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Abstract

We review the behavior of theoretical models of excitable systems driven by Gaussian white noise. We
focus mainly on those general properties of such systems that are due to noise, and present several applications
of our 8ndings in biophysics and lasers.

As prototypes of excitable stochastic dynamics we consider the FitzHugh–Nagumo and the leaky integrate-
and-8re model, as well as cellular automata and phase models. In these systems, taken as individual units
or as networks of globally or locally coupled elements, we study various phenomena due to noise, such as
noise-induced oscillations, stochastic resonance, stochastic synchronization, noise-induced phase transitions and
noise-induced pulse and spiral dynamics.

Our approach is based on stochastic di�erential equations and their corresponding Fokker–Planck equations,
treated by both analytical calculations and/or numerical simulations. We calculate and/or measure the rate and
di�usion coe=cient of the excitation process, as well as spectral quantities like power spectra and degree of
coherence. Combined with a multiparametric bifurcation analysis of the corresponding cumulant equations,
these approaches provide a comprehensive picture of the multifaceted dynamical behaviour of noisy excitable
systems.
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1. Introduction

Excitability is observed in a wide range of natural systems. A list of examples includes lasers,
chemical reactions, ion channels, neural systems, cardiovascular tissues and climate dynamics, to
mention only the most important 8elds of research [1–16]. Common to all excitable systems is the
existence of a “rest” state, an “excited” (or “8ring”) state, and a “refractory” (or “recovery”) state. If
unperturbed, the system resides in the rest state; small perturbations result only in a small-amplitude
linear response of the system (cf. Fig. 1a). For a su=ciently strong perturbation, however, the system
can leave the rest state, going through the 8ring and refractory states before it comes back to rest
again (Fig. 1b and c). This response is strongly nonlinear and accompanied by a large excursion of
the system’s variables through phase space, which corresponds to a spike. The system is refractory
after such a spike, which means that it takes a certain recovery time before another excitation can
evoke a second spike (Fig. 1d and e).

There is a rich literature on deterministic (i.e. noiseless) excitable systems. Excitability in de-
terministic systems is well understood, especially in applications to chemistry and biology, where
several excellent reviews and books exist [1–4]. Excitability is a typical dynamic phenomenon of
systems far from equilibrium [17]. Such nonequilibrium situations can be maintained by several con-
ditions, depending on the physical system under consideration. In the case of lasers it is the external
energy pumping, in the case of chemical reactions it is a permanent Row of matter, and in neurons
it is associated with a potential di�erence across the cell membrane originated by ion pumps and,
hence, by ATPase.

In addition to being out of equilibrium, excitable systems require an additional feedback mecha-
nism. In case of neurons, for instance, this feedback is mediated by ion channels with a nonlinear
voltage-dependent conductance. In the seminal paper by Hodgkin and Huxley [18], it was shown
that this excitability mechanism (for the speci8c case of the giant squid axon) can be very
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Fig. 1. Features of excitability: di�erent kinds of inputs (left column) cause di�erent kinds of responses (right column)
of the excitable dynamics (middle column). (a) An input below threshold (dashed line) results in a small amplitude
motion around the system’s stable state (full circle in middle-column plot); (b) an input exceeding the threshold leads
to an escape over a quasi-separatrix or an unstable point (empty circle in middle-column plot) and to a large-amplitude
excursion of the system’s variables (spike); (c) further increase of the input’s amplitude does not change the shape of the
spike signi8cantly; (d) two well separated input pulses result in two spikes; (d) if the pulses are too close, the system
does not respond noticeably to the second perturbation because of refractory e�ects.

successfully modeled by a four-dimensional nonlinear dynamical system. As shown later by FitzHugh
[19] and others, two nonlinear autonomous di�erential equations su=ce for a qualitative study and
understanding of excitability. In such a two-dimensional system, self-sustained oscillations beyond
a Hopf or a homoclinic bifurcation are possible [20,21]. We note that models of excitability can
be even simpler than two-dimensional one. For instance, one-dimensional systems with a reset rule
(e.g. integrate-and-8re models) and phase models are frequently used to study speci8c aspects of
excitability.

Besides having an interesting temporal behavior, when a large number of excitable systems are
coupled to one another they exhibit a rich variety of interesting spatio-temporal behaviors, depending
on the strength and topology of the coupling between the excitable elements. Phenomena such as
pulse and spiral wave propagation, scroll waves, localized spots, periodic patterns in space and/or in
time, and spatio-temporal chaos have been reported in di�erent areas of physics, chemistry and the
life sciences [22–24]. Other topics of interest are the e�ects of spatial inhomogeneity, of feedback,
and of time-dependent driving. In perspective, one of the most remarkable properties of excitable
systems is their ability to synchronize, both among themselves or to external periodic (or more
complex) signals [25–36].
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Noise is inevitably present in systems far from equilibrium [37–39]. In excitable systems, the
origins of noise can be as diverse as the physical basis of excitability itself. In chemical reactions
noise results from 8nite-size e�ects, in lasers quantum Ructuations are the dominant noise source,
while in climate dynamics changes due to the annual and other cycles might be looked upon as rapid
Ructuations on the time scales that are relevant for long-term dynamics (e.g. ice ages). In neurons,
noise arises from many di�erent sources, such as the quasi-random release of neurotransmitter by the
synapses, the random switching of ion channels, and most importantly random synaptic input from
other neurons. Besides internal noise sources, it is also common practice nowadays to apply noise
externally in experiments, and to include external noise sources in theoretical models. In this way,
important parameters like intensity and correlation time of the noise can be controlled and hence the
role of noise can be systematically explored.

Our review is dedicated to the problem of how noise a�ects excitable systems. Most of this
review is based on work by the authors; we refer to work of many other groups in this 8eld.
However, due to the broadness of this topic and its applicability in many di�erent 8elds of science,
we cannot ensure completeness of the cited literature. Our presentation summarizes the main e�ects
of random perturbations in single excitable systems, in globally connected networks of such systems
and in reaction–di�usion systems. We focus on the distinct characteristics of stochastic models in
comparison to the deterministic ones. Such characteristics are found in two situations:

• In the 8rst case, noise acts inhomogeneously on di�erent states of the system. This is a situa-
tion found quite often in nonlinear dynamics. Processes in di�erent regions of the state space are
ampli8ed or dampened by noise in di�erent ways. Hence, the characteristic time scales of the
associated motion in phase space becomes noise-dependent, and the dynamics is modi8ed depend-
ing on the intensity of the perturbations. A simple and evident example for such a situation is a
system driven by multiplicative noise [141].

• The second case is connected with the existence of thresholds, separatrices and saddles in dy-
namical systems. When noise comes into play, these unstable barriers can be passed with 8nite
probability. In contrast to the 8rst case, here purely noise-induced processes are excited which
are absent in the deterministic model. The new controlling time scale grows unbounded if noise
vanishes. Pure additive noise is su=cient to model these processes [142].

Here we review both situations in various models. We show how phenomena encountered in de-
terministic systems such as synchronization, resonant behavior, and pattern formation are inRuenced
and modi8ed by noise. For this purpose, we elaborate methods and de8ne measures to quantify
phenomena in a broad class of stochastic excitable systems and media.

One of the most remarkable e�ects discovered in stochastic excitable dynamics is the occurrence
of oscillatory behavior due to noise perturbations [40–46]. In other words, excitable systems driven
by noise possess a noise-induced eigenfrequency, and thus are able to exhibit stochastic oscillations
that correspond to a so-called stochastic limit cycle in phase space. These noise-sustained oscilla-
tions are often accompanied by the phenomenon of coherence resonance (CR) [47,148,48–51], which
corresponds to the existence of an optimal noise intensity at which noise-induced oscillations are
most coherent. Coherence resonance can be found in neural models including the FitzHugh–Nagumo
model [52–55], the leaky integrate-and-8re model [56,57], phase models [58,59], the Plant and
Hindmarsh–Rose models [60,61], the Morris–Lecar model [62] and the Hodgkin-Huxley model
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[63–67], as well as models of neural networks [68,69]. Outside the neuronal context, CR was ob-
served in laser models [70,71], in models of excitable biomembranes [72] and in climate models
[16]. Applications of this e�ect can be found in Refs. [73,74,319,75–77]. It is worth mentioning that
CR is not only encountered in excitable systems but also in other systems that are close to a dynam-
ical bifurcation (for diverse examples, see [50,78–99]). Other studies have focused on the role of
possible correlations of the noise (neglected in most of the above work), using e.g. colored Ornstein–
Uhlenbeck [100] or harmonic noise [101] as a source of Ructuations in the FitzHugh–Nagumo and
the Hindmarsh–Rose models, respectively.

Noise also a�ects strongly the transmission of periodic signals by nonlinear systems. As it was
shown for bistable and simple threshold devices [102,103], the transmission of subthreshold signals
is enhanced by the presence of non-vanishing noise (stochastic resonance). Due to the existence of
a threshold or quasi-separatrix in excitable dynamics, the same e�ect is found in excitable systems
[104–108] (see also [109] for further references). However, bistable or simple threshold devices
amplify low-frequency periodic signals the strongest, whereas the excitable system displays opti-
mal transmission at a 8nite frequency. The latter e�ect can be understood as a classic resonance
with respect to the frequency of stochastic oscillations, i.e. with the noise-induced eigenfrequency
[110–112]. The nonmonotonous dependence of transmission measures (e.g. the spectral power am-
pli8cation) on either noise intensity and driving frequency has also been termed stochastic double
resonance [113].

Noise inRuences and enhances synchronization and pattern formation in excitable systems. The
degree of coherence in networks and regions of inhomogeneous states in reaction–di�usion sys-
tems is a nontrivial function of the noise parameters, i.e. noise intensity and noise correlation time.
As a consequence, synchronization and pattern formation can be controlled by noise. For example,
adding noise can be bene8cial to attain synchronization among coupled excitable systems [114–122].
Noise can play the role of control parameter changing the frequencies of coupled excitable elements
[123–125]. Synchronization of large ensembles of biological objects with excitable dynamics, such
as ion channels and heart cells, have been investigated by stochastic methods [126–129]. Besides
synchronization, other e�ects can be observed in locally coupled systems under pattern-forming
conditions, where noise strongly inRuences wave propagation, spiral dynamics and pacemaking
[130–140] (for reviews see also [141,142]). CR-like e�ects in spatially extended systems have also
been studied [143–147].

Experimental studies have shown the important role of noise in many bistable systems (for reviews
see [109,142] and references therein). There is also substantial experimental evidence of nontrivial
noise-induced phenomena in excitable systems. The 8rst experimental observation of coherence res-
onance was reported by means of electronic circuits [149–152], laser diodes [153–156], excitable
chemical reactions [157–164], optically trapped atoms [165], and the cat’s neural system [166].
Stochastic resonance has been observed experimentally in several types of peripheral mechanorecep-
tors, including mechanoreceptive hairs on the tail fan of cray8sh when sensing weak water waves
[167,168], mechanoreceptors on the tail of crickets when sensing vibrations and air currents [169],
tactile receptors in the skin of rats [170], auditory hair cells of frogs [171], neocortical pyramidal
neurons [172], during human perception [173], in mammalian neuronal networks [174] and in the
human brain’s visual processing area [175]. Stochastic resonance was also found in chemical reac-
tions [176–180] and on the molecular level of ion channels [181], as well as in feeding behavior
of the paddle8sh [182–184]. Paddle8sh electroreceptors also demonstrate noise-induced bursting and
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synchronization regimes [185]. Noise-induced synchronization has also been shown in networks of
electronic circuits [186] and chemical reactions [187–189]. Noise-sustained waves have been ob-
served in the light-sensitive Belousov–Zhabotinsky reaction [190,191] and in cultures of glial cell
networks [192,193]. Enhanced wave propagation and spiral dynamics, and generation of pacemakers
by noise have also been reported [194–199].

The main message of this review is that a moderate amount of noise leads to enhanced order
in excitable systems, manifesting itself in a nearly periodic spiking of single excitable systems,
enhancement of synchronized oscillations in coupled systems, and noise-induced stability of spatial
patterns in reaction–di�usion systems.

This paper is organized as follows. In the next section we explain the main features of excitability
in di�erent 8elds and introduce the models we shall work with. Section 3 reviews coherence and
stochastic resonance in homogeneous excitable systems and how these e�ects can be characterized,
focusing in particular on analytical methods. In Section 4 we study two applications, clusters of ion
channels and laser systems. Turning to spatially extended systems, we 8rst explore in Sections 5
and 6 the e�ects of noise in globally coupled excitable units. Finally, Noise-induced spatio-temporal
structures such as spirals and propagating pulses are discussed in Section 7.

2. Excitability and minimal models

2.1. Models of excitability

As mentioned above, excitable systems possess a single stable rest state. This rest state can be
simply an equilibrium (or 8xed) point or a small-amplitude (subthreshold) limit cycle. The large
excursions of the system’s variables produced by strong enough perturbations of this state are often
called spikes, and their occurrence is referred to as a 8ring. This terminology is borrowed from
neuroscience—the electrical discharge of a nerve cell’s membrane potential is commonly called an
action potential or a 8ring of a spike.

One may look upon the generation of a spike as a one-way passage through a sequence of stable
and unstable states. The resting state, being dynamically stable, can be left only by a su=ciently
strong external activation. The Cring and the following refractory states are unstable in the sense
that the system escapes from them even in the absence of external perturbations. While the escape
from the resting state strongly depends on the external input, the passage through the 8ring and
refractory states possesses only a weak dependence on the external driving.

This dynamical behavior can be modeled in several ways. A suitable autonomous system must
have at least two variables obeying a nonlinear dynamics, since the occurrence of stable spiking
trajectories requires a dynamical system close to a bifurcation toward an oscillatory (limit-cycle)
regime. Models exhibiting this property were 8rst proposed for neuronal spike generation. In the
FitzHugh–Nagumo [19,200] and the Morris–Lecar model [201], a fast variable (in this case the
membrane voltage) is driven by an external input above a threshold level. After that it keeps growing
and approaching a second metastable state due to a nonlinear dynamics: the system is excited, i.e.
in the 8ring state. Another variable, the recovery variable, acting on a slower time scale, destabilizes
the excited state of the fast voltage variable, bringing it back to its rest state by means of a negative
feedback. Afterwards, the initial state is reestablished when the recovery variable relaxes. In the
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two-dimensional phase plane, the entire process is seen as a round-trip or large-amplitude excursion
that does not depend much on the details of the external input. If that input is a stationary noise,
the excursions will repeatedly occur at random times; in other words, the state point of the system
moves along a stochastic limit cycle.

A closer look at the two-dimensional models reveals two di�erent kinds of excitability known for a
long time in neuroscience [5,25], namely type I and type II excitability. The underlying mathematical
di�erence between these two regimes is the bifurcation from quiescent to repetitive 8ring that occurs
if a control parameter is increased:

(i) Type I neurons, like those described by the Morris–Lecar model, undergo a saddle-node bifur-
cation; close to the bifurcation point their spike rate can become arbitrarily low.

(ii) Type II neurons, like those described by the FitzHugh–Nagumo system, show a supercritical
Hopf bifurcation that is associated with the onset of a 8nite-frequency oscillation.

A phenomenological distinction between the two types of excitability in a number of real neurons
was already made by Hodgkin [202] in 1948.

Multidimensional, in particular two-dimensional, nonlinear models are hard to tackle analyti-
cally. Therefore, it is advantageous to describe excitable dynamics by means of more tractable
one-dimensional systems. There are three ways to model excitable behavior:

• First, one can impose a threshold-and-reset condition on a one-dimensional dynamics. In this
case, crossing a given threshold value is associated with a spike and the reset is explicitly real-
ized by a reset rule instead of a second dynamical variable. The leaky integrate-and-8re neuron
is a common example for this kind of system. A linear dynamics is often used for the state
variable.

• Second, the motion along a stochastic limit cycle may be described by a single phase variable
obeying a periodic dynamics. These approaches ignore deviations transverse to the limit cycle. The
Adler equation, described below, is the simplest model for type I excitability [5] and a prominent
example of this approach.

• Third, one may explicitly model three discrete states which are visited by the system consecutively,
and prescribe probabilities with which these states are left at a given time.

In the rest of this section we introduce the FitzHugh–Nagumo model as an example for a two-dimen-
sional system, and the leaky integrate-and-8re neuron and the noisy Adler equation as one-dimensional
systems. Discrete dynamics are introduced in Section 5. We focus on the excitable regime of these
models and discuss how they are a�ected by white-noise driving and additional periodic forcing. For
various spatially extended versions of these models, see Sections 5–7.

2.2. The FitzHugh–Nagumo dynamics

The FitzHugh–Nagumo (FN) model [19,200], also called the Van der Pol–Bonhoe�er model [203–
205], is a simple example of a two-dimensional excitable dynamics. It was proposed in Refs. [19,200]
as a simpli8cation of the famous model by Hodgkin and Huxley [18]. It describes (qualitatively rather
than quantitatively) the response of a type II excitable nerve membrane to external current stim-
uli. Important features, also found in experiments on real neurons, are the inclusion of a recovery
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Fig. 2. Left: nullclines of the FN system (thin solid lines) and a deterministic trajectory (D = 0; s(t) ≡ 0) in the phase
plane. Particular states of the system are indicated following Ref. [19]. The inset shows the time evolution of the x
variable. Right: a stochastic realization for D = 0:1, s(t) ≡ 0. Noise-driven excursions through the phase plane imply a
spike train in the variable x(t), resembling the spontaneous electric activity of a neuron. For both panels b = 0:6, � = 1:5,
jt = 0:01 and Eq. (2) with a = 1 were used.

mechanism and the existence of di�erent refractory states after excitation, as well as states of en-
hanced and depressed excitability depending on the time course of external stimulation.

In its one-dimensional spatially extended version, with di�usion in the fast voltage variable, the
model displays traveling pulses, thus reproducing the propagation of an action potential (spike) down
the neuronal axon [206]. These equations also found applications in early theoretical investigations
of the Belousov–Zhabotinsky reaction [207], explaining spiral dynamics and scroll waves in two and
three spatial dimensions, respectively.

A stochastic version of the FitzHugh–Nagumo model was studied for the 8rst time by Treutlein and
Schulten [40]. There the notion of noise-induced limit cycles was introduced in this model (for the
occurrence of this phenomenon in other models see [41,42]). Driving the FN model by white noise
and a (periodic or aperiodic) signal became popular during the 1990s in the context of stochastic
resonance [110,104,105,208–211,106,212–215]. Furthermore, its spatially extended version has also
attracted much attention as a noisy excitable medium in the last decade (see, e.g. [192,118,143,144]).

One common representation of the stochastic FN model is given by

jt ẋ = f(x) − y ;

ẏ = �x − �y + b− s(t) +
√

2D(t) : (1)

The two non-dimensional variables x and y are a voltage-like and a recovery-like variable,
or—in the terminology of physical chemistry and semiconductor physics—an activator and an in-
hibitor variable, respectively. s(t) is a periodic signal and

√
2D(t) is a white Gaussian noise with

intensity D. In neuronal models, the time scale ratio jt is much smaller than one (jt ≈ 10−2),
implying that x(t) is the fast and y(t) is the slow variable. The nonlinear function f(x) (shaped like
an inverted N, as shown in Fig. 2) is one of the nullclines of the deterministic system; a common
choice for this function is

f(x) = x − ax3 ; (2)

where the parameter a is either 1 or 1/3. In the excitable regime of the FN model this nullcline
intersects only once with the linear nullcline of the y dynamics (y=�x+b in the absence of signal and
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noise, see again Fig. 2). The intersection point is a stable 8xed point on the left branch of the cubic
nullcline—the resting state of the system. Su=ciently strong perturbations (either in x or in y) result
in a far reaching excursion in phase space along the right branch of f(x) (“8ring” of the neuron),
and back along the upper left branch (“neuronal refractory state”) into the rest state. In Fig. 2 (left)
this trajectory is shown for the deterministic system started at an appropriate initial condition, caused,
for instance by an external stimulation. Following FitzHugh [19], the aforementioned physiological
states of the neuron are indicated. In x(t) (inset of Fig. 2, left) the excursion in the phase plane
appears as a spike.

Even in the deterministic and autonomous case (D=0; s(t) ≡ 0), the FN model possesses a rather
complex bifurcation behavior with multiple 8xed points and limit cycles. The parameters b and �
determine the position of the 8xed points; for a = 1 a single 8xed point is realized if (�− 1)3=27 +
b2=4¿ 0. For our purposes, we focus on this regime with small jt . If 4jt�¿ (jt + 1 − 3x2

0), this
8xed point at x0 possesses complex eigenvalues and undergoes an Andronov–Hopf bifurcation when
3x2

0 + jt − 1 changes sign. In the case of small jt�1, the parameter region of complex eigenvalues
is rather small. Additionally, the generated limit cycle approaches quickly large amplitudes after the
Hopf-bifurcation. The limit cycle runs along the stable branches of the cubic nullcline and switches
between the branches at the local minimum and maximum of f(x).

The excitation process that was in the deterministic case due to the initial condition, occurs re-
peatedly if noise is present (D¿ 0). This is demonstrated in Fig. 2 (right), which shows a stochastic
trajectory in phase space and the corresponding time series x(t) (inset). The random force occasion-
ally kicks the phase point out of the vicinity of the stable 8xed point towards the region labeled
“self-excitatory” in Fig. 2 (left). The sequence of action potentials resembles the spontaneous activity
of a neuron.

When an additional signal is present (s(t)=j cos(!t)), the occurrence of spikes will be correlated
with this signal. In the case of a weak signal, addressed in this review, this correlation is only seen
at 8nite noise since the weak signal alone cannot evoke a spike. In the presence of noise, the signal
just increases the probability to 8re at certain instances. For instance, a very slow signal can be
seen just as a modi8cation of the y nullcline with b → b− s(t) shifting the 8xed point away from
(if s(t)¡ 0) or closer to (if s(t)¿ 0) the e�ective threshold. Consequently, 8ring is more likely at
the maxima of the signal.

We note that the stochastic term in Eq. (1) stands for channel noise and other intrinsic noise
sources. Several researchers have also considered a noisy driving in the dynamics of the voltage
variable [104,209,106] (which would represent synaptic input from other neurons) or a stochastic
forcing in both equations [40,43,216]. Regarding the periodic signal, we note that situations where it
acts directly on the dynamics of the voltage-like variable (or on both variables) can be also described
by Eq. (1) by means of a linear transformation in y (see for instance [110]).

During an action potential, the voltage variable of a real neuron varies between roughly −80 mV
and 20 mV, while its duration is about 1 or 2 ms [13]. These numbers allow one to estimate the
factors by which the variables x and t have to be rescaled in order to compare simulation results
of the FN model to a spike train of a speci8c neuron. Other parameters like � and b have to be
determined by 8tting procedures that use the shape of the action potential and/or the input–output
relation (8ring rate vs parameter b). The input noise levels can be inferred from the variability of the
voltage variable or of the spike train. The latter depends also substantially on the other parameters
(�; jt and b), though; hence, any reasonable parameter 8t to real data remains a nontrivial task.
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Since di�erent versions of the model Eq. (1) are used in the literature, some further technical
details are indicated. In most studies the parameter � is either 1 or 0. The latter choice considerably
simpli8es the analysis, since in that case only one 8xed point is possible in all regimes. This model
exhibits a Hopf bifurcation to limit cycles. With � = 1, the dynamics also allows to study the
transition to bistable behavior. Besides these options, other choices of Eq. (2) have been made. For
instance, the Barkley model [217], de8ned by a function f = f(x; y) polynomial in x and y, was
proposed for computational convenience (see Section 7). Another computationally e=cient version
that is also more tractable analytically is given by a piecewise linear function f(x; y) [218–220]
such as

f(x) =




−1 − x if x6− 1=2 ;

x if − 1=2¡x¡ 1=2 ;

+1 − x if x¿ 1=2 :

(3)

Unless stated otherwise, we use in what follows the symmetric cubic function Eq. (2) with a = 1
and � = 1, leaving b, � and D as free parameters.

Although the FN model is easy to simulate on a computer, there is no general way to tackle the
problem analytically and to determine measures that characterize coherence and stochastic resonance.
Even the solution of the stationary Fokker–Planck equation corresponding to the Langevin equations
Eq. (1) is an unsolved problem, not to mention second order statistics that quantify the regularity
of spiking (see Section 3).

