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We investigate theoretically the conditions for the emergence of syn-
chronous activity in large networks, consisting of two populations of
extensively connected neurons, one excitatory and one inhibitory. The
neurons are modeled with quadratic integrate-and-fire dynamics, which
provide a very good approximation for the subthreshold behavior of a
large class of neurons. In addition to their synaptic recurrent inputs, the
neurons receive a tonic external input that varies from neuron to neuron.
Because of its relative simplicity, this model can be studied analytically.
We investigate the stability of the asynchronous state (AS) of the net-
work with given average firing rates of the two populations. First, we
show that the AS can remain stable even if the synaptic couplings are
strong. Then we investigate the conditions under which this state can be
destabilized. We show that this can happen in four generic ways. The first
is a saddle-node bifurcation, which leads to another state with different
average firing rates. This bifurcation, which occurs for strong enough re-
current excitation, does not correspond to the emergence of synchrony.
In contrast, in the three other instability mechanisms, Hopf bifurcations,
which correspond to the emergence of oscillatory synchronous activity,
occur. We show that these mechanisms can be differentiated by the firing
patterns they generate and their dependence on the mutual interactions
of the inhibitory neurons and cross talk between the two populations.
We also show that besides these codimension 1 bifurcations, the sys-
tem can display several codimension 2 bifurcations: Takens-Bogdanov,
Gavrielov-Guckenheimer, and double Hopf bifurcations.
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1 Introduction

Synchrony can be defined in several ways. In its broader definition, the ac-
tivities of two neurons are said to be synchronized if some kind of temporal
correlations exist between them. In this sense, in any system of interacting
neurons, some level of synchrony should exist. In this respect, observing
synchrony between directly interacting neurons should not be surprising.
In fact, several studies in the 1960s and 1970s were devoted to determin-
ing what the shape of the cross-correlations of a pair of neurons can tell us
about their interactions (Abeles, 1990). The implicit assumption in this ap-
proach was that correlations are dominated by direct interactions between
the neurons.

Other types of synchronous states can emerge through cooperative ef-
fects. In these states, the correlations in the activity of a pair of neurons in
the network depend weakly on their direct interaction (Hansel & Sompolin-
sky, 1996). Instead, they are mostly mediated by the inputs to the neurons
coming from all other neurons belonging to the part of the network with
which they interact. To define this type of synchronous state, it is appro-
priate to consider macroscopic observables, for example, the instantaneous
activity of the neurons averaged across assemblies of neurons (multi-unit
activities) or local field potentials that presumably reflect electrical activity
induced by many neurons. In an asynchronous state, the temporal fluc-
tuations of these quantities (suitably normalized) are small—on the order
of 1/M where M is the size of the neuronal assembly. When synchrony
emerges, these fluctuations become finite even if the population is large.
Understanding the conditions for the emergence of these states in the brain
is one of the goals of recent research in the field of collective neuronal dy-
namics. Central issues concern the roles of the cellular properties of the
neurons; the nature (excitatory, inhibitory), the strength, and the kinetics of
the synaptic interactions; and the local and global architectures of the net-
works. The ways in which noise, heterogeneities, and spatial fluctuations
of connectivity patterns affect synchrony are also among the fundamen-
tal questions investigated. One possible approach to these questions is to
study cooperative dynamical states in simplified network models of lo-
cal neuronal populations in the brain. Within limits, these models can be
studied in depth analytically. Subsequently, these analytical investigations
can be extended using numerical simulations beyond the limits that can be
treated analytically. This approach has led to substantial progress in our un-
derstanding of the general mechanisms of neuronal synchrony. However,
most of the theoretical studies have addressed the case of one population
of neurons, much less is known about networks comprising several popu-
lations.

The goal of this article is to study the emergence of synchronous ac-
tivity in large networks consisting of two interacting populations of neu-
rons, one excitatory and the other inhibitory. We investigate the conditions
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under which asynchronous states (AS) become unstable due to interac-
tions. More specifically, we inquire: (1) Under which conditions can the
network display a stable asynchronous state? Is this possible when the cou-
plings are strong? (2) What are the different mechanisms through which
the AS can become unstable in the network? (3) In what ways do they
depend on the recurrent interactions in the excitatory neurons, the mu-
tual interactions of the inhibitory neurons, and the excitatory-inhibitory
feedback connections between the two populations? (4) What patterns of
synchrony emerge when the AS is unstable? In particular, can one differ-
entiate unambiguously between the regimes of parameters in which neu-
rons spike in synchrony from regimes in which they burst in synchrony?
(5) More quantitatively, what determines the period of the synchronous
oscillations and the phase shift between the oscillations in the two popula-
tions?

