a lattice describing the distribution of singularities or
pinwheels in the orientation preference map. Each hypercolumn is modelled as a network of orientation and spatial frequency
selective cells organised around a pair of pinwheels, which are associated with high and low spatial frequency domains, respec-
tively. The network topology of the hypercolumn is taken to be a sphere with the pinwheels located at the poles of the sphere. In-
teractions between hypercolumns are mediated by anisotropic long-range lateral connections that link cells with similar feature
preferences. Using weakly nonlinear analysis, we investigate the spontaneous formation of cortical activity patterns through the
simultaneous breaking of an internalO(3) symmetry and a discrete lattice symmetry. The resulting patterns are characterised
by states in which each hypercolumn exhibits a tuned response to both orientation and spatial frequency and the distribution
of optimal responses across hypercolumns is doubly periodic or quasi-periodic with respect to the underlying lattice.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

A major simplifying assumption in most large scale models of cortical tissue is that the interactions between
cell populations are homogeneous and isotropic, that is, the pattern of connections is invariant under the Euclidean
groupE(2) of rotations, translations and reflections in the cortical plane (for a review see[16,22]). However, these
assumptions are no longer valid when the detailed microstructure of cortex is taken into account. This is exemplified
by the functional and anatomical organisation of primary visual cortex (V1) in cats and primates, which has a
distinctly crystalline-like structure.

One of the basic functional properties of V1 is that cells signal topographically orretinotopically the location of
a stimulus in the visual field. Superimposed upon this retinotopic map are a number of additional maps reflecting
the fact that neurons respond preferentially to stimuli with particular features such as orientation, spatial frequency
and left/right eye (ocular) dominance[34,40,46]. The maps of both ocular dominance and orientation preference
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Fig. 1. Iso-orientation (light) and ocular dominance (dark) contours in a region of V1. Around each orientation pinwheel is a ring of orientation
selective cells[13].

have been well characterised in cat and monkey, using a mixture of micro-electrode[27,28,30]and optical imaging
techniques[5–7]. In particular, orientation preference appears to change continuously as a function of cortical
location except at singularities orpinwheels where the scatter or rate of change of differing orientation preference
labels is much higher (seeFig. 1), so that there is a weakening of orientation selectivity at the population level
[39]. The distribution of spatial frequency preference across cortex is less clear. However, recent optical imaging
data concerning spatial frequency maps in cat suggest that there is a correlation between the location of orientation
preference pinwheels and regions selective for either low or high spatial frequencies[8,32]. Fig. 2 shows, for
example, that some iso-orientation singularities are surrounded by regions of low spatial frequency preference
located in a background of higher spatial frequency preferences.

Taken together these observations suggest that V1 has a crystalline-like structure in which various feature pref-
erence maps are organised around a lattice of orientation pinwheels. The existence of such a lattice naturally leads
to a partitioning of cortex into fundamental domains orhypercolumns [29,34] that cover an approximate area of
1 mm× 1 mm (in cats and primates) and include a full set or orientations and spatial frequencies per ocular dom-
inance column. How does this crystalline-like structure of V1 manifest itself anatomically? Two cortical circuits

Fig. 2. Map of iso-orientation contours and low spatial frequency preferences in cat V1. Filled regions correspond to low spatial frequencies,
unfilled to high. Redrawn from[8].
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have been fairly well characterised. There is a local circuit operating at sub-hypercolumn dimensions consisting
of a mixture of intra-cortical excitation and inhibition[20]. It has been suggested that such circuitry provides a
substrate for the recurrent amplification and sharpening of the tuned response of cells to local visual stimuli. The
best known example is thering model of orientation preference and tuning[4,45], in which the local weights are
assumed to vary as a function of the difference in orientation preference between the pre-synaptic and post-synaptic
cells. One of the basic assumptions of the ring model (which has received recent experimental support[42]) is that
the inhibitory connections are more broadly tuned with respect to orientation than the excitatory connections. The
other circuit operates between hypercolumns, connecting cells with similar functional properties separated by sev-
eral millimetres of cortical tissue. Optical imaging combined with labelling techniques has generated considerable
information concerning the pattern of these long-range connections[5,6,10,36,49]. A particularly striking result
concerns the intrinsic lateral connections in superficial layers of V1. The axons of these connections make terminal
arbors only every 0.7 mm or so along their tracks[23,41] and they seem to connect mainly to cells with similar
orientation preferences and ocularity[10,36,49]. In addition, there is a pronounced anisotropy in the pattern of such
patchy connections—cells within differing hypercolumns tend to connect in directions parallel to their common
preferred orientation[10,36,49].

In this paper, we study pattern formation in a model of V1 that takes into account the crystalline structure described
above. In particular, the cortex is partitioned into hypercolumns corresponding to the fundamental domains of a
lattice of orientation pinwheels. Each hypercolumn is modelled as a network of interacting excitatory and inhibitory
neural populations with orientation and spatial frequency preferences organised around a pair of pinwheels (see
Section 2). Following our own recent work on orientation and spatial frequency tuning in a cortical hypercolumn
[14,15], the network topology of each hypercolumn is taken to be that of a sphere, with the poles of the sphere
identified as low and high spatial frequency pinwheels, respectively. Assuming that the distribution of recurrent
interactions within the network has internalO(3) symmetry (generalising theO(2) symmetry of the ring model
[4]), we show how pattern formation on the sphere occurs via anO(3) symmetry breaking mechanism that excites
the first few spherical harmonic components of the network activity profile and subsequently leads to the formation
of a stable tuning surface whose solitary peak encodes the orientation and spatial frequency of the hypercolumn’s
response. Furthermore, the peak response can be locked to a weakly biased stimulus from the lateral geniculate
nucleus (LGN).

We then introduce a model for the anisotropic lateral connections linking different hypercolumns on the lattice
and highlight their symmetry properties (seeSection 3). We show how such connections induce correlations be-
tween tuning surfaces of different hypercolumns through spontaneous breaking of both internalO(3) symmetry
and the discrete lattice symmetry, leading to cortical patterns of activity that are doubly periodic (or quasi-periodic)
with respect to the underlying lattice (Section 4). Our main result is to show that these activity patterns can select
either an oriented pattern at intermediate spatial frequencies (which has two distinct forms), or else an unoriented
pattern of alternating high and low spatial frequencies. This choice can be interpreted in terms of “two circuits”
involving, respectively, the pinwheels and the linear zones of the orientation map. Moreover, changes in the spatial
frequency dependence of the anisotropic lateral connections (perhaps mediated by neuromodulators) can switch
between these different types of patterns. Interestingly, the basic patterns arising in the lattice model are consistent
with those previously described in the continuous, uniform spatial frequency case[11]. However, there are two
significant differences from our previous works. First, the inclusion of spatial frequency provides a more biologi-
cally plausible mechanism for selecting between oriented and non-oriented patterns. Second, Euclidean symmetry
is explicitly broken by the existence of a physical lattice of orientation pinwheels. This means that doubly periodic
patterns such as rolls, hexagons and squares arise naturally within our theory, rather than being imposed arbitrar-
ily as a mathematical simplification. Differences between lattice and continuum models of V1 are discussed in
Section 5.
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2. A spherical model of a cortical hypercolumn

In this section, we briefly review our spherical model of a cortical hypercolumn and show how orientation and
spatial frequency tuning arise through spontaneous symmetry breaking ofO(3) symmetry. Note that this model,
which was first introduced in Ref.[14], actually has fullO(3) symmetry and not justSO(3) symmetry as previously
implied. Making such a distinction in this paper is important, since reflection symmetry will play a role in the coupled
hypercolumn model (seeSection 3). We have developed elsewhere a slightly different version of the spherical model,
which involves linear-threshold rather than smooth sigmoid output functions[15]. The non-smooth version has the
advantage that exact solutions for two-dimensional localised bumps (tuning surfaces) can be found using moment
expansions along analogous lines to the ring model[4]. On the other hand, the weakly nonlinear analysis used to
study the smooth version of the model is more easily extended to the coupled hypercolumn case (seeAppendix A
and B).

2.1. Reduction of a hypercolumn to a sphere

Motivated by the various optical imaging studies[5–8,31,32]cited inSection 1, we assume that the cortex can
be partitioned into hypercolumns, each of which consists of orientation and spatial frequency selective neurons
organised around a pair of pinwheels, as illustrated schematically inFig. 3. Furthermore, we suppose that a local
patch of (excitatory and inhibitory) cells within a given hypercolumn can be labelled by the pair of cortical labels
{p, φ}, wherep ∈ [pL , pH] denotes the spatial frequency preference andφ ∈ [0, π) the orientation preference of a
cell. (For simplicity, we neglect ocular dominance here: this could be incorporated into the model by introducing an
additional discrete label for left/right eye dominance.) Typically, the bandwidth of a hypercolumn is between three
and four octaves, that is,pH ≈ 2npL with n = 3.5. This is consistent with the observations of Hubel and Wiesel
[29], who found a two octave scatter of receptive field sizes at each cortical location.

Rather than attempting to accurately model the distribution of orientation and spatial frequency preferences within
a hypercolumn, we consider a reduced model in which only a subset of neurons are explicitly represented, with
the remaining neurons acting as an effective background cell medium. That is, we consider the unionDL ∪ DH of
two disc regions enclosing the low (L) and high (H) spatial frequency pinwheels, respectively. (Note that the ring
model[4,45] effectively reduces a hypercolumn to an annular region of orientation selective cells surrounding a
single pinwheel and having a fixed spatial frequency.) As a further simplification, suppose that interactions with the
background cortical tissue leads to an effective identification or sewing together of the two disc boundaries∂DH

and∂DL. The resulting topological space is then a sphere. Identifying the north and south poles of the sphere with

Fig. 3. Reduced model of a hypercolumn consisting of orientation and spatial frequency selective cells organised around a pair of pinwheels.
One pinwheel is a site of high (H) spatial frequencies and the other low (L) spatial frequencies. The hypercolumn is represented as a pair of disc
regionsDH,DL enclosing the two pinwheels, surrounded by a background of intervening neurons.



