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Abstract. In this paper we define a class of formal neuron models being computationally efficient
and biologically plausible, i.e., able to reproduce a wide range of behaviors observed in in vivo or
in vitro recordings of cortical neurons. This class includes, for instance, two models widely used in
computational neuroscience, the Izhikevich and the Brette–Gerstner models. These models consist
of a 4-parameter dynamical system. We provide the full local bifurcation diagram of the members
of this class and show that they all present the same bifurcations: an Andronov–Hopf bifurcation
manifold, a saddle-node bifurcation manifold, a Bogdanov–Takens bifurcation, and possibly a Bautin
bifurcation, i.e., all codimension two local bifurcations in a two-dimensional phase space except the
cusp. Among other global bifurcations, this system shows a saddle homoclinic bifurcation curve. We
show how this bifurcation diagram generates the most prominent cortical neuron behaviors. This
study leads us to introduce a new neuron model, the quartic model, able to reproduce among all
the behaviors of the Izhikevich and Brette–Gerstner models self-sustained subthreshold oscillations,
which are of great interest in neuroscience.
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Introduction. During the past few years, in the neurocomputing community, the
problem of finding a computationally simple and biologically realistic model of neuron
has been widely studied, in order to be able to compare experimental recordings with
numerical simulations of large-scale brain models. The key problem is to find a model
of neuron realizing a compromise between its simulation efficiency and its ability to
reproduce what is observed at the cell level, often considering in-vitro experiments
[15, 18, 24].

Among the numerous neuron models, from the detailed Hodgkin–Huxley model
[11] still considered as the reference, but unfortunately computationally intractable
when considering neuronal networks, down to the simplest integrate-and-fire model [8]
very effective computationally, but unrealistically simple and unable to reproduce
many behaviors observed, two models seem to stand out [15]: the adaptive quadratic
(Izhikevich [14] and related models such as the theta model with adaptation [6, 10])
and exponential (Brette and Gerstner [5]) neuron models. These two models are com-
putationally almost as efficient as the integrate-and-fire model. The Brette–Gerstner
model involves an exponential function, which needs to be tabulated if we want the
algorithm to be efficient. They are also biologically plausible, and reproduce several
important neuronal regimes with a good adequacy with biological data, especially in
high-conductance states, typical of cortical in vivo activity. Nevertheless, they fail in
reproducing deterministic self-sustained subthreshold oscillations, a behavior of par-
ticular interest in cortical neurons for the precision and robustness of spike generation
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1046 JONATHAN TOUBOUL

patterns, for instance in the inferior olive nucleus [4, 22, 23], in the stellate cells of the
entorhinal cortex [1, 2, 17], and in the dorsal root ganglia (DRG) [3, 20, 21]. Some
models have been introduced to study from a theoretical point of view the currents in-
volved in the generation of self-sustained subthreshold oscillations [25], but the model
failed in reproducing lots of other neuronal behaviors.

The aim of this paper is to define and study a general class of neuron models,
containing the Izhikevich and Brette–Gerstner models, from a dynamical systems
point of view. We characterize the local bifurcations of these models and show how
their bifurcations are linked with different biological behaviors observed in the cortex.
This formal study will lead us to define a new model of neuron, whose behaviors
include those of the Izhikevich–Brette–Gerstner (IBG) models but also self-sustained
subthreshold oscillations.

In the first section of this paper, we introduce a general class of nonlinear neuron
models which contains the IBG models. We study the fixed-point bifurcation diagram
of the elements of this class, and show that they present the same local bifurcation
diagram, with a saddle-node bifurcation curve, an Andronov–Hopf bifurcation curve,
a Bogdanov–Takens bifurcation point, and possibly a Bautin bifurcation, i.e., all codi-
mension two bifurcations in dimension two except the cusp. This analysis is applied in
the second section to the Izhikevich and the Brette–Gerstner models. We derive their
bifurcation diagrams and prove that none of them shows the Bautin bifurcation. In
the third section, we introduce a new simple model—the quartic model—presenting,
in addition to common properties of the dynamical system of this class, a Bautin
bifurcation, which can produce self-sustained oscillations. Last, the fourth section is
dedicated to numerical experiments. We show that the quartic model is able to repro-
duce some of the prominent features of biological spiking neurons. We give qualitative
interpretations of those different neuronal regimes from the dynamical systems point
of view, in order to give a grasp of how the bifurcations generate biologically plau-
sible behaviors. We also show that the new quartic model, presenting supercritical
Hopf bifurcations, is able to reproduce the oscillatory/spiking behavior presented,
for instance, in the DRG. Finally, we show that numerical simulation results of the
quartic model show a good agreement with biological intracellular recordings in the
DRG.

1. Bifurcation analysis of a class of nonlinear neuron models. In this
section we introduce a large class of formal neurons which are able to reproduce a
wide range of neuronal behaviors observed in cortical neurons. This class of models is
inspired by the review made by Izhikevich [15]. He found that the quadratic adaptive
integrate-and-fire model was able to simulate efficiently a lot of interesting behaviors.
Brette and Gerstner [5] defined a similar model of neuron which presented a good
adequacy between simulations and biological recordings.

We generalize these models, and define a new class of neuron models, wide but
specific enough to keep the diversity of behaviors of the IBG models.

1.1. The general class of nonlinear models. In this paper, we are interested
in neurons defined by a dynamical system of the type

{
dv
dt = F (v) − w + I,
dw
dt = a(bv − w),
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where a, b, and I are real parameters and F is a real function.1

In this equation, v represents the membrane potential of the neuron, w is the
adaptation variable, I represents the input intensity of the neuron, 1/a is the char-
acteristic time of the adaptation variable, and b accounts for the interaction between
the membrane potential and the adaptation variable.2

This equation is a very general model of neuron. For instance when F is a polyno-
mial of degree three, we obtain a FitzHugh–Nagumo model, when F is a polynomial
of degree two the Izhikevich neuron model [14], and when F is an exponential func-
tion the Brette–Gerstner model [5]. However, in contrast with continuous models like
the FitzHugh–Nagumo model [8], the two latter cases diverge when spiking, and an
external reset mechanism is used after a spike is emitted.

In this paper, we want this class of models to have common properties with the
IBG neuron models. To this purpose, let us make some assumptions on the function
F . The first assumption is a regularity assumption.

Assumption (A1). F is at least three times continuously differentiable.
A second assumption is necessary to ensure us that the system would have the

same number of fixed points as the IBG models.
Assumption (A2). The function F is strictly convex.
Definition 1.1 (convex neuron model). We consider the two-dimensional model

defined by the equations

(1.1)

{
dv
dt = F (v) − w + I,
dw
dt = a(bv − w),

where F satisfies Assumptions (A1) and (A2) and characterizes the passive properties
of the membrane potential.

Many neurons of this class blow up in finite time. These neurons are the ones we
are interested in.

Remark. Note that all the neurons of this class do not blow up in finite time. For
instance if F (v) = v log(v), it will not. For F functions such that F (v) = (v1+α)R(v)
for some α > 0, where limv→∞ R(v) > 0 (possibly ∞), the dynamical system will
possibly blow up in finite time.

If the solution blows up at time t∗, a spike is emitted, and subsequently we have
the following reset process:

(1.2)

{
v(t∗) = vr,

w(t∗) = w(t∗−) + d,

where vr is the reset membrane potential and d > 0 a real parameter. Equations
(1.1) and (1.2), together with initial conditions (v0, w0), give us the existence and
uniqueness of a solution on R

+.
The two parameters vr and d are important to understand the repetitive spiking

properties of the system. Nevertheless, the bifurcation study with respect to these

1The same study can be done for a parameter-dependent function. More precisely, let E ⊂ R
n

be a parameter space (for a given n) and F : E × R → R a parameter-dependent real function.
All the properties shown in this section are valid for any fixed value of the parameter p. Further p-
bifurcations studies can be done for specific F (p, ·). The first equation can be derived from the general
I-V relation in neuronal models: C dV

dt
= I − I0(V ) − g(V −EK), where I0(V ) is the instantaneous

I-V curve.
2See, for instance, section 2.2, where the parameters of the initial equation (2.2) are related to

biological constants and where we proceed to a dimensionless reduction.
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parameters is outside the scope of this paper, and we focus here on the bifurcations of
the system with respect to (a, b, I), in order to characterize the subthreshold behavior
of the neuron.

1.2. Fixed points of the system. To understand the qualitative behavior of
the dynamical system defined by (1.1) before the blow up (i.e., between two spikes),
we begin by studying the fixed points and analyze their stability. The linear stability
of a fixed point is governed by the Jacobian matrix of the system, which we define in
the following proposition.

Proposition 1.2. The Jacobian of the dynamical system (1.1) can be written

(1.3) L := v �→
(

F ′(v) −1
ab −a

)
.

The fixed points of the system satisfy the equations

(1.4)

{
F (v) − bv + I = 0,

bv = w.

Let Gb(v) := F (v) − bv. From (A1) and (A2), we know that the function Gb is
strictly convex and has the same regularity as F . To have the same behavior as the
IBG models, we want the system to have the same number of fixed points. To this
purpose, it is necessary that Gb has a minimum for all b > 0. Otherwise, the convex
function Gb would have no more than one fixed point, since a fixed point of the system
is the intersection of an horizontal curve and Gb.