The article is organized as follows. The model is introduced in section 2.
In section 3, the method of AS stability analysis is presented, and a spec-
tral equation for the eigenmodes of the linearized dynamics is established.
Assuming that the synaptic time constants of the excitatory and inhibitory
synapses are identical simplifies the analysis of this equation. This allows us
in section 4 to study the instabilities of AS to a large extent completely ana-
lytically. The various bifurcations of the AS are characterized. The results of
section 4 are subsequently generalized in section 5. Results from numerical
simulations are presented in section 6. Section 7 is devoted to a discussion
of our results.

2 The model

2.1 The Quadratic Integrate-and-Fire Model. Near the onset of firing,
it can be shown that the detailed dynamics of any type I conductance-based
model can be replaced by the reduced model (Ermentrout & Kopell, 1986;
Ermentrout, 1996),

C̄
dV
dt

= A
(
V − V�

)2 + I − Ic, (2.1)

where Ic is the rheobase of the neuron. Analytical formulas can be derived
to compute the effective capacitance C̄, the constant A, and V�. Using these
formulas, one can compute these parameters numerically as functions of
the biophysical parameters of the full conductance-based model (see ap-
pendixes A and B). The solution of equation 2.1 diverges in finite time. This
divergence corresponds to the firing of an action potential. If one supple-
ments equation 2.1 with the condition that the variable V has to be reset to
−∞ following a spike, this yields a reduced model that accurately describes
the dynamics of the full conductance-based model in the limit I → Ic. In
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this model, the relationship between the firing rate ν and the current I is
given by

ν = B
√

I − Ic, (2.2)

where B = √
A/πC̄.

When I − Ic is not small, this reduction is no longer exact. However, one
can generalize it heuristically as follows. We assume that action potentials
are fired whenever V crosses some threshold, Vt (from below), and that it
is immediately reset to a value Vr. The relationship between the discharge
rate and the external current of the model is now given by

1
ν

= 1
πB

arctan( Vt
√

A√
I−Ic

) − arctan( Vr
√

A√
I−Ic

)
√

I − Ic
. (2.3)

The two parameters, Vt and Vr, are phenomenological. They are not de-
termined by the exact reduction method near the firing onset, and additional
constraints are required to determine them. In the following, we impose that
the ν − I curve of the quadratic integrate-and-fire (QIF) model matches the
ν − I curve of the full model as much as possible.

It is convenient to rewrite the reduced model in terms of the dimension-
less variables V̄ and Ī defined by

V̄ = A

C̄
τ0(V − V�) (2.4)

Ī = A

C̄2
Iτ 2

0 , (2.5)

where τ0 has a dimension of a time. The dynamics are governed by

τ0
dV̄
dt

= V̄2 + Ī − Īc. (2.6)

The dynamical variable V̄ is reset to V̄r = A(Vr − V�)τ0/C̄ whenever
it reaches the threshold value: V̄t = A(Vt − V�)τ0/C̄. A similar model has
been used by Latham, Richmond, Nelson, and Nirenberg (2000) to study
with numerical simulations a two-population network model.

In this article, we use a QIF model with parameters derived from the
Wang-Buszaki (WB) conductance-based model described in appendix A.
Using the approach described above, one finds that Ic = 0.1601 mA/cm2,
V� = −59.5462 mV, C̄ = 0.9467 µF/cm2, and A = 0.012875 mS/cm2/mV.
Requiring that the ν-I curve of the reduced and the full model agrees well
up to firing rates as large as νmax = 100 spikes per second yields for the
other parameters Vr − V� = −4.6 mV and Vt − V� = 33.2 mV (V̄r = −0.626,
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Figure 1: Firing rate of a neuron versus the external current. Circles: Wang-
Buszáki model. Solid line: QIF model with A = 0.012875 mS/cm2/mV, Vr−V∗ =
−4.6 mV, Vt − V∗ = 33.2 mV, Ic = 0.1601 muA/cm2 and C̄ = 0.9467 µF/cm2.