2.3. Stationary probability density of the FN dynamics

One way to deal with stochastic systems is to describe them by their stationary probability density
[17,221,222]. For model (1) in the time-independent long-time limit t − t0 → ∞, the transition
probability density P(x; y; t|x0; y0; t0) obeys the Fokker–Planck equation (FPE) [142]

9P
9t = − 1

jt
9
9x (x − x3 − y)P − 9

9y (�x − y + b)P + D
92P
9y2 : (4)

In particular, we have taken a = 1, � = 1 and s(t) ≡ 0. Due to ergodicity and stationarity of the FN
dynamics, the density P(x; t|x0; t0) tends to a unique stationary solution P0(x; y) of Eq. (4). This is
found if one solves this equation with vanishing left-hand-side, i.e. 9P0=9t = 0.

We note that, with the exception of a singular parameter combination, the stationary FPE is
not tractable analytically [223,216]. The FN with additive noise is an example where additive noise
changes strongly the stationary density and, correspondingly, the dynamical behavior. These phenom-
ena have been called noise-induced transitions, either due to state-dependent noise [224], breaking
of detailed balance [223] or colored noise [225,226].

In the 1980s Treutlein and Schulten [40] 8rst simulated the stationary probability density of a
FN model for parameters which correspond to a deterministic excitable regime with a single stable
8xed point. They found crater-like shapes of the density, corresponding to an oscillatory behavior for
medium-sized noise intensities and strong time-scale separation j→ 0. Trajectories of the dynamics
switch between the rest and excited state along a circular path, with well de8ned positions where
the transitions takes place.
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Fig. 3. Stationary probability density for di�erent noise intensities D with 8xed parameters jt = 0:1, b = 1:4 and
� = 2 [229].

One would associate such craters to stochastic excitation above limit cycles of self-sustained
oscillations, rather than to a regime with a single 8xed point. Therefore, this noise-induced states were
called stochastic limit cycles. Approximate expressions of the stationary densities with a qualitatively
similar shape were found in [41,42,223,227,228].

Recently, we have numerically integrated the stationary Fokker–Planck equation for the FN with
additive noise [229], making use of di�erent integration schemes such as 8nite elements [230] and
Runge–Kutta methods [231].

First, we 8x the parameters jt = 0:1, �= 2, and b= 1:4, and vary D. The single 8xed point of the
deterministic nullclines corresponding to the rest position is located at x 
 −0:83, and it is a stable
node. Plots of the probability density are shown in Fig. 3. For small noise intensity (D = 0:01), the
probability density is concentrated around the 8xed point. For increasing noise (D = 0:1), a second
maximum emerges, together with a “hole” in the middle of the distribution. The crater around the
hole is completed by two separated regions with larger probability, where transitions between the
two branches take place. At a further increase of the noise intensity (D=0:46) the “hole” disappears,
and we 8nd only two separate peaks above the rest and excited portions. Transitions between the two
peaks occur from a broad region of inhibitor values centered with maximal probability around y=0.
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Fig. 4. The stationary probability distribution for di�erent time scale ratios jt with 8xed parameters � = 2, b = 1:4 and
noise intensity D = 0:1 [229].

Another sequence of the stationary density is shown in Fig. 4 for varying time scale ratio jt .
Note that jt does not change the location of the nullclines in the deterministic model, but obviously
a�ects the system’s dynamics. At small jt values, we 8nd the crater enclosing the hole, two peaks
along the nullcline y(x) = x − x3 and two separated saddles above the most probable position for
transitions. In between this crater, a minimum forms. When we increase jt ≈ 0:101 the region of the
maximum near the deterministically stable 8xed point grows and the excited one shrinks. For further
increase of jt ≈ 0:225, the minimum and the saddle point at higher y values vanish. For values
jt ≈ 0:5, the second saddle point and the maximum of the excited branch merge and disappear, and
a single peaked density centered at x values higher than the rest state remains.

2.4. The leaky integrate-and-Cre model

One of simpler models that captures features of excitability is the leaky integrate-and-8re (LIF)
model used in many computational studies in theoretical neurobiology [232–235,13]. Its stochastic
version has been studied in the presence of periodic forcing by means of approximations



334 B. Lindner et al. / Physics Reports 392 (2004) 321–424

[236–240], sophisticated numerical methods [113,241,242], and exact analytical solutions
[112,243–245]. Furthermore, there are numerous simulation studies of the model (see for instance
[246,247], among many others).

The LIF model is a one-dimensional model with reset, where the voltage across the nerve mem-
brane in between excitations is determined by a simple current balance

CV̇ = −V=Rleak + I(t) ; (5)

where C is the capacitance of the cell membrane and Rleak is a leak resistance. The input current
I(t) is usually chosen to be a superposition of a white Gaussian noise and a periodic signal. As
in the case of the FitzHugh–Nagumo model, the noise stands either for intrinsic Ructuations or for
the superposition of many external synaptic input spike trains. The signal corresponds either to an
externally applied current, or to the time dependent mean of the synaptic input. The generation of
spikes is implemented by a spike-and-reset rule: whenever the voltage reaches a threshold level Vthr

a spike is 8red, the voltage is reset to a 8xed value Vreset, and after an absolute refractory time �ABS

it is allowed to evolve again according to Eq. (5) until it reaches the threshold once more, when
the sequence is repeated again. Using the non-dimensional variable v= (V −Vreset)=(Vthr −Vreset) and
measuring time in units of the membrane time constant �mem = RleakC, we can recast Eq. (5) into
the simpler equation

v̇ = −v + � + j cos(!t) +
√

2D(t) ; (6)

where all constant terms are lumped into the so-called base current �, 1 while j cos(!t) and (t)
stand for the rescaled periodic signal and Gaussian white noise, respectively. With our transformation,
the threshold is now always at vT = 1, the reset is zero (vR = 0) and the absolute refractory period
is given by �abs = �ABS=�mem.

The output of the neuron, �(t), is a train of � spikes representing action potentials:

�(t) =
∑
ti∈T

�(t − ti) : (7)

The parameter � determines the resting value of the voltage. In the following we mainly consider
the case �¡ 1, in which the LIF model shows excitability.

The general behavior of the LIF model is illustrated in Fig. 5, where a trajectory of the voltage
and the generated spike train are shown. Note that for �¡ 1 the LIF model exhibits three time scales
with distinct noise dependence. One time scale is the passage from reset to resting voltage, which
can be looked upon as a relative refractory period, since escapes to threshold are unlikely during
this time. The second time scale is determined by the noise activated escape from the resting level
to threshold—the activation time, which displays a strong dependence on noise intensity. Finally,
the third time is given by the absolute refractory period; by de8nition, it does not depend on the
noise at all.

We want to draw the reader’s attention to one important extension of the standard input used in
Eq. (6). For cortical neurons both signal and noise are received in the form of massive spike train
inputs from many other neurons (Fig. 6). In this scenario, a signal may arise because a subpopulation
of the input-generating neurons 8res with a common rate (population code) s(t) = s0 + j cos(!t).

1 Of course � is a non-dimensional quantity, but it originates essentially from a constant input current.
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Fig. 5. Trajectory of the voltage variable v(t) in the leaky integrate-and-8re model and generated spike train for
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Fig. 6. The input signal of a LIF neuron is generated by neuronal background spikes (Poisson process with constant rate)
and by a population of excitatory and inhibitory neurons 8ring with a time dependent rate s(t) = s0 + j cos(!t).

Such a signal encoded in the rate of the input spike trains will be seen in the spooled input as a
noise with signal-dependent mean [additive signal as in Eq. (6)] but also with a signal-dependent
intensity (noise-coded signal, cf. Fig. 7) [112,248,249,244]. A LIF model that includes a noise-coded
signal has been studied in Refs. [112,244]:

v̇ = −v + � + �� cos(!t) +
√

2[D + �� cos(!t)](t) : (8)

The relations between the e�ective parameters �; ��; ��, D and the parameters of the input ensemble
can be found in Refs. [112,244]. Here we note only that the noise intensity D possesses a lower
bound D¿�� and can be varied by changing the strength of the neuronal background.

The simple LIF model introduced above can be still extended in many respects. Brunel and
coworkers [243,245,250] have explored the important case where the input noise is not a white but
a colored noise (Ornstein–Uhlenbeck process), corresponding to a spike train input that is 8ltered by
a 8rst-order synaptic dynamics. Another important generalization concerns the inclusion of nonlinear
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terms, e.g. in the so-called quadratic integrate-and-8re (QIF) neuron [251–253]. While the standard
LIF model is neither clearly type I nor type II excitable, the QIF model is type I excitable and
is even in close relation to the ! neuron model and the normal form of a saddle-node bifurcation
(see for instance [254]). Many other generalizations of the leaky integrate-and-8re model, including
one with a dynamical threshold [255] and two- or three-variable LIF models [256–259] exist in the
literature.

2.5. Phase description of excitability

Besides the LIF model, there is another one-dimensional system that can be regarded as excitable.
The main feature of excitability in two-dimensional systems like the FN model is given by the
noise-induced motion along the stochastic limit cycle with one stable point (the resting state that is
left in the presence of noise).

This behavior can be alternatively described by an amplitude and a phase, where the latter variable
captures the excitability features of the system [116,105,260] (cf. Fig. 8). These excitable phase
models are extensions of the phase oscillator dynamics developed by Kuramoto and coworkers
[114,115].

Let us 8rst discuss in a purely phenomenological manner how a one-dimensional dynamics for
the phase " should look like. First of all, in a one-dimensional description the driving term can be
always regarded as a potential force. This potential force should be 2#-periodic since " is a cyclic
variable. The potential should have one minimum corresponding to the resting state. Furthermore, for
strong time scale separation the system passes through the stochastic limit cycle only in one direction.
This corresponds to a bias in positive direction. Finally, there is a signal and a noise, which in the
simplest case can be assumed to enter the dynamics independently of the phase variable. We thus



B. Lindner et al. / Physics Reports 392 (2004) 321–424 337

Fig. 8. Trajectory of FN model in phase space, specifying the phase variable.
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Fig. 9. Left: the e�ective potential in Eq. (9) for the case of a cosine potential and F = 0:9. Right: Stochastic trajectory
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arrive at the following 8rst order dynamics for the phase:

"̇ = −V ′(") + F + s(t) +
√

2D(t) : (9)

Excitations (spikes) occur when the phase variable crosses a prescribed level, e.g. " = # [actual
spikes can be seen when the value of the potential V ("(t)) is plotted as a function of time, cf.
Fig. 9 (right)]. An interspike interval is the time needed to go once around the circle, e.g. from −#
to #. The excitable regime of this phase model is obtained for a subcritical tilt F , for which the
e�ective potential V (") − F" possesses a minimum (the rest state) and a maximum (an e�ective
threshold). In other words, for a subcritical tilt, in order to get into the 8ring state (i.e. to pass the
threshold), the system has to be externally excited by signal and/or noise. The e�ective potential
and a number of purely noise-induced excitations are shown for V (") = cos(") in Fig. 9. Note that
we consider here " as an unbounded variable. Since the system is 2#-periodic, this does change the
dynamics but provides the additional information how many excitations have occurred in a certain
time interval.
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The equation governing the phase dynamics with the potential V (") = cos(") is usually called
the Adler equation [261]. It is actually a good approximation for type I excitability, since close
to the bifurcation point F = 1 it coincides to second order with the normal form of a saddle-node
bifurcation. Another variant of Eq. (9) involving a cosine potential but also a multiplicative noise,
the ! neuron, can be strictly derived from any two-dimensional type I excitable model close to its
bifurcation point [260,262].

We initially attempted to motivate phase models by viewing them as a phase description of
the FitzHugh–Nagumo system, which is actually type II excitable. However, we have seen that the
phase models described so far are (strictly speaking) type I excitable models. Are then phase models
only suitable for type I excitability, or can they be actually used to approximate a type II excitable
system like the FitzHugh–Nagumo model? We will demonstrate later that a phase model with a
potential like

V (") =
&
%
e%(cos(")−1) (10)

can show a 8ring statistics akin to that of type II excitable models. Note that this is the case for
large values of the parameter %, for which the potential exhibits large extended Rat parts and small
and sharp barriers (see Fig. 10).

The dynamics of Eq. (9) with the potential Eq. (10) has been studied in Ref. [263]. In that work,
as well as in many other papers, the variable " in Eq. (9) was not interpreted as a phase, but as
the position variable of an overdamped Brownian particle in an inclined periodic potential. Apart
from the phase dynamics and the Brownian motion, there are other physical systems described by
Eq. (9) (see [264]).

3. Noise-induced resonances in homogeneous excitable systems

When an excitable system is permanently perturbed by noise, it responds with an excitation se-
quence that is called a “pulse train” or “spike train”. For small and large noisy forcing, this spike
train is basically governed by the noise statistics and hence it appears as random. For intermediate
noise intensity, however, this may be di�erent. In fact, there exists a 8nite strength of the noise at
which the spike sequence is most regular.
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Fig. 11. Coherence resonance in the FitzHugh–Nagumo model. Numerical simulations of the stochastic dynamics of
Eq. (1) with � = 1:5, b = 0:6, j= 10−3.

In general, this e�ect is due to the existence of a quasi-threshold and to the presence of the
refractory period (which corresponds to the characteristic time scale determined by the decay of the
unstable state). The existence of a threshold implies that the excitation time is controlled by noise,
while the refractory time is determined mainly by the deterministic properties of the system and
depends just weakly on the noise intensity. Optimal noise balances these two time scales in such
a way that the interspike intervals are mainly determined by the dynamical refractory period with
small Ructuations [48]. While in type II excitable systems the increase of spike train incoherence in
the strong noise limit is mainly due to the increased jitter of the refractory period, in type-I excitable
systems coherence is lost due to a noise-induced destruction of the spike shape itself [47,266].

The e�ect described above was called coherence resonance (CR) [48], autonomous stochastic
resonance [49], internal stochastic resonance [265] or stochastic resonance without periodic forcing
[47,266]. An example of coherence resonance in the FitzHugh–Nagumo model is shown in Fig. 11.
For weak noise (top panel) the output spike train looks random, and the interval between excitations
(interspike intervals) varies substantially. At moderate noise (mid panel) the spiking is rather regular,
which implies that the interspike intervals do not di�er much. Finally, at large noise intensity (bottom
panel) the spikes are much more frequent than in the other cases, but the interspike intervals are
more irregular again.

Recently, an e�ect opposite to coherence resonance has been discovered: the irregularity of spiking
can be maximized if the driving noise has an 8nite “optimal” value. This incoherence maximiz-
ation [57] or anti-coherence resonance [55] may occur for very di�erent physical reasons. For the
FitzHugh–Nagumo model, for instance, it can be observed at low noise if damped subthreshold
oscillations are present. A completely di�erent mechanism for noise-enhanced irregularity in the LIF
model was found in [57] and is discussed in Section 3.2.6.

If a weak driving is present another e�ect can be observed: stochastic resonance (SR) [109,267,268].
SR was originally proposed and studied for bistable systems and later also found in excitable systems
(see [109] and references therein). SR occurs in a wide range of nonlinear systems and manifests



340 B. Lindner et al. / Physics Reports 392 (2004) 321–424

itself by an enhancement of the response of a system to a weak signal by adding noise to the system.
In the case of periodic signal these features become apparent by inspecting the power spectrum of
the spike train or of one of the system’s variable. The spectrum consists of a noisy background and
peaks at the driving frequency and its multiples. The weights of these peaks as well as their ratio to
the background spectrum pass through maxima as functions of noise intensity. For excitable systems
an interesting question is how coherence resonance features a�ect stochastic resonance.

3.1. Resonance measures

3.1.1. Measures of coherence
The 8rst problem encountered in the study of spiking behavior of excitable systems is the de8nition

of a spike. This de8nition is evident in the LIF model. For the FN model we have to de8ne a
threshold level xT (e.g. xT = 0) in the voltage variable, an up-crossing of which is considered as
the onset of a spike. Note that a short correlated noisy driving in the equation of the fast variable
requires a more elaborated decision scheme, since in this case the voltage variable may cross a given
level without passing actually through refractory and resting states (see [269] for further details).
Given this decision rule we can measure the set of spiking times T = {ti}, and associate a � spike
train with them

�(t) =
∑
ti∈T

�(t − ti) : (11)

By integration of this function from 0 to t we obtain the number of spikes in the time window (0; t),
which is called the spike count n(t). The quantity is a stochastic variable that undergoes a di�usive
spreading. The stationary 8ring rate r0 is the mean number of spikes per unit time, which can be
determined by either n(t) time averaging or ensemble averaging from the output of Eq. (11):

r0 = lim
t→∞

n(t)
t

= 〈�(t)〉 : (12)

Equivalently, one may measure the statistics of the interspike interval (ISI), such as for instance the
mean ISI 〈T 〉, which is the inverse of the 8ring rate:

r0 = lim
N→∞

(
T0

N
+

1
N

N∑
i=1

Ti +
TN+1

N

)−1

=
1
〈T 〉 : (13)

Here we have in mind a time series from t = t0 to t = tN+2 with N + 1 spike times ti in between.
Then Ti = ti+1 − ti (for i = 1; : : : ; N ) denote the intervals between subsequent spikes, while T0 and
TN+1 are the intervals until the 8rst and since the last spike have occurred. The latter two intervals
can be neglected for large N . Note that consecutive intervals are statistically independent, i.e. LIF
and FN models generate so-called renewal processes [270] (for the FN model this is true, at least
to a very good approximation, for jt�1).

The variability of spike timing is quanti8ed by other measures, the most common of which is
the coeDcient of variation R (CV), de8ned as the ratio of the standard deviation of the interspike
intervals to its mean:

R =

√〈YT 2〉
〈T 〉 : (14)
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Here 〈T 〉 is the mean and 〈YT 2〉= 〈T 2〉 − 〈T 〉2 is the variance of the interspike interval. A Poisson
process has R = 1 and a strictly periodic spiking has R = 0. Hence, if R is close to zero one may
speak of a coherent output. The coherence resonance seen in Fig. 11 becomes therefore manifest
by a minimum of the coe=cient of variation vs noise intensity [48]. We must point out that the
usage of the CV as the only indicator of coherence resonance can be misleading (see Ref. [310]
and Section 3.2.5).

One may also use spike count statistics to quantify the regularity of spiking. As mentioned above,
the spike count exhibits a di�usive spreading, i.e. its variance grows linearly with time. For renewal
processes like those generated by LIF and FN models, the diEusion coeDcient De� associated with
that spreading can be calculated from the mean and variance of the interspike interval [270], and is
thus related to CV and spike rate:

De� = lim
t→∞

d
dt

〈n2(t) − 〈n(t)〉2〉
2

=
1
2
〈YT 2〉
〈T 〉3 =

1
2
R2r0 : (15)

A small growth of the variance implies then a small value of the di�usion coe=cient of the spike
count, and indicates a regular spiking. Consequently, a strong manifestation of coherence resonance
is the occurrence of a minimum in the di�usion coe=cient vs noise intensity.

Another measure of coherence is the correlation time of the system, de8ned as the integral of the
squared correlation function of one of the output variables [48]. Coherence resonance is characterized
by a maximum of this quantity [48]. An estimate of the correlation time can be made using the
di�usion coe=cient and the spike rate [244], yielding essentially an inverse relationship 2

�corr ∼ 1
2De�

− 1
r0

: (16)

Assuming that the spike rate r0 increases monotonously with increasing noise, which is the case
for all excitable systems considered in this review, one can show that a minimum of De� vs noise
intensity implies a maximum in the correlation time Eq. (16). Thus if we 8nd the signature of CR
in the di�usion coe=cient (minimum vs noise intensity), CR can be also observed (possibly at a
slightly di�erent noise level) by means of the correlation time.

Finally, the power spectrum of either the spike train or another dynamical variable of the system
may be considered as measure of the coherence. For a process x(t), its power spectrum is given by

Sx(!) =
∫ ∞

−∞
d� 〈x(t)x(t + �)〉ei!� : (17)

A quasi regular output (as in the case of coherence resonance, see for instance the mid panel of
Fig. 11) should be characterized by a peak at a 8nite frequency, irrespective of whether x(t) is the
spike train or another system’s variable. This peak can be quanti8ed by the degree of coherence,
which is the ratio of peak height to the width at which the spectrum decays to a fraction a of its
maximal value

� =
S(!max)
Y!=!max

(18)

with

Y! = !1 − !2; S(!1) = S(!2) = S(!max)=a; !1 ¡!max ¡!2 : (19)

2 This estimate is meaningful only for processes that are more regular than a Poisson process.
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Note that for a renewal process, the power spectrum of the spike train can be expressed in terms of
the characteristic function of the ISI (i.e. the Fourier transform of the ISI density, see e.g. [271]):

S�−〈�〉(!) =
1
〈T 〉

1 − |%(!)|2
|1 − %(!)|2 : (20)

Later on we will approximate the voltage variable of the FN model by a two-state process �(t)∈
{−1; 1}, where the two states correspond to the resting state (voltage around resting potential) and
the excited state (voltage at the peak of the spike). The interspike interval in that case consists
of two approximately independent subintervals, namely the waiting times in the respective states.
Under these conditions, the spectrum of �(t) can be expressed by the characteristic functions of the
subintervals -r(!) and -l(!) as follows [271]:

S�−〈�〉(!) =
8

!2〈T 〉R
(

(1 − %l(!))(1 − %r(!))
1 − %l(!)%r(!)

)
: (21)

3.1.2. Measures for signal transmission
If an excitable system is stimulated by a periodic signal (s(t)=� cos(/t)) and noise, the ensemble-

averaged measures will explicitly depend on time. This is seen, for instance, in the instantaneous
8ring rate r(t) that corresponds to the ensemble average of the spike train Eq. (11). For a weak
signal, the rate is given by

r(t) = 〈�(t)〉 = r0 + �� cos(/t − ") ; (22)

where � is a linear-response amplitude and " is the phase shift. A similar ansatz can be made for
the ensemble-averaged variables of the excitable system.

The response amplitude � is an illustrative measure for the presence of the signal in the output.
However, measures derived from the power spectrum of dynamical variables or of the spike train
are often more accessible for numerical simulations or experiments. For a weak signal the power
spectrum is given by

S(!) = Sbg(!) +
#
2
�2�2 [�(!− /) + �(! + /)] : (23)

A simulation of a LIF neuron driven by white noise and a periodic signal (Fig. 12) shows clearly
the continuous and discrete components in the power spectrum. For a weak signal, the continuous
contribution background spectrum Sbg is given by the spectrum of the unperturbed system (� = 0).
In Fig. 12 this is nicely con8rmed by the grey line, given by an exact expression for the spectrum
in the absence of a signal [Eq. (37) in Section 3.2.2].

Regarding the discrete component, note that in any 8nite simulation (as well as in any experiment),
instead of the � peaks we obtain peaks of 8nite height. However, the area under the peak will
be given, for su=ciently large measuring or simulation time, by the prefactor of the � functions
in Eq. (23).

The strength of the periodic output signal can be quanti8ed by the spectral ampli8cation [109,272],
which is given by the ratio of signal output power to input power:

0 = �2 : (24)
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Fig. 12. Power spectrum (histogram) averaged over 30 realizations for the LIF model driven by an additive signal
(� = 0:02; / = 1) at � = 0:8 and D = 0:015. The peak at ! = 1 depends on the simulation time, here T = 104.

More common in experimental measurements is the signal-to-noise (SNR) ratio, which measures how
well the spectral peak can be distinguished from the noise background. For a 8nite-time estimate
of the power spectrum, the SNR can be de8ned by dividing the height of the signal peak by the
background spectrum Sbg. In theoretical considerations it is desirable to eliminate the trivial linear
dependencies on simulation time and input power introduced in the experimental SNR. To that end,
the ratio of power ampli8cation (i.e. peak height divided by input power and measuring time) to the
background spectrum at the driving frequency is considered the theoretical equivalent of the SNR:

SNR = �2=Sbg : (25)

Another measure often used in studies of stochastic resonance are the residence time distributions
[273,274], which are similar to the interspike interval histograms used in neuroscience [275,276].
The quality of signal transmission can also be characterized in terms of phase synchronization
[277–283]: the cumulative sequence of phase jumps due to switchings or 8rings [284] (if discretized,
the spike count times 2#) is locked for the longest average time by a signal at the optimal noise
level. In the case of aperiodic signals, the appropriate measures include the cross-correlation and the
coherence functions [106,281,285–287], as well as the theoretical information measures [288–297]
and wavelets [298].