This means for the function F that infx∈R F ′(x) ≤ 0 and supx∈R
F ′(x) = +∞.

Using the monotony property of F ′, we write Assumption (A3).
Assumption (A3). ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→+∞

F ′(x) = +∞.

Assumptions (A1), (A2), and (A3) ensure us that for all b ∈ R
∗
+, Gb has a unique

minimum, denoted m(b), which is reached. Let v∗(b) be the point where this minimum
is reached.

This point is the solution of the equation

(1.5) F ′(v∗(b)) = b.

Proposition 1.3. The point v∗(b) and the value m(b) are continuously differen-
tiable with respect to b.

Proof. We know that F ′ is a bijection. The point v∗(b) is defined implicitly by
the equation H(b, v) = 0, where H(b, v) = F ′(v) − b. H is a C1-diffeomorphism
with respect to b, and the differential with respect to b never vanishes. The implicit
function theorem (see, for instance, [7, Annex C.6]) ensures us that v∗(b) solution of
H(b, v∗(b)) = 0 is continuously differentiable with respect to b, and so does m(b) =
G(v∗(b)) − bv∗(b).

Theorem 1.4. The parameter curve defined by {(I, b); I = −m(b)} separates
three behaviors of the system (see Figure 1.1):

(i) If I > −m(b), then the system has no fixed point.
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Fig. 1.1. Number of fixed points and their stability in the plane (I, b) for the exponential
adaptive model.

(ii) If I = −m(b), then the system has a unique fixed point, (v∗(b), w∗(b)), which
is nonhyperbolic. It is unstable if b > a.

(iii) If I < −m(b), then the dynamical system has two fixed points (v−(I, b),
v+(I, b)) such that

v−(I, b) < v∗(b) < v+(I, b).

The fixed point v+(I, b) is a saddle fixed point, and the stability of the fixed
point v−(I, b) depends on I and on the sign of (b− a):
(a) If b < a, the fixed point v−(I, b) is attractive.
(b) If b > a, there is a unique smooth curve I∗(a, b) defined by the implicit

equation F ′(v−(I∗(a, b), b)) = a. This curve reads I∗(a, b) = bva−F (va),
where va is the unique solution of F ′(va) = a.

(b.1) If I < I∗(a, b), the fixed point is attractive.
(b.2) If I > I∗(a, b), the fixed point is repulsive.

Proof.
(i) We have F (v) − bv ≥ m(b) by definition of m(b). If I > −m(b), then for all

v ∈ R we have F (v) − bv + I > 0 and the system has no fixed point.
(ii) Let I = −m(b). We have already seen that Gb is strictly convex and contin-

uously differentiable and for b > 0 reaches its unique minimum at the point
v∗(b). This point is such that Gb(v

∗(b)) = m(b), and so it is the only point
satisfying F (v∗(b)) − bv∗(b) −m(b) = 0.
Furthermore, this point satisfies F ′(v∗(b)) = b. The Jacobian of the system
at this point reads

L(v∗(b)) =

(
b −1
ab −a

)
.

Its determinant is 0, and so the fixed point is nonhyperbolic (0 is eigenvalue
of the Jacobian matrix). The trace of this matrix is b− a. So the fixed point
v∗(b) is attractive when b > a and repulsive when b > a. The case a = b,
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I = −m(b) is a degenerate case which we will study more precisely in section
1.3.3.

(iii) Let I < −m(b). By the strict convexity assumption, Assumption (A2), of the
function G together with Assumption (A3), we know that there are only two
intersections of the curve G to a level −I higher than its minimum. These
two intersections define our two fixed points. At the point v∗ the function
is strictly lower than −I, and so the two solutions satisfy v−(I, b) < v∗(b) <
v+(I, b).
Let us now study the stability of these two fixed points. To this end, we have
to characterize the eigenvalues of the Jacobian matrix of the system at these
points.
We can see from formula (1.3) and the convexity assumption, Assumption
(A2), that the Jacobian determinant, equal to −aF ′(v) + ab, is a decreasing
function of v and vanishes at v∗(b), and so det(L(v+(I, b))) < 0 and the fixed
point is a saddle point (the Jacobian matrix has a positive and a negative
eigenvalue).
For the other fixed point v−(I, b), the determinant of the Jacobian matrix is
strictly positive. So the stability of the fixed point depends on the trace of
the Jacobian. This trace reads F ′(v−(I, b)

)
− a.

(a) When b < a, we have a stable fixed point. Indeed, the function F ′ is
an increasing function equal to b at v∗(b), and so Trace

(
L(v−(I, b))

)
≤

F ′(v∗(b)) − a = b− a < 0 and the fixed point is attractive.
(b) If b > a, then the type of dynamics around the fixed point v− depends

on the input current (parameter I). Indeed, the trace reads

T (I, b, a) := F ′(v−(I, b)
)
− a,

which is continuous and continuously differentiable with respect to I and
b, and which is defined for I < −m(b). We have⎧⎨

⎩
lim

I→−m(b)
T (I, b, a) = b− a > 0,

lim
I→−∞

T (I, b, a) = lim
x→−∞

F ′(x) − a < 0.

So there exists a curve I∗(a, b) defined by T (I, b, a) = 0 and such that
• for I∗(b) < I < −m(b), the fixed point v−(I, b) is repulsive;
• for I < I∗(b), the fixed point v− is attractive.

To compute the equation of this curve, we use the fact that point
v−(I∗(b), b) is such that F ′(v−(I∗(b), b)) = a. We know from the prop-
erties of F that there is a unique point va satisfying this equation. Since
F ′(v∗(b)) = b, a < b, and F ′ is increasing, the condition a < b implies
that va < v∗(b).
The associated input current satisfies fixed points equation F (va)−bva+
I∗(a, b) = 0, or equivalently

I∗(a, b) = bva − F (va).

The point I = I∗(a, b) will be studied in detail in the next section, since
it is a bifurcation point of the system.

Figure 1.1 represents the different zones enumerated in Theorem 1.4 and their
stability in the parameter plane (I, b).
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Remark. In this proof, we used the fact that F ′ is invertible on [0,∞). As-
sumption (A3) ensures us that it will be the case and that F has a unique minimum.
Assumption (A3) is the weakest possible to have this property.

1.3. Bifurcations of the system. In the study of the fixed points and their
stability, we identified two bifurcation curves where the stability of the fixed points
changes. The first curve I = −m(b) corresponds to a saddle-node bifurcation and
the curve I = I∗(a, b) to an Andronov–Hopf bifurcation. These two curves meet in a
specific point, b = a and I = −m(a). This point has a double 0 eigenvalue, and we
show that it is a Bogdanov–Takens bifurcation point.

Let us show that the system undergoes these bifurcations with no other assump-
tion than (A1), (A2), and (A3) on F . We also prove that the system can undergo
only one other codimension two bifurcation, a Bautin bifurcation.

1.3.1. Saddle-node bifurcation curve. In this section we characterize the
behavior of the dynamical system along the curve of equation I = −m(b), and we
prove the following theorem.

Theorem 1.5. The dynamical system (1.1) undergoes a saddle-node bifurcation
along the parameter curve:

(1.6) (SN) : {(b, I) ; I = −m(b)} ,

when F ′′(v∗(b)) �= 0.
Proof. We derive the normal form of the system at this bifurcation point. Fol-

lowing the works of Guckenheimer and Holmes [9] and Kuznetsov [19], we check only
the transversality conditions to be sure that the normal form at the bifurcation point
will have the expected form.

Let b ∈ R
+ and I = −m(b). Let v∗(b) be the unique fixed point of the system

for these parameters. The point v∗(b) is the unique solution of F ′(v∗(b)) = b. At this
point, the Jacobian matrix (1.3) reads

L(v∗(b)) =

(
b −1
ab −a

)
.

This matrix has two eigenvalues 0 and b − a. The pairs of right eigenvalues and
right eigenvectors are

0, U :=

(
1/b

1

)
and b− a,

(
1/a

1

)
.

Its pairs of left eigenvalues and left eigenvectors are

0, V := (−a, 1) and b− a, (−b, 1) .

Let fb,I be the vector field

fb,I(v, w) =

(
F (v) − w + I

a(bv − w)

)
.

The vector field satisfies

V

(
∂

∂I
fb,I(v

∗(b), w∗(b))

)
= (−a, 1) ·

(
1

0

)
= −a < 0.
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So the coefficient of the normal form corresponding to the Taylor expansion along
the parameter I does not vanish.

Finally, let us show that the quadratic terms of the Taylor expansion in the normal
form does not vanish. With our notations, this condition reads

V
(
D2

xfb,−m(b)(v
∗(b), w∗(b))(U,U)

)
�= 0.

This property is satisfied in our framework. Indeed,

V
(
D2

xfb,−m(b)(v
∗(b), w∗(b))(U,U)

)
= V

⎛
⎜⎝
⎛
⎜⎝U2

1

∂2f1

∂v2
+ 2U1U2

∂2f1

∂v∂w
+ U2

2

∂2f1

∂w2

U2
1

∂2f2

∂v2
+ 2U1U2

∂2f2

∂v∂w
+ U2

2

∂2f2

∂w2

⎞
⎟⎠
⎞
⎟⎠

= V

(( 1
b2F

′′(v∗)

0

))

= (−a, 1) ·
( 1

b2F
′′(v∗)

0

)

= − a

b2
F ′′(v∗) < 0.