V̄t = 4.52). The ν-I curves of the full model and the QIF model with these
parameters are plotted in Figure 1. Clearly the fit is excellent over a broad
range of firing rates.

The traces of the membrane potential for neurons firing at 50 spikes per
second and 10 spikes per second are shown in Figures 2A and 2B, respec-
tively, for this QIF model. For comparison, we have also plotted the traces
of a WB neuron that fires at the same frequencies. For a frequency of 10 Hz,
the traces are very similar. When the frequency increases, the traces of the
QIF neuron deviate from those of the WB neuron.

2.2 The Two-Population Network Model. We deal with a network of
two heterogeneous populations: one excitatory and the other inhibitory. The
dynamics of the neurons is modeled by equation 2.6,

dViα

dt
= V2

iα + Iiα + Isyn
iα (t) − Ith

α (2.7)

where i = 1, . . . , Nα are the indices of the neurons in population α (α = E, I).
For simplicity, the firing threshold of the neurons Vt, the resetting value Vr,
and the rheobase currents are the same for all the neurons. Time is measured
in units of τ0 = 10 ms. The current Iiα represents the effect of an external
stimulus that is assumed to be constant in time but different from one neuron
to another.

We consider the case where Nα is very large and the external input cur-
rents to the neurons in population α are distributed according to a density
distribution Qα(I). The synaptic current, Isyn

iα (t), on the ith cell, is the sum of
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Figure 2: Traces of a WB neuron (solid line) and QIF neuron (dashed line).
Parameters of the model are the same as in Figure 1. (A) The neuron fires at
50 Hz. (B) The neuron fires at 10 Hz.

all contributions Isyn
ijαβ

from all the presynaptic cells on it:

Isyn
iα (t) =

∑
jβ

Isyn
ijαβ

(t). (2.8)

In this work, the current Isyn
ijαβ

(t) is modeled by

Isyn
ijαβ

(t) = Gsyn
ijαβ

sjβ(t), (2.9)

where Gsyn
ijαβ

measures the strength of the synapses that neuron j in popula-
tion β makes on neuron i in population α and sjβ evolves with time accor-
ding to

sjβ(t) =
∑

spikes

fβ(t − tspike,j), (2.10)
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where the summation is performed over all the spikes emitted by the presy-
naptic neuron with an index j at times tspike,j. The function fβ(t) is

fβ(t) = 1
τ2β − τ1β

[
exp

(
− t

τ1β

)
− exp

(
− t

τ2β

)]
(t). (2.11)

Here, (t) is the Heaviside function, and the normalization is such that the
integral of fβ(t) is one.

The characteristic times τ1β and τ2β are the rise and decay times of the
synapse, respectively. In case τ1β = τ2β = τβ, one obtains the so-called alpha
function (Rall, 1967):

fβ(t) = t
τβ

exp
(

− t
τβ

)
. (2.12)

Note that Gsyn
ijαβ

has the dimension of a current density and that excitatory

(resp. inhibitory) interactions correspond to Gsyn
ijαβ

> 0 (resp. Gsyn
ijαβ

< 0).
The synaptic current, which a cell i of the αth population receives from

a cell j from the βth population, is

Isyn
iαβ(t) =

∑
j

Isyn
ijαβ

(t), (2.13)

where α = E, I, i = 1, . . . , Nα , j = 1, . . . , Nβ , and Nα is the number of neu-
rons in the αth population. As a limiting case of a network with extensive
connectivity, we assume full connectivity between the neurons, which sim-
plifies considerably our analytical approach. For simplicity, we also assume
that the strength of a synapse between two neurons depends on only the
populations to which they belong. Therefore,

Gsyn
ijαβ

= Gsyn
αβ . (2.14)

In the case of an extensively connected network, the average number of
synaptic inputs per neuron varies proportionally to the size of the system,
and the synaptic strengths are varied in inverse proportion to the system
size so that (see Hansel & Sompolinsky, 1996)

Gsyn
αβ = gαβ

Nβ

, (2.15)

where the normalized synaptic strengths, gαβ are independent of the Nα’s.
Our approach can be applied to the case where the kinetics of excitatory
(resp. inhibitory) synapses are different when the postsynaptic neuron be-
longs to the excitatory or the inhibitory population. However, this entails
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an increase in the number of parameters of the model. Therefore, in this
article, we consider that the synaptic rise time and decay time depend on
only the nature, excitatory or inhibitory, of the synapses, and not on the
synapse target. The rise and decay times of the synapses are denoted by τ1β ,
τ2β, β = E, I. We neglect axonal propagation delays.