230 P.C. Bressloff, J.D. Cowan / Physica D 173 (2002) 226–258

Fig. 4. Spherical network topology. Orientation and spatial frequency labels are denoted by(φ, p) with 0 ≤ φ < π andpL ≤ p ≤ pH.

the low and high spatial frequency pinwheels leads to a spherical model of a cortical hypercolumn[14,15], see
Fig. 4. It is important to emphasise that the spherical topology is a mathematical idealisation of the effective weight
pattern of local interactions within a hypercolumn and does not correspond to the actual distribution of cells in the
cortical plane. It turns out that representing the hypercolumn as a sphere has a number of desirable consequences
[15]. In particular, the associated dynamical model reproduces a number of experimental observations regarding
correlations between spatial frequency and orientation tuning curves[32,37,38]. One particular example is the
reduction in orientation selectivity at high and low spatial frequency pinwheels (seeSection 2.3).

Taking(θ, φ) to be the angular coordinates on the sphere withθ ∈ [0, π), φ ∈ [0, π), we set

θ ≡ Q(p) = π
log(p/pL)

log(pH/pL)
. (2.1)

That is,θ varies linearly with logp. This is consistent with experimental data that suggests a linear variation of
logp with cortical separation[32]. Let a(θ, φ, t) denote the activity of a population of cells on the sphere with
spatial frequency label given byEq. (2.1)and suppose thata evolves according to the equation[14]

∂a(θ, φ, t)

∂t
= −a(θ, φ, t) +

∫ π

0

∫ π

0
W(θ, φ|θ ′, φ′)σ [a(θ ′, φ′, t)]D(θ ′, φ′) + h(θ, φ), (2.2)

whereD(θ, φ) = sinθ dθ dφ/2π is the integration measure on the sphere. HereW represents the distribution of
recurrent interactions within the hypercolumn,h(θ, φ) is a weakly biased stimulus from the LGN andσ [a] is the
smooth nonlinear sigmoid function

σ [a] = σmax

1 + e−g(a−ath)
(2.3)

for constant gaing and thresholdath. We have also fixed the unit of time to be of the order 10 ms by setting the
membrane time constant to unity.

2.2. O(3)-invariant weight distribution and spherical harmonics

Given a spherical topology, it is natural to construct a local weight distribution that is invariant with respect
to coordinate rotations and reflections of the sphere, that is, the symmetry groupO(3). This spherical symmetry,
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Fig. 5. Two-dimensional plot ofW(θ, φ|θ ′, φ′) given by theO(3)-invariant weight distribution(2.5)with W̃0 = −1 andW̃1 = 1. We setφ′ = 0,
θ ′ = θ and plotw as a function ofθ andφ. (a) Contour plot ofw on the sphere with light and dark regions correspond to excitation and inhibition,
respectively. (b) Surface plot ofw in the(θ, φ)-plane.

which generalises theO(2) circular symmetry of the ring model, implies that the pattern of connections within the
hypercolumn depends only on the relative distance of cells on the sphere as determined by their angular separation
along geodesics or great circles. That is, given two points on the sphere(θ, φ) and(θ ′, φ′) their angular separation
α is determined from the equation

cosα = cosθ cosθ ′ + sinθ sinθ ′ cos(2[φ − φ′]). (2.4)

This suggests that the simplest non-trivial form for the local weight distribution is

W(θ, φ|θ ′, φ′) = W̃0 + W̃1( cosθ cosθ ′ + sinθ sinθ ′ cos(2[φ − φ′])). (2.5)

In Fig. 5, we plotW(θ, φ|θ ′, φ′) as a function of(θ, φ) for θ ′ = θ , φ′ = 0 andW̃1 > W̃0. It can be seen that
away from the pinwheels (poles of the sphere atθ = 0, π ), cells with similar orientation excite each other, whereas
those with differing orientation inhibit each other. This is the standard interaction assumption of the ring model
[4,42,45]. On the other hand, around the pinwheels, all orientations uniformly excite, which is consistent with the
fact that although the cells around a pinwheel can differ greatly in their orientation preference, they are physically
close together within the hypercolumn.

It is possible to construct a more generalO(3)-invariant weight distribution usingspherical harmonics. Any
sufficiently smooth functionf (θ, φ) on the sphere can be expanded in a uniformly convergent double series of
spherical harmonics

f (θ, φ) =
∞∑
n=0

n∑
m=−n

anmY
m
n (θ, φ). (2.6)

The functionsYm
n (θ, φ) constitute the angular part of the solutions of Laplace’s equation in three dimensions and

thus form a complete orthonormal set. The orthogonality relation is∫ π

0

∫ π

0
Ym1
n1

∗
(θ, φ)Ym2

n2
(θ, φ)D(θ, φ) = 1

4π
δn1,n2δm1,m2. (2.7)

The spherical harmonics are given explicitly by

Ym
n (θ, φ) =

√
2n + 1

4π

(n − m)!

(n + m)!
Pm
n ( cosθ)e2imφ (2.8)

for n ≥ 0 and−n ≤ m ≤ n, wherePm
n ( cosθ) is an associated Legendre function. The lowest order spherical

harmonics (which will play an important role later) are shown inTable 1. (Note that we have adjusted the definition
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Table 1
Spherical harmonics up to second order

m = 0 m = ±1 m = ±2

l = 0 Y 0
0 (θ, φ) = 1√

4π

l = 1 Y 0
1 (θ, φ) =

√
3

4π
cosθ Y±1

1 (θ, φ) =
√

3

8π
sinθ e±2iφ

l = 2 Y 0
2 (θ, φ) =

√
45

16π

(
cos2θ − 1

3

)
Y±1

2 (θ, φ) =
√

45

96π
sin 2θ e±2iφ Y±2

2 (θ, φ) =
√

45

96π
sin2θ e±4iφ

of the spherical harmonics to take into account the fact thatφ takes values between 0 andπ .) The action ofSO(3)
onYm

n (θ, φ) involves(2n+1)× (2n+1) unitary matrices associated with irreducible representations ofSU(2) [2].
From the unitarity of these representations, one can construct anSO(3)-invariant weight distribution of the general
form

W(θ, φ|θ ′, φ′) = 4π
∞∑
n=0

W̃n

n∑
m=−n

Ym∗
n (θ ′, φ′)Ym

n (θ, φ) (2.9)

with W̃n real. It is simple to check that this weight distribution is also invariant under(φ, φ′) → (−φ,−φ′) so
that it is actuallyO(3)-invariant. For simplicity, we neglect higher harmonic contributions toW(P |P ′) by setting
W̃n = 0 for n ≥ 2 so thatEq. (2.9)reduces toEq. (2.5)on rescalingW̃1.

2.3. Amplitude equation for orientation and spatial frequency tuning

We now show how sharpened orientation and spatial frequency tuning can occur through spontaneous symmetry
breaking ofO(3). Assume, for the moment, that the stimulus from the LGN is uniform (withh(θ, φ) = h̄) such
thatEq. (2.2)hasa(θ, φ) = ā as a fixed point solution. Linearising about the fixed point and settinga(θ, φ, t) =
ā + eλtu(θ, φ) leads to an eigenvalue equation for the linear eigenmodesu(θ, φ):

λu(θ, φ) = −u(θ, φ) + µ

∫ π

0

∫ π

0
W(θ, φ|θ ′, φ′)u(θ ′, φ′)D(θ ′, φ′) (2.10)

(with a factorσ ′(ā) absorbed intoµ). Substituting the distribution(2.9)for W and using the orthogonality relation
(2.7)shows that the linear eigenmodes are spherical harmonics withλ = λn ≡ −1+µW̃n for u(θ, φ) = Ym

n (θ, φ),
−n ≤ m ≤ n. Thus thenth eigenvalue is(2n + 1)-fold degenerate and the associated (real) eigenmodes can be
written in the general formu0(θ, φ) = z0Y

0
0 (θ, φ) and

un(θ, φ) = z0Y
0
n (θ, φ) +

n∑
m=1

[zmY
m
n (θ, φ) + zm∗Ym∗

n (θ, φ)] (2.11)

for n ≥ 1 andz0 real. Suppose that̃W1 > W̃n for all n �= 1. The fixed pointa = ā then destabilises at a critical
value of the couplingµc = 1/W̃1 due to excitation of the first order spherical harmonics. Sufficiently close to the
bifurcation point, the resulting activity profileu = a − ā can be written in the form (seeTable 1)

u(θ, φ, t) =
∑

m=0,±1

cm(t)fm(θ, φ) (2.12)

for real coefficientsc0, c± and

f0(θ, φ) = cosθ, f1(θ, φ) = sinθ cos 2φ, f−1(θ, φ) = sinθ sin 2φ. (2.13)
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Amplitude equations for these coefficients can be obtained by carrying out a perturbation expansion ofEq. (2.2)
with respect to the small parameterε = µ−µc. As shown in the appendix, this leads to the Stuart–Landau equations

dcm
dt

= cm


µ − µc

µc
−W

∑
p=0,±1

c2
p


 , (2.14)

where

W = −
[

3σ3

5
+ 2σ 2

2

3

µcW̃0

1 − µcW̃0
+ 8σ 2

2

15

µcW̃2

1 − µcW̃2

]
. (2.15)

Hereσ2, σ3 are coefficients in the Taylor expansion of the firing rate functionσ ,

σ(a) = σ(ā) + σ ′(ā)[(a − ā) + σ2(a − ā)2 + σ3(a − ā)3 + · · · ] (2.16)

andW̃0, W̃2 are the zeroth and second order coefficients in the spherical harmonic expansion of theO(3)-invariant
weight distribution(2.9).

It is clear that the amplitude equations are equivariant with respect to the action of the orthogonal groupO(3) on
(c0, c+, c−), which reflects the underlying spherical symmetry. Moreover, defining

R =
∑

m=0,±1

c2
m, (2.17)

we see that
dR

dt
= 2R

(
µ − µc

µc
−WR

)
(2.18)

which has a stable fixed point atR0 = (µ−µc)/[µcW], provided thatW > 0. This corresponds to anO(3)-invariant
submanifold of marginally stable states

u(θ, φ) =
∑

m=0,±1

cmfm(θ, φ),
∑

m=0,±1

c2
m = R0. (2.19)

Eq. (2.19)represents atuning surface for orientation and spatial frequency with a solitary peak whose location
is determined by the values of the coefficients(c0, c1, c−1). Such a solution spontaneously breaks the underlying
O(3) symmetry. However, full spherical symmetry is recovered by noting that rotation or reflection of the solution
corresponds to an orthogonal transformation of the coefficientsc0, c±1. Thus the action ofO(3) is to shift the
location of the peak of the activity profile on the sphere, that is, to change the particular orientation and spatial
frequency selected by the tuning surface.