So the system undergoes a saddle-node bifurcation along the manifold I =
−m(b).

Remark. Note that F ′′(v∗(b)) can vanish only countably many times since F is
strictly convex.

1.3.2. Andronov–Hopf bifurcation curve. In this section we consider the
behavior of the dynamical system along the parameter curve I = I∗(b), and we
consider the fixed point v−.

Theorem 1.6. Let b > a, va be the unique point such that F ′(va) = a and A(a, b)
be defined by the formula

(1.7) A(a, b) := F ′′′(va) +
1

b− a
(F ′′(va))

2
.

If F ′′(va) �= 0 and A(a, b) �= 0, then the system undergoes an Andronov–Hopf
bifurcation at the point va, along the parameter line

(1.8) (AH) :=
{

(b, I) ; b > a and I = bva − F (va)
}
.

This bifurcation is subcritical if A(a, b) > 0 and supercritical if A(a, b) < 0.
Proof. The Jacobian matrix at the point va reads

L(va) =

(
a −1
ab −a

)
.

Its trace is 0 and its determinant is a(b− a) > 0, and so the matrix at this point
has a pair of pure imaginary eigenvalues (iω,−iω), where ω =

√
a(b− a). Along the

curve of equilibria when I varies, the eigenvalues are complex conjugates with real
part μ(I) = 1

2 Tr
(
L(v−(I, b))

)
which vanishes at I = I∗(a, b).

We recall that from Proposition 1.3, this trace varies smoothly with I. Indeed,
v−(b, I) satisfies F (v−(I, b)) − bv−(I, b) + I = 0 and is differentiable with respect to
I. We have

∂v−(I, b)

∂I
(F ′(v−(I, b)) − b) = −1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATION ANALYSIS OF NONLINEAR IF NEURONS 1053

At the point v−(I∗(b), b) = va, we have F ′(va) = a < b, and so for I close to this
equilibrium point, we have

∂v−(I, b)

∂I
> 0.

Now let us check that the transversality condition of an Andronov–Hopf bifurca-
tion is satisfied (see [9, Theorem 3.4.2]). There are two conditions to be satisfied: the

transversality condition dμ(I)
dI �= 0 and the nondegeneracy condition l1 �= 0, where l1

is the first Lyapunov coefficient at the bifurcation point.
First of all, we prove that the transversality condition is satisfied:

μ(I) =
1

2
Tr(L(v−(I, b)))

=
1

2
(F ′(v−(I, b)) − a),

dμ(I)

dI
=

1

2
F ′′(v−(I, b))

dv−(I, b)

dI
> 0.

Let us now write the normal form at this point. To this purpose, we change
variables: {

v − va = x,

w − wa = ax + ωy.

The (x, y) equation reads

(1.9)

{
ẋ = −ωy + (F (x + va) − ax− wa) =: −ωy + f(x),

ẏ = ωx + a
ω (ax− F (x + va) + wa − I) =: ωx + g(x).

According to Guckenheimer in [9], we state that the Lyapunov coefficient of the
system at this point has the same sign as B, where B is defined by

B :=
1

16
[fxxx+fxyy+gxxy+gyyy]+

1

16ω
[fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy].

Replacing f and g by the expressions found in (1.9), we obtain the expression
of A:

B =
1

16
F ′′′(va) +

a

16ω2
(F ′′(va))

2

=
1

16
F ′′′(va) +

1

16(b− a)
(F ′′(va))

2

=
1

16
A(a, b).

Hence when A(a, b) �= 0, the system undergoes an Andronov–Hopf bifurcation.
When A(a, b) > 0, the bifurcation is subcritical and the periodic orbits generated by
the Hopf bifurcation are repelling, and when A(a, b) < 0, the bifurcation is supercrit-
ical and the periodic orbits are attractive (the formula of A has also been introduced
by Izhikevich in [16, eq. (15), p. 213]).
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Remark. The case A(a, b) = 0 is not treated in the theorem and is a little bit
more intricate. We fully treat it in section 1.3.4 and show that a Bautin (generalized
Hopf) bifurcation can occur if the A-coefficient vanishes. Since the third derivative is
a priori unconstrained, this case can occur, and we prove in section 3 that this is the
case for a simple (quartic) model.

1.3.3. Bogdanov–Takens bifurcation. We have seen in the study that this
formal model presents an interesting point in the parameter space, corresponding to
the intersection of the saddle-node bifurcation curve and the Andronov–Hopf bifur-
cation curve. At this point, we show that the system undergoes a Bogdanov–Takens
bifurcation.

Theorem 1.7. Let F be a real function satisfying Assumptions (A1), (A2),
and (A3). Let a ∈ R

∗
+ and b = a, and let va be the only point such that F ′(va) = a.

Assume again that F ′′(va) �= 0.
Then at this point and with these parameters, the dynamical system (1.1) under-

goes a subcritical Bogdanov–Takens bifurcation of normal form:

(1.10)

⎧⎨
⎩
η̇1 = η2,

η̇2 =
(

8F ′′(va) a I1
(a+b1)3

)
−
(

2(2 b1 a+I1 F ′′(va))
(a+b1)2

)
η1 + η2

1 + η1η2 + O(‖η‖3),

where b1 := b− a and I1 = I + m(a).
Proof. The Jacobian matrix (1.3) at this point reads

L(va) =

(
a −1
a2 −a

)
.

This matrix is nonzero and has two 0 eigenvalues (its determinant and trace are 0).
The matrix Q :=

(
a 1
a2 −a

)
is the passage matrix to the Jordan form of the Jacobian

matrix:

Q−1 · L(va) ·Q =

(
0 1
0 0

)
.

To prove that the system undergoes a Bogdanov–Takens bifurcation, we show that
the normal form reads

(1.11)

{
η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + ση1η2 + O(‖η‖3)

with σ = ±1. The proof of this theorem consists of (i) proving that the system
undergoes a Bogdanov–Takens bifurcation, (ii) finding a closed-form expression for
the variables β1 and β2, and (iii) proving that σ = 1.

First of all, let us prove that the normal form can be written in the form of (1.11).
This is equivalent to showing some transversality conditions on the system (see, for
instance, [19, Theorem 8.4]).

To this end, we center the equation at this point and write the system in the
coordinates given by the Jordan form of the matrix. Let

(
y1

y2

)
= Q−1

(
v−va

w−wa

)
at the

point b = a + b1, I = −m(a) + I1. We get

(1.12)

{
ẏ1 = y2 + b1

a (ay1 + y2),

ẏ2 = F (ay1 + y2 + va) − wa −m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2).
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Let us denote v1 = ay1 + y2. The Taylor expansion on the second equation gives
us

ẏ2 = F (v1 + va) − wa −m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2)

= F (va) + F ′(va)v1 +
1

2
F ′′(va)v

2
1 − wa −m(a)

+ I1 − a2y1 − ay2 − b1(ay1 + y2) + O(‖v1‖3)

= (F (va) − wa −m(a)) + I1 + (F ′(va) − a)v1 − b1v1 +
1

2
F ′′(va)v

2
1

+ O(‖v1‖3)

= I1 − b1(ay1 + y2) +
1

2
F ′′(va)(ay1 + y2)

2 + O(‖y‖3).(1.13)

Let us denote for the sake of clarity α = (b1, I1) and write (1.12) as
(1.14){
ẏ1 = y2 + a00(α) + a10(α)y1 + a01(α)y2,

ẏ2 = b00(α) + b10(α)y1 + b01(α)y2 + 1
2b20(α)y2

1 + b11(α)y1y2 + 1
2b02(α)y2

2 + O(‖y‖3).

From (1.12) and (1.13), it is straightforward to identify the expressions for the
coefficients aij(α) and bij(α).

Let us now use the change of variables:{
u1 = y1,

u2 = y2 + b1
a (ay1 + y2).

The dynamical system governing (u1, u2) reads{
u̇1 = u2,

u̇2 = (1 + b1
a ) − b1 a u1 + 1

2
a3F ′′(va)

a+b1
u2

1 + a2F ′′(va)
a+b1

u1 u2 + 1
2
aF ′′(va)
a+b1

u2
2.

The transversality conditions of a Bogdanov–Takens bifurcation [9, 19] can easily
be verified from this expression:

(BT.1) The Jacobian matrix is not 0.
(BT.2) With the notations of (1.14), we have a20 = 0 and b11(0) = aF ′′(va) > 0,

and so a20(0) + b11(0) = aF ′′(va) > 0.
(BT.3) b20 = a2F ′′(va) > 0.
(BT.4) We show that the map(

x :=

(
y1

y2

)
, α :=

(
I1
b1

))
�→
[
f(x, α),Tr

(
Dxf(x, α)

)
,Det

(
Dxf(x, α)

)]
is regular at the point of interest.
From the two first assumptions, we know that the system can be put in the
form of (1.11). Guckenheimer in [9] proves that this condition can be reduced
to the nondegeneracy of the differential with respect to (I1, b1) of the vector(
β1

β2

)
of (1.11).

In our case, we can compute these variables β1 and β2 following the calculation
steps of [19], and we get

(1.15)

{
β1 = 8F ′′(va) a I1

(a+b1)3
,

β2 = − 2(2 b1 a+I1 F ′′(va))
(a+b1)2

.
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Hence the differential of the vector
(
β1

β2

)
with respect to the parameters (I1, b1)

at the point (0, 0) reads

Dαβ|(0,0) =

(
8F ′′(va)

a2 0

−2F ′′(va)
a2 −4/a

)
.