Here we focus mainly on periodic signals and study the dependence of spectral measures on noise
intensity and driving frequency.

3.2. Coherence resonance

3.2.1. Coherence resonance in the FitzHugh–Nagumo model
In Fig. 11 it was shown that the FN model displays coherence resonance. Here we describe an

analytical approach that allows us to determine the measures of CR in this model.
Our starting point is the separation between time scales in the dynamics of Eq. (1). The time

scale ratio jt is close to zero, and so we may ask how the system behaves if we take the limit
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Fig. 13. Comparison of stochastic trajectories at di�erent values of the time scale separation constant jt (see also Fig. 4).
Parameters: � = b = 1:5; D = 0:3; Left: jt = 10−1, right: jt = 10−4.
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Fig. 14. Schematic picture of the system for jt → 0.

jt → 0. This is demonstrated in Fig. 13 (left) in agreement with the solutions of the stationary FPE
described in Section 2.3. The two-dimensional stochastic system reduces for jt → 0 to a system of
two one-dimensional subsystems corresponding to the stable branches of the cubic nullcline, which
are connected by the probability Ruxes from one branch to the other.

The dynamics of the slow variable y is schematically depicted in Fig. 14 (right) and resembles a
Schmitt trigger driven by colored noise, as considered by Melnikov [299]. The phase point performs
a di�usive motion on the left (right) branch until it is absorbed at the y coordinate of the minimum
y− (maximum y+) of the cubic nullcline, and reset to the right (left) branch. The motion is subjected
to the force of e�ective potentials that read

Ul(y) =
(y − b)2

2
− �

xl(y)
4

(3y − xl(y)) ;

Ur(y) =
(y − b)2

2
− �

xr(y)
4

(3y − xr(y)) : (26)

for the left and right branch, respectively.
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In order to obtain these functions, one has to insert the inverse of the cubic function given by
Eq. (2):

xl(y) = 3y− cosh
(

1
3

arccosh(y=y+)
)

;

xr(y) = 3y+ cosh
(

1
3

arccosh(y=y−)
)

(27)

into the equation of the recovery variable. Note that the potential Ur(y) does not possess a min-
imum (cf. Fig. 14), in accordance to the observation that the right branch is abandoned even in
the absence of noise (the phase point will go “downhill” to the absorbing boundary in this case).
Fokker–Planck equations for the two subsystems (which are coupled by probability currents) can be
found, and the stationary density can be obtained [53].

More interesting in the context of coherence resonance is the fact that we may calculate the
moments of the 8rst-passage times along these branches (see also Refs. [300,301]). Obviously, in
the limit jt → 0 the sum of the 8rst passage times 〈Tl〉, 〈Tr〉 from y+ to y− (left branch) and vice
versa (right branch) yields the interspike interval. Furthermore, the passage times are statistically
independent, which implies that

〈T 〉 = 〈Tl〉 + 〈Tr〉; 〈YT 2〉 = 〈YT 2
l 〉 + 〈YT 2

r 〉 : (28)

The moments can be obtained by standard formulas [302], which in the case of Tr can be written

〈Tr〉 =
∫ y+

y−

dx Ir(x); Ir(x) =
1
D

eUr(x)=D
∫ x

−∞
dy e−Ur(y)=D (29)

and

〈YT 2
r 〉 = 2

∫ y+

−∞
dz[Il; r(z)]2e−Ur(z)=D

∫ y+

z
dx !(z − y−)eUr(x)=D : (30)

For the passage time toward the left branch similar formulas can be used when Ur(y) is replaced
by Ul(−y).

From the moments we can calculate the stationary spike rate r0, i.e. the inverse mean interspike
interval, by means of Eq. (13), and also determine the coe=cient of variation

R =

√〈YT 2
l 〉 + 〈YT 2

r 〉
〈Tl〉 + 〈Tr〉 : (31)

The knowledge of r0 and R, moreover, permits the determination of the spike di�usion coe=cient
according to Eq. (15).

The coe=cient of variation and the spike-count di�usion coe=cient obtained from the theory
sketched above are shown in Fig. 15, and compared to simulations at di�erent values of jt . One can
see that at 8xed jt both measures attain minima at roughly the same noise intensity. These minima
are more shallow and appear at larger noise intensity when the time scale ratio is increased. The
deviation of the approximation given by the theoretical formulas at jt = 0 increases with increasing
jt , as one may expect.

Note, furthermore, that not for all parameter sets where the FN model is excitable, both quantities
necessarily have to attain a minimum. For the case � = 0:8 and b = 0:9, the 8xed point has a large
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Fig. 15. Coe=cient of variation (left) and di�usion coe=cient of the spike count (right) vs noise intensity D for � = 1:5,
b = 0:6. Approximation (solid line) compared to simulations with jt = 10−3 (squares), jt = 10−4 (circles) and jt = 0
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Fig. 16. Coe=cient of variation (left) and spike-count di�usion coe=cient (right) vs noise strength D, for � = 0:8 and
b=0:9 (the nullclines for these parameters are shown in the inset). The theoretical approximation (solid line) is compared
to simulations with jt = 10−4 (circles).

distance to the “self-excitatory” region (cf. inset of Fig. 16), which implies a small ratio of excursion
and activation times. Consequently, only a weak form of coherence resonance exists. In this case,
only the coe=cient of variation possesses a (very shallow) minimum, while the di�usion coe=cient
is a monotonous function of the noise intensity (cf. Fig. 16).

As was shown in [110], the power spectrum can be also calculated in the limit jt → 0 applying
some additional minor modi8cations. First, the cubic polynomial is replaced by the piecewise linear
function Eq. (3) (this is not necessarily a bad choice with respect to the biological application of
the model [303]). Second, the spectrum of the variable x(t) is approximated by that of a discretized
variable �(t) = sgn(x(t)). Since the changes in v along the branches are small compared to the
change due to a jump from one branch to the other, this approximation will introduce a negligible
deviation.

If both nullclines are (piecewise) linear, the resulting e�ective potentials will be parabolic. The
power spectral density can then be calculated [110] generalizing a result due to Melnikov [299].
Expressed by parabolic cylinder functions [304] denoted by Da; z, the result reads

S(!) =
8r0

!2 R



[
Di;!

(
x−√
D

)
− eYxDi;!

(
x+√
D

)] [
Di;!

(
y−√
D

)
− eYyDi;!

(
y+√
D

)]
Di;!

(
x−√
D

)
Di;!

(
y−√
D

)
− eYxeYyDi!

(
x+√
D

)
Di!

(
y+√
D

)

 ; (32)
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(thick line) where r0 = 1=〈T 〉 is the stationary spike rate. Right: degree of coherence according to Eq. (18) with a = 1:2.

where

Yx =
x2

+ − x2−
4D

; Yy =
y2

+ − y2−
4D

(33)

and

x± = ± 1
2
− b− �

1 + �
; y± = ± 1

2
+

b + �
1 + �

: (34)

Additionally, time and noise intensity have been rescaled according to t → t=(1+�) and D → (1+�)D,
respectively. The spectrum indeed reveals coherence resonance (Fig. 17). At small and large noise
it has an almost monotonous shape, while at moderate noise intensity a pronounced peak appears.

As shown in Fig. 17 (right), the degree of coherence [Eq. (18)] passes through a maximum as a
function of noise. Simulations of the full dynamics of Eq. (1) indicate a good agreement with these
8ndings, provided the time scale ratio jt is su=ciently small.

3.2.2. Coherence resonance in the leaky integrate-and-Cre model
A one-dimensional excitable system like the LIF model can also display coherence resonance

[56,57]. This model has the advantage that many of the CR measures can be analytically calculated
[57]. In the absence of a periodic signal [setting � = 0 in Eq. (6)], the moments of the interspike
interval are given by those of the 8rst passage time in a parabolic potential from reset point to
threshold. The 8rst moment reads [305]

〈T 〉 = �abs +
√
#
∫ (�−vR)=

√
2D

(�−vT )=
√

2D
dz ez2

erfc(z) ; (35)

where erfc(z) is the complementary error function [304]. The stationary spike rate r0 is the inverse
of this expression, according to Eq. (13). The second moment can be written as [57]

〈YT 2〉 = 2#
∫ ∞

(�−vT )=
√

2D
dx ex2

[erfc(x)]2
∫ x

(�−vT )=
√

2D
dy ey2

!
(
� − vR√

2D
− y

)
: (36)

Fig. 18 shows the spike rate, coe=cient of variation and spike-count di�usion coe=cient for
di�erent values of � and zero absolute refractory period. The function R possesses a minimum for
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Fig. 18. Analytical results for the rate, coe=cient of variation and di�usion coe=cient vs noise intensity for �abs = 0. Left:
The parameter � is varied from 0 to 0:9 in steps of 0:1 (subthreshold base current �, i.e. noise-activated 8ring regime).
Right: For � = 0:99, the characteristics are compared to results (circles) from a numerical simulation of Eq. (6).

almost all values of �, which deepens and shifts to smaller values of D with increasing �. As pointed
out above, the passage to v = � can be looked upon as a relative refractory period. Increasing �
increases this period, and simultaneously diminishes the activation time needed to escape beyond
the threshold. Note that the curves for di�erent � never intersect; this implies that the coherence of
spiking is always increased with growing � irrespective of the value of D.

Values up to �= 0:9 do not yield a minimum in the di�usion coe=cient. For a resting value very
close to the threshold (which is vT =1) a minimum can be nevertheless observed (cf. Fig. 18, right).
This is in accordance with what happens in the FN model. The closer we are to the bifurcation
point, the more pronounced is the CR e�ect.

Moreover, the power spectrum is simpler to calculate for the LIF than for the FN model. The
characteristic function of the interspike interval has been known for a long time, and the power
spectrum of the spike train can be expressed by Eq. (20) employing the characteristic function. The
resulting spectrum reads [57]

S(!) := S�−〈�〉(!) = r0

∣∣∣Di!

(
�−vT√

D

)∣∣∣2 − e2&
∣∣∣Di!

(
�−vR√

D

)∣∣∣2∣∣∣Di!

(
�−vT√

D

)
− e&ei!�absDi!

(
�−vR√

D

)∣∣∣2 : (37)

Here Da(z) denotes again the parabolic cylinder function, and & is given by

& =
v2
R − v2

T + 2�(vT − vR)
4D

: (38)

Let us now consider the spectrum for the case � = 0:99. As in case of the FN model, the spectrum
exhibits a peak in the case of coherence resonance, i.e. at a 8nite noise intensity.

Note that the spectrum does not decay at large values, but saturates at the stationary rate, i.e.
S(! → ∞) = r0. This is due to the fact that we consider the spectrum of a �-spike train, which has
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an in8nite variance. As a measure of coherence resonance we use a modi8ed version of the degree
of coherence 3 [56]:

� =
S(!max) − r0

Y!=!max
: (39)

As seen in Fig. 19 (right) this function passes through a maximum as a function of noise.
The analytical results for the LIF model demonstrate that coherence resonance can be observed in

one-dimensional systems. This is important, because it is sometimes asserted in the literature that CR
is based on subthreshold oscillations around a 8xed point that cannot be realized in one-dimensional
(8rst-order) dynamics.

3.2.3. Coherence resonance in phase models
Coherence resonance has also been observed in a number of phase models. In the noisy Adler

equation [i.e. Eq. (9) with a cosine potential], coherence resonance has been found numerically using
spectral measures [58]. We recall that this model is type I excitable, because close to the bifurcation
point it approaches the normal form of a saddle-node bifurcation. Here we will demonstrate CR in
a noisy Adler equation by means of exact analytical results for the coe=cient of variation and the
di�usion coe=cient of the spike count.

The mean and variance of the ISI in the phase model can be expressed by quadratures apply-
ing standard methods for the associated 8rst-passage-time problem [302]. A considerably simpli8ed
expression for the variance was recently derived by Reimann and coworkers [306]:

〈T 〉 =

∫ 2#
0 dxI±(x)

1 − e−2#F=D ; 〈YT 2〉 = 2D
∫ 2#

0
dx I+(x)I 2

−(x) ; (40)

3 The modi8cation is needed since the power spectrum of the spike train does not decay to zero in the high-frequency
limit.
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where

I+ :=
1
D

eV (x)=D
∫ x

x−2#
dy e−V (y)=D; I− :=

1
D

e−V (x)=D
∫ x+2#

x
dy eV (y)=D : (41)

From these expressions we can calculate the spike rate, the coe=cient of variation, and the di�usion
coe=cient of the spike count by means of Eqs. (13), (14), and (15), respectively.

Results for a strong subcritical tilt (F = 0:95) are shown in Fig. 20, and indeed reveal coherence
resonance in the phase model. The CV passes through a minimum as a function of noise intensity.
However, the type I excitable phase model exhibits only a weak form of coherence resonance. The
CV does not fall below the value 1=

√
3, and the di�usion coe=cient of the spike count does not show

a minimum. The former result does not depend on the bifurcation parameter, as long as the system
is excitable (cf. Fig. 21). The lower bound for the CV is furthermore consistent with numerical
8ndings for the type I excitable Morris–Lecar model [62] and with the fact that the normal form of
a type I excitable system right at the bifurcation point possesses a CV that is given by the value
R = 1=

√
3 [42,254].

We now show that using the potential shape given in Eq. (10) instead of a cosine potential, a
8ring statistics akin to type II excitability can be achieved. We recall that the potential Eq. (10)
exhibits extended Rat parts and small and sharp barriers for large values of the parameter %.

At variance with the cosine phase model, the ISI is now not necessarily dominated by the escape
over the threshold (the barrier of the e�ective potential), but can also (at comparably small noise
intensity) be dominated by the passage along the Rat parts of the potential. This leads to a strong
coherence of the output spike train and to a pronounced coherence resonance (Fig. 22). The minimum
of the CV is low (Rmin ≈ 0:28) and the di�usion coe=cient of the spike count passes through a
minimum as a function of noise intensity. By varying the potential parameters & and %, the minima
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of the CV and the di�usion coe=cient can be further deepened (not shown). These results resemble
strongly the 8ndings for the FitzHugh–Nagumo model presented in Fig. 15.

Finally, we would like to mention that the optimal spike output found in case of coherence
resonance in the phase model is equivalent to a coherent transport of Brownian particles when
the dynamics is regarded as a description of overdamped Brownian motion in an inclined periodic
potential. Analytical results for this e�ect have been achieved in Refs. [263,307] (see also Refs.
[306,308]). A further manifestation of coherent transport at 8nite noise has been recently discovered
in a spatially periodic dynamics with multiplicative noise but zero tilt [309], which is a simple model
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of so called Brownian motors. This shows that the consequences of the simple CR e�ect can be
more far reaching than one might expect at the 8rst glance.

3.2.4. Qualitative approach to coherence resonance
How can the phenomenon of coherence resonance be understood? First, one has to realize that

the interspike interval consists of two di�erent times ta (activation time) and te (excursion time), as
illustrated in Fig. 23. The activation time is the time needed for the escape of the state point from
the 8xed point, while the excursion time corresponds to the interval the system spends in the active
and refractory states. The statistics of these times is quite di�erent: while the activation time obeys
approximately a Poissonian statistics with strong dependence on the noise intensity, the excursion
time corresponds instead to the decay time of an unstable state, and hence displays a much weaker
dependence on the noise intensity than the activation time.

A simple consideration of the squared coe=cient R2 (which reaches its minimum for the same
noise intensity as R) reveals the mechanism of coherence resonance (see also Pakdaman et al. [56]).
Assuming statistical independence between the two times, we obtain for the squared coe=cient of
variation

R2 =
〈&(ta + te)2〉

〈T 〉2 =
〈Yt2a〉
〈ta〉2

〈ta〉2

〈T 〉2 +
〈Yt2e 〉
〈te〉2

〈ta〉2

〈T 〉2 = R2
a

( 〈ta〉
〈T 〉
)2

+ R2
e

( 〈te〉
〈T 〉
)2

; (42)

where Ra and Re denote the coe=cients of variation of the activation and excursion times,
respectively.

If we assume a Poissonian process for ta, the coe=cient Ra is unity, and the 8rst term will be the
squared ratio of the activation time to the interspike interval. For increasing noise intensity this term
drops rapidly from one to almost zero, while the second term increases in both factors: the jitter of
the excursion time Re as well as the ratio 〈te〉=〈T 〉. The minimum in R2 (and hence in R) appears
as a compromise at a noise intensity where both terms are just small (cf. Fig. 24), i.e. when the
noise strength su=ces to generate a small activation time compared to the excursion time, while it
is still weak enough to introduce only a small jitter in the excursion time. In this case, the noise
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induced oscillations are mainly determined by the rather regular excursion time and may thus look
regular itself. In general, the e�ect is the more pronounced the larger the ratio between excursion
and activation time is at moderate noise.

From the point of view of dynamical systems there is another explanation of the e�ect of coherence
resonance [50]. All models introduced above possess also other dynamical regimes than the excitable
one. In the LIF model, for instance, a base current above threshold (�¿vT ) will generate a periodic
8ring of the model neuron. In the FN model, a value of parameter b such that the nullclines intersect
on the middle unstable branch of the cubic nullcline will lead to a limit cycle system that generates
spikes in the voltage variable also for vanishing noise. Finally, a supracritical tilt (F ¿ 1 in case of
a cosine potential) for the phase model will lead to sustained 8ring. The parameters �, b and F play
the role of control parameters. Upon variation of these parameters, the deterministic systems (D=0)
undergo a bifurcation from an excitable regime to an oscillatory regime. With noise perturbations the
power spectrum of the system will possess a peak which is characteristic for the oscillatory regime
even before a bifurcation will actually occur. Due to the nonlinearity of the respective system, this
precursor emerges only for a 8nite range of noise intensities. A strong noise results in most systems
just in a noisy output and thus spoils more sensitive features of the dynamics.

3.2.5. Limitation of the coeDcient of variation as a measure of coherence resonance
We have used the CV to explain the mechanism of coherence resonance. Although certainly

illustrative, the use of the CV as the only measure of coherence can be somewhat misleading. There
are cases where the CV does not show a minimum but nevertheless the coherence is maximized
at 8nite noise intensity. In those cases, the CV fails as an indicator of coherence resonance. For
instance, the normal form of type I excitability shows only a decreasing CV saturating at 1=

√
3 at

large noise [254], whereas two-dimensional type I excitable dynamics displays a coherence resonance
at 8nite noise intensity, if quanti8ed for instance by the spectral coherence [47,266]. This is due to
the destruction of the spike shape in the strong noise limit—a feature that cannot be described by a
measure that is based only on the intervals between spikes.
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Conversely, it is possible that the CV exhibits a minimum without signi8cant coherence, i.e. at
the noise level in question other indicators of coherence do not show minimal or maximal values.
Shuai et al. [310] discuss a threshold spike generator with doubly 8ltered white noise input that
shows a CV dropping with increasing noise but does not possess a peaked power spectrum. Another
simple example [244] is a two-state process �(t)∈{−1; 1} with Poissonian jumps where one of the
rates (r1) is kept 8xed while the other rate (r2) is varied (Fig. 25 shows a bistable dynamics that is
approximated by such a two-state process). This system is not excitable. We may, however, obtain
a spike generator as follows: every transition �=−1 → 1 de8nes a spiking time; thus the interspike
intervals are given by the intervals separating two subsequent transitions from �=−1 → 1. Because
of the independent Poissonian statistics of the single transitions, the CV is given by

R =

√
r2

1 + r2
2

r1 + r2
: (43)

Suppose the rate r2 can be changed from 0 to in8nity (e.g. by changing the temperature T2 in the
system depicted in Fig. 25). Then the CV obviously tends to 1 in both limit cases r2 → 0 and
r2 → ∞, while it attains a minimum if the rates are equal

dR
dr2

= 0 ⇒ r2 = r1  Rmin = 1=
√

2 : (44)

Thus, we have tuned the “noise intensity” (rate r2 or equivalently temperature T2) such that the
system is symmetric, and obtained a minimum in R. But the symmetric system in the two-state
approximation described above corresponds to one of the standard stochastic processes, namely the
random telegraph noise, commonly looked upon as a rather irregular process. This process possesses
a di�usion coe=cient monotonously increasing with r2 and a Lorentzian spectrum (i.e. with no peak
at 8nite frequency) that is independent of r2. Thus, despite the CV exhibits a minimum, further
indications of a coherence resonance are absent. Consequently, a mere minimum of the CV vs noise
intensity does not necessarily indicate a noise-induced eigenfrequency, and such a minimum can be
at most considered as a weak form of coherence resonance.
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3.2.6. Incoherence maximization in the leaky integrate-and-Cre model
Here we show, within the framework of the leaky integrate-and-8re model with absolute refractory

period, that the e�ect of a maximal spike train incoherence can be observed. This is the opposite
e�ect to coherence resonance, and may be relevant in situations where an asynchronous 8ring pattern
is more desirable than coherent 8ring like, for instance in the case of Parkinson disease [311,312].

As mentioned above, the LIF model is characterized by three di�erent time scales: the passage
of the voltage variable from reset value to the resting voltage, the escape from the resting state to
threshold, and the absolute refractory period �abs. For coherence resonance, the third time scale is
not essential since its presence leads in any case to a more pronounced coherence irrespective of the
noise intensity. However, the absolute refractory period determines the regularity of the spike train
in the strong noise limit. For D → ∞, both escape time and relative refractory period approaching
zero, leaving �abs as the dominant time and thus the interspike intervals will be narrowly distributed
around �abs. For the parameters used in the previous subsection, this takes place for a huge amount
of noise. For larger values of �abs (compared to the other two time scales), however, this can be
seen at high but still realistic noise levels. Considering now a LIF model with supra-threshold base
current � (�¿vT ), we expect perfectly regular spiking for vanishing noise (D = 0) but also in
the large noise limit (D → ∞). For 8nite noise intensity, the spiking is irregular. Put di�erently,
by tuning the noise intensity, we may maximize the irregularity or incoherence of the spike train.
Consequently, maxima in the CV and in the di�usion coe=cient of the spike count as functions of
D should be observable, while the power spectrum of the spike train should be Rat with respect to
frequency for an intermediate value of the noise intensity.

As demonstrated in Figs. 26 and 27, this is indeed the case. The CV and De� pass through maxima
as functions of noise intensity. Location and height of these maxima are largely independent of the
base current �. This is also found in a large-D approximation for rate and CV [57] (assuming also
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small values of �abs)

r0 ≈ 1=
[
�abs +

√
#=
√

2D
]

;

R ≈ √
c1

(2D)1=4

1 + �abs

√
2D=#

;

De� ≈ c1
D=

√
#(

1 + �abs

√
2D=#

)3 (45)

(here c1 ≈ 0:782) that yield the approximate values of D which maximize R and De� , respectively

DRmax ≈ #=(2�2
abs); DDe� max ≈ 2#=�2

abs = 4DRmax : (46)

Thus, the positions of the maxima are mainly determined by the absolute refractory period �abs.
The power spectra shown in Fig. 27 reveal the same e�ect. At small and at large noise intensities

they are sharply peaked either at the deterministic eigenfrequency or at the inverse of the absolute
refractory period 2#=�abs (in either case also peaks at higher harmonics are present). Remarkably,
the degree of coherence shows a minimum which appears, however, at a signi8cantly lower noise
level than the maxima in R(D) and De� (D). Thus the regularity induced by the absolute refractory
period is present in the spectral measure at a much smaller noise intensity (for a discussion of this
e�ect, see [57]).