Now suppose that there exists a weakly biased, time-independent stimulus from the LGN of the form

h(θ, φ) = h̄ + δh[ cosθ cosΘ + sinθ sinΘ cos(2[φ − Φ])]. (2.20)

Eq. (2.20)represents a unimodal function on the sphere with a single peak at{Θ,Φ}. Here we ignore higher order
spherical harmonic contributions to the LGN stimulus, since the pattern forming instability amplifies only the first
order harmonic components—it is these components that couple to the cubic amplitude equation. The effects of a
weakly biased LGN stimulus can be studied within the framework of the amplitude equation approach by taking
δh = O(ε3/2). The stimulus(2.20)then generates an additional contribution to the cubic amplitude equation that
explicitly breaks the hiddenO(3) symmetry:

dcm
dt

= cm


µ − µc

µc
−W

∑
p=0,±1

c2
p


+ δhfm(Θ,Φ), m = 0,±1. (2.21)
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Eq. (2.21)has fixed point solutions of the formcm = Cfm with C a root of the cubic equation

C

(
µ − µc

µc
−WC2

)
+ δh = 0. (2.22)

If W > 0, then there exists a single stable branch along which the peak of the tuning surface becomes locked to the
stimulus. To a first order approximation, the resulting amplitude is of the form

u(θ, φ) = C[ cosθ cosΘ + sinθ sinΘ cos(2[φ − Φ])]. (2.23)

Hence, the peak of the tuning surface is located at{Θ,Φ}. Sincehm = O(ε3/2) whereascm = O(ε1/2), we see
that the cortical model acts as an amplifier for the first order spherical harmonic components of the weakly biased
stimulus from the LGN. As the amplitude of the solution increases away from the bifurcation point, higher order
harmonics will also be excited. Nevertheless, the first order harmonics will still be dominant so thatEq. (2.23)
remains a reasonable first approximation of the tuning surface.

2.4. Numerical calculations

Eq. (2.2)can be solved numerically using the discretisation scheme introduced by[48] in their study of pattern
formation for a reaction–diffusion system on a sphere. The sphere is discretised with a grid ofM × N sites so that
)θ = π/M and)φ = π/N . In order to avoid the singularities atθ = 0, π , we take discretised coordinates

θm = (m − 1/2))θ, m = 1, . . . ,M, φn = n)φ, n = 1, . . . , N. (2.24)

The weight distribution(2.5) naturally incorporates the topology of the sphere in which (i) the nearest neighbour
of the point(m,N) is (m,0) for m = 1, . . . ,M, (ii) the nearest neighbour of the point(1, n) is (1, n + N/2)
for n = 1, . . . , N/2 (that is, close to theθ = 0 singularity) and (iii) the nearest neighbour of the point(M, n) is
(M, n + N/2) for n = 1, . . . , N/2 (that is, close to theθ = π singularity). In our numerical calculations, we use a
grid of sizeM = 16 andN = 32 and use a low order Runge–Kutta method to solve the resulting system of coupled
ODEs. Results are shown inFigs. 6 and 7.

A useful representation of the network response is to project the tuning surface on to the(p, φ)-plane. This is
illustrated inFig. 6(a) forΘ = π/2 (corresponding to an intermediate stimulus frequencyp = 2c/◦) andΦ = 90◦.
In Fig. 6(b), we plot the response as a function of spatial frequency at the optimal orientation for various stimulus
amplitudesδh. The height of the spatial frequency tuning curves increases with the stimulus amplitudeδh, but the
width at half height is approximately the same (as can be checked by rescaling the tuning curves to the same height).
Sinceδh increases with the contrast of a stimulus, this shows that the network naturally exhibits contrast invariance.
Corresponding orientation tuning curves are shown inFig. 6(c) and are also found to exhibit contrast invariance.

Note that projecting the spherical tuning surface on to the{p, φ}-plane breaks the underlyingO(3) symmetry of
the sphere. Consequently, the shape of the planar tuning surface is not invariant with respect to shifts in the location
of the peak of the tuning surface, seeFig. 7(a). The non-invariance of the planar tuning surface is related to the
fact that solutions of the spherical model are not separable with respect to orientation and spatial frequency—the
activity profile cannot be written in the formu(θ, φ) = U(θ)V (φ). The resulting distortions generate behaviour
that is consistent with some recent experimental observations. (a) At low and high spatial frequencies (that is,
towards the pinwheels), there is a broadening of the tuned response to orientation, seeFig. 7(b). In our model,
the reduction of orientation selectivity around the pinwheels is an aggregate property of the local population of
cells. It has been found experimentally that individual neurons close to pinwheels are actually orientation selective
[39], but there is a broad distribution of orientation preferences within the pinwheel region so that the average
response of the population is only weakly orientation selective. (b) There is a systematic shift in the peak of spatial
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Fig. 6. Plot of normalised firing rateσ(a)/σmax in response to a weakly biased stimulus from the LGN withΘ = π/2 andΦ = 90◦. The firing
rate function(2.3) has a gaing = 5, a thresholdath = 0.6 andā = 0. The weight coefficients arẽW0 = −2, W̃1 = 1, W̃n = 0, n > 1. The
range of spatial frequencies ispL ≤ p ≤ pH with pL = 0.5c/deg andpH = 8c/deg. (a) Tuning surface in the{p, φ}-plane. (b) Response as a
function of spatial frequencyp at the optimal orientationφ = Φ. (c) Response as a function of orientationφ at the optimal spatial frequency
p = Q−1(θ).

frequency tuning curves at non-optimal orientations that is towards the spatial frequency of the closest pinwheel,
seeFig. 7(c). There is some suggestion of spatial frequency shifts in recent optical imaging data, supporting the
notion of non-separability[32].

It turns out that there is a non-trivial relationship between the optimal spatial frequency of the cortical response
as determined byΘ and the actual spatial frequencyps of an external visual stimulus[15]. The transformation from
visual to cortical stimulus can be described in terms of a convolution with respect to some feedforward receptive
field [25]. If the low order spherical harmonic components of the resulting feedforward stimulus (seeEq. (2.20)) are
then amplified by recurrent interactions, the optimal spatial frequency is shifted relative to the stimulus frequency,
that is,Θ �= Q(ps); such a mismatch can be eliminated by feedback from cortex to LGN[15]. This issue is not so
relevant here, however, since we are concerned with the case of spontaneous pattern formation in the absence of
LGN modulation. The location(Θ,Φ) of the peak response is then arbitrary for an isolated hypercolumn.
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Fig. 7. Plot of normalised firing rateσ(a)/σmax in response to a weakly biased stimulus from the LGN withΘ = π/4 andΦ = 90◦. Other
parameters as inFig. 6. (a) Tuning surface in the{p, φ}-plane. (b) Orientation tuning curves for various stimulus spatial frequencies as specified
byΘ. The selectivity is maximal atΘ = π/2 (intermediate spatial frequencies). (c) Spatial frequency tuning curves for non-optimal orientations
φ with φ = Φ + )Φ.

3. Lattice model of V1 and its lateral interactions

Although the partitioning of the cortex into hypercolumns has a degree of disorder, we assume that to a first
approximation each hypercolumn is a fundamental domain of a planar latticeL, with the points of the lattice
corresponding to the locations of the low frequency pinwheels. The latticeL is generated by two linearly independent
vectors�1 and�2:

L = {m1�1 + m2�2 : m1,m2 ∈ Z}. (3.1)

LetΨ be the angle between the two basis vectors�1 and�2. We can then distinguish three types of lattice according
to the value ofΨ : square lattice (Ψ = π/2), rhombic lattice (0< Ψ < π/2,Ψ �= π/3) and hexagonal (Ψ = π/3).
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Table 2
Generators for the planar lattices and their dual lattices

Lattice L−1�1 L−1�2 L�̂1 L�̂2

Square (1,0) (0,1) (1,0) (0,1)

Hexagonal (1,0)
1

2
(−1,

√
3)

(
1,

1√
3

) (
0,

2√
3

)
Rhombic (1,0) ( cosη, sinη) (1,− cotη) (0, cscη)

Example fundamental domains for each of these lattices are shown inFig. 10. After rotation, the generators of the
planar lattices are given inTable 2. Also shown are the generators of thedual or reciprocal lattice L̂ satisfying
�̂i · �j = δi,j . The lattice spacingL = |�1| = |�2| is taken to be the average width of a hypercolumn, that is,
L ≈ 1 mm.

It follows that a local patch of (excitatory and inhibitory) cells within a hypercolumn can be uniquely labelled
by the triplet(�, θ, φ), where� ∈ L is the position of the hypercolumn on the lattice andP := {θ, φ} represents
the spatial frequency and orientation preference of the cells. We assume that each isolated hypercolumn can be
described by the spherical model ofSection 2and that different hypercolumns in the lattice are coupled together
by long-range lateral interactions. Denoting the activity of the population(�, P ) at time timet by a(�, P , t), we
introduce an evolution equation of the form

∂a(�, P , t)

∂t
= −a(�, P , t) +

∑
�′∈L

∫
w(�, P |�′, P ′)σ (a(�′, P ′, t))DP′ + h(�, P , t), (3.2)

whereDP = D(θ, φ) and

w(�, P |�′, P ′) = δ�,�′W(P |P ′) + βJ (� − �′)W)(P |P ′) (3.3)

with J (0) = 0. HereW(P |P ′) denotes theO(3)-invariant distribution of local connections within a hypercolumn,
seeEq. (2.5), W)(P |P ′) represents the dependence of the long-range interactions on the feature preferences of the
pre- and post-synaptic cells andJ (� − �′) for � �= �′ is a positive, monotonically decreasing function of cortical
separation|� − �′|. ThusJ (�) is invariant under discrete rotations and reflections of the lattice (see below). The
coupling parameterβ determines the relative weight of the lateral connections. Microelectrode recordings suggest
thatβ is small and therefore that the lateral connections modulate rather than drive V1 activity[26]. Furthermore,
although the lateral connections are excitatory[23,41], 20% of the connections in superficial layers of V1 innervate
inhibitory interneurons, so that the overall action of the lateral connections can become inhibitory, especially at high
levels of activity[26]. It is also possible that during the experience of hallucinations there are sufficient levels of
activity within V1 for the inhibitory effects of the lateral connections to predominate. In our one-population models,
the sign ofβ will determine whether the lateral connections have a net excitatory or inhibitory effect.