This matrix has a nonzero determinant if and only if F ′′(va) �= 0.
Therefore we have proved the existence of a Bogdanov–Takens bifurcation under

the condition F ′′(va) �= 0.
Let us now show that σ = 1. Indeed, this coefficient is given by the sign of

b20(0)
(
a20(0) + b11(0)

)
which in our case is equal to a3F ′′(va)

2 > 0, and so the
bifurcation is always of the type (1.10) (generation of an unstable limit cycle) for all
the members of our class of models.

The existence of a Bogdanov–Takens bifurcation point implies the existence of a
smooth curve corresponding to a saddle homoclinic bifurcation in the system (see [19,
Lemma 8.7]).

Corollary 1.8. There is a unique smooth curve (P ) corresponding to a saddle
homoclinic bifurcation in the system (1.1) originating at the parameter point b = a
and I = −m(a) defined by the implicit equation:

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

F ′′(va)
+ o(| b1 | + | I1 |)(1.16)

and b1 > −I1F
′′(va)

2a

}
.

Moreover, for (b, I) in a neighborhood of (a,−m(a)), the system has a unique
and hyperbolic unstable cycle for parameter values inside the region bounded by the
Hopf bifurcation curve and the homoclinic bifurcation curve (P ), and it has no cycle
outside this region.

Proof. As noticed, from the Bogdanov–Takens bifurcation point, we have the
existence of this saddle homoclinic bifurcation curve. Let us now compute the equation
of this curve in the neighborhood of the Bogdanov–Takens point. To this purpose we
use the normal form we derived in Theorem 1.7 and use the local characterization
given, for instance, in [19, Lemma 8.7] for the saddle homoclinic curve:

(P ) :=

{
(β1, β2) ; β1 = − 6

25
β2

2 + o(β2
2), β2 < 0

}
.

Using the expressions (1.15) yields

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

8F ′′(va)aI1
(a + b1)3

=
24

25

(2 b1 a + I1 F
′′(va))

2

(a + b1)4
+ o(| b1 | + | I1 |)

and b1 > −I1F
′′(va)

2a

}
.
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We can solve this equation. There are two solutions but only one satisfying I1 = 0
when b1 = 0. This solution is the curve of saddle homoclinic bifurcations.

1.3.4. Formal conditions for a Bautin bifurcation. In the study of the
Andronov–Hopf bifurcation, we showed that the sub- or supercritical type of bifurca-
tion depended on the variable A(a, b) defined by (1.7). If this variable changes sign
when b varies, then the stability of the limit cycle along Hopf bifurcation changes
stability. This can occur if the point va satisfies the following condition.

Assumption (A4). For va such that F ′(va) = a, we have

F ′′′(va) < 0.

Indeed, if this happens, the type of Andronov–Hopf bifurcation changes, since we
have ⎧⎨

⎩
lim

b→a−
A(a, b) = +∞,

lim
b→+∞

A(a, b) = F ′′′(va) < 0.

In this case the first Lyapunov exponent vanishes for

b = a− (F ′′(va))
2

F ′′′(va)
.

At this point, the system has the characteristics of a Bautin (generalized Hopf) bifur-
cation. Nevertheless, we still have to check two nondegeneracy conditions to ensure
that the system actually undergoes a Bautin bifurcation:

(BGH.1) The second Lyapunov coefficient of the dynamical system l2 does not
vanish at this equilibrium point.

(BGH.2) Let l1(I, b) be the first Lyapunov exponent of this system and μ(I, b)
the real part of the eigenvalues of the Jacobian matrix. The map

(I, b) �→ (μ(I, b), l1(I, b))

is regular at this point.
In this case the system would be locally topologically equivalent to the normal

form: {
ẏ1 = β1y1 − y2 + β2y1(y

2
1 + y2

2) + σy1(y
2
1 + y2

2)2,

ẏ2 = β1y2 − y1 + β2y2(y
2
1 + y2

2) + σy2(y
2
1 + y2

2)2.

We reduce the problem to the point that checking the two conditions of a BGH
bifurcation becomes straightforward.

Let (va, wa) be the point where the system undergoes the Bautin bifurcation
(when it exists). Since we already computed the eigenvalues and eigenvectors of the
Jacobian matrix along the Andronov–Hopf bifurcation curve, we can use it to reduce
the problem. The basis where we express the system is given by

⎧⎪⎨
⎪⎩
Q :=

(
1
b

ω
ab

1 0

)
,

(
x
y

)
:= Q−1

(
v−va

w−wa

)
.
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Let us write the dynamical equations satisfied by (x, y):{
ẋ = ωy,

ẏ = ab
ω

(
F
(
va + 1

bx + ω
aby
)
− wa − x + Ia − ay

)
.

To ensure that we have a Bautin bifurcation at this point we will need to per-
form a Taylor expansion up to the fifth order, and so we need to make the following
assumption.

Assumption (A5). The function F is six times continuously differentiable at
(va, wa).

First, let us denote v1(x, y) = 1
bx + ω

aby; the Taylor expansion reads

ẏ =
ab

ω

(
F (va) − wa + I

)
+

ab

ω
[F ′(va)v1(x, y) − ay] +

1

2

ab

ω

[
F ′′(va)v1(x, y)

2
]

+
1

6

ab

ω
F ′′′(va)v1(x, y)

3 +
1

4!

ab

ω
F (4)(va)v1(x, y)

4

+
1

5!

ab

ω
F (5)(va)v1(x, y)

5 + O
(∥∥∥∥
(
x

y

)∥∥∥∥
6
)
.

This expression, together with the complex left and right eigenvectors of the
Jacobian matrix, allows us to compute the first and second Lyapunov coefficients and
to check the existence of a Bautin bifurcation.

Nevertheless, we cannot push the computation any further at this level of gener-
ality, but, for a given function F presenting a change in the sign of A(a, b), this can
easily be done through the use of a symbolic computation package. The interested
reader is referred to Appendix A for checking the Bautin bifurcation transversality
conditions, where calculations are given for the quartic neuron model.

1.4. Conclusion: The full bifurcation diagram. We now summarize the
results obtained in this section in the two following theorems.

Theorem 1.9. Let us consider the formal dynamical system

(1.17)

{
v̇ = F (v) − w + I,

ẇ = a(bv − w),

where a is a fixed real, b and I bifurcation parameters, and F : R �→ R a real function.
If the function F satisfies the assumptions that

(A.1) the function F is three times continuously differentiable,
(A.2) F is strictly convex, and
(A.3) F ′ satisfies the conditions ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→∞

F ′(x) = ∞,

then the dynamical system (1.17) shows the following bifurcations:
(B1) A saddle-node bifurcation curve:

(SN) : {(b, I) ; I = −m(b)} ,

where m(b) is the minimum of the function F (v)−bv (if the second derivative
of F does not vanish at this point).
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(B2) An Andronov–Hopf bifurcation line:

(AH) :=
{

(b, I) ; b > a and I = bva − F (va)
}
,

where va is the unique solution of F ′(va) = a (if F ′′(va) �= 0). This type of
Andronov–Hopf bifurcation is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b− a
F ′′(va)

2.

If A(a, b) > 0, then the bifurcation is subcritical, and if A(a, b) < 0, then the
bifurcation is supercritical.

(B3) A Bogdanov–Takens bifurcation point at the point b = a and I = −m(a) if
F ′′(va) �= 0.

(B4) A saddle homoclinic bifurcation curve characterized in the neighborhood of
the Bogdanov–Takens point by

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

F ′′(va)
+ o(| b1 | + | I1 |)

and b1 > −I1F
′′(va)

2a

}
.

Theorem 1.10. Consider the system (1.1), where a is a given real number, b
and I are real bifurcation parameters, and F : E ×R �→ R is a function satisfying the
following assumptions:

(A.5) The function F is six times continuously differentiable.
(A.2) F is strictly convex.
(A.3) F ′ satisfies the conditions ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→∞

F ′(x) = ∞.

(A.4) Let va be the unique real such that F ′(va) = a. We have

F ′′′(va) < 0.

Furthermore, consider the following conditions:
(BGH.1) The second Lyapunov coefficient of the dynamical system l2(va) �= 0.
(BGH.2) Let l1(v) denote the first Lyapunov exponent and λ(I, b) = μ(I, b) ±

iω(I, b) the eigenvalues of the Jacobian matrix in the neighborhood of the
point of interest. The map (I, b) → (μ(I, b), l1(I, b)) is regular at this point.

Having these, the system undergoes a Bautin bifurcation at the point va for the

parameters b = a− F ′′(va)2

F ′′′(va) and I = bva − F (va).

Remark. Theorem 1.9 enumerates some of the bifurcations that any dynamical
system of the class (1.1) will always undergo. Together with Theorem 1.10, they
summarize all the local bifurcations the system can undergo, and no other fixed-point
bifurcation is possible. In section 3 we introduce a model actually showing all these
local bifurcations.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1060 JONATHAN TOUBOUL

2. Applications: Izhikevich and Brette–Gerstner models. In this section
we show that the neuron models proposed by Izhikevich in [14] and Brette and Gerst-
ner in [5] are part of the class studied in section 1. Using the results of the latter
section, we derive their bifurcation diagram and obtain that they show exactly the
same types of bifurcations.