An incoherence maximization can be observed also in the case of subthreshold base current if
the absolute refractory period is su=ciently small [57]. In this case, the CV passes 8rst through
a minimum (coherence resonance) and then through a maximum (incoherence maximization). For
larger values of �abs, the coherence is always enhanced by increasing the noise intensity, for instance,
the CV will drop in this case from the Poissonian limit (CV → 1 as D → 0) to the large noise limit
(CV = 0 as D → ∞).
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3.3. Stochastic resonance

We now turn to the dynamics of an excitable system that is driven by noise and a periodic signal
s(t) = � cos(/t). If the periodic driving is strong, the excitable dynamics will follow this forcing, i.e.
the occurrence of a spike will be correlated to the signal phase. In the FitzHugh–Nagumo system,
for instance, this can be easily understood for very slow driving (adiabatic case, /�1), where the
signal enters e�ectively as a static modi8cation of the x nullcline. A positive signal (s(t)¿ 0) shifts
the nullcline such that the 8xed point is on the middle branch of f(x). In this case the system
exhibits an oscillatory (limit cycle) behavior. This implies sustained 8rings of the system even in
the absence of noise. During the second half period, the signal will be negative and the nullcline is
shifted in opposite direction. As a result the system will be even less excitable than in the absence
of a signal. Since noise is present, the exact location of spikes is still random, but the probability
of a 8ring depends on the signal.

For moderate amplitude and 8nite frequency (nonadiabatic case), one observes di�erent phase
locking patterns [313]. In contrast, small-amplitude signals cannot elucidate activations, but only
small oscillations around the resting state. With the help of noise, spikes may be nevertheless gener-
ated and will be correlated to the weak signal. This is the basis of stochastic resonance in excitable
systems.

Let us now turn to the case of a weak periodic signal. As is well known from the literature
[109,104,105], in this case stochastic resonance (SR) can be found, i.e. the output of the excitable
system is most strongly correlated to the periodic input at a Cnite intensity of the applied noise.
This behavior becomes evident in the power spectrum of the output, which consists of a noisy
background spectrum, as discussed in the previous sections, and superimposed peaks at the driving
frequency and its higher harmonics. An indication of SR is that the weight of the signal peak as
well as its ratio to the background spectrum (signal-to-noise ratio, SNR) pass through maxima as
functions of noise intensity. This happens not only for the usual case of additive periodic driving,
but can also be found for a noise-coded signal. A distinct feature of the latter kind of signal is a
high frequency response, i.e. if the excitable system is driven by a noise-coded signal, the measures
of signal transmission saturate at 8nite values in the limit of large driving frequency.

The SR features of the FN and LIF models have been the subject of simulation studies
[104–106,269] and sophisticated numerical treatment [113,242]. Adiabatic approximations neglect-
ing the internal dynamics of the systems have been proposed in [105,106]. Here we focus on a
nonadiabatic theory for the FN model [110] and the LIF model [112] developed more recently.

3.3.1. Stochastic resonance in the FitzHugh–Nagumo model
We 8rst consider the case of weak periodic stimulation in the FN model, setting s(t) = j cos(/t)

in Eq. (1). One may apply such a forcing to either the dynamics of the voltage or the recovery
variable, yielding only minor di�erences [110]. Here we choose to apply the forcing in the second
equation, i.e.

�ẋ = f(x) − y ;

ẏ = �x − y + b + � cos(/t) +
√

2D(t) : (47)
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We choose again f(x) according to Eq. (3), and consider the limit of a perfect time scale separation
(� → 0). The linear response to the periodic stimulation may be expressed by the spectral power
ampli8cation [272] with respect to the discretized voltage variable Eq. (24). This function is given
by the ratio of output and input signal intensity and reads [110,244].

0 =
4r2

0

D
1

(1 + �)2(1 + /2)

×
∣∣∣∣(eYy y+ −  y−)(eYx6x+ − 6x−) + (eYy6y+ − 6y−)(eYx x+ −  x−)

eYxeYy x+ y+ −  x− y−

∣∣∣∣
2

(48)

with

 x± = Di;/

(
x±√
D

)
;  y± = Di;/

(
y±√
D

)
; 6x± = Di;/−1

(
x±√
D

)
;

6y± = Di;/−1

(
y±√
D

)
; Yx = (x2

+ − x2
−)=(4D); Yy = (y2

+ − y2
−)=(4D) ;

where x± and y± are given by Eq. (34), and time, frequency and noise intensity are rescaled
according to t → t=(1 + �), / → /(1 + �), and D → D(1 + �), respectively. The SNR can be
determined from Eq. (25) using the spectrum of the unperturbed system Eq. (32) as the background
spectrum (this is valid only as long as the linear response approximation holds).

In contrast to approximations assuming small noise intensity (employing Kramers rate) or small
frequencies (quasistatic, i.e. “adiabatic” approaches), the results given above hold true for arbitrary
driving frequency and noise intensity. In Fig. 28 (left) the ampli8cation and SNR are shown as
functions of noise intensity and driving frequency. The 8rst feature that becomes apparent in this
plot is stochastic resonance, i.e. a maximum of 0 as well as SNR vs noise intensity for arbitrary but
8xed frequency. The reason for this resonance can be easily understood by considering the limits
of vanishing and in8nite noise intensity: at D = 0 the subthreshold signal cannot evoke any spiking
response in the neuronal dynamics, therefore 0 = 0; at large noise intensity the FN neuron will 8re
at a high rate, however the weak signal will have vanishing inRuence on this 8ring rate as D tends
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to in8nity. For a moderate level of noise, the 8ring depends on an e�ective threshold that in turn
depends on the signal phase. In this case one can expect a 8nite correlation between 8ring events
and signal phase, i.e. between output and input signal.

The second feature of Fig. 28 (left) is a pronounced maximum of the ampli8cation with respect
to the driving frequency that is seemingly independent of the stochastic resonance observed. What
is the reason for this maximum? As we have seen in the previous sections, noise alone may in-
duce a regularity of the neuronal output already in the absence of periodic driving, reRected by
noise-induced eigenfrequency that appears in the power spectrum. If the signal frequency matches
this eigenfrequency, a classic resonance can be expected. This is indeed the reason for the maximum
of the spectral power ampli8cation, as can be seen by comparing the contour lines in the inset of
Fig. 28 with those of the spectrum in absence of a signal (Fig. 17, inset). The maximum in spectral
ampli8cation appears roughly within the same region of the /–D plane where coherence resonance
is indicated by a peak of the spectrum in the !–D plane.

Since the spectral ampli8cation is maximized at 8nite D and 8nite ! the e�ect has been called
stochastic double resonance by Plesser and Geisel [113], who found the same e�ect numerically in
the leaky integrate-and-8re neuron model.

It is easy to understand why this resonance cannot be observed in the signal-to-noise ratio
(Fig. 28, right). Since the SPA and the background spectrum show the same resonance, the maxima
vs frequency cancel each other like in the case of a periodically driven noisy harmonic oscillator, for
which the same behavior in the SNR is observed [314]. Remarkably, due to the nonlinearity of the
excitable system a weak nonmonotonous behavior is nevertheless found at high frequencies, which
results from the di�erent dependence of ampli8cation and background spectrum in this parameter
region. Note, however, that the response in this region is quite weak compared to the adiabatic
(/ → 0) case.

3.3.2. Stochastic resonance in the leaky integrate-and-Cre model
Like in the FN model, a periodic signal s(t) may induce periodic 8ring in the LIF model if the

signal amplitude is su=ciently strong. This is plausible for a slow signal the amplitude of which is
larger than |� − vT |: at positive signal phase the e�ective resting level is above threshold and the
threshold is therefore reached in a 8nite time; at negative signal phase the e�ective resting level is
even smaller than in the absence of a signal, and hence spikes are unlikely to occur.

In the following we focus on the case of weak signals that can evoke 8rings only by the assistance
of noise. Intuitively it is evident, that the correlation between spike train and input signal is 8nite
only at a Cnite noise level—again stochastic resonance can be observed in this model.

The e�ect of stochastic double resonance can be also found in the leaky integrate-and-8re neuron
by means of analytical results [112]. Including a weak periodic forcing in the LIF model, the
dynamics reads

v̇ = −v + � + � cos(/t) +
√

2D(t) : (49)

The mean value of the output (i.e. the instantaneous 8ring rate) depends now explicitly on time
due to the presence of the signal, according to Eq. (22). The response amplitude � (recall that the
output 8ring rate is periodically modulated with the amplitude j�) can be calculated by means of
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linear response theory [112,244]
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)
Di/

(
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)
− e&ei/�Di/

(
�−vR√

D

) :

Given the signal dependent part of the mean output, we can readily calculate the spectral ampli8cation
and the signal-to-noise ratio by means of Eqs. (24) and (25), where the background spectrum is
given (in linear response) by the spectrum in the absence of the periodic signal [Eq. (37)].

Spectral ampli8cation and SNR for the LIF neuron are shown in Fig. 29. Again, a nonmonotonous
dependence on frequency and noise strength can be found in the spectral ampli8cation, but not in
the signal-to-noise ratio. The overall maximum appears again within the region where coherence
resonance is most pronounced, providing evidence that—like in the FN model—the e�ect is due to
a classic resonance with the noise-induced eigenfrequency (see also Ref. [244]).

The nonmonotonous dependence on the driving frequency may have some functional relevance in
real neurons, as proposed by Plesser and Geisel [113]. The transfer characteristics demonstrated in
the stochastic neuron models indicates that a neuron may operate as a bandpass 8lter for subthresh-
old signals. Most notably, both the stochastic resonance feature and the resonance with respect to
frequency are purely noise-induced e�ects, and provide in this way a possible explanation for the
high degree of “variability” (or simply, noise) observed in real neuronal systems.

Finally we would like to mention some 8ndings by Brunel and coworkers [243], who studied the
LIF response to periodic stimulation in the presence of a colored noise, instead of the white noise
considered above. A colored noise like the Ornstein–Uhlenbeck process is a more realistic model of
the actual input to the point neuron, since the typical input (a superposition of many random spike
trains) is low pass 8ltered by the synaptic dynamics. Brunel et al. [243] found that at moderate
correlation time of the noise the LIF shows a 8nite high-frequency transmission (HFT), i.e. for a
colored noise the response amplitude � saturates at a 8nite level. In cases where the driving noise is
too close to the white noise limit (e.g. for input transmitted through fast GABAA synapses), another
possibility to realize a 8nite HFT is a noise coded signal, as we will show in the next subsection.

3.3.3. Stochastic resonance for a noise-coded signal in the leaky integrate-and-Cre model
In the introduction of the LIF model (Section 2.4) we have seen that there is evidence for the

presence of a noise-coded signal that modulates the intensity of the input Ructuations. If both additive
and noise-coded signals are present, the LIF dynamics is given by Eq. (8), which we rewrite here



B. Lindner et al. / Physics Reports 392 (2004) 321–424 361

10-3 10-2 10-1

D
10-1  100  

101 
102  

Ω

2*104

4*104

η
β

10-3 10-2 10-1

D
10-1

100
101

102

Ω

106

2*106

S
N

R
β
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again for the sake of convenience:

v̇ = −v + � + �� cos(/t) +
√

2[D + �� cos(/t)](t) : (50)

We recall that the noise intensity contains contributions from the neuronal background and from the
input population of neurons, which also generate signals. This setup raises the question of whether
the transmission of a noise-coded signal (i.e. �� cos(/t)) can be enhanced by increasing the constant
noise intensity D through an increase of the background noise intensity.

For a system with two input signals, the linear response of the 8ring rate is

〈�(t)〉 = r(t) = r0 + ��|�| cos(/t − "�) + ��|�| cos(/t − "�) (51)

which leads to the following spectral response

S(/) = Sbg(/) +
#
2

(�2
�|�|2 + �2

�|�|2 + 2����|�‖�| cos("� − "�))

× [�(!− /) + �(! + /)] : (52)

The function � was already given in Eq. (50), while � is given by [112]

� =
r0i/(i/ − 1)
D(2 − i/)

Di/−2

(
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D

)
− e&Di/−2

(
�−vR√

D
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Di/

(
�−vT√

D

)
− e&ei/�Di/

(
�−vR√

D

) ; (53)

& =
v2
R − v2

T + 2�(vT − vR)
4D

:

Note that the prefactor of the � functions now also depends on the di�erence of the phase shifts
that are given by the complex phases of � and �

"� = arg(�); "� = arg(�) : (54)

Let us 8rst consider the response to a purely noise-coded signal (��=0) and compare it to the response
to an additive signal, which was the subject of the previous section. If only the noise-coded signal
is present, the spectral power ampli8cation and signal-to-noise ratio of this signal are given by 4

0� = |�|2; SNR� = |�|2=Sbg (55)

in exact analogy to the additive case.
Both functions are shown in Fig. 30 for a subthreshold driving in the noise-induced 8ring regime,

but close to the bifurcation point (� = 0:95). A number of interesting features arise. First of all,

4 Here we consider �� cos(/t) as the input signal and not the product of the noise and the periodic signal.
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stochastic resonance can be also observed with respect to a noise-coded signal. Both SPA and SNR
are nonmonotonous functions of the noise intensity, and show clear peaks for any driving frequency,
although at di�erent noise levels. The reason for this kind of stochastic resonance is similar to
the additive case: at small noise intensity D, spikes occur very rarely (the neuron operates in the
subthreshold 8ring regime and does not 8re at all without noise), and modulation of the small spike
rate will be weak as well. At moderate noise, the spike rate is larger and also its modulation becomes
noticeable. In the strong noise limit, the weak modulation of the input noise has no e�ect anymore,
therefore the output power and the SNR drop again.

The second feature we encounter is that the LIF neuron driven by a noise-coded signal shows
stochastic double resonance, i.e. the global maximum of the SPA is at 8nite noise intensity as well
as at 8nite driving frequency. The nonmonotonous dependence on the driving frequency is again due
to an ordinary resonance with the noise-induced eigenfrequency, which is itself due to coherence
resonance. As a consequence, the SNR (which is the ratio of SPA to the background spectrum)
does not show the resonance, since the resonances seen in SPA and background spectrum cancel
each other. Hence, an LIF neuron can act as a bandpass 8lter not only for subthreshold additive
signals, but also for noise-coded signals.

The third remarkable characteristic of Fig. 30 is a 8nite high-frequency transmission (HFT), i.e.
neither SPA nor SNR drop in the limit / → ∞, but both reach 8nite limiting curves given by

0�(/ → ∞) ≈ r2
0

D2 ; SNR�(/ → ∞) ≈ r0

D2 : (56)

These functions, which only involve the stationary 8ring rate of a white-noise driven LIF neuron
[inverse of the mean ISI given in Eq. (35)] exhibit the SR e�ect, too. As pointed out in Ref. [112]
HFT of noise-coded signals is associated with a fast signal transmission of transient noise-coded
signals (the latter e�ect has been 8rst discussed in Ref. [315]). Physical limitations for the transmis-
sion of very high frequencies exist, though: (1) the 8re-and-reset condition in the LIF model is only
an approximation that replaces the action of certain fast variables in more realistic neuron models;
(2) in order to extract a fast signal, population averaging of the spike rate requires an increasing
number of neurons if we go to higher and higher frequencies. Estimates of an upper bound of the
frequency can be made [244] revealing that the frequency range of noise-coded signals may be two
orders of magnitude higher than that of additive signals. Thus, white Gaussian noise can act as an
e=cient signal carrier in the LIF model.

Finally, we take a look at the response of the LIF when both kinds of stimuli are present. Here
we restrict ourselves to the total output power, i.e. the integral over the � function in Eq. (52), and
show the dependence on driving frequency only. We have tuned the input amplitudes �� and �� in
such a way that both signals yield comparable single responses. Two important observations can be
made: (1) the result for the presence of both signals (nicely con8rmed by computer simulations) is
signi8cantly larger than the mere sum of the single responses (this sum is shown by a thick line);
(2) for the chosen value of the base current (� = 0:8) the nonmonotonous frequency dependence of
the single responses is weak, whereas the resonance for the full response is much more pronounced.
Both 8ndings can be understood by the phase shifts that enter Eq. (52). The di�erence between the
phase shifts is never larger than #, and furthermore contributes its own dependence on the driving
frequency (see Ref. [244] for further details) (Fig. 31).
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Fig. 31. Output signal intensity in presence of additive and noise-coded signal versus driving frequency for
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solid line] compared to results of a numerical simulation (error bars) with N = 200; T = 2000; Yt = 10−5–10−2. Addi-
tionally shown are the individual responses to either only the noise-coded (dot-dashed line) or only the additive signal
(dashed line). The thick line indicates the sum of the single responses.

4. Coherence and stochastic resonance in applications

As mentioned previously, coherence resonance can be found in many theoretical models and has
been veri8ed in many di�erent experimental situations. Here we consider in detail two applications
of stochastic excitable dynamics, the 8rst one in cell biology and the second one in laser physics.

4.1. Clusters of stochastic calcium channels

Calcium plays an important role as an intra- and inter-cellular messenger in all types of cells and
tissues. The release of free intracellular calcium concentration from calcium stores, e.g. the endo-
plasmatic reticulum (ER), is gated by ion channels. In several types of tissues, e.g. neuronal tissue
and smooth muscles, these channels belong to the family of inositol-(1,4,5)-triphosphate receptor
(IP3R) channels. For models of channel dynamics see, for example, Refs. [316,317].

In the following we show that a channel clusters are governed by excitable dynamics. The role
of the activator is played by the intracellular calcium concentration, which we assume globally
distributed through the cluster. As a second time-dependent variable we identify the concentration
of open channels in the cluster. Stochasticity comes into play if we consider a 8nite number of
channels in the cluster [318]. Such a population of ion channels creates a common noise [319].
In the case of small number of channels, the stochasticity of their opening and closing events
becomes dominant, whereas for large channel numbers this inRuence shrinks. Hence, a certain 8nite
number of channels inducing a optimal common level of noise might be the origin of stochastic
oscillations in this excitable system [319]. The situation can be interpreted as a case of 8nite system
coherence resonance [320–322]. Finite-size e�ects in channel dynamics were also considered in Refs.
[73,74,126,67,323]. We also note that wave propagation [324–327] and nucleation [328,329] in those
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stochastic systems (with local coupling and taking into account the distribution of clusters across
the membrane [330]) has attracted much attention.

We now aim to calculate analytically the power spectrum of the dynamics following ideas outlined
in the previous Section [75]. The results will reveal collective stochastic calcium oscillations of
clustered IP3 release channels which were 8rst obtained in Ref. [319] by numerical analysis and
have been con8rmed in Ref. [75] by means of analytic approximations.

One single channel is composed of four homolog subunits, each of which is activated by IP3

and shows a bell-shaped activation dependence on the calcium concentration [331]. Thus, calcium
induces and limits its own release. De Young et al. [332] incorporated this into an eight-state model
with three di�erent receptors, assuming that the subunit is activated if the 8rst two receptors are
occupied by calcium and IP3, but the third one is unoccupied. Later, a reduced two-state system
was developed by Li and Rinzel, in which only the dynamics of the third slow receptor was made
explicit [333,334].

We now apply the Li–Rinzel model to a single cluster of N subunits, i.e. N=4 channels. The channel
interaction is assumed to be instantaneous via the spatially homogeneous calcium concentration
c = [Ca2+], which is assumed to be realized by fast intracellular calcium di�usion. One channel is
open if at least three out of four subunits are in the activated state [335],

Popen = x4 + 4x3(1 − x); x =
pc(1 − y)

(p + K1)(c + K5)
; (57)

where y is the probability of the subunit being calcium-inactive, and p = [IP3] is the concentration
of the ligand IP3.

If M of the N subunits are in the inactive state, a master equation for the dynamics of inactivation
can be formulated:

9P(M; t)
9t =−((N −M)K+ + MK−)P(M; t) + (N −M + 1)K+P(M − 1; t)

+ (M + 1)K−P(M + 1; t) : (58)

Therein the rate of inactivation K+(c) depends on the calcium concentration, since an additional
calcium atom has to attach to the empty receptor. The activation process, K−, for releasing an
calcium atom is independent of c. Speci8cally, the rates are

K+(c) =
2c(K1k1k4 + k2k4c + k1k2p)
c(k2 + k4) + 2k1(K1 + p)

;

K− =
2(k−3k−4 + k−2(k−4 + k3p))
k−2 + k−4 + 2k3(K3 + p)

: (59)

Eq. (58) can be expanded for N�1 to give a Fokker–Planck equation, which is in turn equivalent
to the following Langevin equation (with y = M=N ) [319,336]:

ẏ = (1 − y)K+ − yK− +

√
(1 − y)K+ + yK−

N
(t) ; (60)

where (t) is a zero-mean, Gaussian white noise, with correlation 〈(t)(t + �)〉= �(�). Its intensity
scales inversely proportional to the channel number in the cluster (comp. also [126] for sodium and
potassium channels).
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The intracellular calcium concentration is determined by [324,337]

ċ = (r1Popen + r2)(cER − c) − r3
c2

c2 + K2
p

; (61)

where cER = (C0 − c)=�. The 8rst term of this equation models the gradient-dependent inRux
(Ca2+ source), while the second term represents the activity of the SERCA-pump (Ca2+ sink) that
re-establishes this gradient; r1; r2 and r3 are channel, leak and pump Ruxes, respectively, cER is the
ER calcium concentration, � is the ratio of ER volume to cell volume and C0 is a constant, repre-
senting a local condition for a 8xed amount of total cell calcium; our numeric standard parameters,
including the dissociation constants Ki = k−i=ki, are given in [338]. Most of them are taken from
[332,324], some were adopted to new measurements [339], and some were slightly changed by us
in order to investigate other regimes.

With the aim of 8nding an analytic description, we have carried out further simpli8cations of the
model described above [75]: (i) perfect time scale separation, (ii) linear nullcline approximation,
and (iii) replacement of phase-state dependent noise by additive noise, whose level is taken in the
8xed point (cs; ys)=(0:076 �M; 0:0802). This de8nes a two-state process switching between low and
high intracellular calcium concentration. Shuai et al. [319] numerically described this process and
computed its spectrum. We used the results of the piecewise linear FN model to 8nd an analytic
description [75].

The spectrum for the linearized system shows the same properties as Fig. 17. Additionally, the
second harmonics of the peak are present. There exists an intermediate noise level for which the
degree of coherence, Eq. (18), reaches a maximum value, for the corresponding number of channels
calcium signalling can be considered most regular (Fig. 33).

To prove the validity of our simpli8cation, we performed stochastic simulations of the Li–Rinzel
model. Each of the four channel subunits was treated according to that model, i.e. the process
y(t) = 0 or 1: to decide for a transition between these two states, a uniformly distributed random
number -∈ [0; 1] is drawn and, if - dt ¡K± the subunit makes the corresponding transition. For
noninhibited subunits, the probability of being in the open-state is given by Eq. (57), and the open
state is set if -′ ¡x, where -′ is another uniform random number. A channel opens if three or
four subunits are in the open-state, and the fraction of open channels N open=N substitutes Popen

in Eq. (61).
The evolution of c(t) was sampled with dt = 0:01 s for a time T = 2621:44 s, and the time

series was then zero-averaged and fast-Fourier transformed (with 218 points). In order to obtain a
smooth power spectrum we averaged over 300 runs. Results are displayed in Fig. 32 (left). For a
single channel (maximal noise level) the spectrum shows no peak but monotonously falls o� for
increasing frequencies. If the number of channels is increased, i.e. the system noise reduced, a peak
emerges, reaches a maximum value and later starts to disappear again for very large clusters. Thus,
the simulations show the same qualitative behavior as the reduced model shown on Fig. 32 (right).
We note that the approximation given by the Langevin Eq. (60) is limited to a large numbers of
channels. Therefore, results for N = 1 are beyond the validity of the theory.

To answer the key question—what is the optimal channel number per cluster with respect to
signalling periodicity—we calculated the degree of coherence of the stochastic oscillations from
Eq. (18) with a= 2. The comparison of analytic and stochastic calculation is given in Fig. 32 (left)
and shows excellent agreement.
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Fig. 33. Degree of coherence of the calcium dynamics with respect to the number of subunits in a cluster of calcium
channels, stochastic simulation (circles) compared with analytic results (line) [75].

In [330] Shuai and Jung underline that their stochastic approach “predicts optimal signalling
cellular capability at cluster sizes and distances that agree with experimentally found values in
Xenophus oocyte [340–342]”. In the analytic approximation we found a range of 20–750 channels
per cluster optimal for signaling periodicity. The lower bound agrees with the experimental 8ndings
of about 20–50 release channels [330].