Note that we neglect all nearest neighbour interactions between hypercolumns that are mediated by local connec-
tions across hypercolumn boundaries. In order to incorporate this additional coupling into the model, it is necessary
to specify in detail the spatial distribution of the orientation and spatial frequency cell preferences within each
hypercolumn. Here we consider a reduced hypercolumn model (seeFig. 3), in which only a subset of neurons
within a hypercolumn are explicitly represented. We assume that boundary contributions can be absorbed into the
various weight functions ofEq. (3.3).

Given that the long-range horizontal connections tend to link neurons with similar feature preferences, one can
construct anO(3)-invariant long-range distributionW) of the form

W)(P |P ′) = H [ cosθ cosθ ′ + sinθ sinθ ′ cos(2[φ − φ′]) − cosα], (3.4)
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whereH [x] = 1 if x ≥ 0 and is zero otherwise. The angleα determines the degree of similarity in the orientation
and spatial frequency preference of the linked cells and hence the patch size. It follows that the distribution(3.3)
is invariant under the action of the groupΓL × O(3), whereΓL is the discrete symmetry group of the latticeL. A
limiting case of the above distribution is the delta function

W)(P |P ′) = 1

2 sinθ
δ(θ − θ ′)δ(φ − φ′) =

∞∑
n=0

n∑
m=−n

Ym∗
n (θ ′, φ′)Ym

n (θ, φ). (3.5)

However, it is likely that in two dimensions the pattern of patchy connections is more complicated than this.
For example, recent optical imaging experiments combined with anatomical tracer injections suggest that the
distribution of patchy horizontal connections is spatially anisotropic. Such anisotropy is particularly pronounced
in the tree shrew, where differing iso-orientation patches preferentially connect to neighbouring patches in such a
way as to form continuous contours following the topography of the retino-cortical map[10]. That is, the major
axis of the horizontal connections tends to run parallel to the visuotopic axis of the connected cells’ common
orientation preference. There is also a clear anisotropy in the patchy connections of owl[44] and macaque[1]
monkeys. However, in these cases most of the anisotropy can be accounted for by the fact that V1 is expanded in
the direction orthogonal to ocular dominance columns. It is possible that when this expansion is factored out, there
remains a weak anisotropy correlated with orientation selectivity but this remains to be confirmed experimentally.
The functional role of this anisotropy has been a major focus of our recent work on the dynamics of orientation
tuning in V1[11,17,18].

Anisotropy in the horizontal connections can be incorporated into the coupled lattice model(3.2)by modifying
the weight distribution(3.3)along the following lines:

w(�, P |�′, P ′) = δ�,�′W(P |P ′) + βJ (� − �′)W)(P |P ′)A�,�′(P ) (3.6)

with W given byEq. (3.4)or Eq. (3.5)and

A�,�′(P ) = χ(θ)

2η(θ)
H [η(θ) − |φ − ψ�,�′ |], (3.7)

whereψ�,�′ = arg(� − �′). The parameterη determines the degree of anisotropy, that is the angular spread of
the horizontal connections around the axis joining cells with similar orientation preferences andχ is an additional
normalisation factor. Bothη andχ are taken to be spatial frequency dependent as we now explain. An elegant feature
of the spherical model is that it naturally incorporates the fact that, at the population level, there is zero selectivity
for orientation at the pinwheels. In other words, the solutiona(�, θ, φ) expanded in terms of spherical harmonics
is independent ofφ at θ = 0, π . This implies that the lateral weight distribution(3.6) has to be isotropic at the
pinwheels. In order to incorporate any anisotropy away from the pinwheels, we conclude that the spread parameter
has to beθ -dependent,η = η(θ) with η(0) = η(π) = π/2. This is illustrated inFig. 8. The additional factorχ(θ)

allows for a possible correlation between the strength of the lateral connections and the spatial frequency of cells
linked by these connections. There is recent data indicating that some cells located outside cytochrome oxidase
(CO) blobs (regions of cells that are more metabolically active) have very little in the way of lateral connections
[50], thus leading to an effective reduction in connectivity at the population level. Since the CO blobs have a strong
association with the orientation singularities corresponding to low spatial frequencies[31,35], the coupling may be
larger around the low frequency pinwheels.

The basic rules for lateral connectivity are further illustrated in the simplified version of the model shown
in Fig. 9. Here each hypercolumn is divided into cell populations characterised by one of the following set of
feature preferences: (i) low spatial frequency, non-orientation selective (white discs), (ii) high spatial frequency,
non-orientation selective (black discs), (iii) intermediate spatial frequency, orientation selective with preferenceφ =
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Fig. 8. Cells at intermediate spatial frequencies send out horizontal connections to cells in other hypercolumns in a direction parallel to their
common preferred orientation, whereas cells at low (high) spatial frequency pinwheels connect to other low (high) pinwheels in an isotropic
fashion.

0◦, 90◦, ±45◦ (white disc with oriented bar). Two examples of the resulting pattern of lateral connections between
cell populations located in different hypercolumns are shown inFig. 9. These examples are generated by selecting
a particular population at each lattice location and connecting lattice points according to the following set of rules:

I. Only cells with the same spatial frequency preference are linked.
II. Cells with intermediate spatial frequency preference are only linked if they have the same orientation preference.

III. Cells with the same orientation preference are only linked if their relative cortical position is in the same direction
as their common orientation preference.

An interesting mathematical property of the anisotropic weight distribution(3.6) is that it reduces the symmetry
group fromΓL × O(3) to TL+̇Dn, whereTL denotes the group of lattice translations andDn, n = 2,4 or 6, is the
latticeholohedry consisting of the set of discrete rotations and reflections that preserve the lattice (seeFig. 10). The
associated group action is

�s · (�, θ, φ) = (� + �s, θ, φ), �s ∈ TL, ξ · (�, θ, φ) = (Rξ�, θ, φ + ξ),

κ · (�, θ, φ) = (Rκ�, θ,−φ), (3.8)

Fig. 9. Examples of the pattern of lateral connections between hypercolumns: (a) different spatial frequencies, (b) same spatial frequency,
different orientations. See text for details.
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Fig. 10. Holohedries of the plane.

where(ξ, κ) ∈ Dn, Rξ denotes the planar rotation through an angleξ andRκ denotes the reflection(x1, x2) �→
(x1,−x2). The corresponding group action on a functiona : L× S2 → R is given by

γ · a(�, P ) = a(γ−1 · (�, P )) for all γ ∈ TL+̇Dn (3.9)

and the invariance ofwlat(r, P |r′, P ′) is expressed as

γ · w(�, P |�′, P ′) = w(γ−1 · (�, P )|γ−1 · (�′, P ′)) = w(�, P |�′, P ′).

It can be seen that the discrete rotation operation comprises a translation or shift of the orientation preference label
φ to φ + ξ , together with a rotation or twist of the position vector� by the angleξ . The spatial frequency is not
affected by rotations. The fact that the weight distribution is invariant with respect to thisshift-twist action has
important consequences for the global dynamics of V1 in the presence of anisotropic horizontal connections (see
also Ref.[11]).

4. Cortical pattern formation

Suppose, for concreteness, that there is a time-independent external biash such thata(�, P , t) = ā is a fixed
point solution ofEq. (3.2). Settinga(�, P , t) = ā + eλtu(�, P ) and linearising about the fixed point leads to the
eigenvalue equation

λu(�, P ) = −u(�, P ) + µ

∫ π

0

∫ π

0

∑
�′∈L

w(�, P |�′, P ′)u(�′, P ′)DP′ (4.1)

with P = (θ, φ),P ′ = (θ ′, φ′) andDP′ = sinθ ′ dθ ′ dφ′/2π . Since the weight distributionw is bounded, it follows
that when the network is in a low activity stateā such thatµ = σ ′(ā) ≈ 0, any solution ofEq. (4.1)satisfies Reλ < 0
and the fixed point is linearly stable. However, when the excitability of the network is increased, either through the
action of some hallucinogen or through external stimulation,µ increases. This can induce a Turing instability[47],
leading to the formation of spontaneous cortical activity patterns. In this section, we derive conditions for the onset
of a Turing instability and discuss the selection and stability of the patterns using weakly nonlinear analysis.

4.1. Isotropic and homogeneous lateral connections

Consider first the case of isotropic and homogeneous long-range connections. Substitution ofEq. (3.3) into
Eq. (4.1)gives[

λ+1

µ

]
u(�, P )=

∫ π

0

∫ π

0
W(P |P ′)u(�, P ′)DP′+β

∑
�′ �=�

J (�−�′)
∫ π

0

∫ π

0
W)(P |P ′)u(�′, P ′)DP′. (4.2)
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Fig. 11. Construction of the first Brillouin zone in (a) the reciprocal square lattice, (b) the reciprocal hexagonal lattice.

Since the weight distributionw is invariant under the action ofΓL × O(3), it follows that the eigensolutions are of
the form

u(�, P ) = eik·�Ym
n (θ, φ) (4.3)

for n ∈ Z, −n ≤ m ≤ n andk = k1�̂1 + k2�̂2, where�̂j are the generators of the reciprocal latticeL̂. We restrictk
to lie in the first Brillouin zoneU of the reciprocal latticêL [3]. The first Brillouin zone is the fundamental domain
around the origin of the reciprocal lattice formed by the perpendicular bisectors of the shortest lattice vectors (of
length 2π/L). Examples for the square and hexagonal lattices are shown inFig. 11. We also assume periodic
boundary conditions for the activity

u(� + N�1, P ) = u(� + N�2, P ) = u(�, P ) (4.4)

for some integerN � 1 so that the wavevectors are discretised,ki = 2πni/N for integersni . The corresponding
eigenvalueλ = λn(k) is (2n + 1)-fold degenerate such that

λn(k) = −1 + µ[W̃n + βJ̃ (k)W̃)
n ], (4.5)

whereW̃n andW̃)
n are thenth coefficients in the spherical harmonic expansions ofW andW), seeEq. (2.9)and

J̃ (k) =
∑
�∈L

J (�)e−ik·�. (4.6)

In the caseβ = 0, each isolated hypercolumn is described by the spherical model(2.2)and the eigenvaluesλn are
k-independent. Assuming that̃W1 > W̃n for all n �= 1, the condition for marginal stability reduces toµc = 1/W̃1

such that there exists anO(3)-invariant submanifold of marginally stable states involving linear combinations of
the three first order spherical harmonics:

u(�, θ, φ) = C[ cosθ cosθ̄ (�) + sinθ sin θ̄ (�) cos(2[φ − φ̄(�)])] (4.7)

for arbitrary phases̄θ(�), φ̄(�). Thus the hypercolumn at� ∈ L exhibits a tuning surface of the form shown inFig. 6,
with the peak located at(θ̄(�), φ̄(�)).