2.1. Izhikevich quadratic adaptive model. We produce here a complete de-
scription of the bifurcation diagram of the adaptive quadratic integrate-and-fire model
proposed by Izhikevich in [14] and [16, Chapter 8]. We use here the dimensionless
equivalent version of this model with the fewest parameters:

(2.1)

{
v̇ = v2 − w + I,

ẇ = a(bv − w).

Equation (2.1) is clearly a particular case of (1.1) with

F (v) = v2.

F is clearly strictly convex and C∞. F ′(v) = 2v, and so it also satisfies Assump-
tion (A3). Furthermore, the second derivative never vanishes, and so the system
undergoes the three bifurcations stated in Theorem 1.9.

(Izh.B1) A saddle-node bifurcation curve defined by{
(b, I) ; I =

b2

4

}
.

For (I, b) ∈ R
2, the fixed point is given by (v∗(b) = 1

2b, w
∗(b) = 1

2b
2).

For I < b2

4 , the fixed point(s) are

v±(b, I) =
1

2

(
b±
√

b2 − 4I
)
.

(Izh.B2) An Andronov–Hopf bifurcation line:{
(I, b) ; b > a and I =

a

2

(
b− a

2

)}
,

whose type is given by the sign of the variable

A(a, b) =
4

b− a
.

This value is always strictly positive, and so the bifurcation is always sub-
critical.

(Izh.B3) A Bogdanov–Takens bifurcation point for b = a and I = a2

4 , va = a
2 .

(Izh.B4) A saddle homoclinic bifurcation curve satisfying the quadratic equation
near the Bogdanov–Takens point:

(P ) :=

{(
I =

a2

2
+ I1, b = a + b1

)
;

I1 =
a

2

(
−25

6
a− 37

6
b1 +

5

6

√
25 a2 + 74 b1 a + 49 b1

2

)
+ o(| b1 | + | I1 |)

and b1 > −I1
a

}
.

Figure 2.1 represents the fixed points of this dynamical system, and their stability,
together with the bifurcation curves.
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Fig. 2.1. Representation of the v fixed point with respect to the parameters I and b in the Izhike-
vich model. The reddish component is the surface of saddle fixed points, the purplish one corresponds
to the repulsive fixed points, and the greenish/bluish one corresponds to the attractive fixed points
The yellow curve corresponds to a saddle-node bifurcation and the red one to an Andronov–Hopf
bifurcation.

2.2. Brette–Gerstner exponential adaptative integrate-and-fire neuron.
In this section we study the bifurcation diagram of the adaptive exponential neuron.
This model has been introduced by Brette and Gerstner in [5]. This model, inspired
by the Izhikevich adaptive quadratic model, can be fitted to biological values, takes
into account the adaptation phenomenon, and is able to reproduce many behaviors
observed in cortical neurons. The bifurcation analysis we derived in section 1 allows
us to understand how the parameters of the model can affect the behavior of this
neuron. We show that this model is part of the general class studied in section 1, and
we obtain the fixed-point bifurcation diagram of the model.

2.2.1. Reduction of the original model. This original model is based on
biological constants and is expressed with a lot of parameters. We first reduce this
model to a simpler form with the fewest number of parameters.

The basic equations proposed in the original paper [5] read

(2.2)

⎧⎪⎪⎨
⎪⎪⎩
C dV

dt = −gL(V − EL) + gLΔT exp
(

V−VT

ΔT

)
−ge(t)(V − Ee) − gi(t)(V − Ei) −W + Im,

τW
dW
dt = κ(V − EL) −W.

First, we do not assume that the reversal potential of the w equation is the same
as the leakage potential EL, and we write the equation for the adaptation variable by

τW
dW

dt
= a(V − V̄ ) −W.

Next we assume that ge(·) and gi(·) are constant (in the original paper it was assumed
that the two conductances were null).
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After some straightforward algebra, we eventually get the following dimensionless
equation equivalent to (2.2):

(2.3)

{
v̇ = −v + ev − w + I,

ẇ = a(bv − w),

where we denoted

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃ := gL + ge + gi,

τm := C
g̃ ,

B := κ
g̃

(
EL

ΔT
+ log( gLg̃ e−VT /ΔT )

)
,

v(τ) := V (ττm)
ΔT

+ log
(

gL
g̃ e−VT /ΔT

)
,

w(τ) := W (ττm)
g̃ΔT

+ B,

a := τm
τW

,

b := κ
g̃ ,

I := Im+gLEL+geEe+giEi

g̃ΔT
+ log( glg̃ e

−VT /ΔT ) + B

and where the dot denotes the derivative with respect to τ .
Remark. These expressions confirm the qualitative interpretation of the param-

eters a, b, and I of the model (1.1). Indeed, a = τm
τw

accounts for the time scale of
the adaptation (with the membrane time scale as reference), and the parameter b = κ

g̃
is proportional to the interaction between the membrane potential and the adaptation
variable and inversely proportional to the total conductivity of the membrane poten-
tial. Eventually, I is an affine function of the input current Im and models the input
current of the neurons.

2.2.2. Bifurcation diagram. From (2.3) we can clearly see that the Brette–
Gerstner model is included in the formal class studied in the paper with

F (v) = ev − v.

This function satisfies Assumptions (A1), (A2), and (A3). Furthermore, its second
order derivative never vanishes.

Theorem 1.9 shows that the system undergoes the following bifurcations:
(BG.B1) A saddle-node bifurcation curve defined by

{(b, I) ; I = (1 + b)(1 − log(1 + b))} .

So v∗(b) = log(1+ b). For I ≤ (1+ b)(1− log(1+ b)), the system has the fixed
points

(2.5)

⎧⎨
⎩
v−(I, b) := −W0

(
− 1

1+be
I

1+b

)
+ I

1+b ,

v+(I, b) := −W−1

(
− 1

1+be
I

1+b

)
+ I

1+b ,

where W0 is the principal branch of Lambert’s W function3 and W−1 the
real branch of Lambert’s W function such that W−1(x) ≤ −1, defined for
−e−1 ≤ x < 1.

3The Lambert W function is the inverse function of x �→ xex.
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Fig. 2.2. Representation of the v fixed point of the Brette–Gerstner model with respect to
the parameters I and b. The reddish/pinkish component is the surface of saddle fixed points, the
purplish one corresponds to the repulsive fixed points, and the bluish/greenish one corresponds to
the attractive fixed points The yellow curve corresponds to a saddle-node bifurcation and the red one
to an Andronov–Hopf bifurcation.

(BG.B2) An Andronov–Hopf bifurcation line for

{(b, I) ; b > a and I = I∗(a, b) = (1 + b) log(1 + a) − (1 + a)}

at the equilibrium point (va = log(1+a), wa = bva). This type of Andronov–
Hopf bifurcation is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b− a
F ′′(va)

2 = (1 + a) +
4

b− a
(1 + a)2 > 0.

So the bifurcation is always subcritical, and there is not any Bautin bifurca-
tion.

(BG.B3) A Bogdanov–Takens bifurcation point at the point b = a and I =
log(1 + a).

(BG.B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–
Takens point, the equation

(P ) :=

{
(I = (1 + a)(log(1 + a) − 1) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

(1 + a)
+ o(| b1 | + | I1 |)

and b1 > −
(

1 +
1

a

)
I1

}
.

In Figure 2.2 we represent the fixed points of the exponential model and their
stability, together with the bifurcation curves, in the space (I, b, v).
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3. The richer quartic model. In this section, we introduce a new specific
model having a richer bifurcation diagram than the two models studied in section 2.
It is as simple as the two previous models from the mathematical and computational
points of view. To this end, we define a model which is part of the class studied in
section 1 by specifying the function F .

3.1. The quartic model: Definition and bifurcation map. Let a > 0 be a
fixed real and α > a. We instantiate the model (1.1) with the function F a quartic
polynomial:

F (v) = v4 + 2av.

Remark. The choice of the function F here is just an example where all the
formulas are rather simple. Exactly the same analysis can be done with any F function
satisfying F ′′′(va) < 0 and the transversality conditions given in Theorem 1.10. This
would be the case, for instance, for any quartic polynomial F (v) = v4 +αv for α > a.

The function F satisfies Assumptions (A1), (A2), and (A5). F ′(v) = 4v3 + 2a
satisfies Assumption (A3).

Nevertheless, we have to bear in mind that the second order derivative vanishes
at v = 0:

(3.1)

{
v̇ = v4 + 2av − w + I,

ẇ = a(bv − w).

Theorem 1.9 shows that the quartic model undergoes the following bifurcations:
(B1) A saddle-node bifurcation curve defined by

(SN) :=

{
(b, I) ; I = 3

(
b− 2a

4

)(4/3)
}
.

Proof. Indeed, the function G reads G(v) = v4 + (2a − b)v and reaches its
minimum at the point v = ( b−2a

4 )(1/3). So the minimum of G is m(b) =

−3 ( b−2a
4 )(4/3).