4.2. Excitable laser systems

Ever since their initial development in the 1960s, laser systems have exhibited dynamical behavior
[8]. By way of example, a bistable laser o�ered one of the earliest and most inRuential experimental
observations of stochastic resonance [343]. In recent years, several types of optical systems have pro-
vided clear examples of excitable behavior, among which one can 8nd lasers with saturable absorber
[344,345], passive nonlinear ring cavities [346], and lasers with injected signal [347]. Following these
studies, coherence resonance was predicted theoretically in a laser with saturable absorber [70].
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Fig. 35. Time evolution of the intensity (a) and the corresponding phase change of the electric 8eld during the external
round-trip (b) as computed numerically for a semiconductor laser with optical feedback [71]. The model used for this
numerical simulation is the Lang–Kobayashi model, described below.

4.2.1. Excitable behavior in semiconductor lasers with optical feedback
Fig. 34 shows the typical experimental setup of a semiconductor laser with optical feedback, where

the 8rst experimental observation of optical coherence resonance was made [153,155,156]. Part of
the light emitted by the laser, which is pumped by an electrical current, is fed back into it after
reRection on an external mirror. For moderate feedback strengths and pumping current close to the
emission threshold, the laser goes through a dynamical state where constant emission is interrupted
at irregular times by sudden dropouts in power. A numerically computed time trace of the light
intensity emitted by the laser in this regime is displayed in Fig. 35(a). This time series has been
low-pass 8ltered (with a cut-o� frequency of 100 MHz) in order to mimic the bandwidth-limited
operation of photodetectors. Therefore, it only represents the envelope of a much faster dynamics
consisting of short pulses with widths on the order of picoseconds [348]. Each power dropout, on
other hand, corresponds to a sudden increase in the phase accumulated by the electric 8eld as it
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travels towards the external mirror and back, as shown in Fig. 35(b). This time series allows for
a much easier detection of the dropout occurrence times than if the intensity time series is used
(which should be 8ltered 8rst).

A vast literature exists devoted to analyze the mechanism of the self-pulsed behavior described
above (see for instance Ref. [349] and references therein). In particular, the system depicted in
Fig. 34 has been shown, both experimentally [350] and numerically [351], to have excitable prop-
erties: when the constant pumping current of the laser is perturbed with electrical pulses over a
threshold value, dropouts can be generated whose shape is basically independent of the perturba-
tion. For larger pumping rates (but still close to the laser threshold) the intensity dropouts appear
spontaneously, as described above. In the excitable regime, experiments have shown that when noise
is added to the driving current of the laser, the regularity of the dropout series initially increases
with growing Ructuations, and reaches a maximum for an optimal amount of noise [153], which
constitutes a clear example of coherence resonance in an optical system. We now show that this
situation can be modeled by means of a rate equation system including a delay term. The model used
is the well-known Lang–Kobayashi (LK) model [349], which is generalized to take into account the
addition of external noise into the system through the laser’s pumping current.

4.2.2. Modeling the dynamics of semiconductor lasers with feedback
The LK model describes the temporal evolution of the slowly varying complex envelope of the

electric 8eld E(t) inside the laser, and of the excess carrier number N (t). It considers only one
longitudinal mode of the solitary laser, and one single reRection from the external feedback mirror
(i.e. multiple reRections are neglected, which is valid for not too large reRectivity). In dimensionless
form the model reads [71]:

dE
dt

=
1 + i�

2
(G(E; N ) − �)E(t) + =e−i!�fE(t − �f) +

√
2�N>(t) ;

dN
dt

= �e{C[1 + (t)]Nth − N (t)} − G(E; N )|E(t)|2 ; (62)

where � and �e are the inverse lifetimes of photons and carriers, respectively, C is the pumping
rate (directly related to the driving current; C = 1 is the solitary-laser threshold), � is the line
width enhancement factor (which couples amplitude and phase of the electric 8eld, and is a rele-
vant quantity in semiconductor lasers), and ! is the solitary-laser frequency. The last term in the
electric-8eld equation represents spontaneous emission Ructuations, where >(t) is a Gaussian white
noise of zero mean and correlation 〈>(t)>(t′)〉=�(t− t′), and � measures the internal noise strength.
The material-gain function G(E; N ) is given by

G(E; N ) =
g(N (t) − N0)
1 + s|E(t)|2 ; (63)

where g is the di�erential gain coe=cient, s the saturation coe=cient, and N0 is the carrier number
at transparency. The threshold carrier number is Nth = �=g + N0. The optical feedback is described
by two parameters: the feedback strength = and the external round-trip time �f. Finally, the external
noise is represented by the term (t), which cannot be considered to be white. That impossibility
is due to the fast time scales in which this system evolves (∼ tens of ps, as mentioned above),
smaller than or on the order of the characteristic time scales of the fastest random Ructuations that
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Fig. 36. Left: temporal behavior of the phase di�erence 0 for increasing noise amplitudes: (a) � = 7:36 × 10−2,
(b) � = 9:35 × 10−2, and (c) � = 1:60 × 10−1. The parameters used are: C = 1:01, �c = 24 ps, �e = 6 × 10−4 ps−1,
� = 0:158 ps−1, g = 2:79 × 10−9 ps−1, s = 3 × 10−7, � = 3:5, N0 = 1:51 × 108, � = 5 × 10−10 ps−1, = = 0:025 ps−1,
�f = 2:4 ns, !�f = 2, and D = 0 [71].

can be experimentally introduced in the pumping current of the laser, and which are restricted by
limitations of the electronics involved (∼ GHz). This is the situation in the experiment reported in
[153]. Following this reasoning, we assume that the external noise has a non-delta correlation in
time. In particular, we consider an Ornstein–Uhlenbeck noise, Gaussian distributed with zero mean
and correlation

〈(t)(t′)〉 =
D
�c

e−|t−t′|=�c : (64)

This external noise is characterized by two parameters, its intensity D and its correlation time �c.
The variance of the noise is given by D=�c, and hence we measure its amplitude as � =

√
D=�c.

4.2.3. Optical coherence resonance
Let us now examine the e�ect of the external noise (t) on the system dynamics. Fig. 36 shows

three time traces of the phase di�erence 0(t) = "(t) − "(t − �f) (with E(t) =
√
I exp(i")) for in-

creasing amplitudes of the external noise, keeping its correlation time constant. In this case, the
semiconductor laser is biased at 1% above the solitary-laser threshold, a situation for which the sys-
tem is stable in the absence of external noise. A small amount of noise produces infrequent dropouts
(Fig. 36(a)), which become more numerous and regular as the noise amplitude increases (Fig. 36(b)).
For large noise strengths the pulses become increasingly irregular, both in separation and in amplitude
(Fig. 36(c)). Hence, an optimal amplitude of the external noise exists for which the coherence of
the pulsed output of the laser is optimal. In order to quantitatively characterize this e�ect, one can
analyze the statistical properties of the normalized dropout separation @ = T=〈T 〉 and normalized
dropout amplitude � = A=〈A〉, where T is the time interval between two consecutive dropouts, and
A is the peak value of the phase di�erence 0(t) at a dropout, measured with respect to its minimum
value between dropouts. In order to take into account both the dropout separation and amplitude
simultaneously in the determination of the signals regularity, it is useful to de8ne a joint entropy
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Fig. 37. Joint entropy H (@; �) as a function of the external noise amplitude. Parameters as in Fig. 36 [71].

H (@; �) of the two quantities, where H =−∑ P log P, with P the joint probability density of the two
random variables. For the case of two Gaussian independent random variables the following relation
holds [153]: exp(H (@; �))=2#eR@R�, where R@ and R� are the standard deviations of the normalized
dropout separation and amplitude, respectively. Assuming that this result is approximately valid in
the present case, we plot this joint entropy in Fig. 37(d), which shows a maximum regularity of the
dropout series for an optimal noise amplitude.

This resonant e�ect can be understood in the light of the deterministic mechanism behind the
power dropouts, which is well characterized in the framework of the LK model. This model exhibits
multiple coexisting 8xed points, which appear in pairs of solutions called modes and antimodes. The
antimodes are saddle points, and most of the modes are also unstable due to a Hopf bifurcation [352].
However, sometimes one of the modes (the one with maximum power) is stable. In this complex
phase-space landscape, a large enough Ructuation may be able to take the system away from the
basin of attraction of the stable 8xed point and, upon collision with a neighboring antimode, produce
a sudden increase in the phase di�erence (see Fig. 35(b)) which corresponds to a power dropout.
The corresponding escape time, also called activation time ta, is a random variable whose average
decreases with the intensity of the external noise according to Kramers’ law [353]. Following the
dropout, a build-up process begins in which the system undergoes a chaotic itinerancy around the
Hopf-unstable modes, jumping consecutively from one to the next while being drifted back towards
the stable maximum-gain mode [354]. For small intensities of the external noise, the excursion time
te required by this process is basically independent of noise, and has the role of a refractory time
during which no dropouts can be induced. As noise intensity increases the escape events become
more frequent, reducing the standard deviation of the interspike intervals accordingly. A minimum
of variability occurs for an optimal amount of noise when the dropout separation is of the order of
te. Beyond that point, noise intensity is large enough to produce escapes before the build-up process
is 8nished (i.e. before the stable mode is reached), which leads to an irregular dynamics.

The value of the correlation time of the noise used in the previous results (�c = 24 ps) is of
the order of the fast time scale of the deterministic dynamics. In fact, as the white-noise limit is
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Fig. 38. Temporal behavior of the phase di�erence 0 for increasing noise correlation time: (a) �c=15:8 ps, (b) �c=57:6 ps,
and (c) �c = 153:2 ps. Noise amplitude has been taken constant, � = 0:079, and other parameters are those of Fig. 36.

approached the amount of noise necessary to obtain similar e�ects climbs up to unreasonably high
values. The reason is that the carrier dynamics acts as a frequency 8lter for the external noise [see
equation for N (t) in Eqs. (62)], which also prevents the system from responding to high-frequency
modulations of the pump current. Therefore, most of the power of a white noise has no e�ect upon
the system dynamics, and the noise intensity needs to be very large in order to have a noticeable
inRuence. In the opposite frequency limit a similar situation occurs: for low-frequency forcing the
carrier dynamics has enough time to follow the modulation, and the system responds simply with a
modulated output. Only for intermediate frequencies will the external forcing be able to inRuence the
dropout statistics and enhance the coherent response of the system. In order to verify this conjecture,
we now 8x the amplitude � =

√
D=�c of the external noise and analyze the behavior of the system

for an increasing correlation time of the Ornstein–Uhlenbeck noise. The result is shown in Fig. 38
(a–c) for three di�erent values of �c. It can be seen that the regularity of the pulsed time series
is maximal for intermediate values of the noise correlation time. This resonant e�ect is quanti8ed
by means of the joint entropy H (@; �) de8ned above, as plotted in Fig. 39(d). This behavior can
be interpreted as a resonance with the fast deterministic dynamics of the system, and has not been
observed so far experimentally. A similar resonance has been observed experimentally in a chemical
excitable medium [196].

4.2.4. Stochastic resonance in an excitable laser system
We have seen that external noise in the pumping current is able to enhance the regularity of the

dropout time series emitted by the laser, extracting an internal time scale de8ned by the characteristic
excursion time mentioned above. But noise in this experimental setup can also enhance the response
of the laser to an external harmonic driving, in a sort of stochastic resonant e�ect. In order to show
this e�ect, we now include in Eq. (62) a pumping current of the form C(t)=C0[1+(t)+A sin(/t)],
where C0 is the bias pumping rate, (t) represents again the external Ornstein–Uhlenbeck noise and
the harmonic driving has amplitude A and frequency /. In Fig. 40 we show the numerically computed
intensity and phase di�erence time traces, and the corresponding probability distribution functions
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Fig. 39. Joint entropy H (@; �) as a function of the noise correlation time [71]. Parameters are those of Fig. 38.
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Fig. 40. Time evolution of the laser intensity (left column, upper plots), the phase di�erence 0(t) (left column, lower
plots) and the corresponding PDFs of the dropout periods (rights column) for increasing values of the external-noise
strength: (a) D = 0:0 ps, (b) D = 0:25 ps, and (c) D = 0:80 ps [355].

(PDFs) of the interval between dropouts, for three di�erent values of the noise amplitude �=
√

D=�c
and a 8xed correlation time of �c = 240 ps. The modulation amplitude is set to 3% of the threshold
current and its period to T = 70 ns. In the absence of noise (Fig. 40(a)), and with these parameters,
the PDF presents two peaks at periods around T and 2T . When noise intensity is increased to
intermediate values, such as D = 0:25 ps, the PDF exhibits just one peak centered at around T
(Fig. 40(b)). Finally, when noise intensity is increased further the system loses regularity, and
dropouts occur much closer to one another, and hence clear dropouts become di=cult to discern
(Fig. 40(c)).
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Fig. 41. Mean and relative standard deviation of the dropout intervals versus noise intensity [355].

The enhanced regularity for increasing noise can be characterized by computing the mean value
and standard deviation of the dropout intervals. The dependence of these two quantities on the noise
intensity is shown in Fig. 41, which shows clearly that the regularity of the time series is maximal
for an intermediate value of noise. For this optimal situation the mean dropout interval coincides
with the period of the external driving. As in the case where the external modulation is absent, the
resonance also exists with respect to the noise correlation time [355].

5. Noise-induced global oscillations in stochastic cellular automata

We now shift our attention towards the dynamics of coupled excitable elements under the inRuence
of spatio-temporal random Ructuations. Starting from the pioneering work of Winfree [356] and
Kuramoto [357,358] on coupled phase oscillators, numerous studies have focused on systems where
the dynamics of the single units is deterministic. It is still one of the current topics in complex
systems research [3,359].

In the next two sections, we examine collective behavior and synchronization in the presence of
noise [360–374], whereas Section 7 deals with spatio-temporal structures induced by noise in locally
coupled excitable media. We review computer simulations and then give analytical treatments using
coupled cellular automata and stochastic active rotators as models.

5.1. Global oscillations in excitable cellular automata

5.1.1. Cellular automata for excitable media
A simple way to describe the dynamics of spatially extended excitable media relies on the cellular

automata models [3,375]. This kind of description consists of a set of rules which determine the
activation state at a given location in space at a certain time, as a function of the state of the system
at that point and neighboring ones in the past. As usual, a few discrete values ui;k de8ne the state of
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a location i; k in cellular automata, in the simplest case ui;k = 0; 1 standing for “rest” and “excited”
in the case of excitable media.

Cellular automata are routinely used, for instance, in neuroscience, where they provide a simple
but approximative description of cortical tissue [376,377]. Stochastic generalizations are straightfor-
ward, with deterministic updates being replaced by stochastic rules. In the context of noise-induced
phenomena, a stochastic cellular automaton was proposed by Jung and Mayer–Kress [378] to study
the behavior of an array of stochastic threshold devices with excitable properties. It led to the 8rst
evidence of spatio-temporal stochastic resonance and noise-induced spiral waves in excitable media
[130,378].

Jung and Mayer-Kress’ model does not take into account inhibitor dynamics. For that reason, it is
unable to exhibit stationary structures such as spots and Turing patterns, like the ones appearing in
activator–inhibitor models where the inhibitor di�uses faster than the activator [3]. Stochastic cellular
automata that explicitly describe the dynamics of the two species and their di�usion display that
type of structures [379], and can also exhibit synchronized global oscillations. This global dynamics
can exist even when the system is in the subexcitable regime, provided parametric noise is present
[143]. In what follows we will review these results.

Consider a cellular automaton [379,380] described by two dynamic variables, uik and vik , which
are de8ned in a two-dimensional square lattice with N ×N sites (i; k = 1 : : : N ). The variable uik can
only take the values 0 or 1, and represents the state of the activator at a given cell: 1 stands for
the excited state, and 0 for the rest state. The second variable, vik , represents the concentration of
particles that inhibit the state uik . The activator obeys the following threshold dynamics:

uik(t + Yt) = H (〈u(t)〉ik − aik) ; (65)

where H is the Heavyside step-function, which is equal to 1 when 〈u(t)〉ik ¿aik and 0 otherwise.
The local spatial average 〈u(t)〉ik is de8ned by 〈u(t)〉ik =

∑
i′k′ ui′k′(t)K(i′; k ′; i; k), where the sum runs

over all lattice sites, and the function K(i′; k ′; i; k) is a normalized Gaussian kernel that depends only
on the Euclidean distance between the sites (i; k) and (i′; k ′), and whose width gives the characteristic
di�usion length Lu of the activator. The corresponding relaxation time �u, on the other hand, is given
by the update time of rule (65), �u = Yt.

The parameter aik represents the local excitation threshold of the system. This threshold is
assumed to increase with inhibitor concentration and to be subject to spatio-temporal Ructuations,
according to

aik = a0 + �vik(t) + �ik(t) ; (66)

where a0 is a constant baseline threshold, � represents coupling with the inhibitor. � is the stan-
dard deviation of the noise, which obeys a Gaussian distribution and is uncorrelated both in space
and time.

According to the rule 65, a cell becomes excited if the corresponding local density is overcritical
at the previous time instant. Given the de8nition of the threshold parameter aik given above, vik
plays the role of an inhibitory 8eld, which is described by a number of inhibitory particles whose
dynamics is given by a set of birth-death rules, that update the value of vik every time step Yt.
The birth process is deterministic: in all excited sites the number of inhibitory particles increases by
a constant amount �b2Yt, where � is a generation rate per unit area, and b is the lattice spacing.
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Fig. 42. Spatio-temporal evolution of a cellular automaton with Ructuating excitation threshold in four di�erent regimes
(one per row, time Rows from left to right). Noise intensity is, from top to bottom, �=1:6×10−2; 4:7×10−2; 5:7×10−2,
and 6:3 × 10−2. A black dot denotes that the corresponding site is excited (uik = 1), and the gray level corresponds to
inhibitor concentration (darker for higher concentrations). The time interval between consecutive snapshots di�ers in
general. Other parameters of the model are N = 128; Yt = 1; a0 = 0:14; ��v = 190 and � = 4:2× 10−3. The values of the
relaxation time and di�usion coe=cient ratios (j ≡ �u=�v = 0:25 and � ≡ Du=Dv = 0:5, where Ds = L2

s =�s) correspond to a
subexcitable situation. Periodic boundary conditions are considered [143].

The death process, on the other hand, follows a probabilistic rule: at every update, a particle decays
with constant probability Yt=�v, where �v is the decay time of v.

Spatial coupling of v is represented by random walks of the inhibitory particles through the lattice,
whose characteristic length gives the di�usion length Lv of the inhibitor.

5.1.2. Noise supported spatio-temporal structures
Let us examine the inRuence of noise in the subexcitable regime of this cellular automaton model.

This regime is de8ned as that in which no initial excited structure can survive deterministically. The
typical evolution of a localized initial condition is shown in Fig. 42 for increasing values of the
noise level �, with di�erent rows corresponding to di�erent values of the noise intensity and time
evolves from left to right.

For very small noise intensities (upper row) all initial perturbations decay and the system reaches
a steady rest state where all cells are inactive. However, as soon as the noise intensity is increased
slightly (second row from above) the excitation is seen to survive, since new spots are nucleated
in the remains of the original ring before it decays. Increasing noise intensity further spontaneous
nucleation occurs, as shown in the third row from above of Fig. 42. Finally, for large enough noise
levels (larger than �3 ≈ 6:0×10−2 in this case; bottom row of Fig. 42), nucleation processes become
ubiquitous and tend to occur in a synchronized way in the di�erent locations of the lattice.
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Fig. 43. Amplitude and frequency of the oscillating global (diamonds and crosses) and local (squares) signal as a function
of the noise level �. Diamonds and squares: �u=�v = 0:25, crosses: Du=Dv = 0:12 [143].

Such global oscillations arise even though the deterministic regime is subexcitable. Hence, noise
induces the medium to become oscillatory. We note at this point that in order to have this e�ect,
Ructuations must act independently in the di�erent sites of the lattice (spatially uncorrelated noise).
A global noise, a�ecting in an identical way all lattice cells every time instant, is not able to sustain
structures in this system (in fact, spatial correlation is able to change the e�ect of noise [141,381]).

5.1.3. Power spectrum analysis of the global oscillations
We now concentrate on the synchronized regime depicted in the bottom row of Fig. 42. The

dependence of the oscillatory properties of the system versus the noise amplitude � is shown in
Fig. 43, which represents the height and the position of the power spectrum peak of the global
signal U (t) =

∑
ik uik(t)=N 2.

The spectral peak height, which measures the amplitude of the oscillations, exhibits a maximum
for a certain optimal noise, corresponding to synchronization of the 8ring events among elements of
the system. Larger noise destroys synchronization.

On the other hand, the position of the spectral peak measures the fundamental frequency of
oscillations (right plot of Fig. 43), and increases monotonously with noise strength, reaching a
saturation level that decreases with the inhibitors decay time �v (compare diamonds and crosses in
the right plot of Fig. 43).

Fig. 43 also shows peak height and position for the power spectrum of the local signal uik(t)
(squares), which coincide with those of the global output discussed above. This means that due to
synchronization the local and global 8elds oscillate with the same well-de8ned frequency.

It should also be noted that the previous results do not depend on the ability of the inhibitor to
di�use: they hold even in the limit case Lv = 0 but with nonvanishing refractory time [382]. This
fact indicates that it is the local dynamics of the inhibitor, and the associated dynamical refractory
time of the system, which gives rise to the global oscillations reported above.

5.2. Analytical treatment of coupled excitable units

5.2.1. Discrete model of excitability
A simple prototype that mimics general features of excitability can be introduced by the three-state

non-Markovian model [385,383,384] shown in Fig. 44. Therein a unit is characterized by three
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Fig. 44. Three-state model of an excitable unit. The process 1 → 2 is Markovian, while the transitions 2 → 3 and 3 → 1
are deterministic with a 8xed waiting time.

di�erent states: state 1 stands for the rest position, from which it escapes by noise to the excited
state 2, after which the system performs a longer excursion via state 3 and 8nally returns to state 1.

The escape 1 → 2 is controlled by a rate �, which can be expressed as an Arrhenius-like relation
[53] (cf. Section 2). The waiting probability density for the system to stay in 1 during a time �1→2

is given by

w1→2(t) = � exp(−�t) ; (67)

with mean and standard deviation 1=�.
The transitions 2 → 3 and 3 → 1 have peaked waiting time distributions at �2 and �3, which

introduces a delay in the model [361,376,386]:

w2→3(t) = �(t − �2); w3→1(t) = �(t − �3) : (68)

These expressions model the excursion along the stable branch of the nullcline of the activator. It
is supposed that noise does not a�ect the period of excitation and the return to the rest position.

The proposed model exhibits CR with increasing rate �. It implies a decay of randomness in the
sequence of rotations with the decreasing period 1=�+�2 +�2, and an increase of the regularity of the
spike train. We note that, in contrast to the other models introduced in Section 2, this description
does not possess the large noise limit where randomness grows. A proper assumption about the
waiting densities (Eq. (68)) could lead to the inclusion of this circumstance.

5.2.2. Power spectrum of the three-state system
Generally, to model excitability in a discrete way a two-state description with appropriate waiting

time densities would be su=cient. One distinguishes between “8ring” and “resting” only, hence
the recovery period in this description is included within the resting phase. Then (and this is the
advantage of this description), simple results of renewal theory can be used. For example, one can
easily 8nd the corresponding power spectra [271]. 5

5 Later on when we couple the units, the distinction into three states becomes important again.
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Fig. 45. Power spectra of a single three-state unit with �2 = 0:3 and �3 = 0:7 and � as indicated. For small values of 1=�
the process is oscillating. In contrast to coherence resonance, the peak of the spectrum grows monotonously with
increasing �.

Here we demonstrate that the dynamics of each unit shows typical features of an excitable system
[384]. Setting the output s(t) of a unit equal to 1 if the unit is in state 3, and 0 elsewhere, we
do not distinguish between 1 and 2. Then, we 8nd the power spectrum of the three-state dynamics
[see Eq. (21)]:

S =
4

!2(1=� + T )
Re

(1 − i!=�− ei!�2)(1 − ei!(T−�2))
1 − i!=�− ei!T ; (69)

with T = �2 + �3.
The stochasticity can be controlled by varying the amount of time spent in state 1 compared to

T . If 1=� is large, the system spends a lot of time in state 1 and the stochasticity of the 8rst step
dominates the dynamics. As a result, the spectrum decreases monotonically until it becomes zero at
!0 = 2#=�3. Contrarily, for smaller values of 1=� the process becomes oscillating (Fig. 45).
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Fig. 46. Sigmoidal dependence of the rate � for the transition 1 → 2 as function of the order parameter. In the following
the position of the sigmoid f∗ is always kept equal to 0:5; �2=1 = �0(1 ± &).