If the lateral connections are now switched on, there is ak-dependent splitting of the degenerate eigenvalue
λ1. Since the long-range connections are narrowly tuned with respect to orientation and spatial frequency, the
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corresponding spherical harmonic coefficientsW̃n are only weakly dependent onn ∈ Z. This implies that the
horizontal connections do not excite other spherical harmonic components within a hypercolumn and the condition
for marginal stability of the homogeneous fixed point is obtained from the eigenvalue equation

λ1(k) + 1

µ
= 1

µc
+ βJ̃ (k), (4.8)

where a positive factorW̃)
1 has been absorbed intoβ. Suppose thatβJ̃ (k) has a global positive maximum at

k = kc �= 0. The homogeneous fixed point is then marginally stable at the critical value

µ̂c = µc

1 + βµcJ̃ (kc)
. (4.9)

SinceJ̃ (k) is invariant with respect to the corresponding lattice holohedryDn, all other wavevectors related tokc

by a discrete rotation will also be selected. The marginally stable eigenmodes will thus be of the form

u(�, θ, φ) = C(�)[ cosθ cosθ̄ + sinθ sin θ̄ cos(2[φ − φ̄])] (4.10)

for arbitrary constant phasesθ̄ , φ̄ and

C(�) =
∑

j=1,...,N

[uj eikj ·� + u∗
j e−ikj ·�], (4.11)

whereuj is a complex amplitude with conjugateu∗
j . HereN = 2 for the square lattice withk1 = kc andk2 =

Rπ/2kc, whereRξ denotes rotation through an angleξ . Similarly,N = 3 for the hexagonal lattice withk1 = kc,
k2 = R2π/3kc andk3 = R4π/3kc = −k1 − k2.

The pattern generated by the eigensolution(4.10)with kc �= 0 consists of a distribution of tuning surfaces across
cortex whose peak response alternates between the points(θ̄ , φ̄) and(π − θ̄ , φ̄ + π/2) according to the sign of
the amplitudeC(�). For wavevectorskc that are commensurate with the lattice such alternations in sign generate a
periodic tiling of the cortical plane consisting ofstripes, hexagons or squares, whereas incommensurate wavevectors
generate quasi-periodic patterns. It is important to emphasise that doubly periodic solutions arise naturally in this
model due to the presence of a lattice of orientation pinwheels around which the hypercolumns are organised. In
previous continuum models of cortical pattern formation[11,21], double periodicity was imposed by hand as a
mathematical simplification rather than as a consequence of a physical lattice.

As an illustrative example, consider a long-range distance function for the square lattice that satisfies

J (n1�1 + n2�2) = δn1,±1δn2,0 + δn1,0δn2,±1 + A1δn1,±1δn2,±1 + A2[δn1,±2δn2,0 + δn1,0δn2,±2] (4.12)

with A2 < A1 < 1. The corresponding Fourier transform is

J̃ (k) = 2( coskx + cosky + A1[ cos(kx + ky) + cos(kx − ky)] + A2[ cos 2kx + cos 2ky ]) (4.13)

for k = (kx, ky). Contour plots ofJ̃ (k) as a function ofk are shown inFig. 12 with k restricted to lie in the
first Brillouin zone. One can see that there is a global maximum atk = 0 and four global minima, reflecting the
fourfold symmetry of the lattice. (Also shown is the corresponding contour plot for nearest neighbour coupling on
an hexagonal lattice where there is a sixfold symmetry.) This means that in the excitatory regime (β > 0), there is a
bulk instability with respect to the lattice, but a Turing instability with respect to orientation and spatial frequency.
Thus each hypercolumn exhibits a tuning surface with the same peak response. On the other hand, in the inhibitory
regime (β < 0) the marginally stable modes have a critical wavenumberkc �= 0, implying that there is a Turing
instability with respect to both the internal and external degrees of freedom.

The above example establishes that a Turing instability on the lattice can be induced byinhibitory lateral inter-
actions (without excitation) since there is agap in the interactions at the origin, that is,J (0) = 0. This differs from
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Fig. 12. (a–c) Contour plot of̃J (k) satisfyingEq. (4.13)for k = (kx, ky) in the first Brillouin zone of the square lattice. Filled circles indicate
locations of global minima, whereas filled square indicates location of global maximum at origin. (a)A1 = A2 = 0 with four minima at
(kx, ky) = (±π,±π). (b) A1 = 0.8 and 0.6 with four minima inside the Brillouin zone boundary. (c)A1 = 0.8, A2 = 0 with four minima at
(kx, ky) = (±π,0) and(kx, ky) = (0,±π). (d) Contour plot ofJ̃ (k) for nearest neighbour coupling on the hexagonal lattice showing a sixfold
symmetry.

the standard mechanism for neural pattern formation based on a combination of excitation and inhibition, which
is the mechanism by which the local recurrent circuitry generates orientation and spatial frequency tuning within
a hypercolumn (seeSection 3). To reinforce this idea, we consider the example of a Gaussian distance function
J (�) = e−�2/2σ2

on a square lattice for which

J̃ (k) =

2

∑
n1≥0

e−L2n2
1/2σ2

eikxn1 − 2




2

∑
n2≥0

e−L2n2
2/2σ2

eikyn2 − 2


 , (4.14)

wherek = kx �̂1 + ky �̂2 and� = n1�1 + n2�2. Suppose that we can approximate the sums by Gaussian integrals
(which is a good approximation whenσ � L), so that

J̃ (k) ≈
[√

πσ

L
e−σ2k2

x/2L2 − 2

] [√
πσ

L
e−σ2k2

y/2L2 − 2

]
. (4.15)

The resulting function is plotted inFig. 13for L = 0.15σ . It can be seen that there is a global positive maximum at
k = 0 and four global negative minima atk = (0,±π), (±π,0). As in the previous example, a Turing instability
occurs for inhibitory lateral connections due to the existence of a gap in the Gaussian at the origin.
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Fig. 13. Surface plot of̃J (k) (in arbitrary units) withk = (kx, ky) for a Gaussian distance function withL = 0.15σ .

4.2. Anisotropic lateral connections

Suppose that we now substitute the anisotropic weight distribution(3.6) into Eq. (4.1)with W) given by the
delta function(3.5). Since the weights are invariant with respect to discrete translations in the lattice, it follows that
the eigensolutions have the general formu(�, P ) = eik·�uk(P ) such that[

λ + 1

µ

]
uk(P ) =

∫
W(P |P ′)uk(P

′)DP′ + βJ̃ (k|P)uk(P ). (4.16)

HereJ̃ (k|P) is defined according to

J̃ (k|P) =
∑
�′ �=�

J (� − �′)A�,�′(P )eik·(�′−�) (4.17)

which can be rewritten as

J̃ (k|P) = χ

2η

∑
��=0

H(η − |φ − ψ�|)J (�)eik|�| cos(ψ�−ϕ), (4.18)

wherek = k( cosϕ, sinϕ) and� = |�|( cosψ�, sinψ�). Recall that the degree of anisotropyη and the couplingχ
are both generallyθ -dependent. Expandinguk(P ) in terms of spherical harmonics

uk(P ) =
∑
n∈Z

n∑
m=−n

Unm(k)Ym
n (θ, φ) (4.19)

leads to the matrix eigenvalue equation

[
λ + 1

µ
− W̃n

]
Unm(k) = β

∑
n′∈Z

n′∑
m′=−n′

J̃nm,n′m′(k)Un′m′(k) (4.20)
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with

J̃nm,n′m′(k) = 2
∫ π

0

∫ π

0
Ym∗
n (θ, φ)Ym′

n′ (θ, φ)J̃ (k|θ, φ) sinθ dθ dφ. (4.21)

In order to solve the matrixequation (4.20), we exploit the experimental observation that the lateral connections
are weak relative to the local connections and carry out a perturbation expansion in the small parameterβ. As
in our analysis of the isotropic case, we assumeW̃1 = max{W̃n, n ∈ Z+} > 0 so that in the limitβ → 0, the
homogeneous state becomes marginally stable at the critical pointµc = 1/W̃1 due to excitation of the eigenmodes
(4.7). Each hypercolumn has a threefold degeneracy and there are no�-dependent correlations between tuning
surfaces. On the other hand, whenβ > 0 there is ak-dependent splitting of the eigenvalueλ1 = −1+µW̃1 that also
separates out the first order spherical harmonics (since the anisotropic weights explicitly breakO(3) symmetry).
Denoting the characteristic size of such a splitting byδλ = O(β), we impose the condition thatδλ � µ)W̃ , where
)W̃ = min{W̃1 − W̃m,m �= 1}. This ensures that the perturbation does not excite states associated with other
eigenvalues of the unperturbed problem and we can then restrict ourselves to calculating perturbative corrections to
λ1. Thus, introduce the perturbation expansions

λ = −1 + µW̃1 + βλ(1) + β2λ(2) + · · · , (4.22)

Unm = Umδn,1 + βU(1)
nm + β2U(2)

nm + · · · (4.23)

and substitute these into the eigenvalueequation (4.20). We then systematically solve the resulting hierarchy of
equations to successive orders inβ, taking into account the fact that the unperturbed problem is degenerate. Here we
will only describe the lowest order corrections, obtained by settingn = 1 in Eq. (4.20)to yield theO(β) eigenvalue
equation

1∑
m′=−1

J̃mm′(k)Um′ = λ(1)Um, (4.24)

whereJ̃mm′(k) = J̃1m1m′(k).
EvaluatingEqs. (4.18) and (4.21)for n = n′ = 1, we obtain the matrix equation


bG(k) b1G1(k) b1G−1(k)

b1G−1(k) b0G(k) b2G−2(k)

b1G1(k) b2G2(k) b0G(k)






U0

U1

U−1


 = λ(1)(k)




U0

U1

U−1


 , (4.25)

where

G(k) =
∑

�

cos(k|�| cos(ψ� − ϕ))J (�), (4.26)