The point v∗(b) is ( b−2a
4 )(1/3), and we have closed-form expressions (but

rather complicated) for the two fixed points for I < 3 ( b−2a
4 )(4/3) since the

quartic equation is solvable in radicals. The closed form expression can be
obtained using a symbolic computation package like Maple using the com-
mand
S:=allvalues( solve( x^4 + (2*a - b) * x + I0 = 0,x));

(B2) An Andronov–Hopf bifurcation curve for b > a along the straight line

(AH) :=

{
(I, b) ; b > a and I = −

(a
4

)1/3

b−
(a

4

)4/3
}
.

The fixed point where the system undergoes this bifurcation is va = −(a4 )1/3.
The kind of Andronov–Hopf bifurcation we have is governed by the sign of

α = −24
(a

4

)1/3

+
144

b− a

(a
4

)4/3

.

Finally, the type of bifurcation changes when b varies.
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I

Fig. 3.1. v fixed points and their stability in function of I and b. The reddish/pinkish component
is the surface of saddle fixed points, the purplish one corresponds to the repulsive fixed points, and
the bluish/greenish one corresponds to the attractive fixed points. The yellow curve corresponds to
a saddle-node bifurcation, the red curve to a subcritical Andronov–Hopf bifurcation, and the greyish
one to the supercritical Andronov–Hopf bifurcation. The intersection point between the yellow and
the red curve is the Bogdanov–Takens bifurcation point, and the intersection point of the red and
greyish curves is the Bautin bifurcation point.

• When b < 5
2 a, then α > 0, hence l1 > 0, and the Andronov–Hopf

bifurcation is subcritical.
• When b > 5

2 a, then α < 0, hence l1 < 0, and the Andronov–Hopf
bifurcation is supercritical.

We prove below that the change in the type of Hopf bifurcation is obtained
via a Bautin bifurcation.

(B3) A Bogdanov–Takens bifurcation point is located at b = a and I = −3 (a4 )(4/3).
(B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–Takens

point, the equation

(P ) :=

{(
I = −3

(a
4

)(4/3)

+ I1, b = a + b1

)
;

I1 =
1

12

(
−25

6
a− 37

6
b1 +

5

6

√
25 a2 + 74 b1 a + 49 b1

2

)
a1/3

+ o(| b1 | + | I1 |)

and b1 > −6I1a
−1/3

}
.

(B5) A Bautin bifurcation at the point
(
b = 5

2a, I = −3(a4 )4/3 (2 a − 1)
)

and a
saddle node bifurcation of periodic orbits coming along (see section 3.2).

Figure 3.1 represents the bifurcation curves and the fixed point of the quartic
model in the space (I, b, v).
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3.2. The Bautin bifurcation. As we have seen in the last section, at the point

(3.2)

⎧⎪⎨
⎪⎩
va = −

(
a
4

)1/3
,

I = −3
(
a
4

)4/3
(2 a− 1) ,

b = 5
2a

the Jacobian matrix of the system has a pair of purely conjugate imaginary eigenvalues
and a vanishing first Lyapunov exponent.

To prove the existence of a Bautin bifurcation, we start our computations from
the point of section 1.3.4. In this case the calculations can be led until the end, but
the expressions are very intricate, and we do not reproduce it here. In Appendix A
we show the calculations to perform. We prove that the system actually undergoes a
Bautin bifurcation except for two particular values of the parameter a.4

With this method we obtain a closed-form expression for the second Lyapunov
exponent. We show that this second Lyapunov exponent vanishes for two values of a,
whose expressions are complicated. These calculations are rigorous, but nevertheless,
the interested reader can find numerical expressions of this exponent to get a grasp
on its behavior in the appendix (see (A.7)) and of the two numerical values of a such
that l2(a) vanishes.

Things are even more involved when we are interested in the regularity of the
map (I, b) �→ (μ(I, b), l1(I, b)). Nevertheless, we obtain that this determinant never
vanishes.

Eventually, for all a different from the critical values where the second Lyapunov
exponent vanishes, the system undergoes a Bautin bifurcation.

Note finally that the Bautin bifurcation point separates two branches of sub-
and supercritical Hopf bifurcations. For nearby parameter values, the system has
two coexisting limit cycles, an attractive one and a repelling one, which collide and
disappear via a saddle-node bifurcation of periodic orbits.

4. Numerical simulations. In the previous sections we emphasized the fact
that the class of models we defined in section 1 was able to reproduce the behaviors
observed by Izhikevich in [15]. In this section, first we show that the quartic model
indeed reproduces the behaviors observed by Izhikevich and which correspond to cor-
tical neuron behaviors observed experimentally. We also produce some simulations of
self-sustained subthreshold oscillations which occur only when the dynamical system
has attracting periodic orbits, which is not the case in the IBG models.

Izhikevich in [15] explains the main features we obtain in numerical simulations
from the neurocomputational point of view. In this paper, we comment on these
same features from the dynamical systems point of view. This analysis also gives
us a systematic way of finding the parameters associated with one of the possible
behaviors.

4.1. Simulation results. We now provide simulation results of the quartic
model introduced in section 3. In the simulated model, the spike is not represented
by the blow up of the potential membrane v, but we consider that the neuron emits
a spike when its membrane potential crosses a constant threshold.5

4All the computations have been performed using Maple, but the expressions are very involved
and are not reproduced here.

5Note that the numerical simulations are very robust with respect to the choice of the threshold,
if taken large enough, since the underlying equation blows up in finite time.
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Let θ be our threshold. The simulated model considered in this section is the
solution of the equations

(4.1)

{
v̇ = v4 + 2av − w + I,

ẇ = a(bv − w)

together with the spike-and-reset condition

(4.2) If v(t−) > θ ⇒
{
v(t) = vr,

w(t) = w(t−) + d.

Simulations have been done using an Euler numerical scheme, with a time step
ranging from 10−1 to 10−2 depending on the precision needed, and with time intervals
ranging from 10 to 500. This method is very efficient numerically and remains precise.
Other integration methods could be used, and the qualitative results we obtained do
not depend on the integration scheme, as soon as the time step is small enough.

Remark (on Figure 4.1). Note that we did not reproduce the last three behaviors
presented by Izhikevich in [15, Figs. 1.(R), 1.(S), and 1.(T)]. Indeed, these behaviors
are not in the scope of the present paper and do not correspond to the model we studied.

More precisely, in the study of the general model (1.1), we considered for phe-
nomenological reasons a > 0, modelling the leak of the adaptation variable: the adapta-
tion would converge to its rest value if it was not influenced by the membrane potential
v. If we considered a < 0, this adaptation variable would diverge exponentially from
this rest value if it was not controlled by the membrane potential v. The inhibition-
induced behaviors [15, Figs. 1.(S) and 1.(T)] require a to be strictly negative, and so
we will not comment on these behaviors any further.

Similarly, the accommodation behavior presented by Izhikevich in [15, Fig. 1.(R)]
is a limit case when w is very slow and the adaptation efficiency b very high. Mathe-
matically speaking, it corresponds to a case where a → 0 and ab → λ �= 0. This case
is not taken into account in our study and amounts to replacing (1.1) by an equation
of the type

(4.3)

{
dv
dt = F (v) − w + I,
dw
dt = ab(v − v0),

and the study of this equation is not in the scope of the present paper.
The simulated behaviors we obtained in Figure 4.1 have been obtained playing

with the bifurcation parameters in the phase plane. The way the parameters were set
was based on a qualitative reasoning on the phase plane and the bifurcation diagram
in a way we now describe.

4.2. Bifurcations and neuronal dynamics. In this section we link the neu-
ronal behaviors shown in Figure 4.1 with the bifurcations of the system.

• (i) Tonic spiking : This behavior corresponds to the saddle-node bifurcation.
The system starts from a (stable) equilibrium point near the saddle-node
bifurcation curve (see Figure 4.2). Then we apply a greater constant current
I, and the new dynamical system has no fixed point (we “cross” the saddle-
node bifurcation curve). So the neuron begins spiking. The stabilization
of the spiking frequency is linked with the existence of what we will call
a limit spiking cycle. Indeed, we can see that the phase plane trajectory
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability .

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Fig. 4.1. Different remarkable neurocomputational interesting behaviors of the neuron model
(4.1) with the reset condition (4.2) for different choices of the parameters (a, b, I, vr, d). The higher
curve represents the membrane potential v and the lower one the input current I (see Appendix B
for the numerical values of each simulations).

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 4.2. Tonic spiking: phase plane trajectory. The dotted curve is the v nullcline at the initial
time. It is shifted to the dashed one when applying a constant input current. The new dynamical
system has no fixed point and spikes regularly. We can see the spiking cycle appearing.
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(a) Phase plane of the tonic spiking
(without the transient phase)

0 1000 2000 3000 4000 5000 6000
−10

0

10
(C2) tonic bursting (2 spikes/burst)

0 1000 2000 3000 4000 5000 6000
−10

0

10
(C3) tonic bursting 3spikes/burst

0 1000 2000 3000 4000 5000 6000
−10

0

10
tonic bursting 4 spikes/burst

(b) Controlling the number of spikes per burst

Fig. 4.3. Tonic bursting: phase plane trajectory. The dotted curve is the v nullcline at the
initial time. It is shifted to the dashed one when applying a constant input current. The new
dynamical system has no fixed point. We can see the multiple spike limit cycle here.

converges to a kind of cycle. This cycle includes a spike point (v = ∞,
or v = threshold in the numerical case), and so it is not a classical limit
cycle. The v is always reset to the same value, and we can see that the
adaptation variable w converges to an attracting stable value wspike. This
value satisfies ws(tspike)+ b = wspike, where ws(·) is solution of (4.1) with the
initial conditions {

v(0) = vr,

w(0) = wspike

and where tspike denotes the time of the spike.
• (ii) Phasic spiking : This behavior occurs on the stable fixed point portion

of the phase plane. The system starts at a fixed point. Then we apply a
constant current to the neuron greater than the initial current but lower than
the current associated with the saddle-node bifurcation. This stimulation
forces the neuron to spike. Nevertheless, the reset point falls in the attraction
basin of the new fixed point, and the trajectory converges to this point.