5.2.3. Order parameter, coupling and balance equations
Let us consider a system consisting of N stochastic three-state units. As we will show, this

simple reduced description allows an analytical treatment for the occurrence of global oscillations in
excitable media [383,384]. First, we introduce the dynamic order parameter of the ensemble:

f(t) =
1
N

N∑
i=1

si(t) ; (70)

with si(t) denoting the output of unit i. Furthermore we set si(t) = 1 if the ith element is in
state 3, and si(t) = 0 otherwise. Therefore, the order parameter f(t) describes the occupancy of the
third state.

Coupling between the individual elements is introduced by feeding back the order parameter f(t)
into the rate � in a inhibitory sigmoidal fashion (Fig. 46)

�(f(t)) = �0

(
1 + Y tanh

[
−f(t) − f∗

2�

])
: (71)

This expression models the fact that the transition from 1 → 2 is slowed down if the third state is
populated. Additionally, if the parameter � is large the coupling depends weakly on the value of
f(t). The rate � is approximately constant and equal to �0. Contrarily, in case of small � a sharp
transition between the two rates �2=1 occurs if f(t) crosses f∗. Hence, �−1 can be seen as the
coupling parameter.

A typical temporal sequence of f(t) is shown in Fig. 47 for a system consisting of N =1000 units.
Although each individual unit is governed by the stochastic transition 1 → 2, the whole system shows
an undamped oscillation with a period about 3 [a.u.]. Obviously, this behavior resembles coherence
resonance in coupled excitable units as presented previously [143,118].

In the limit N → ∞ the state of the system can be described by the ensemble-averaged occupation
probabilities Pk(t); k = 1; 2; 3, i.e. the probability that a unit in the ensemble stays in the state k
at time t. Following a mean 8eld assumption, we identify the order parameter f(t) with P3(t). In
particular, we set f(t) = P3(t) in the expression of the rate in Eq. (71). Then the dynamics of the
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Fig. 47. Temporal sequence of globally coupled N = 1000 units (vertical axis) versus time. Each time an unit performs
a 2 → 3 transition a point is plotted. The right plot shows the global system output f. In all 8gures the following
parameters were used: T = 2:5; �2 = 0:5; �0 = 0:5; & = 0:6; � = 10−5 and f = 0:5 [383].

ensemble can be described by the set of integro-delay equations:

P1(t) = 1 − P2(t) − P3(t) ;

P2(t) =
∫ t

t−�2

�(P3(t′))P1(t′) dt′ ;

P3(t) =
∫ t−�2

t−T
�(P3(t′))P1(t′) dt′ : (72)

While the 8rst equation expresses the normalization condition, the second and third account for the
balance of probability. The probability P2(t) is equal to the time-integrated decay from state 1 from
t − �2 up to time t and P3(t) the integrated decay from t − T up to t − �2, respectively.

5.2.4. The transition to global oscillations
Eq. (73) possesses a single stationary solution (8xed point). Setting Pk(t) = P∗

k leads to a self
consistent relation for P∗

3 :

P∗
3 =

�3

T + 1=�(P∗
3 )

; (73)

which is the ratio between the time spent in state 3 to the mean time for one round trip. Analogous
relations follow for P∗

1 and P∗
2 .

In order to analyze the stability of this single steady state given by Eq. (73), we add small
perturbations Pk(t) = P∗

k + �Pk(t) with
∑3

k=1 �Pk = 0. With the typical ansatz �Pk(t) ˙ exp(%t),
where (% �= 0), linearization of Eqs. (72) for small �Pk leads to the characteristic equation [383]:

1 + %−1{�(P∗
3 )(1 − e−%T ) − s(e−%�2 − e−%T )} = 0 : (74)

Here we have introduced s = �′(P∗
3 )P∗

1 ¡ 0 and �′ as the 8rst derivative of � with respect to P3.
Solutions of Eq. (74) % = %′ ± i%′′ are complex conjugate, and the bifurcation corresponds to

parameter values where % crosses the imaginary axis. Putting, therefore, in Eq. (74) %′ = 0 with
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Fig. 48. Bifurcation diagram in the �2–� plane for di�erent values of �0, showing the parameter region of coherent
oscillations. The inset shows the corresponding frequency along the line of bifurcation. All other parameters as in
Fig. 47 [383].

Fig. 49. Bifurcation diagram in the �0–� plane for di�erent values of �2 showing the parameter region of coherent
oscillations. All other parameters as in Fig. 47 [383].

%′′ �= 0 one 8nds the condition for a Hopf bifurcation of the dynamics of the ensemble. In parameter
space, the Hopf bifurcation is de8ned by the following equations:

�(P∗
3 )(1 − cos(%′′T )) − s(cos(%′′�2) − cos(%′′T )) = 0 ;

%′′ + �(P∗
3 ) sin(%′′T ) + s(sin(%′′�2) − sin(%′′T )) = 0 :

Both equations can be solved numerically. Figs. 48 and 49 show the region of coherent oscillations
in the �2 − � and �0 − � plane, respectively.

With the increase of �2 with 8xed �0 and � �= 0, the coherent oscillations start from a 8nite value
of �2. Even for �= 0 the waiting time in the state ′2 �2 must be greater than 0 to obtain oscillations
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of the ensemble. For larger values of �2 the ensemble desynchronizes again. Interestingly, there exist
values of �2 where � has to exceed some 8nite value in order for the oscillations to be observed,
and one gets a re-entrant phase transition back to the non-oscillating phase. With increasing �0 the
region of synchronous oscillating behavior expands.

The e�ect of �0 on the occurrence of oscillations is more complex, as presented in Fig. 49 for
di�erent �2. For small �2 two separated regions for oscillations in the parameter plane (dash-dotted
lines) exist, which merge at �2 ≈ 0:48 (solid line). The region corresponding to oscillations grows
with increasing �2 and attains a maximum at �2 ≈ 1 (dashed line). Further increase of �2 reduces
the region of oscillations again (dotted line). Only large values of �0 above 14 are able to exhibit
global oscillations. Another interesting result is that for small values of � and small values of �2 an
increase of randomness by decreasing �0 causes coherent oscillations to appear.

In summary, the bifurcation behavior describes the existence of collective oscillations of the glob-
ally connected excitable units. Also the frequency of oscillations obtained in the simulations agrees
quantitatively with the bifurcation analysis, as shown in the inset of Fig. 48. We underline that the
speci8c choice of the coupling function is not crucial to obtain the collective oscillations. It was
selected to model the generic feature of coupling, which consists in a change (decay) of the local
transition behavior of the individual units in dependence on the present state of the network and
coupling constant. Interestingly, Hopf bifurcations can be found in the case that the spectra of the
single units, taken independently [see Eq. (45)], exhibit a strong peak, but also for parameter values
for which they decay monotonously at small frequencies.

5.2.5. Sparse networks of coupled excitable elements
For completeness, we now turn our attention to sparse networks and the inRuence of the connec-

tivity on the onset of coherent oscillations [383]. For this purpose, we study the transition from an
ordered topology to a random network via a small-world network, as introduced recently by Watts
and Strogatz [387–392]. We start from a ring with N ≈ 1000 vertices, each vertex being one the
three-state units described above. Each vertex is connected to its k nearest neighbors with undirected
edges. With probability p each edge is then cut and reconnected to a randomly chosen di�erent
vertex in the network.

In this way, the parameter p interpolates between a completely regular (p = 0) and a completely
random (p = 1) network. Note that the number of links is much smaller than the number of all
possible connections between vertices, which is N (N − 1)=2. The small-world networks are found
for small values of p, where the mean shortest path between two arbitrary nodes drops rapidly,
while the cluster index, giving the number of common neighbors and characterizing the order of the
network, is still large [387].

As a measure for the size of the collective oscillations, we choose the height of the central peak in
the power spectrum of the global order parameter f(t). In the case of a completely regular network
with p= 0 we have found small coherent islands, which interchange over time but never collapse to
a global cluster. Since these islands are generally not in phase, the system does not display global
oscillations and no peak in the spectrum arises. For increasing randomness, i.e. p¿ 0 with the
number of connections 8xed, the oscillations become more pronounced and are 8nally maximized
for complete disorder, as can be seen in Fig. 50. The transition to macroscopic oscillations shows a
threshold-like behavior at p ≈ 0:2.
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The inset shows for comparison both the cluster index and the mean path length. As it can be
seen, there is a steep decrease in the mean path length already for small p ≈ 0:01. However,
the amplitude of the oscillations starts to increase, only as the cluster index begins to decrease.
We conclude, therefore, that completely random networks synchronize best in our model. A small
network with short mean connections is insu=cient for synchronization in our model.

6. Ensemble of globally coupled FitzHugh–Nagumo elements

6.1. Simulations of globally coupled FitzHugh–Nagumo elements

Another illustration of transitions between di�erent dynamical regimes of a mean 8eld is provided
by a set of globally coupled FN elements:

jẋi = xi − xi
3
− yi + W ( \x − xi) ;

ẏ i = xi + b +
√

2Di(t) ; (75)

where \x = 1=N
∑N

k=1 xk(t), N is the number of elements in the array, W is the coupling strength,
b and D are again the excitability parameter and the noise intensity, respectively.

Eqs. (75) were simulated numerically for N = 1000 elements. The coupling strength W was 8xed
at W = 0:1. The parameter b = 1:05 was chosen in the excitable region, so that in the absence of
noise each individual element possesses a stable 8xed point.

The collective dynamics of the system can be visualized using the mean 8elds 〈x(t)〉 and 〈y(t)〉.
The phase portraits of the system on the plane 〈x(t)〉 versus 〈y(t)〉 are shown in Fig. 51. For weak
noise the system possesses a stable equilibrium. With increasing noise intensity a limit cycle is
born. The waveform of 〈x(t)〉 resembles periodic spiking of a single FN. As we will see below, this
situation corresponds to the running phase solution.
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Fig. 51. (a) Phase portraits of the mean 8eld 〈x(t)〉, 〈y(t)〉 for N =103, b=1:05, W =0:1, j=0:01, and indicated values of
noise intensity D. Magni8ed phase portrait for D = 0:007 for N = 103, (b) and N = 104, (c) elements. Transients are
omitted [393].

With further increase of D, the amplitude of oscillations shrinks dramatically at D ≈ 0:0068.
In this case the waveform 〈x(t)〉 does not exhibit spikes, but rather resembles chaotic motion
[Fig. 51(b)]. This case corresponds to a local oscillation in the phase model.

We have checked how the observed complex motion is robust against changing the number
of elements in the ensemble (for a discussion of 8nite size e�ects on mean 8eld dynamics, see
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Fig. 52. Phase portraits for the order parameter in Eq. (76). (a) D = 0:001, (b) D = 0:007, (c) D = 0:2. Other parameters
are the same as in the previous 8gure [393].

Refs. [394,395]). In Fig. 51(c) we show simulation results for N = 10 000 elements, for the same
parameters values as in Fig. 51(b). These results demonstrate a smeared limit-cycle attractor. The
correlation structure of the corresponding processes is qualitatively the same as for the smaller en-
semble (see the results of power spectra analysis below). Finally, for large noise intensity the mean
8eld dynamics again collapses to the 8xed point, which is apparently di�erent from the equilibrium
observed at low values of D. Note that individual elements in both last cases demonstrate spiking
behavior.

An alternative description is based on the introduction of the instantaneous phases for individual
units. The phase of ith element can be estimated as ’i(t) = arctan(ẋi(t)=xi(t)), although other de8-
nitions are indeed possible (for example based on spike occurrence times or on the analytic signal
concept) [433]. Afterwards one may proceed with a complex order parameter

1
N

N∑
j=1

ei’j = c + is ; (76)

where c ≡ N−1 ∑N
j=1 cos’j and s ≡ N−1 ∑N

j=1 sin ’j. Phase portraits c versus s are shown in
Fig. 52 for the same parameter values as in the previous 8gure, and con8rm the above conjecture
that the increase of noise is accompanied by a transition from the steady state (through two di�erent
kinds of oscillations) to the other time-independent distribution.
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Finally, we investigate the power spectrum of the cosinus of the ensemble phase as a function of
the noise intensity. For a small noise intensity the spectrum is uniform, resembling white noise. This
is the case where the mean 8eld relaxes to a stable 8xed point. If the limit cycle is created with
increasing noise, the spectrum displays well-de8ned peaks at the main frequency and its harmonics
[Fig. 53(a)]. The complex motion at moderate noise is characterized by broadened peaks [Fig. 53(b)].
The oscillatory character of this regime is still expressed by the existence of a sharp peak at ! = 4.
However, broad peaks at the subharmonics resemble a power spectrum of a chaotic motion. Note
that the qualitative structure of the power spectrum is conserved if the number of elements in the
ensemble changes [solid and dashed lines in Fig. 53(b)]. For a large noise intensity, if the oscillations
disappear the power spectrum possesses again a uniform structure [Fig. 53(c)].

6.2. Analysis of globally coupled FitzHugh–Nagumo systems

We now present a cumulant approach that, together with a Gaussian approximation, allows us to
analyze the behavior of an ensemble of coupled FN elements driven by additive noise (for other
approaches see [396–400]). The use of a full set of cumulants or moments instead of a hierarchy of
probability densities is an alternative way to describe a stochastic process [302]. Techniques based
on cumulants are in many cases more convenient, because they allow to use several approximations.
For instance, for a Gaussian stochastic process only 8rst and second order cumulants are non-zero,
while all moments may have 8nite values.
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For di�usion stochastic processes, which are described by Fokker–Planck equations, the cumulant
approach aims to study the dynamics of cumulants, and allows to analyze a set of ODEs instead of
the parabolic partial di�erential equation (the Fokker–Planck equation). The noise intensity appears
to be an additional parameter in cumulant equations. A problem arises, though, when the original
stochastic di�erential equations are nonlinear. In such case the set of ODEs for cumulants appears
to be unclosed: an equation for the nth order cumulant may contain higher order cumulants. Several
approximations can be used to truncate the series of cumulant equations [401], the simplest one being
the Gaussian approximation, which takes into account the evolution of only the 8rst- and second-order
cumulants. The resulting system of cumulant equations in the Gaussian approximation allows us then
to perform a bifurcation analysis with an additional control parameter, namely the noise intensity. The
cumulant approach within the Gaussian approximation was successfully used to study the inRuence
of noise on bifurcations in maps [402,403], colored noise-induced transitions in bistable systems
[404], phase transitions and SR in globally coupled bistable elements [405,320], dynamics of noisy
FN neurons [400] and transitions in globally coupled noisy phase rotators [116,406].

We will now perform the cumulant analysis of a system of globally coupled FN oscillators in the
thermodynamic limit of an in8nitely large ensemble, N → ∞. In that case the stochastic di�erential
equations of the model read,

jẋi = xi − x3
i

3
− yi + W (〈x〉 − xi) ;

ẏ i = xi + b +
√

2Di(t) ; (77)

where 〈x(t)〉 = limN→∞ 1=N
∑N

i=1 xi(t). Next, we introduce deviations from the mean 8eld, 〈x(t)〉,
〈y(t)〉, for each element: nx(t)=〈x(t)〉−xi(t), ny(t)=〈y(t)〉−yi(t). We assume that these Ructuations
are Gaussian and statistically independent in di�erent elements. We introduce the following notation
for the 8rst- and second-order cumulants: the means: mx(t) = 〈x(t)〉, my(t) = 〈y(t)〉; the mean
square deviations: sx(t) = 〈n2

x(t)〉 sy(t) = 〈n2
y(t)〉; and the cross cumulant: u(t) = 〈nx; ny〉. In the

Gaussian approximation (all higher-order cumulants are zero) we obtain the following set of cumulant
equations:

jṁx = mx − m3
x

3
− sxmx − my ;

ṁy = mx + b ;

j
2
ṡx = sx(1 − m2

x − sx −W ) − u ;

1
2
ṡy = u + D ;

1
2
u̇ =

1
j u(1 − m2

x − sx −W ) − 1
j sy + sx : (78)

Thus, the SDEs (77) are now approximated by a set of 5 nonlinear ODEs. In order to obtain an
analytical result for the noise-induced transition to oscillatory motion, we can simplify the cumulant
equations (78) further, by noting the di�erence in the relaxation time scales between the 8rst- and
second-order cumulants: the latter change faster than the former. We thus can consider the dynamics
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of only the 8rst-order cumulants by substituting the stationary values for the second-order cumulants
into the 8rst two equations in the set (78), to obtain

jṁx = mx − m3
x

3
− mx

2

[
1 −W − m2

x +
√

(W − 1 + m2
x)2 + 4D

]
− my ;

ṁy = mx + b : (79)

This is a rather rough approximation that provides, however, a qualitatively correct description of
the transition to oscillatory regime for the original globally coupled array of FN elements each in
excitable regime (a¿ 1), and for small noise intensities. The bifurcations of stationary solutions of
the cumulant equations (79) can then be studied analytically. The single equilibrium point

m0
x = −b ;

m0
y = −b

6

[
3 + b2 + 3W − 3

√
4D + (W + b2 − 1)2

]
;

experiences a Hopf bifurcation with increasing noise intensity D. The Hopf bifurcation is given by
a surface in three-dimensional parameter space (b;W;D),

D =
1
8

[ − 1 − 5b4 + b2(10 − 6W ) − (W − 6)W ]

− 1
8

√
(w2 + b2 + 1)((1 + W )2 − 7b4 − 2b2(3W − 5)) : (80)

For the parameters values used in numerical simulations b = 1:05, W = 0:1 (see Fig. 51), Eq. (80)
gives a bifurcation value of the noise intensity equal to D = 0:0025, which is close to what was
observed in the numerical simulations.

6.3. Coupled active phase oscillators

6.3.1. Phase description of coupled phase oscillators
Another approach to explain collective oscillations is based on the model of coupled phase oscil-

lators (active rotators) [359]. We intend here to study the simplest variant where the phase dynamics
of each rotator evolves akin to an overdamped Brownian particle in a biased periodic potential. For
simplicity we assume a cosine potential and Gaussian white noise as in Section 2.5. This model
can be improved by taking into account higher-order Fourier components of the potential, and with
generically multiplicative components in the noise source.

Compared with Section 2.5, coupling adds another term [2,114,115,358,407] in the model

d
dt

’i = / − a sin ’i +
∑
j

Wi; j(’j − ’i) +
√

2Di(t) ; (81)

This model was 8rst introduced by Kuramoto and coworkers to study coupled oscillators [114,115].
Since then it has attracted a lot of interest, and a huge literature has been devoted to many dif-
ferent aspects of the dynamics of coupled phase oscillators, such as pattern formation, forced and
mutual synchronization with local and global coupling [356,408–413]. A quite rich variety of locally
and globally locked, running, pinned and dead solutions have been reported in Refs. [414–418].
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Also, random switches between two time dependent frequencies /(t) [419,420] have been con-
sidered, and have shown bistability and oscillatory behavior. Many experimental observations in
di�erent research 8elds, most of them dealing with synchronization phenomena, relate to this model
(e.g. Refs. [34,421–424], to mention only a few of them).

Here we again will concentrate on noise e�ects on collective dynamics of globally connected
oscillators [see Eq. (81)]. A multifaceted behavior has been found in case of multiplicative noise,
including noise-induced 8rst- and second-order phase transitions, time-periodic phases, and clustering
[425–427]. Spontaneous symmetry breaking entailing a ratchet-like transport mechanism with nega-
tive resistance and a hysteretic behavior has been reported [428–431], whereas globally connected
ratchets have been studied in Ref. [432].

We aim to answer the question of whether independent additive white noise added to every unit in
the ensemble is su=cient for bifurcations to occur in the global response of the system. This question
was 8rst addressed by Kuramoto using a Fourier-decomposition approach [115]. Later Kurrer and
Schulten [116] derived dynamical equations for the 8rst two cumulants (the mean and the variance)
of the ensemble averaged phase

"(t) =
1
N

N∑
i

’(t) : (82)

Kurrer and Schulten have con8rmed the existence of noise-induced oscillations of coupled excitable
units. However, their approach was limited to small values of the variance. Here we derive modi8ed
cumulant equations, within the Gaussian approximation, which are valid even for strong noise [393].
This approach will allow us to perform a detailed bifurcation analysis of the system. In addition,
we 8nd a new regime of localized or breathing oscillations.

The bifurcation scenario that we derive in this section [393] agrees qualitatively with results
obtained using the Fourier decomposition approach with 14 Fourier modes [115]. In contrast, we
describe qualitatively the same situation with only equations for the 8rst and second cumulants,
which happen to be su=cient as long as the probability density of the phase distribution can be
approximated by a single peaked function.

6.3.2. The model and cumulant equations
We start with a set of N globally coupled identical nonlinear elements which are subjected to white

noise. The state of each element is characterized by its instantaneous phase ’i, with i = 1; : : : ; N .
All elements have the same frequency, and without loss of generality we choose / = 1. Finally, the
elements are assumed to be globally connected. Hence the dynamics of an element reads:

d
dt

’i = 1 − a sin ’i +
W
N

N∑
j=1

sin(’j − ’i) + i(t) : (83)

The parameter a characterizes the inhomogeneity of the phase rotation. When, for a decoupled single
oscillator, a is increased across the value 1, the oscillatory regime is replaced by a steady state due
to a saddle-node bifurcation. The intensity of coupling between the oscillators is measured by the
parameter W , which independent of a. Finally, stochastic terms i(t) (corresponding to independent
noise) are added, and assumed to be Gaussian and white with 〈i(t1)j(t2)〉 = 2D�(t1 − t2)�ij.
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The dynamics of the collective variables c and s, as de8ned in Eq. (76), is described by the
following equations:

ṡ = c − Ds− (a + Wc)〈sin ’i cos’i〉 + Ws〈cos2 ’i〉 ;

ċ = −Dc − s + (a + Wc)〈sin2’i〉 −Ws〈sin ’i cos’i〉 ; (84)

where the averages 〈· · ·〉 are taken over the whole ensemble of N elements. If the distribution of "
[see Eq. (82)] is Gaussian, the averages can be computed explicitly. Let m and � be the mean and
the variance of the distribution, respectively. Then the average of the sine and cosine terms are:

〈sin b"〉 = e−b2�2=2 sin m; 〈cos b"〉 = e−b2�2=2 cosm : (85)

This allows to obtain a set of dynamical equations in closed form:

ṁ = 1 − ae−�2=2 cosh �2 sin m ;

�̇2 = 2D − 2(ae−�2=2 cosm + we−�2
) sinh �2 : (86)

The noise intensity D has entered these equations as an additional parameter, and becomes a control
parameter for the bifurcations that will be presented below.

The phase space of Eq. (86) is a cylinder. The center of the Gaussian m(t) is restricted to the
circle, whereas the unwrapped variance �2(t) evolves over positive values. It can be easily seen that
the variance for generic solutions remains bounded, which is an important qualitative improvement
compared to the previous Gaussian approximation in [116]. There the equations for the 8rst cumulants
retained only the lowest-order terms in �2. As a result, �2(t) displayed an unbounded growth in
the non-stationary regimes of the dynamical system [116]. On the other hand, taking into account
higher-order terms in Eq. (86) ensures saturation at 8nite �2, except for a singular parameter value.

6.3.3. Dynamical regimes and their bifurcations
Analysis of Eqs. (86) in the physically relevant domain of parameters shows that the dynamics

possesses either 1 or 3 steady solutions. The corresponding bifurcation diagrams are presented in
Fig. 54 for two di�erent values of coupling strength W . High values of a and D correspond to
domains in which one steady state is globally attracting. For low and moderate values of D, a
decrease of a leads through a sequence of bifurcations that 8nally, for small a and small noise,
results in the existence of an attracting limit cycle around an unstable 8xed point (region indicated
as rotations and localized oscillations).