G±r (k) =
∑

�

exp(±2irψ�) cos(k|�| cos(ψ� − ϕ))J (�), r = 1,2 (4.27)

and

b = 3

4π

∫ π

0
χ(θ) cos2θ sinθ dθ, (4.28)

b0 = 3

8π

∫ π

0
χ(θ) sin3 θ dθ, (4.29)
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b1 = 3
√

2

8π

∫ π

0

sin [2η(θ)]

2η(θ)
χ(θ) cosθ sin2θ dθ, (4.30)

b2 = 3

8π

∫ π

0

sin [4η(θ)]

4η(θ)
χ(θ) sin3 θ dθ. (4.31)

It follows, to first order inβ, that there are three dispersion branchesλs(k), s = 0,±:

λs(k) = −1 + µ[W̃1 + βλ(1)
s (k)], (4.32)

whereλs(k) are the eigenvalues of the matrix on the left-hand side ofEq. (4.25). Letβ < 0 and suppose thatλ(1)
s (k)

has a global minimum atks for s = 0,±. If Λ(kc) = min{λ(1)
s (ks), s = 0,±} then a Turing instability on the lattice

occurs at the critical point

µ̂c = 1

W̃1 + βΛ(kc)
. (4.33)

The corresponding marginally stable eigenmodes are of the general form

u(�, θ, φ) =
N∑

j=1

uj eikj ·�

 ∑

m=0,±1

Ym
1 (θ, φ)Um(kj )


+ c.c., (4.34)

whereU(kj ) is the eigenvector associated with the minimal eigenvalueΛ(kj ) and the wavevectors are as defined
belowEq. (4.11). We use the shorthand notation c.c. to denote complex conjugate. Thus the degeneracy with respect
to the three first order spherical harmonics is explicitly broken. However, recall fromSection 3that the anisotropic
connections are invariant with respect to a shift-twist lattice symmetry. This implies that

Um(Rξk) = c e−2imξUm(k) (4.35)

for some constantc. Full O(3) symmetry is recovered when the lateral connections are isotropic and homogeneous,
sinceb1 = b2 = 0 andb0 = b so that the three dispersion branches merge.

4.2.1. Homogeneous case
Further simplification occurs if the strengths or weights of the lateral interactions are independent of spatial

frequency so thatχ(θ) = χ0 for all θ ∈ [0, π ]. Choosing the normalisationχ0 = 2π , we find thatb = b0 = 1
and|b2| < 1. Moreover, sinceη(θ) is symmetric underθ → π − θ , it follows thatb1 = 0. Hence, the eigenvalue
solutions ofEq. (4.25)reduce to

λ
(1)
− (k) = G(k) − b2|G2(k)| (4.36)

with eigenmodeU−(k) = (0,1,−F(k))

λ
(1)
+ (k) = G(k) + b2|G2(k)| (4.37)

with eigenmodeU+(k) = (0,1, F (k)) and

λ
(1)
0 (k) = G(k) (4.38)

with eigenmodeU0 = (1,0,0). We have definedF(k) = G2(k)/|G2(k)|. Since|b2| < 1, it follows that either the
even modeU+ or the odd modeU− becomes marginally stable first; which of these two types of mode is selected
depends on the sign ofb2.
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It is easy to establish that the sign ofb2 depends on the degree of anisotropy. For example, ifη(θ) = η0 except
in small regions around the pinwheels then

b2 ≈ sin 4η0

4η0
. (4.39)

Under such an approximation,b2 > 0 whenη0 < π/4, which corresponds to strong anisotropy in the linear zones
(away from the pinwheels). In this case,

min
k

{λ(1)
− (k)} < min

k
{λ(1)

0 (k)} < min
k

{λ(1)
+ (k)}. (4.40)

Let kc be a critical wavevector and set 4φc = argF(kc). Using the fact thatF(Rψk) = e4iψF(k), seeEq. (4.27),
it follows that the marginally stable modes are of the form

u−(�, θ, φ) =

 N∑

j=1

uj sin(2[φ − φc − ψj ])eikj ·� + c.c.


 sinθ (4.41)

with kj = Rψj
kc andψ1 = 0. The factor sinθ implies that each hypercolumn has a tuning surface that peaks at

intermediate frequencies (θ = π/2). When there is weaker anisotropy within the linear zones such thatb2 < 0, we
have

min
k

{λ(1)
+ (k)} < min

k
{λ(1)

0 (k)} < min
k

{λ(1)
− (k)} (4.42)

and the marginally stables modes are of the form

u+(�, θ, φ) =

 N∑

j=1

uj cos(2[φ − φc − ψj ])eikj ·� + c.c.


 sinθ. (4.43)

4.2.2. Nearest neighbour coupling
As a specific example, consider nearest neighbour coupling withJ (�) = 1 if � = (L cosψj ,L sinψj ), j =

1, . . . , N and zero otherwise. Here we are expressing lattice points in Cartesian coordinates such thatψj =
2π(j − 1)/N with N = 4 for a square lattice andN = 6 for a hexagonal lattice. (For a rhomboid lattice, we would
haveψj = 0, ψ, π, π + ψ with 0 < ψ < π/2, ψ �= π/3.) In the case of a square lattice,Eqs. (4.26) and (4.27)
simplify to

G(k) = 2[ cos(kx) + cos(ky)], (4.44)

G±r (k) = 2[ cos(kx) + (−1)r cos(ky)], r = 1,2. (4.45)

The critical wavevectors arekj = (±π,±π) with F(kc) = −1 andφc = π/4. Hence the odd/even modes are
given by

u−(�, θ, φ) = C(�) cos 2φ sinθ, u+(�, θ, φ) = C(�) sin 2φ sinθ. (4.46)

In Fig. 14, we show examples of even and odd roll patterns corresponding to a plane wave with critical wavevector
kc = (π,−π). These are constructed using a winner-take-all rule in which only the orientation of maximal response
within each hypercolumn on the lattice is shown. (For this particular example, combining orthogonal rolls of the
same type does not introduce a new pattern.)
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Fig. 14. Even and odd roll patterns on a square lattice with nearest neighbour lateral coupling. Dashed lines highlight the direction of the rolls.

In the case of a hexagonal lattice,Eqs. (4.26) and (4.27)become

G(k) = 2

[
cos(kx) + cos

(
1

2
kx +

√
3

2
ky

)
cos

(
−1

2
kx +

√
3

2
ky

)]
, (4.47)

G±r (k) = 2

[
cos(kx) + e±2irπ/3cos

(
1

2
kx +

√
3

2
ky

)
+ e±4irπ/3cos

(
−1

2
kx +

√
3

2
ky

)]
. (4.48)

The functions−|G2(k)|andG(k)−|G2(k)|are plotted inFig. 15and are found to have global minima atkj = Rψj
kc

with kc = (0,2π/
√

3). Moreover,F(kc) = 1 so thatφc = 0. Thus the odd and even modes are

u−(�, θ, φ) =

 3∑

j=1

uj sin(2[φ − 2π(j − 1)/3])eikj ·� + c.c.


 sinθ, (4.49)

u+(�, θ, φ) =

 3∑

j=1

uj cos(2[φ − 2π(j − 1)/3])eikj ·� + c.c.


 sinθ. (4.50)

In Fig. 16, we show examples of even and odd hexagonal patterns corresponding to the particular choice of amplitudes
uj = 1 forj = 1,2,3. Again these pictures are constructed using a winner-take-all rule in which only the orientation

Fig. 15. Contour plots of−|G2(k)| (a) andG(k) − |G2(k)| (b) for nearest neighbour coupling on a hexagonal lattice withk = (kx, ky) in the
first Brillouin zone of the square lattice. Filled circles indicate locations of global minima.
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Fig. 16. Odd and even hexagonal patterns on a hexagonal lattice with nearest neighbour lateral coupling and amplitudeu = (1,1,1).

of maximal response within each hypercolumn on the lattice is shown. Note, however, that the lattice point at the
center of the domain does not show any orientation preference, since there is exact cancellation of theφ-dependent
sinusoids in the activity profile of this hypercolumn.

4.2.3. Inhomogeneous case
Now suppose thatχ(θ) = 2π(1 + χ0 cosθ) with 0 < χ0 < 1, representing a coupling that decreases monoton-

ically as the spatial frequency increases[50]. Thenb = 1 + 3χ0/4 andb0 = 1. Whenever there is an asymmetry
between low and high spatial frequencies, the coefficientb1 will usually be non-zero. This then generates a mixed
marginally stable mode that is a linear combination ofEqs. (4.41), (4.43) and (4.52). However, provided that the
asymmetry is not too strong,b1 will still be sufficiently small such that mixing is not significant. Following the
analysis of the previous example, we find that for sufficiently largeχ0

min
k

{λ(1)
0 (k)} < min

k
{λ(1)

− (k), λ(1)
+ (k)} (4.51)

and the marginally stables modes are independent of the orientation label, taking the form

u(�, θ) = C(�) cosθ (4.52)

with C(�) defined inEq. (4.11). The peak of the tuning surface alternates as a function of cortical position� between
the low and high spatial frequency pinwheels, depending on the sign ofC(�). In Fig. 17, we show some examples of

Fig. 17. Non-contoured hexagonal patterns with high and low spatial frequencies represented by black and white discs: (a)u = (1,1,1), (b)
u = (1,1,−1).
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hexagonal patterns in which the state of each hypercolumn is reduced to a binary representation indicating whether
the maximal response is at the high or low spatial frequency pinwheel.