• (iii) Tonic bursting : This behavior is also linked to the saddle-node bifur-
cation. The system starts at a (stable) fixed point, and when we apply a
constant current, we cross this bifurcation. The new dynamical system has
no fixed point and is in a spiking behavior. The only difference with the tonic
spiking behavior is that the point (vr, wspike) is in the zone {(v, w); v̇ < 0}.
So the system emits quickly a precise number of spikes and then crosses the
v nullcline. At this point, the membrane potential decays before spiking.
We can see numerically that the system converges to a stable spiking cycle
(see Figure 4.3(a)) containing a given number of spikes, a decay, and then
the same sequence of spikes again. So the two-dimensional system is able
to reproduce the diagrams presented by Izhikevich in [13] in an (at least)
three-dimensional space. This is possible in two dimensions because of the
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(a) Class 1 excitability
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(b) Class 2 excitability

Fig. 4.4. Spiking frequency vs. input current I for different choices of b. These curves have
been obtained running simulations for different values of the input current, computing the frequency
of the emitted spikes in a time range T = 10000.

singularity of the model (explosion or threshold/reinitialization). If the sys-
tem was regular, this behavior would not have been possible because it would
have contradicted the Cauchy–Lipschitz theorem of existence and uniqueness
of a solution.
Note that we can choose exactly the number of spikes per burst by changing
the adaptation parameter d and that the bursting can be of parabolic or
square-wave type as defined in Hoppensteadt and Izhikevich [12] (see Figure
4.3(b)).

• (iv) Phasic bursting : This behavior is linked with what we discussed in
(ii) and (iii): the system starts at a stable fixed point. When the input
current is turned on, the nullcline is shifted and the initial point is now in the
spiking zone, and so a spike is emitted. Nevertheless, in contrast with (ii),
the reset does not fall in the attraction basin of the new stable fixed point,
but the point (v0, wspike) is inside this attraction basin. So a certain number
of spikes are emitted before returning to the new fixed point. Here again we
are able to control the number of spikes in the initial burst.

• (v) Mixed mode: The dynamical system interpretation is mixed between the
phasic bursting and the tonic spiking. A certain number of spikes are neces-
sary to converge to the spiking cycle.

• (vi) Spike frequency adaptation: This behavior is a particular case of tonic
bursting where the convergence to the stable spiking cycle is slow.

• (vii)/(viii) Class one/two excitability : Figure 4.4(a) and (b) represents the
spiking frequency of the neurons as a function of the input current. We can
see that for the first choice of parameter, the frequency can be very small and
increases regularly, and for the second choice of parameter, we can see that
the system cannot spike in a given range of frequency (this frequency cannot
be lower than 1.2Hz). Those simulations show that, depending on the chosen
parameters, the system can be class 1 or class 2 excitable.

• (ix)/(xvii) Spike latency/DAP : It is a particular case of phasic spiking when
the equilibrium v∗ or the reset point vr is near a point such that F (v) =
F ′(v) = 0. The membrane potential dynamics is very slow around this point.
In the spike latency behavior, the initial point is close to this point, which
generates the observed latency. In our case, it is around the minimum of
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(a) Bistability: return to equilibrium via the same
impulse
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(P) bistability

(b) Bistability

Fig. 4.5. Bistability phenomenon: The first impulse induces a self-sustained tonic spiking
behavior while the system has a stable fixed point. The second impulse perturbs this regular spiking
behavior, and the system falls in the attraction basin of the stable fixed point.

the function F (see Figure 4.6(ix)). In the depolarized after-potential (DAP)
case, the reset occurs near this point, which is also in the attraction basin of
the stable fixed point.

• (x) Damped subthreshold oscillations: This behavior occurs in the neighbor-
hood of the stable fixed point: the stimulation evokes a spike, and the reset
falls in the attraction basin of the stable fixed point, which has complex
eigenvalues with negative real parts. This generates damped subthreshold
oscillations.

• (xi) Resonator : This behavior occurs at the stable fixed point when the
Jacobian matrix has complex eigenvalues. The first spike induces damped
subthreshold oscillations. The spike is emitted if the second spike is given at
the period of those oscillations, which is given by the argument of the complex
eigenvalue. If it occurs before or after, then no spike is emitted.

• (xii) Integrator : This behavior occurs when we stimulate the system from
the stable fixed point when the Jacobian matrix has real (negative) eigenval-
ues. If the first stimulation is not sufficient to make the neuron spike, then
the stimulation is damped. Nevertheless, the membrane potential returns to
equilibrium slowly, and if the same stimulation arrives to the “destabilized”
neuron, it can generate a spike. The closer the second stimulation is to the
first one, the more probable the omission of the spike.

• (xiii)/(xiv) Rebound spike or burst : The input impulse makes the neuron
spike, and the reset (or the second, third, nth reset) falls in the attraction
basin of the stable fixed point.

• (xv) Threshold variability : This phenomenon is exactly the same as the inte-
grator, but instead of destabilizing the variable v we play on the adaptation
variable.

• (xvi) Bistability : This behavior starts from the stable fixed point. The at-
tracting reset (vr, wspike) is outside the attraction basin of the fixed point
but still close to this zone. The first impulse generates a spike and initiates a
tonic spiking mode. Nevertheless, it is possible via a small perturbation of the
trajectory to fall into the attraction basin of the fixed point (see Figure 4.5).
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability .

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Fig. 4.6. Phase diagrams corresponding to the behaviors presented in Figure 4.1.

• (xviii)/(xx) Self-sustained subthreshold oscillations and purely oscillating
mode: They are linked with the supercritical Hopf bifurcation and its stable
periodic orbit. These two behaviors cannot be obtained in the IBG models
since the Hopf bifurcations are always subcritical.

4.3. Self-sustained subthreshold oscillations in cortical neurons. In this
study we gave a set of sufficient conditions to obtain an IBG-like model of neuron.
In this framework we proposed a model that displays a Bautin bifurcation the IBG
neurons lack; as a consequence our model can produce subthreshold oscillations. In
this section, we explain from a biological point of view the origin and the role of those
oscillations and reproduce in vivo recordings.

In the IBG models, the Andronov–Hopf bifurcation is always subcritical. The only
oscillations created in these models are damped (see Figure 4.7(a)) and correspond
in the phase plane to the convergence to a fixed point where the Jacobian matrix
has complex eigenvalues. Our quartic model undergoes supercritical Andronov–Hopf
bifurcations, and so there are attracting periodic solutions. This means that the
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(a) Damped oscillations
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(b) Transient phase towards
the self-sustained oscillations
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(c) Self-sustained oscillations
(stationary state)

Fig. 4.7. The quartic model shows damped subthreshold oscillations like the IBG models (Figure
4.7(a)): the trajectory collapses to a fixed point (parameters: a = 1, b = 1.5, I = 0.1, Tmax = 100,
dt = 0.01). The upper (blue) curve represents the solution in v, the middle (red) one w, and the lower
one (green) the trajectory in the plane (v, w). Self-sustained subthreshold oscillations of the quartic
model (Figures 4.7(b) and 4.7(c)): the trajectory is attracted towards a limit cycle (parameters:
a = 1, b = 5/2, I = −3(a/4)4/3(2a−1), Tmax = 150000, dt = 0.01, I = (−3(a/4)4/3(2a−1)+0.001).

neurons can show self-sustained subthreshold oscillations (Figures 4.7(b) and 4.7(c)),
which is of particular importance in neuroscience.

Most biological neurons show a sharp transition from silence to a spiking behavior,
which is reproduced in all the models of class (1.1). However, experimental studies
suggest that some neurons may experience a regime of small oscillations [21]. These
subthreshold oscillations can facilitate the generation of spike oscillations when the
membrane gets depolarized or hyperpolarized [22, 23]. They also play an important
role in shaping specific forms of rhythmic activity that are vulnerable to the noise in
the network dynamics.

For instance, the inferior olive nucleus, a part of the brain that sends sensory
information to the cerebellum, is composed of neurons able to support oscillations
around the rest potential. It has been shown by Llinás and Yarom [22, 23] that the
precision and robustness of these oscillations are important for the precision and the
robustness of spike generation patterns. The quartic model is able to reproduce the
main features of the inferior olive neuron dynamics:

i. autonomous subthreshold periodic and regular oscillations (see intracellular
recordings of inferior olive neurons in brain stem slices in [23]),

ii. rhythmic generation of action potentials.