There are two saddle-node bifurcations. The line s1 in Fig. 54 creates two additional steady states:
a saddle point and a node. The other line s2 in Fig. 54 destroys the saddle and the originally existing
8xed point. On both curves s1 and s2 one of the eigenvalues vanishes. Additionally, a codimension-2
point exists where two eigenvalues disappear. On the right branch s1 of the saddle-node bifurcation
this point is a Takens–Bogdanov bifurcation point denoted by TB. It is the origin of two further
bifurcation lines: (i) the Hopf bifurcation H which extends into the domain of lower a tending to
D = W=2 as a → 0; and (ii) a homoclinic bifurcation denoted by h and ending at L on the left
branch s2 (for details see Fig. 55).

Above H , for larger noise, the steady state created on the line s1 is stable, and below it becomes
unstable surrounded by a stable limit cycle. Above H at s2 one stable 8xed point and the saddle
disappear and a single stable 8xed point remains. The curve h marks the existence of a homoclinic
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Fig. 55. Enlarged segment of the bifurcation diagram of Eq. (86) at W = 1. s1;2: saddle-node bifurcations; H : Hopf
bifurcation; h: homoclinic bifurcation; circles: bifurcation points of codimension 2 [393].

orbit of the saddle point. Together with the saddle, this curve exists between the two lines s1;2. The
region above h corresponds to a hysteretic dynamics: a stable steady state coexists with an attracting
limit cycle around an unstable 8xed point, and their attraction basins are separated by the stable
manifolds of the saddle.

Below h the homoclinic orbit has destroyed the limit cycle, and saddle, stable, and unstable 8xed
points exist. The saddle and the unstable steady state were generated at s1. At s2 the stable point
together with the saddle collapses, generating 8rst a homoclinic orbit around the third unstable point
(Andronov bifurcation). Left from s2 the saddle and stable 8xed point disappear, leaving an attracting
limit cycle and the unstable 8xed point.

Near the homoclinic bifurcations the period of oscillations diverges. Approaching from the left
the lower segment of the curve s2 this divergence follows the law of inverse square root. Just above
the curve h the divergence is logarithmic.
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Just below the curve H of the Hopf bifurcation, the newborn periodic orbit has a small amplitude.
This amplitude gradually grows for decreasing D at 8xed a. On reaching another curve, denoted by
S in Fig. 54, the topology of the periodic orbit changes: out of a closed trajectory (which can be
continuously contracted into a point), it becomes a closed curve wrapped around the cylinder.

This means that oscillations with bounded amplitudes are replaced by full-circle rotations. In the
phase space, this process is mediated by repelling the trajectory to in8nity (m = #; �2 = ∞) which
can be viewed as a kind of global bifurcation, as a homoclinic orbit to a 8xed point at in8nity. The
increase and subsequent decrease of �2 happens rapidly, in a rather narrow parameter interval as
depicted in the left of Fig. 56.

Remarkably, although the extended periodic orbit is mediated by a homoclinic trajectory, its
temporal period does not diverge. The dependence of the period on D can be seen in the right
panel of Fig. 56. Apparently, there is no divergence near the bifurcation value D = 0:1953509. This
unusual behavior is due to the singular character of the bifurcation. Since the saddle point lies at
in8nity, both the approach along its stable and the subsequent departure along its unstable manifold
happen at in8nite speed. Accordingly, the slowdown typical for conventional homoclinic bifurcations
is absent.

To check the above conjectures, we performed direct numerical integration of Eq. (83) with a set
of N = 104 oscillators. Qualitatively, the results correspond to the predictions of the above analysis:
for low intensities of noise the relatively sharply peaked distribution rotates around the circle; for
intermediate intensities oscillations with small amplitude are observed; and for high values of D
the system settles onto the steady broad distribution. Quantitatively, the threshold values for the
transitions between those states turned out to be lower than the values predicted by the bifurcation
analysis of Eqs. (86).

Phase portraits for the components of the complex order parameter c and s in the oscillating
regime a = 0:9 are presented in Fig. 57. Noisy limit cycles characterize both the rotating and the
locally oscillating distributions; in the 8rst case, the diameter of the cycle is noticeably larger. In
the case of the stable time-independent distribution, the system spirals to the attracting 8xed points.

Variation of the coupling strength W appears to produce merely quantitative changes in the bifur-
cation diagram. With decreasing W the bifurcation values of D get smaller [Fig. 54(b)]; the region
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between the two curves of the saddle-node bifurcations becomes sharper: in the deterministic limit
D → 0 the line s2, irrespectively of W , begins at (a= 1; D = 0), whereas the starting point of s1 for
W → 0 tends to (a = 33=4=2 = 1:13975 : : : ; D = 0).

Now we draw the general picture of coupled excitable elements with increasing noise D. Let a
slightly exceed 1. The sequence starts with a time-independent distribution being stable within a
certain interval of noise intensities. On crossing the curve s2 this state disappears, and an oscillatory
rotating regime with large amplitudes is created. Further growth of noise destroys the sharpness of
the oscillations resulting after crossing S in an oscillating state with small amplitude. Finally, near
the Hopf bifurcation point the amplitude of oscillations collapses and beyond the curve H the other
steady state acquires stability.

6.4. Noise-induced synchronization

As seen in the previous section, when noisy excitable systems are coupled, synchronization phe-
nomena are amenable to occur. From the most general point of view, synchronization is understood
as an adjustment of some relations between characteristic times, frequencies or phases of two or
more dynamical systems during their interaction.

Synchronization has attracted much attention in all 8elds of natural sciences (see [433] for a
recent and comprehensive review). For instance, applications of synchronization in engineering sci-
ences [434,435] have achieved great practical importance and are widely employed. In the case of
biophysics, several kinds of synchronization have been reported, including the cases of cultured cells
[436], neurons [437,438], and biological populations [439]. Synchronization became a conceptual
framework in neuroscience as a general mechanism of large-scale neural integration [440–442].
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There is now an extensive literature on stochastic nonlinear dynamics of coupled noisy excitable
systems. Examples are studies of synchronization of two coupled excitable neurons modeled by
Morris–Lecar systems [186], the emergence of collective coherent oscillations induced by noise
[116,123,145,443–446], and studies on array-enhanced coherence resonance [144,447]. In this section
we will address the e�ect of noise-induced global coherence in terms of phase synchronization [118].

6.4.1. Noise-induced oscillations in coupled system with diEerent thresholds
We demonstrate the e�ect of noise-induced global oscillations using a network of locally coupled

non-identical FN oscillators. The discrete network of di�usively coupled oscillators mimics a noisy
excitable media which is of high interest in biology, chemistry and physics, and which is described
by the following set of stochastic di�erential equations:

ju̇(t; n) = u− u3

3
− w + W

∑
n′

[u(t; n′) − u(t; n)] ;

ẇ(t; n) = u + a(n) +
√

2D(t; n) ; (87)

where u(t; n) and w(t; n) are fast and slow variables, respectively. For the one-dimensional case these
variables are de8ned on a chain n= 1; : : : ; N , while in the two-dimensional case they are de8ned on
a square lattice. The sum over the neighbors stands for the discrete Laplace operator in one and two
dimensions, modeling local interactions with coupling strength W . The stochastic forcing by Gaussian
white noise  is statistically independent in space and with zero mean 〈(t; n)(t + �; m)〉= �m;n�(�),
where �m;n is the Kronecker symbol. The excitability parameter a(n) depends on the spatial variable
n and is assumed to be a uniformly distributed random variable in the range [1:03; 1:1]. Thus,
without coupling and noise (W = 0;D = 0) each FN element of the network resides in an excitable
regime [48].

The results of simulating a two-dimensional network are presented in Fig. 58. Depending on
the noise strength D, for a su=ciently large value of the coupling strength three basic types of
space–time behaviors can be observed. For small noise, centers of excitation are nucleated very
rarely, and appear at random positions in the media, giving rise to propagating target waves. It
should be noted that when two circular waves collide the resulting front shrinks, and hence no new
stable spiral waves are created.

However, in the case of parametric noise the propagating fronts may locally back8re small directed
spots which breaks propagating excitations and make spirals possible [446]. In this case, di�erent
cells in the media are correlated only on a short time scale in comparison with the characteristic
time of wave propagation, and there is no synchronization between distant cells. For a large noise
strength, the nucleation rate is very high and the media is represented by stochastically 8ring cells.
However, for an optimal noise intensity the media becomes phase coherent: 8rings of di�erent and
distant cells occur almost in phase and the whole media oscillates nearly periodically (see the middle
row in Fig. 58).

6.4.2. Description in terms of stochastic phase synchronization
From the mathematical point of view, the theory of synchronization of periodic self-sustained

oscillators is well established [434,448,449]. If 6(t) is the phase of a periodic oscillator and I(t) is
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Fig. 58. Spatio-temporal evolution of the system described by Eqs. (87) on a 200 × 200 square lattice for di�erent
values of noise intensity D1 = 1:125 × 10−4, D2 = 3:125 × 10−4 and D3 = 5 × 10−3. Other parameters are j = 0:01,
W = 0:05 [118].

the phase of external periodic force or, otherwise, the phase of another periodic oscillator coupled
with the 8rst one, then the condition of synchronization can be formalized as

|m · 6(t) − n ·I(t)|¡ const ; (88)

where m and n are integers. This conditions de8nes locking of two phases 6(t) and I(t), and requires
that the phase di�erence be a bounded function of time. In other words, periodic oscillations should
be in phase.

Synchronization is also de8ned as frequency entrainment, provided that the frequencies of the
oscillator and the driving force are in a rational relation. Here we consider the simplest case of 1 : 1
synchronization (m = n = 1). When noise is taken into account, the condition for synchronization
[Eq. (88)] is never ful8lled. It is a consequence of phase di�usion induced by noise [450]. In the
presence of noise, locking epochs of the phase as de8ned by Eq. (88) are always interrupted by
abrupt jumps of the phase di�erence, also known as phase slips [450]. In the presence of noise,
synchronization must be de8ned in a statistical sense by imposing restrictions on phase and frequency
Ructuations [278,451–453].

Frequently, the existence of a well-expressed maximum in the probability density of the phase
di�erence is used as an indicator of synchronization [453,454]. But the Ructuations can also be
characterized in terms of the e�ective di�usion coe=cient of the phase di�erence [450,278]. This
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Fig. 59. Phase di�erences between indicated oscillators for the same values of noise intensity as in the previous 8gure
[118].

di�usion coe=cient is inversely proportional to the average length of locking epochs of the phase
[279]. Hence, smaller di�usion coe=cients indicate a stronger synchronization.

In Van der Pol oscillators, noise always counteracts synchronization. The e�ective di�usion con-
stant grows with the increase of noise intensity. However, excitable systems may demonstrate quite
opposite e�ects. In these systems certain time scales depends on noise due to the existence of
thresholds. Noise can improve synchronization, as shown in [118,278].

To study the e�ect of noise-induced coherent oscillations described above, we must 8rst de8ne
phases of elements in the network. This can be done in di�erent ways (see Ref. [452]). Here we
introduce the instantaneous phase 6(t; n) of the nth element using the analytic signal representation
[433,453,452]. The analytic signal z(t; n) is de8ned as z(t; n) = u(t; n) + iy(t; n), where y(t; n) is the
Hilbert transform of the original variable u(n; t) in the time domain: y(t; n) = (1=#)

∫∞
−∞(u(�; n)=

(t − �)) d�, and 6(t; n) = arctan[y(t; n)=u(t; n)].
For simplicity we consider the one-dimensional version of Eqs. (87), choose the central cell

(n = N=2) as a reference element, and then calculate the phase di�erences "(t; k) = 6(t; N=2) −
6(t; N=2 + k), k =−N=2; : : : ; N=2. The result of calculating the phase di�erences is shown in Fig. 59
for three values of the noise intensity. For the optimal noise level the phases of di�erent oscillators are
locked during the total computation time. In the case of large distances between oscillators the phase
Ructuations do indeed grow. Nevertheless, the phase di�erence is still bounded during long periods
of time in a certain range. For non-optimal noise intensities, a partial phase synchronization with
randomly occurring phase slips can be observed only between neighboring elements (top graph). For
larger distances the di�usion of the phase di�erences becomes very strong and synchronization
breaks down.
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Fig. 60. The averaged e�ective cross-di�usion coe=cient versus noise intensity. Other parameters are the same as in the
previous 8gure. The dashed line correspond to uncoupled lattice (W = 0) [118].

In our case, an appropriate measure of stochastic synchronization is the cross-di�usion coe=cient,
de8ned as

De� (k) =
1
2

d
dt

[〈"2(t; k)〉 − 〈"(t; k)〉2] : (89)

This quantity describes the spreading in time of an initial distribution of the phase di�erence be-
tween the N=2th and all other elements. A single measure, the spatially averaged e�ective di�usion
coe=cient, is obtained by averaging De� (k) over the spatial distance:

De� =
1
N

N=2∑
k=−N=2

De� (k) : (90)

The dependence of this averaged e�ective cross-di�usion constant on noise intensity is shown in
Fig. 60, which displays a global minimum at non-zero noise level. Thus, phase synchronization can
be enhanced by tuning the noise intensity.

6.4.3. Frequency locking
Let us now characterize synchronization in terms of frequency locking. In our case of stochastic

oscillations, we must use the mean frequencies 〈!(n)〉 = 〈6̇(t; n)〉 of the oscillators [450]. Due to
the given distribution of the excitability parameter a(n), the elements in the network have di�erent
randomly scattered frequencies for vanishing coupling. We have numerically determined the distribu-
tion of the mean frequencies, calculated for every element across the network, P(〈!〉), for di�erent
noise intensities.

The results are shown in Fig. 61. A remarkable e�ect of noise-enhanced synchronization can be
seen from this 8gure. For the optimal noise intensity, when the phases of di�erent oscillators are
locked for long periods of time, the mean frequencies are entrained and the distribution of the mean
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Fig. 62. Mean square deviation of the average frequencies versus noise intensity [118].

frequencies becomes extremely narrow. For non-optimal noises the mean frequencies show rather
wide distributions indicating the lack of synchronization.

The last 8gure clearly indicates noise-induced space–time ordering in the system, based on the
synchronization mechanism. This behavior can be quanti8ed further by calculating the mean square
deviation of the mean frequencies averaged over the network,

�2
〈!〉 =

1
N

N∑
n=1

〈!(n)2〉 −
[

1
N

N∑
n=1

〈!(n)〉
]2

: (91)

The dependence of the mean square deviation of the mean frequencies versus noise intensity is
shown in Fig. 62, and displays vanishing frequency Ructuations at the optimal noise intensity.

The mechanism of noise-induced coherent oscillations and synchronization is rooted in the behavior
of a single uncoupled element. The noise-induced oscillations in separate FN elements are most
coherent at a non-zero noise intensity, and the quality factor of the noise-induced peak in the power
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spectrum is maximal. In this regime, the mean frequency of the system approaches the peak frequency
in the power spectrum. In the case of weak noise, the mean frequency depends exponentially on
the control parameter a (a¿ 1). However, with the increase of noise the dependence of the mean
frequency on a becomes very weak. That is why when noise increases from a very low level, the
mismatch between the characteristic frequencies of the elements in the coupled array decreases,
providing better conditions for mutual synchronization.

On the other hand, the noise-induced oscillations become more coherent. These e�ects will tend to
facilitate synchronization among elements in the network. Large noise, alternatively, destroys again
the coherence of local stochastic oscillations (the frequency and phase Ructuations grow rapidly)
and also leads to destruction of spatial coherent structures. The optimal noise intensity at which
synchronization is most pronounced depends on the range of the distribution of activation parameters
a(n): with the increase of the range of disorder the optimal noise intensity shifts towards smaller
values.

7. Noise in excitable spatio-temporal structures

In the previous section we have seen that external Ructuations are able to induce collective be-
havior, in the form of synchronized 8ring, in spatially distributed excitable systems. But one of the
most de8ning characteristics of excitable media is their ability to sustain propagation of nontrivial
spatio-temporal structures, such as one-dimensional pulses, two-dimensional wavefronts and spirals,
and three-dimensional scroll waves [3]. It is thus natural to investigate the e�ect of noise in the
formation and propagation of these structures.

The inRuence of noise on the spatio-temporal structures exhibited by an excitable medium was
8rst studied by means of a cellular automaton model consisting of a coupled set of LIF neurons
[378]. This model exhibited excitable structures (in the form of spiral waves) of optimal shape
for an intermediate noise level, in what the authors interpreted as a realization of spatio-temporal
stochastic resonance [130]. One of the 8rst experimental investigations in this area addressed the
e�ect of time-independent spatial noise (quenched noise) on the propagation of excitable fronts
in the photosensitive Belousov–Zhabotinsky reaction [194]. The results showed that propagation of
planar pulses in two dimensions was enhanced by noise (in the form of an increase in propagation
speed). Other early experimental studies involved the same type of excitable medium, now in the
presence of spatio-temporal noise. It was shown that pulse propagation could be sustained by noise
in subexcitable media (where no propagation could occur in the absence of noise); the e�ect had a
resonant character, being optimal for an intermediate amount of noise [190]. Recently a noise-induced
transition from the excitable to the oscillatory regime has also been observed in the same experimental
system [198], and the opposite transition, namely from oscillatory to excitable behavior, has been
predicted [455]. These last two situations have been explained analytically in terms of a small noise
expansion that converts the stochastic dynamics in an e�ective deterministic dynamics [456].

From a physiological perspective, experiments have also shown that calcium waves in cultured
networks of glial cells are induced by noise (as controlled by the neurotransmitter concentration)
[192]. Finally, it should also be noted that the space and time correlation of the noise have been
seen to be relevant in the Brownian motion of spiral waves [196] and in the lifetime of scroll rings
in three-dimensional excitable media [197].
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In what follows, we analyze the inRuence of di�erent types of multiplicative random Ructu-
ations on a FN with activator di�usion. We will see that this kind of noise induces nontrivial
spatio-temporal structures in the system, by changing in an e�ective way the local dynamics of the
medium.

It is known that multiplicative noise, in connection with moderate nonvanishing coupling, is able
to originate phase transitions in extended media. Bistable behavior with respect to initial conditions
or Turing structures were reported for nonlinear media which possess monostable homogeneous
phases in a deterministic description. Such bifurcations were called noise-induced phase transitions
[141,457–465].

Noise-induced phase transitions have their origin in strong multiplicative noise, which shakes
the system out of its monostable con8guration. A simple recipe might be to “heat” a previously
stable state whereas other regions in the state space are “cooled” [466,467]. The noise strength
has to be large enough to exceed the linear restoring force and to enhance nonlinear behavior.
In zero-dimensional systems, the new states that occur as a compromise between the deterministic
restoring force and the speci8c heating are overwhelmed by the noisy motion of the order parameter
[224]. In coupled systems a new mechanism comes into play: suppression of large Ructuations of
the order parameter due to coupling between elements at short time scales [468]. In this case the
response of a system can be given in terms of an average trend, expressed by the evolution of the
mean order parameter. In this approximation, the inRuence of the multiplicative noise enters the
description via the Stratonovich shift [450,469]. This shift appears as an extra term in the evolution
equations for the mean order parameter on top of the deterministic forces. This additional term
scales with the noise intensity and occurs if white noise is taken as the limit of a colored noise with
vanishing correlation time [142,450].

In coupled systems, the suppression of the noise yields highly stable noise-induced states [470];
escapes between two “stable” situations occur at large time scales only. This fact has even opened
the possibility to control escapes between noise-induced phases by additional noise in order, for
example, to synchronize these transitions to small periodic signals [471], and to allow propagation
of signals via noise-induced bistability [472].

We will now show that multiplicative noise also has nontrivial e�ects in excitable spatially ex-
tended systems. To that end, we will consider a computationally e=cient version of the FN introduced
by Barkley [217]:

9u
9t =

1
�
u(1 − u)

(
u− v + b

a

)
+ W∇2u ;

9v
9t = �u− v ; (92)

where u(x; t) and v(x; t) are the concentrations of the activator and the inhibitor, respectively, with
x representing a vector in d-dimensional space. We only take into account di�usion of the activator
variable. As usual, the activator evolves on time scales much shorter than the inhibitor, so that ��1.
In what follows, we analyze the e�ect of Ructuations in some of the parameters of Eqs. (92), when
the system operates in di�erent deterministic regimes.
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Fig. 63. Nullclines of the Barkley model [Eqs. (92)] in the excitable regime (with solid lines). Only the relevant part
of the vertical u-nullclines is shown. Dashed lines show schematically the Ructuations of the v-nullcline. The solid circle
denotes the only deterministic steady state of the system.

7.1. Noise-induced spiral dynamics

We 8rst consider the behavior of Eqs. (92) in a deterministically excitable regime, in which the
system possesses a single stable steady state. Even in the absence of Ructuations, this system can
exhibit a self-sustained spatio-temporal structure in two dimensions in the form of a spiral wave
[473]. Once formed (by suitable initial conditions, for instance), this structure becomes in fact very
robust. In last years, on the other hand, great interest has been directed towards establishing the
conditions under which spiral waves become unstable. Such spiral breakup, which has been related
to the appearance of ventricular 8brillation in human hearts [474], has been observed experimentally
in chemical excitable media [475–478]. Furthermore, the resulting turbulent state has become a
standard example of spatio-temporal chaos [479,480].

From a theoretical viewpoint, it is well established that spiral breakup cannot occur in the standard
FN. These models can only exhibit the phenomenon when generalized to take into account delayed
inhibitor production [481,482], modi8ed inhibitor dynamics [483,484], or advection [485]. Here we
show that these e�ects are not necessary to provide a mechanism of breakup, as long as we consider
the existence of a multiplicative noise term in the model. Such a term arises from assuming that the
parameter � in the inhibitor equation of Eqs. (92) Ructuates around a nonzero value, �= �0 + 0(x; t),
with 0(x; t) representing a Gaussian noise with zero mean and white in space and time:

〈0(x; t)0(x′; t′)〉 = 2D�(t − t′)�(x − x′) ; (93)

with D being the noise intensity. We choose values of the parameters for which the system operates
in the excitable regime (� = 0:02, a = 0:85, b = 0:1, and �0 = 1). For these parameter values,
the nullclines of the model are the ones represented in Fig. 63. As shown in the 8gure, the e�ect of
the noise is to produce local and rapidly varying Ructuations in the slope of the v-nullcline around the
rest state.

In the absence of multiplicative noise, the system operates in a standard excitable regime which
is only able to sustain spatio-temporal structures in the form of stable spiral waves. In this regime,
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Fig. 64. Time sequence showing spiral breakup leading to complex spiral dynamics [446]. Time Rows from left to right.
Parameters are D = 0:0784 and W = 1:12.

excitable wavefronts propagate around the spiral core through resting medium, leaving behind a
refractory region which decays to rest before the excitable wave reaches it again. To that end, the
local excursion time and the spiral period need to match properly. In the presence of multiplicative
noise, the system can become locally bistable at certain time instants, due to the slope Ructuations
shown in Fig. 63. When this happens somewhere in the refractory tail of the propagating excitable
wavefront, a small region is able to remain in the excited branch some time longer than the sur-
rounding area, as shown by an arrow in the left-most plot of Fig. 64. This excited spot is only able
to travel backwards towards the spiral core, since the area between it and the wavefront where it
was created is still in the refractory state. Upon propagation, the spot collides with an inner spiral
arm and breaks it (second plot from the left in Fig. 64). The resulting wave segments propagate
through the structure and lead to further collisions among the di�erent parts of the structure (third
and fourth plots from the left in Fig. 64), leading 8nally to a self-sustained complex state resembling
deterministic spiral turbulence [446] (right-most plot in Fig. 64).

Fig. 64 was obtained by integrating numerically Eqs. (92) using a semi-implicit algorithm for
the activator equation [486] and an explicit algorithm for the deterministic part of the inhibitor
equation. The stochastic term in that equation was introduced by means of a suitable extension of
the explicit Euler method [141]. The simulation was performed in a square two-dimensional lattice
with 128 × 128 cells with size Yx = 1. No-Rux (Neumann) boundary conditions were considered,
but similar results can be obtained with periodic boundary conditions.