4.3. Selection and stability of patterns

It is necessary to go beyond linear analysis to investigate the selection and stability of the patterns that bifurcate
from the homogeneous fixed point. Suppose that in the absence of lateral interactions each hypercolumn destabilises
at the critical pointµc = 1/W̃1 due to excitation of the first order spherical harmonics (as detailed inSection 3).
Sufficiently close to the bifurcation point, the resulting cortical stateu = a − ā can be written as

u(�, θ, φ, t) =
∑

m=0,±1

zm(�, t)Y
m
1 (θ, φ) (4.53)

with z−1 = z∗
1. Since the coupling strengthβ of the lateral connections is small, we can carry out a pertubation

expansion ofEq. (3.2)with respect toβ by settingµ − µc = O(β). As we show inAppendix B, this leads to a
cubic amplitude equation for the space dependent coefficientszm(�, t):

dzm(�, t)

dt
= zm(�, t)

(
−1 + µW̃1 − 4π

3
W(z2

0(�, t) + 2|z1(�, t)|2)
)

+β
∑

m′=0,±1

∑
�′ �=�

∫
J̃mm′(� − �′)zm′(�′, t), (4.54)

whereW is given byEq. (2.15)and∑
�∈L

e−ik·�Jmm′(�) = J̃mm′(k) (4.55)

with J̃mm′(k) definedEq. (4.21)for n = n′ = 1 (assuming anisotropic coupling).
First note that the linearised version ofEq. (4.54)recovers the first order linear dispersion relations derived

in Section 4.2. We derive amplitude equations for the corresponding linear eigenmode(4.34) by carrying out a
perturbation expansion with respect to a small parameterξ that determines the distance from the point of marginal
stability according toξ = µ−µ̂c with µ̂c given byEq. (4.33). We introduce a slow time-scaleτ = ξ2t and substitute
the series expansion

zm(�, τ ) = ξz(1)m (�, τ ) + ξ2z(2)m (�, τ ) + ξ3z(3)m (�, τ ) + · · · (4.56)

intoEq. (4.54). Collecting terms with equal powers ofξ generates a hierarchy of equations of the form (up toO(ξ3))

Mz(1)m = 0, (4.57)

Mz(2)m = 0, (4.58)

Mz(3)m = z(1)m

[
1 − 4π

3
W(|z(1)0 |2 + 2|z(1)1 |2)

]
− dz(1)m

dτ
(4.59)

for m = 0,±1, where

Mzm(�) ≡ −µ̂czm(�) − β
∑

m′=0,±1

∑
�′ �=�

J̃mm′(� − �′)zm′(�′). (4.60)
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The first equation in the hierarchy has solutions of the form(4.34):

z(1)m (�, τ ) =
N∑

j=1

[Um(kj )uj (τ )eikj ·� + U∗
−m(kj )u

∗
j (τ )e−ikj ·�], (4.61)

whereN = 2 for the square or rhombic lattice andN = 3 for the hexagonal lattice. Alsokj = kc�̂j for j = 1,2 and
k3 = −k1 − k2. (By an appropriate phase shift we can takeU∗

m = Um.) A dynamical equation for the amplitudes
uj (τ ) can then be obtained as a solvability condition for the third orderequation (4.59). Define the inner product
of two arbitrary functions on the latticevm(�) andzm(�) by

〈v|z〉 = 1

N2

∑
m=0,±1

∑
�∈L

v∗
m(�)zm(�), (4.62)

whereN determines the size of the lattice, seeEq. (4.4). Taking the inner product of the left-hand side ofEq. (4.59)
with vm(�) = Um(kj )eikj ·� leads to the following solvability condition:

〈v|Mz(3)〉 = 0. (4.63)

Finally, we substitute forMz(3) using the right-hand side ofEq. (4.59)to obtain an amplitude equation foruj :

duj

dτ
= uj


1 − γjj|uj |2 − 2

∑
l �=j

γjl|ul |2

 , (4.64)

whereγjl = γ
(0)
lj + 2γ (1)

lj with

γ
(r)
jl = 4πW

3

1∑
m |Um(kj )|2

[
|Ur(kj )|2

∑
m

|Um(kj )|2 + 2U∗
r (kj )Ur(kl )

∑
m

U∗
m(kj )Um(kl )

]
. (4.65)

From the symmetry property(4.35), it can be shown thatγjl only depends on the fundamental angleΨ between the
generators of the lattice so that we can writeγjl = γ (Ψ ) for j �= l andγjj = γ (0), whereγ is a function that will
generally depend upon which of the three first order spherical harmonics becomes marginally stable.

Unfortunately,Eq. (4.64)is not sufficient to determine completely the selection and stability of the steady-state
solutions bifurcating from the homogeneous state. One has to carry out anunfolding of the amplitude equation,
which in the case of the hexagonal lattice includes quadratic as well as higher order terms (quartic and quintic)
in u, u∗. Considerable information about the bifurcating solutions can be obtained using group theoretic methods.
In particular, one can use an important result from bifurcation theory in the presence of symmetries, namely, the
equivariant branching lemma [24]: when a symmetric dynamical system goes unstable, new solutions emerge that
(generically) have symmetries corresponding to the axial subgroups of the underlying symmetry group. A subgroup
Σ is axial if the dimension of the space of solutions that are fixed byΣ is equal to 1. Thus one can classify the
bifurcating solutions by finding the axial subgroups of the symmetry group of the lattice (up to conjugacy). This has
been carried out elsewhere for a continuum version of our model (neglecting spatial frequency), with anisotropic
lateral connections that are invariant under a shift-twist action of the Euclidean group rather than the discrete lattice
group described inSection 3 [11,12]. Restriction to doubly periodic solutions on a planar lattice leads to a bifurcation
problem very similar to the one considered in this paper. There is one important difference, however, between the
continuum and discrete models that could lead to differences in the axial subgroups. The amplitude equations for
doubly periodic solutions of the continuum model are equivariant with respect to the transformationun → eiϕnun,
whereϕ1, ϕ2 are arbitrary phases andϕ3 = −ϕ1−ϕ2. This reflects the underlying continuous translation symmetry.
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On the other hand, in the lattice model the allowed values of these phases will depend on the particular value of the
critical wavenumberkc and whether or not it is commensurate with the lattice spacing.

5. Discussion

Our analysis has shown that in the case of anisotropic lateral connections, there are two very distinct types of pattern
that can be generated. The first consists of acontoured pattern in which the optimal response of each hypercolumn
occurs at an intermediate spatial frequency and a particular orientation whose direction varies periodically across
the lattice as illustrated inFigs. 14 and 16. The second type of pattern isnon-contoured and consists of periodic
variations in the state of a hypercolumn that alternate between the high and low spatial frequency pinwheels without
any particular orientation being preferred, as illustrated inFig. 17. In the case of nearest neighbour coupling, the
critical wavelength of the cortical pattern is equal to half the lattice spacing. However, longer range coupling can lead
to other wavelengths as illustrated inFig. 12(b). Moreover, it is possible for this wavelength to be incommensurate
with the lattice so that variations in the state of a hypercolumn are quasi-periodic rather than periodic across the cortex.

Any spontaneously generated or stimulus-evoked cortical activity pattern in V1 maps to a corresponding real
or hallucinatory image on the retina[11,21]. In order to reconstruct such an image, it is first necessary to make
some ansatz regarding the interpretation of the cortical pattern and then to determine how the interpreted or reduced
pattern transforms under the action of the retino-cortical map. One possible interpretation of a contoured cortical
pattern is that it corresponds to a vector field of orientations. It is then relatively straightforward to pull back such
a vector field to generate a contoured image on the retina[11]. The interpretation of a non-contoured pattern is less
clear. One possibility is to pull back low spatial frequency patterns into alternating levels of high and low brightness
and to pullback high spatial frequency patterns into textured images.

The important distinction between even or odd contoured images and non-contoured images was previously
highlighted in our analysis of a continuum model of cortex, consisting of a continuous two-dimensional sheet of
interacting hypercolumns[11,12]. In this earlier model, each hypercolumn was idealised as a ring of orientation
selective cells—spatial frequency selectivity was ignored. We showed that the resulting distribution of lateral
connections was invariant under ashift-twist action of the planar Euclidean groupE(2) acting on the product space
R2×S1. By virtue of the anisotropy of the lateral connections, this shift-twist symmetry supported distinct scalar and
pseudoscalar group representations ofE(2) [9], which characterised the type of cortical activity patterns that could
arise through spontaneous symmetry breaking[11,12]. Continuous rotation symmetry implied that the manifold of
marginally stable states was infinite dimensional, consisting of spatially periodic patterns with wavectors lying on
some critical circle|k| = kc. In order to carry out a finite-dimensional bifurcation analysis, we followed the usual
procedure of restricting solutions to be doubly periodic with respect to some planar lattice whose lattice spacing
was taken to be equal to the critical wavelength of the marginally stable solutions. This then led to the discrete
shift-twist group action ofEq. (3.8).

Two examples of common hallucinatory images reproduced by our continuum model[11] are shown inFig. 18.
The first is a non-contoured image consisting of alternating regions of high and low luminance. The corresponding
cortical states are ones in which individual hypercolumns do not amplify any particular orientation, under the
assumption that there is a reduction in local inhibition within a hypercolumn that results in a bulk instability with
respect to orientation. On the other hand, the second image is contoured, consisting of a network of locally oriented
contrast edges obtained as the pull back of a vector field of optimal orientations in cortex. The inclusion of orientation
selective cells into a cortical model of pattern formation thus allows all of the basic types of hallucinatory images
(form constants) classified by Klüver[33] to be accounted for[11]—this was not possible in the original model of
Ermentrout and Cowan[21], which could only generate non-contoured patterns.
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Fig. 18. Non-contoured and contoured hallucinatory images: (a) spiral images seen following ingestion of LSD (redrawn from[43]), (b)
honeycomb generated by marihuana (redrawn from[19]).

The model presented in this paper improves upon our continuum model in two important aspects. First, interacting
hypercolumns are distributed on a lattice rather than a continuum. This is more realistic from a biological perspective,
given the interpretation of a hypercolumn as a fundamental domain of a lattice of orientation pinwheels. It also has
the advantage of eliminating certain ad hoc aspects of our previous analysis. In particular, the existence of a physical
lattice means that doubly periodic patterns such as rolls, hexagons and squares arise naturally within our theory,
rather than being imposed arbitrarily as a mathematical simplification. Moreover, once contoured patterns have been
generated in the continuum model, it is necessary to carry out some discrete sampling scheme in order to construct
the vector field of orientations using a winner-take-all strategy. In the lattice model, the sampling is already specified
by the distribution of pinwheels. Thus, there is a much stronger connection between the types of hallucinatory images
generated by our lattice model and the underlying structure of cortex. Second, we have introduced a more detailed
model of the internal structure of a hypercolumn that takes into account the spatial frequency selectivity of cortical
neurons. This is particularly natural given the observation that the pinwheels are organising centres for both the
orientation and spatial frequency maps[8,32]. Inclusion of spatial frequency provides an alternative explanation of
the origins of contoured versus non-contoured hallucinations, namely, that contoured (non-contoured) hallucinations
arise when intermediate (low/high) spatial frequencies within a hypercolumn are excited (as would occur when there
is sufficient inhomogeneity in the lateral connections, seeSection 4.2). This, in turn, supports the idea that there are
at two least distinct circuits operating in V1[6], one dealing with contrast edges at intermediate spatial frequencies
and another, centred on the orientation pinwheels, involved with the processing of textures, surfaces and brightness.