The robust subthreshold oscillations shown by in vivo recordings [4, 21, 23] cor-
respond in our quartic model to the stable limit cycle coming from the supercritical
Hopf bifurcation. The oscillations generated by this cycle are stable, and they have
a definite amplitude and frequency. This oscillation occurs at the same time as the
rhythmic spike generation in the presence of noisy or varying input. Note that other
neuron models such as those studied above, even if they do not undergo a supercritical
Hopf bifurcation, can also exhibit oscillations in the presence of noise, for instance
near a subcritical Hopf bifurcation. Nevertheless, these oscillations do not have the
regularity in the amplitude and the frequency linked with the presence of an attract-
ing limit cycle. The results we obtain simulating the quartic model are very similar
to those obtained by in vivo recordings (see Figure 4.8).

But the inferior olive neurons are not the only neurons to present subthreshold
membrane potential oscillations. For instance, stellate cells in the enthorhinal cor-
tex demonstrate theta frequency subthreshold oscillations [1, 2, 17], linked with the
persistent Na+ current INaP.
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(b) With intermittent spiking
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(d) Biological recordings

Fig. 4.8. Subthreshold membrane oscillations, qualitatively reproducing the recordings from [20]
in DRG neurons. Traces illustrate (4.8(a)) oscillations without spiking, (4.8(b)) oscillations with
intermittent spiking, and (4.8(c)) oscillations with intermittent bursting (in the figures, spikes are
truncated). The noisy input is an Ornstein–Ulhenbeck process. The biological recordings 4.8(d) are
reproduced from [20, Fig. 1] and used with permission.

We now conclude this section on the specific example of subthreshold self-sus-
tained oscillations given by the dorsal root ganglia (DRG) neuron. This neuron
presents subthreshold membrane potential oscillations coupled with repetitive spike
discharge or burst, for instance in the case of a nerve injury [20, 3]. Figure 4.8(d)
shows biological in vivo intracellular recordings performed by Liu et al. [20] from a
DRG neuron of an adult male rat. The recorded membrane potentials exhibit high
frequency subthreshold oscillation in the presence of noise, combined with a repetitive
spiking or bursting. These behaviors can be reproduced by the quartic model, as we
can see in Figure 4.8, around a point where the system undergoes a supercritical Hopf
bifurcation.6

Conclusion. In this paper we defined a general class of neuron models able to
reproduce a wide range of neuronal behaviors observed in experiments on cortical
neurons. This class includes the Izhikevich and the Brette–Gerstner models, which
are widely used. We derived the bifurcation diagram of the neurons of this class and
proved that they all undergo the same types of bifurcations: a saddle-node bifurcation
curve, an Andronov–Hopf bifurcation curve, and a codimension two Bogdanov–Takens

6The amplitude and frequency of the subthreshold oscillations can be controlled choosing a point
on the supercritical Hopf bifurcation curve.
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bifurcation. We proved that there was only one other possible fixed-point bifurcation,
a Bautin bifurcation. Then using those theoretical results we proved that the Izhike-
vich and the Brette–Gerstner models had the same bifurcation diagram.

This theoretical study allows us to search for interesting models in this class of
neurons. Indeed, Theorem 1.9 ensures us that the bifurcation diagram will present
at least the bifurcations stated. This information is of great interest if we want to
control the subthreshold behavior of the neuron of interest.

Following these ideas, we introduced a new neuron model of our global class
undergoing the Bautin bifurcation. This model, called the quartic model, is computa-
tionally and mathematically as simple as the IBG models and able to reproduce some
cortical neuron behaviors which the IBG models cannot reproduce.

This study focused on the subthreshold properties of this class of neurons. The
adaptative reset of the model is of great interest and is a key parameter in the repet-
itive spiking properties of the neuron. Its mathematical study is very rich and is still
an ongoing work.

Appendix A. Bautin bifurcation. In this appendix we prove that the quartic
model undergoes a Bautin bifurcation at the point

(A.1)

⎧⎪⎨
⎪⎩
b = 5

2 a,

I = −3
(
a
4

)4/3
(2 a− 1) ,

va = −
(
a
4

)1/3
.

A.1. The first Lyapunov exponent. Indeed, using a suitable affine change of
coordinates, the system at this point reads

(A.2)

⎧⎪⎨
⎪⎩
ẋ = ωy,

ẏ = ab
ω

(
6v2

av1(x, y)
2 + 4vav1(x, y)

3 + v1(x, y)
4
)

= 1
2F2

((
x
y

)
,
(
x
y

))
+ 1

6F3

((
x
y

)
,
(
x
y

)
,
(
x
y

))
+ 1

24F3

((
x
y

)
,
(
x
y

)
,
(
x
y

)
,
(
x
y

))
,

where v1(x, y) = 1
bx+ ω

aby. We also denote F2(X,Y ), F3(X,Y, Z), and F4(X,Y, Z, T )
the multilinear symmetric vector functions of (A.2) (X,Y, Z, T ∈ R

2):

{
F2

((
x
y

)
,
(
z
t

))
=
(

0
12 ab

ω v2
av1(x,y)v1(z,t)

)
,

. . .

To compute the two first Lyapunov exponents of the system, we follow Kuznet-
sov’s method [19]. In this method we need to compute some specific right and left
complex eigenvectors, which can be chosen in our case to be

(A.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p =

(
1

−i
√
a b−a2+a

1

)
,

q =

⎛
⎜⎜⎝

1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)

1/2
(i
√

a(b−a)+a)2

a (b−a−i
√

a(b−a))

⎞
⎟⎟⎠ .

We now put the system in a complex form letting z = x + iy.
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We can now compute the complex Taylor coefficients gij :

(A.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 〈p, F2(q, q)〉,
g11 = 〈p, F2(q, q̄)〉,
g02 = 〈p, F2(q̄, q̄)〉,

g30 = 〈p, F3(q, q, q)〉,
g21 = 〈p, F3(q, q, q̄)〉,
g12 = 〈p, F3(q̄, q̄, q̄)〉,
g03 = 〈p, F3(q̄, q̄, q̄)〉,
. . .

So the Taylor coefficients (A.4) read

(A.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 12ab
ω v2

av1

(
1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)
, 1

2

(i
√

a(b−a)+a)2

a (b−a−i
√

a(b−a))

)2

,

g11 = 12ab
ω v2

av1(q)v1(q̄),

g02 = 12ab
ω v2

av1(q̄)v1(q̄),

. . .

Now let S(I, b) := F ′(v−(I, b)) be the value of the derivative of the function F ,
defined around the bifurcation point we are interested in.

The Jacobian matrix in the neighborhood of the point (A.1) reads

L(v) =

(
S(I, b) 1
ab −a

)
.

Let us denote α =
(
I
b

)
the parameter vector and λ(α) = μ(α) ± iω(α) the eigen-

values of the Jacobian matrix. We have{
μ(α) = 1

2 (S(α) − a) ,

ω(α) = 1
2

√
−(S(α) − a)2 + 4ab.

With these notations, let c1(α) be the complex defined by

c1(α) =
g20g11(2λ + λ̄)

2|λ|2 +
|g11|2
λ

+
|g02|2

2(2λ− λ̄)
+

g21

2

(in this formula we omit the dependence in α of λ for the sake of clarity).

The first Lyapunov exponent l1(α) eventually reads

(A.6) l1(α) =
Re(c1(α))

ω(α)
− μ(α)

ω(α)2
Im(c1(α))
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A.2. The second Lyapunov exponent. The method to compute the second
Lyapunov exponent is the same as the one we described in the previous section. The
expression is given by the following formula:

2l2(0) =
1

ω(0)
Re[g32]

+
1

ω(0)2
Im

[
g20 ¯g31 − g11 (4 g31 + 3 ¯g22) −

1

3
g02 (g40 + ¯g13) − g30 g12

]

+
1

ω(0)3

{
Re

[
g20

(
¯g11(3 g12 − ¯g30) + g02 ( ¯g12 − 1/3 g30) +

1

3
¯g02g03

)

+ g11

(
¯g02

(
5

3
¯g30 + 3 g12

)
+

1

3
g02 ¯g03 − 4 g11 g30

)]

+ 3 Im[g20 g11] Im[g21]

}

+
1

ω(0)4
{
Im
[
g11 ¯g02

(
¯g20

2 − 3 ¯g20g11 − 4 g2
11

)]
+ Im[g20 g11]

(
3 Re(g20 g11) − 2 |g02|2

)}
.

This expression is quite intricate in our case. Nevertheless, we have a closed-form
expression depending on the parameter a, vanishing for two values of the parameter
a. We evaluate numerically this second Lyapunov exponent. We get the following
expression:

l2(a) ≈ −0.003165 a−
28
3 − 0.1898 a−

22
3 + 0.3194 a−16/3

− 0.05392 a−
25
3 + 0.1400 a−

19
3 − 0.3880 a−7/3 + 0.5530 a−10/3

+ 0.7450 a−13/3.

(A.7)

We can see that this numerical exponent vanishes only for two values of the
parameter a which are

{0.5304, 2.385}.

The expression of the determinant of the matrix DI,b (μ(I, b), l1(I, b)) is even more
involved, and so we do not reproduce it here (it would take pages to write down its
numerical expression!). Nevertheless, we proceed exactly as we did for the second
Lyapunov exponent and obtain again the rigorous result that this determinant never
vanishes for all a > 0.

Appendix B. Numerical values for the simulations. In this annex we give
the numerical values used to generate Figure 4.1.
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Remark. The δu(t) function is defined by

δu1,...,uN
(t) =

⎧⎪⎨
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1 if t ∈
⋃

k∈{1,...,N}
[uk, uk + 0.3],

0 else.
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