7.1.1. Distribution of space–time clusters
In order to characterize the complexity of the noise-induced structures just described, we analyze

the spatio-temporal evolution of the system in terms of coherent space–time clusters [487]. This is
done by considering the system evolution in a three-dimensional space formed by the two spatial
dimensions and the temporal axis. The activator dynamics is subjected to a threshold procedure that
labels the state of each cell as excited or quiescent, depending on whether or not u(x; t) exceeds a
given reference value (here we used uth = 0:5). The evolution of this binary 8eld is considered at
discrete time intervals. A cluster is de8ned as a connected set of excited sites in the three-dimensional
cubic grid, where connections are checked with both nearest neighbors and diagonal next-nearest
neighbors. According to this de8nition, a perfect spiral wave in an in8nite spatial domain corresponds
to a single space–time cluster, whereas a spiral turbulent state exhibits a large number of clusters.
This method allows a quantitative measure of the complexity of a spatially-evolving structure: the
larger the number of clusters, the larger the complexity of the spatio-temporal dynamics.

We now apply the method described above to the spiral dynamical states induced by noise dis-
played by the Barkley model. Fig. 65(a) shows the number ncl of coherent space–time clusters,
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Fig. 65. Statistics of coherent space–time clusters [446]: (a) average number of clusters ncl vs. coupling strength W for
D = 0:0784 (empty diamonds) and D = 0:16 (solid circles); (b) cluster-size distribution for W = 0:10 and D = 0:24, the
dotted line corresponds to a power-law 8t with � = 1:73 (see text).

averaged over 100 realizations, for increasing values of the coupling strength and two 8xed values
of the noise strength. The 8gure shows that ncl decreases sharply as W increases, although there is
no sharp transition between the regimes of stable spirals and complex spiral dynamics. In any case,
the number of clusters increases with increasing noise level, as could be expected.

We have also characterized the noise-induced complex dynamics described above by means of
the distribution of cluster sizes [487]. Previous works in noise-induced structures have reported
distributions in the form of a power law, p(s) ˙ s−�, where p(s) is the distribution function, s is
the space–time size of the clusters, and the exponent � has been identi8ed to be [191] approximately
between 2 and 3. In our case, the result is shown in Fig. 65(b), for parameters W and D that ensure
a large number of clusters (around 5000 in all cases examined). The measured distribution 8ts
reasonably well a power law (spanning 1.5 decades in s) with exponent � ≈ 1:75± 0:05. This result
is seen not to depend noticeably on neither the coupling strength nor the noise intensity, as long as
these parameters provide a turbulent state.

7.2. Noise-induced pulse propagation

We have seen that sudden (and local) excursions of the excitable FN into the bistable regime due
to multiplicative noise are able to produce spiral breakup in an otherwise perfectly regular excitable
medium. In what follows we consider the opposite phenomenon, namely the transition from a bistable
to an excitable regime due to noise.

Noise has been seen to sustain propagation of fronts in chains of electronic bistable oscillators
[195], and of harmonic signals in systems of coupled double-well oscillators [488,489]. The latter
kind of systems have also been seen to exhibit pulse propagation sustained by multiplicative noise
under particular conditions [490]. However, in general, bistable systems are not suitable for signal
transmission, since under normal conditions they only support propagation of fronts. In that situation,
an external resetting mechanism is required for the transmission of information-carrying pulses. In
what follows, we show that external random Ructuations naturally sustain propagation of pulses in
standard models of activator-inhibitor media operating in a deterministically bistable regime, where
only propagation of fronts would take place in the absence of noise under simple initial conditions
(e.g., as a response to a local perturbation of a homogeneous steady state). This is accomplished
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Fig. 66. Nullclines of Eqs. (92) in the bistable regime. Solid circles denote stable 8xed points, and the empty circle
indicates an unstable 8xed point.

by means of a noise-induced transition from the bistable to an excitable regime, as mentioned
above. These results could be relevant to understand signal propagation in bistable neural media,
given the increasing experimental evidence showing bistable behavior in certain types of neurons,
such as thalamocortical neurons [491] and mitral cells [492]. We will analyze two di�erent types of
multiplicative noise sources, which will be seen to lead to similar e�ects. In this way, the phenomenon
is shown to be rather generic.

7.2.1. Fluctuations in the inhibitor dynamics
To begin with, we consider again the existence of spatio-temporal Ructuations superimposed to

the parameter �, i.e. �=�0 +0(x; t), with 0(x; t) representing a Gaussian white noise characterized by
correlation [Eq. (93)]. In contrast to the previous section, however, we now choose the deterministic
parameters of the model in such a way that the system operates in a deterministically bistable regime,
such as the one shown in the phase-plane plot of Fig. 66. The parameters chosen are �=0:01, a=0:85,
b = 0:1, and �0 = 0:7.

In a bistable extended system resting in an homogeneous steady state, the e�ect of an initial local
perturbation of su=cient intensity is to induce a local transition towards the other stable steady
state. This transition is propagated into the neighborhood due to spatial coupling, giving rise to a
propagating front. This behavior is shown in Fig. 67(a), which displays the space–time evolution
of Eqs. (92) in the bistable regime in the absence of noise. When the system is initially in state 0
(as labeled in the phase-plane plot of Fig. 66, and coded in white in Fig. 67) and a perturbation
is applied to the left-most site, a transition towards state 1 (coded in black in the 8gure) starts to
propagate through the system towards the right with constant velocity. In this case, simulations are
performed in a discrete 1-dimensional lattice of N = 400 sites with spacing Yx= 0:25 and absorbing
boundary conditions.

We now consider the e�ect of the multiplicative noise term introduced above, caused by Ruc-
tuations in the parameter �. We note that, as in the previous section, the e�ect of this noise on
the local dynamics described in Fig. 66 is to introduce Ructuations in the slope of the v-nullcline.
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Fig. 67. Spatio-temporal evolution of Eqs. (92), with time running vertically and space horizontally, for increasing noise
intensities [493]. Black coding corresponds to u= 1, and white to u= 0. Parameters used are those of Fig. 66, plus W = 1
and j= 0:01. Noise intensity is: (a) D = 0:0; (b) D = 0:0015; (c) D = 0:02.

In the present bistable situation, this produces sudden (and local) transitions into the excitable regime,
which destabilize the front solution. The resulting spatio-temporal behavior is shown in Fig. 67(b),
where in this case periodic boundary conditions have been used. As a result of the noise-induced
destabilization of state 1, a single solitary pulse propagating towards the right is obtained (the sym-
metrical pulse traveling towards the left has been eliminated for the sake of clarity).

While destabilization of the front solution due to noise is to be expected (since, as mentioned
earlier, Ructuations locally push the system away from state 1), the way in which the medium
self-organizes to generate a stable traveling pulse is in principle nontrivial. We note that the mech-
anisms which originate the front and the rear of the pulse are very di�erent. On one hand, the front
of the pulse corresponds to the propagation of the excited state 1 into a noise-free region in the
rest state 0. Therefore, this transition is basically a deterministic process. The rear jump, on the
other hand, corresponds to the propagation of the rest region into a Ructuating excited region. This
propagation is initiated by noise, and the corresponding rear front adjusts its speed to that of the
leading front, until a stable propagating pulse is formed, similarly to what occurs in purely excitable
media [3].

In order to analyze in a quantitative way the e�ect of the multiplicative noise on the pulse
dynamics, we have computed the dependence of the pulse width w on the noise level. The results
are plotted in Fig. 68 for two di�erent values of the time-scale ratio �. In the two cases, the
noise-induced pulses become wider as noise increases, up to a certain noise level for which the
tendency reverses and the width starts to decrease monotonously with noise. We can intuitively
understand the initial growth of w with D by taking into account that a large noise intensity implies
large inhibitor Ructuations in the excited (i.e., u ≈ 1) region. We recall that the rear front of the
pulse corresponds to a front propagating from a resting (i.e., u ≈ 0) towards an excited region. This
propagation will be hindered by the existence of large local concentrations of inhibitor in the excited
region, such as those produced by intense noise in our model. Therefore, it is to be expected that
the larger the noise level, the wider the pulses, as it is certainly observed.
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Fig. 68. Pulse width at half-maximum for increasing noise intensity [493]. Parameters are those of Fig. 67.

The monotonic increase in the pulse width with noise intensity breaks down for su=ciently large
noise levels. At this point, the Ructuations are intense enough to induce a transition from the excited
to the rest state in the middle of the wide pulse, breaking it in two halves. One half continues
to move towards the right at the deterministically prescribed speed, whereas the other half starts
to move in the opposite direction, with the same absolute velocity. This phenomenon, known as
backCring, is shown in the spatio-temporal plot of Fig. 67(c). The back8ring mechanism dominates
the whole dynamics of the system, breaking the pulse in two before its tail can adjust its propagation
velocity to that of the pulse front. The result is a decrease in the average pulse width with noise
intensity.

In the situation shown in Fig. 67(c), the frequency of the back8ring events is so large that
the system behavior resembles that of deterministic spatio-temporal turbulence. Both the back8ring
and the associated turbulent behavior reported here are not observed in the deterministic version
of simple activator–inhibitor models such as the one examined here. Similarly to what happens
with spiral breakup in two-dimensional systems, back8ring requires, in the absence of Ructuations,
non-standard dynamics of the inhibitor variable, leading to more that one 8xed point in the excitable
regime [481]. We show here again that the presence of external Ructuations allows for the existence
of complex dynamics in this simpler model. In the next paragraphs we show that a similar e�ect
is obtained, although through a di�erent mechanism, with another type of external noise, hinting at
the generic character of this noise-induced phenomenon.

7.2.2. Fluctuations in the activator dynamics
We now assume that the external Ructuations a�ect the parameter b of Eqs. (92), which leads to

an additional random term in the activator equation of the form

"(u) =
1
a�

u(u− 1)0(x; t) ; (94)

where 0(x; t) is again a Gaussian white noise with zero mean and correlation given by Eq. (93). The
assumption of such a multiplicative noise is reasonable, given that equations of the FN constitute
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Fig. 69. Spatio-temporal dynamics of the Barkley model in the bistable regime with a Ructuating b parameter [494], for
� = 0:01, a = 0:85, b = 0:12, � = 0:7, D = 10−4 and Yx = 0:25.

a qualitative simpli8cation of the well-known Hodgkin–Huxley model of electrical signalling in
neurons, basically consisting in reducing the fast dynamics of the sodium conductance of the cell
membrane [4]. In such a reduction process, additive Ructuations of this conductance would readily
give rise to multiplicative noise terms in the activator equation. Our simpli8ed choice of the noise
term corresponds in fact to a Ructuating excitation threshold (since b is the o�set of the tilted
u-nullcline in Fig. 66). This is the approach followed in experimental studies of the photosensitive
Belousov–Zhabotinsky reaction [190,198], which can be modeled directly by the Barkley equations,
with b corresponding to the Ructuating illumination level [191]. We also note that the random term
"(u) vanishes identically for u = 0 and u = 1, so that the Ructuations do not perturb the system
neither in the rest nor in the excited state. This is very di�erent from an additive noise, or from
the type of multiplicative noise considered in the previous section, where the Ructuations actively
perturb the system in some or all of the 8xed points. In particular, the noise we consider here is
not able to induce a decay from one of the stable steady states towards the other.

We choose again values of the parameters for which the system operates in a deterministically
bistable regime: � = 0:01, a = 0:85, b = 0:12, and � = 0:7. For these parameters, the phase-plane
plot looks qualitatively equal to Fig. 66, and the corresponding spatio-temporal evolution in the
absence of noise is similar to the one shown in Fig. 67(a). As the noise intensity is increased, a
sharp transition is observed towards an excitable regime, in which the system behaves as shown
in Fig. 69.

We note that, as mentioned above, Ructuations cannot induce in this situation a decay of the
“excited” stable state (coded in black in Fig. 69), due to the form of the noise term in Eq. (94),
which becomes zero for u= 1. Hence, the mechanism through which the transition occurs has to be
di�erent from the one leading to a similar e�ect in the previous section. In order to establish the
role of the multiplicative noise 0(x; t) in this case, we note that the random term in Eq. (94) has
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Fig. 70. Phase diagram of the Barkley model with external noise as a function of b and the noise intensity [494]. Other
parameters are those of Fig. 69.

a nonzero mean equal to [141]

〈"〉 =
D

�2a2Yx
〈u(u− 1)(2u− 1)〉 ; (95)

where the brackets denote averaging over the probability distribution of the multiplicative noise,
which is interpreted in the Stratonovich sense. The spatial discretization Yx of the lattice needs
to be considered explicitly in the calculations in order to interpret correctly the spatially extended
multiplicative noise [141]; it corresponds to an e�ective spatial correlation length of the noise.

The random term of Eq. (95) gives rise to a systematic nonzero term contributing to the average
dynamics of the system. This systematic contribution can be incorporated explicitly into the activator
equation as the 8rst-order term of a small-noise expansion [141], with the remaining stochastic
contributions of the noise averaging out to zero. This leads to an e�ective equation for the activator
dynamics with renormalized parameters:

a′ = a− 2D
�aYx

;

b′ = b− D
�aYx

;

�′ =
�

1 − 2D=(�a2Yx)
: (96)

We note that even though the random Ructuations were originated in the parameter b, they produce
a renormalization of all three parameters of the activator dynamics. A similar renormalization e�ect
as the one reported here has been recently seen to lead to symmetry enhancement in an asymmetric
bistable FN, and hence to increased coherence when additive noise is also added [322]. A straight-
forward analysis in the present case shows how the number and type of 8xed points of the local
dynamics of the model depend on these parameters, and the results can be plotted in the phase
diagram shown in Fig. 70. In this diagram one can see that the transition between the bistable and
excitable regimes (labeled BIST and EXC, respectively, in the 8gure), which in the absence of noise
occurs at b = 0:15 for the parameters chosen, is shifted in the direction of shrinking the bistable
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Fig. 71. Noise-induced oscillatory dynamics in the deterministic bistable regime [494]: (a) e�ective nullclines and (b)
corresponding spatio-temporal behavior for D = 4 × 10−4 and Yx = 0:25.

region as the noise intensity increases. Two di�erent excitable regimes are obtained, labeled EXC I
and EXC II, which are symmetric and correspond to either u = 0 or u = 1, respectively, being the
only stable 8xed points of the dynamics. Deterministically, the regime EXC II arises for negative
values of b. In any case, noise is seen to produce a substantial enlargement of the excitable region,
in such a way that a deterministically bistable medium can become excitable for large enough in-
tensity of the multiplicative noise. This is the situation described above in Fig. 69. We stress again
that this e�ect cannot be merely due to a noise-induced decay from the metastable state 1, since the
random term of Eq. (94) vanishes in that state. Hence, this behavior must correspond to a dynamical
destabilization of state 1 due to the Ructuations, leading to a noise-induced transition denoted by
the corresponding line in the phase diagram of Fig. 70. The existence of this transition is con8rmed
by extensive numerical simulations, which show a well-de8ned change from bistable to excitable
behavior as the noise intensity surpasses its critical value. Below the transition line the system de-
velops fronts systematically, independently of the noise realization, whereas above it pulses are the
only stable structures of the system, and fronts cannot be obtained no matter the initial conditions
considered.

The phase diagram of Fig. 70 shows another feature arising for large noise strengths. An increase
in the noise intensity produces a reduction in the e�ective slope of the tilted u-nullcline (controlled
by a). At a certain point, the reduction is so large that the two stable 8xed points 0 and 1 turn
unstable, and the system enters an oscillatory regime (labeled OSC in Fig. 70). The corresponding
phase-plane plot is shown in Fig. 71(a). Such noise induced transition towards an oscillatory regime
has been observed experimentally in deterministically excitable media [198]. The spatio-temporal
behavior in this case is represented in Fig. 71(b), where random initial conditions have been chosen.
We note that such an oscillatory dynamics does not exist in the deterministic system for any value
of b, given the values of a¿� chosen here. Furthermore, it can be seen that the dynamics shown
in Fig. 71(b) shuts down to the rest state 0 as soon as the external noise is switched o�.

7.2.3. Characterizing the noise-induced pulses
We can also use the e�ective model derived above to predict the characteristics of the propagating

pulses, such as their speed and width. One can easily evaluate the pulse speed in an approximate
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Fig. 72. Pulse speed (a) and width (b) versus noise intensity [494]. Parameters are those of Fig. 69, except Yx = 0:05.
Solid lines represent the analytic results from the e�ective theory, and symbols numerical simulations in a lattice of 1000
sites, with full circles corresponding to multiplicative noise of intensity D, and empty squares to additive noise of intensity
�2. Vertical dashed lines denote the transitions occurring as the multiplicative noise is increased.

way by assuming a vanishingly small �. In that approximation, the speed of the leading front of the
pulse (the one going from u= 0 to u= 1), which corresponds in fact to the speed of the pulse itself,
can be easily determined [3]:

c =
1√
2�′

(
1 − 2

b′

a′

)
; (97)

where the renormalized parameters a′, b′ and �′ are given by Eqs. (96). The result is plotted in
Fig. 72(a), which compares the theoretical result in Eq. (97), represented by a solid line, with
simulations shown by full circles. The pulse speed grows with increasing noise intensity, and in
agreement with previous results on front propagation in one-component bistable media [495]. In the
8gure two transitions are observed, represented by vertical dashed lines. The 8rst transition leads to
the excitable regime, and the second one to the oscillatory regime. Pulses in the bistable regime are
obtained only by special initial conditions. In the oscillatory regime a pulse train is obtained, from
which the speed of a single pulse can be measured.

It is instructive to compare the e�ect of our multiplicative noise with that of additive noise. We
add to the activator equation a Gaussian noise, white in space and time with zero mean and intensity
�2. The speed of the pulse in the presence of additive noise (but without multiplicative noise) is
represented as empty squares in Fig. 72(a). Note that, even though additive noise is also able to
produce excitable pulses in the bistable regime (by means of a noise-induced decay mechanism),
it does not vary the speed of propagation of the pulses, and hence it does not a�ect the system
dynamics (and does not produce the transitions indicated in the 8gure).

Once the pulse speed c has been obtained, one can also easily evaluate the pulse width w = cT ,
where T is the time during which the system stays at the excited branch. From the inhibitor equation
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Fig. 73. Schematic representation of the nonlinear circuit array. The boxed element in each unit is the so-called Chua
diode [497].

of Eqs. (92), and assuming again a vanishingly small �, this quantity can be found to be

T =
∫ vm

0
dv=g(1; v) ; (98)

where vm is the maximum value reached by the inhibitor v, which can be calculated by imposing
that the speeds of the leading and trailing fronts of the pulse are equal [3]. The result in this case
is vm = a′ − 2b′, which according to Eq. (96) is independent of the noise intensity. Hence T is also
independent of the noise strength, and the pulse width is given by

w = c ln
�

� + 2b− a
: (99)

We can thus see that the pulse width also increases with noise intensity, as shown by the solid line
in Fig. 72(b) and by the numerical simulation results represented by full circles in the 8gure. On the
other hand, and as in the case of the pulse speed, additive noise does not modify the pulse width.

7.2.4. Experimental realization in a chain of electronic circuits
Since the 8rst proposals of using electronic transmission lines to model neural communication

[200], many electronic circuits exhibiting nonlinear dynamical behavior have been developed. A
particularly fruitful example has been the so-called Chua circuit [496], which is characterized by
its ability to operate in di�erent dynamical regimes, including chaotic, oscillatory, excitable and
bistable regimes. For this reason, Chua circuit is a convenient candidate to examine experimentally
the noise-induced phenomena described in the previous paragraphs. We will now describe a sim-
pli8ed version of the Chua circuit that exhibits a transition from bistable to excitable dynamics in
terms of a single control parameter. We will show that random Ructuations a�ecting this control
parameter advance the transition towards excitability, and thus enhance the excitable behavior of the
system, allowing the propagation of excitable pulses even under deterministically bistable conditions.
The experimental implementation is shown schematically in Fig. 73. Twenty nonlinear electronic os-
cillators are coupled unidirectionally through operational ampli8ers, and the 8rst circuit is driven by
a periodic train of short pulses. The output at the last circuit is analyzed when all the elements in
the chain are a�ected globally by a controlled source of electronic noise.
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The dynamics of each individual circuit of the chain is governed by the equations:

C1
dV1

dt
=

V2 − V1

R
− g(V1; V+) ; (100)

C2
dV2

dt
=

V1 − V2

R
+ IL ; (101)

L
dIL
dt

= −V2 − rLIL ; (102)

where Vi is the voltage drop in the capacitor i, IL the current through the inductance, rL its internal
resistance (21 ] in the present setup), and V+ the positive supply voltage of the Chua diode [497].
The function g(V1; V+) represents the characteristic curve of the nonlinear resistor, which is piecewise
linear and contains a region of negative resistance.

The nullclines of the system can be drawn in the reduced plane V1–V2 by introducing the
IL-nullcline obtained from Eq. (102), IL =−V2=rL, into Eqs. (100) and (101). The result is shown in
Fig. 74 for two di�erent values of the supply voltage V+. The V1-nullcline has been plotted making
use of the experimentally measured characteristic g(V1; V+) of the nonlinear resistor. As can be seen
in the 8gure, the value of V+ a�ects strongly the position of the breaking point where the second
slope-discontinuity of that nullcline occurs. In that way, for large values of V+ [Fig. 74(a)] two
steady states exist, corresponding to the two outer crossings between the two nullclines, leading to
a bistable situation. On the other hand, for small enough voltage V+ [Fig. 74(b)] the steady state
at V1 ¿ 0 disappears. In this monostable regime, the system behaves in an excitable way, going
through large excursions in phase space as a response to su=ciently strong perturbations from its
single steady state.

Let us now examine the bistable response of the system (for large V+) to an external driving in
the form of a periodic train of short pulses. This signal drives a solid-state switch through which
the capacitor C1 discharges for a short time (∼ 5 �s, much shorter than the characteristic times of
the system). This discharge produces a jump from one steady state of the system to the other, as
shown in Fig. 75(a). In a biological context, a similar response to periodic trains of pulses has been
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Fig. 75. Response of the last circuit in the chain to a periodic train of pulses applied to the 8rst circuit, for increasing noise
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recently observed in experiments on thalamocortical neurons of cats [491]. The time trace shown in
Fig. 75(a) corresponds in fact to the signal measured at the last circuit of the chain, after each jump
between steady states has propagated through the array in the form of a front (which is terminated
by the next jump).

Noise is generated by amplifying the shot noise of a pn junction diode [195], and is introduced
in the circuits through the positive supply voltage of the Chua diode [497]. We now examine the
e�ect of this external noise on the front propagation shown in Fig. 75(a). Noise is observed to act
in this system in a way similar to that described in the theoretical analysis of the previous sections,
increasing the e�ective value of V+. This modi8es the nullcline scenario from the situation of
Fig. 74(a) to that of Fig. 74(b). As a consequence, for a large enough intensity of the external
noise, the steady state at V1 ¿ 0 becomes destabilized in such a way that the system starts to behave
e�ectively in an excitable regime. This is con8rmed in Figs. 75(b) and (c): for not too large noise,
the positive steady state decays only at certain times (and at certain circuits), leading to a mixed train
of spiked and squared pulses, as shown in Fig. 75(b). For su=ciently large noise, on the other hand,
the positive steady state always decays, and a train of fully excitable pulses propagates through the
medium and reaches the last circuit [Fig. 75(c)]. Hence the system behaves as an excitable medium,
even though all the circuits have been set in a deterministically bistable regime. This noise-induced
transition from a completely bistable to a completely excitable behavior can be characterized, for
instance, in terms of the percentage of pulses that reach the last circuit of the chain in the form of a
spike, in contrast with the square pulses typical of the bistable regime. Since in the spiked case each
circuit is reset after the passage of a bit, one can consider that information transmission is possible
in this situation, and thus that percentage represents the eDciency of the system as a communication
channel. This e=ciency parameter increases monotonously with noise intensity [497].
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The time taken by the pulses to travel through the chain can be estimated by measuring the delay
between the pulses at the 8rst and the last circuits. This delay is inversely related to the propagation
speed of the pulse. In contrast to the theoretical results described in the previous sections, where
the propagation speed was seen to increase with noise intensity, in this case no clear systematic
dependence of the pulse delay with noise strength has been observed. On the other hand, the pulse
speed does depend on the coupling resistance between the circuits, decreasing with it as expected.
For large enough resistance the pulse speed drops to zero, and propagation can no longer occur:
it is the so-called regime of propagation failure. In this situation noise is seen to help to sustain
propagation, similarly to experimental observations in chains of bistable electronic circuits [195]. In
other words, for large enough noise signals can be transmitted even when the coupling resistance is
so large that propagation fails under deterministic conditions.
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