Our new model still involves a number of simplifications. First, there is clearly some degree of disorder in the
distribution of orientation pinwheels so that it might be more appropriate to consider a disordered rather than an
ordered lattice of hypercolumns. Second, we have carried out a phenomenological reduction of the internal structure
of each hypercolumn along the lines illustrated inFig. 3. Such a reduction needs to be carried out in a more rigorous
and systematic fashion, in order to fully account for how the local and long-range connections are correlated with
the two-dimensional orientation and spatial frequency maps. Alternatively, one could consider a continuum model
of cortex that explicitly incorporates these correlations. A preliminary analysis of such a model suggests that double
periodicity in the feature maps can induce an analogue of Bloch waves found in crytalline solids[3], in which activity
patterns are localised around pinwheels or around linear zones[13]. Finally, it would be interesting to consider how
the periodic structures described in this paper actually develop and subsequently influence the development of other
cortical structures. Since many models of activity-based cortical development involve some form of pattern forming
instability mediated by lateral connections[46], it is likely that some of the techniques familiar in the study of
ordered (and disordered) crystalline structures will also be relevant.
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Appendix A

Here we derive the amplitudeequation (2.14)and determine the coefficientW. First, substitute the perturbation
series

a = ā + ε1/2a1 + εa2 + ε3/2a3 + · · · (A.1)

into Eq. (2.2)with am = am(θ, φ, t) and Taylor expand the nonlinear firing rate function using(2.16). Introduce a
slow time scaleτ = εt and collect terms with equal powers ofε. This leads to a hierarchy of equations of the form

L̂a1 = 0, (A.2)

L̂a2 = h2[a1] ≡ σ2µcW ∗ a2
1, (A.3)

L̂a3 = h3[a1, a2] ≡ σ3µcW ∗ a3
1 + 2σ2µcW ∗ a1a2 + µ−1

c a1 − ∂a1

∂τ
, (A.4)

where

L̂a = a − µcW ∗ a (A.5)

and, for any functiona : S2 → R,

[W ∗ a](θ, φ) = 2
∫ π

0

∫ π

0

∞∑
n=0

W̃n

n∑
m=−n

Ym∗
n (θ ′, φ′)Ym

n (θ, φ)a(θ ′, φ′) sinθ ′ dθ ′ dφ′. (A.6)

The lowest orderequation (A.2)has solutions of the form

a1(θ, φ, τ ) =
∑

m=0,±1

cm(τ)fm(θ, φ) (A.7)

with fm defined inEq. (2.13). The higher order equations, on the other hand, only have solutions if certain solvability
conditions are satisfied. Define the inner product of two functionsU,V : S2 → R according to

〈U |V 〉 = 2
∫ π

0

∫ π

0
U∗(θ, φ)V (θ, φ) sin(θ)dθ dφ. (A.8)

The linear operator is then self adjoint so that taking the inner product ofEqs. (A.3) and (A.4)with the functions
fm (which are linear combinations of the first order spherical harmonics) leads to the result

〈fm|hk〉 = 〈fm|L̂ak〉 = 〈L̂fm|ak〉 = 0 (A.9)

for k = 2,3 andm = 0,±1. The solvability condition〈fm|h2〉 = 0 is automatically satisfied since〈fm|W ∗ a2
1〉 =

µ−1
c 〈fm|a2

1〉 = 0. Therefore, we focus on the cubic solvability condition〈fm|h3〉 = 0, which reduces to the form〈
fm|∂a1

∂τ
− µ−1

c a1

〉
= σ3〈fm|a3

1〉 + 2σ2〈fm|a1a2〉, m = 0,±1. (A.10)

We evaluate the various inner products appearing inEq. (A.10)for m = 0. This will generate a cubic amplitude
equation forc0: the other amplitude equations follow immediately from the underlyingO(3) symmetry.
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First, fromEq. (A.7)we have〈
cosθ |∂a1

∂τ
− µ−1

c a1

〉
=
(

dc0

dτ
− µ−1

c c0

)
〈 cosθ | cosθ〉 = 4π

3

(
dc0

dτ
− µ−1

c c0

)
. (A.11)

Next, expanda3
1 and collect terms that are independent ofφ:

〈 cosθ |a3
1〉 = c3

0〈 cosθ | cos3 θ〉 + 3

2
c0(c

2
1 + c2

−1)〈 cosθ | cosθ sin2θ〉 = 4π

5
c0

∑
m=0,±1

c2
m. (A.12)

In order to evaluate the final term on the right-hand side ofEq. (A.10), we solve fora2 in terms ofa1 usingEq. (A.3).
Decompose the producta2

1 as a sum of zeroth and second order harmonics (seeTable 1) so that

a2 − µcW ∗ a2 = 1

3
σ2µcW̃0

∑
m=0,±1

c2
m + σ2µcW̃2

[
c2+ − c2−

2
sin2θ cos 4φ + c1c−1 sin2θ sin 4φ

]

+ σ2µcW̃2c0 sin 2θ [c1 cos 2φ + c−1 sin 2φ] + σ2µcW̃2

(
1

3
− cos2θ

)(
c2

1 + c2
−1

2
− c2

0

)
.

(A.13)

It follows that

a2 = κa1(θ, φ) + Λ0

3

∑
m=0,±1

c2
m + Λ2

[
c2

1 − c2
−1

2
sin2θ cos 4φ + c1c−1 sin2θ sin 4φ

]

+Λ2

[
c0 sin 2θ [c1 cos 2φ + c−1 sin 2φ] +

(
1

3
− cos2θ

)(
c2

1 + c2
−1

2
− c2

0

)]
, (A.14)

where

Λr = σ2µcW̃r

1 − µcW̃r

, r = 0,2. (A.15)

The constantκ remains undetermined at this level of perturbation analysis, but does not contribute to the cubic
amplitude equation forc0, c±. We now useEq. (A.14)to expand the producta2a1. Keeping onlyφ-independent
terms then gives

〈 cosθ |a1a2〉 = Λ0

3


c0

∑
m=0,±1

c2
m


 〈 cosθ | cosθ〉 + Λ2

2
c0[c2

1 + c2
−1]〈 cosθ | sinθ sin 2θ〉

+ Λ2

2
c0(c

2
1 + c2

−1 − 2c2
0)

〈
cosθ | cosθ

3
− cos3θ

〉
. (A.16)

Evaluating the various inner products usingEq. (A.8)yields the result

〈 cosθ |a1a2〉 =
[

4π

3

Λ0

3
+ 32π

45

Λ2

2

]c0

∑
m=0,±1

c2
m


 . (A.17)

The final step in the analysis is to substituteEqs. (A.11), (A.12) and (A.17)into Eq. (A.10)for m = 0. This gives

dcm
dτ

= cm


µ−1

c −W
∑

p=0,±1

c2
p


 (A.18)

for m = 0 with the coefficientW satisfyingEq. (2.15). After rescalingcm andτ , we recoverEq. (2.14).



256 P.C. Bressloff, J.D. Cowan / Physica D 173 (2002) 226–258

Appendix B

We sketch how to extend the amplitude equation analysis ofAppendix Ato the coupled hypercolumn model of
Section 4. Exploiting the fact that the horizontal interactions are weak, we assume that each active hypercolumn
is ε-close to bifurcation andβ = O(ε). Carrying out a perturbation expansion ofEq. (3.2)usingEq. (A.1) with
am = am(�, θ, φ, τ ) leads to the hierarchy ofEqs. (A.2)–(A.4), except that now there are additional contributions
arising from the lateral interactions:

L̂a1 = 0, (B.1)

L̂a2 = σ2µcW ∗ (a1)
2, (B.2)

L̂a3 = σ3µcW ∗ (a1)
3 + 2σ2µcW ∗ a1a2 + µ−1

c a1 − ∂a1

∂τ
+ β̂wlat ◦ a1, (B.3)

whereβ = β̂ε. HereL̂ is the linear operator(A.5), W ∗ A is defined inEq. (A.6)and

[wlat ◦ a](�, θ, φ) =
∑
�′ �=�

J (� − �′)
∫
A�,�′(P ′)a(�′, P ′)DP′. (B.4)

The lowest orderequation (B.1)has solutions of the form

a1(�, θ, φ, τ ) =
∑

m=0,±1

zm(�, τ )Y
m
1 (θ, φ). (B.5)

(Note that in the lattice model, it is more convenient to work with the complex basisYm
1 for the spherical harmonics.)

As inAppendix A, dynamical equations for the amplitudeszm can be derived from the solvability conditions obtained
by taking the inner product of the third order equation with respect toYm

1 . This gives〈
Ym

1 |∂a1

∂τ
− µ−1

c a1

〉
= σ3〈Ym

1 |(a1)
3〉 + 2σ2〈Ym

1 |a1a2〉 + β̂〈Ym
1 |wlat ◦ a1〉 (B.6)

for m = 0,±1.
Finally, substituteEq. (B.5)into (B.6) and evaluate the inner products. The local contributions to the complex

amplitude equation are obtained fromEq. (A.18)by performing the coordinate transformation

z0 =
√

3

4π
c0, z±1 =

√
3

8π
(c1 ± ic−1). (B.7)

Thus

dzm
dτ

= zm

(
µ−1

c − 4π

3
W(z2

0 + 2|z1|2)
)

+ β̂〈Ym
1 |wlat ◦ a1〉. (B.8)

The interaction term〈Ym
1 |wlat ◦ a1〉 is most easily calculated using Fourier transforms. Following the analysis of

Section 4, we find that

wlat ◦ a1(�, θ, φ, τ ) = L2

4π2

∑
m′=0,±1

[∫
eik·�J̃ (k|θ, φ)Zm′(k, τ )d2k

]
Ym′

1 (θ, φ), (B.9)

whereJ̃ (k|θ, φ) is given byEq. (4.17)andZm(k, τ ) is the Fourier transform ofzm(�, τ ). Hence,

〈Ym
1 |wlat ◦ a1〉 = L2

4π2

∑
m′=0,±1

[∫
eik·�J̃mm′(k)Zm′(k, t)d2k

]
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with J̃mm′(k) defined byEq. (4.21)for n = n′ = 1. After rescalingzm andτ , and using the convolution theorem
we obtain the cubic amplitudeequation (4.54)for the lattice model.
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