3 The Asynchronous State and Its Stability

3.1 The Distribution of Neuron Firing Rates in the Asynchronous
State. In the asynchronous state, the synaptic current is the same for all
neurons in a population and does not depend on time. It is given by

Isyn
iα (t) =

∑
β=E,I

gαβνβ ≡ Isyn
α , (3.1)

where νβ is the average firing rate of the neurons in population β and gαβ

is a 2 × 2 matrix that characterizes the strengths of the synaptic interactions
within and between the populations. Integrating the dynamical equations,
equation 2.7, one calculates the firing rate of each of the neurons in the
network. This yields

νiα =
[∫ Vt

Vr

dV

V2 + Iiα + Isyn
α − Ith

α

]−1

≡ F

(
Iiα +

∑
β=E,I

gαβνβ − Ith
α

)
, (3.2)

where

F(I) =
√

I

arctan(Vt/
√

I) − arctan(Vr/
√

I)
(3.3)

if I > 0 and F(I) = 0 otherwise. These equations, together with

να = 1
Nα

∑
i

νiα, (3.4)

determine the distribution of firing rates in each population. Note that neu-
rons with an external current smaller than Imin

α = Ith
α − Isyn

α are below thresh-
old and cannot fire.

The distribution Pα(ν) of the firing rates of the neurons in population
α in the asynchronous state can be related to the distribution of external
currents via the input-output relation,

Pα(ν) = Qα(F−1(ν))|F−1′
(ν)| + δ(ν)

∫ Imin
α

−∞
dIQα(I), (3.5)
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Figure 3: (A) Gaussian distribution of external current with a standard deviation
σ = 0.4. (B) Distribution of firing rates for the QIF model (parameters as in
Figure 1) and a distribution of currents as in A. The average firing rate is ν̄ =
30 Hz. The delta function at ν = 0 is not shown.

where the last contribution comes from the neurons that receive a total
input too small to make them fire. The distribution of firing rates is plotted
in Figure 3 for a gaussian distribution of currents:

Qα(I) = 1√
2πσ 2

α

exp
(

− (I − Iα)2

2σ 2
α

)
. (3.6)

We emphasize that the distribution of firing rates can be kept constant even
if the coupling strengths change. This can be done simply by adjusting
the distribution of external currents with an offset that depends on the
coupling and the average firing rate of the population. In this way, one can
separate the effect of coupling strength and the effect of the average rate on
synchronization properties.
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3.2 Stability Analysis of the Asynchronous State. The stability of the
AS in a homogeneous network of leaky integrate-and-fire neurons has been
studied by Abbott and van Vreeswijk (1993). We have generalized their
approach to the case of heterogeneous network of QIF neurons (Hansel &
Mato, 2001).

For each of the active neurons in the population α, the variable yiα can
be defined as

yiα = νiα

∫ Viα

Vr

dx
x2 + Iiα +∑

β gαβνβ

, (3.7)

where νi and να are the firing rates of neuron i and the average population
firing rate in the AS, respectively, and gαβ are the strengths of the synapses
from population β to population α. This dynamical variable evolves in time
according to

dyiα

dt
= νiα +

∑
β

gαβKβ(yiα)εβ(t), (3.8)

where

εβ(t) = 1
Nβ

Nβ∑
j=1

(νjβ(t) − νβ) (3.9)

is the deviation of the firing rate of neuron j at time t from its value in the
AS, and

Kα(yiα) = νiα

V2
iα + Ii +∑

β gαβνβ

. (3.10)

The probability density, ρα(y, ν, t) satisfies the continuity equation,

∂ρα(y, ν, t)
∂t

= −∂ Jα(y, ν, t)
∂y

, (3.11)

where the flux Jα(y, ν, t) is

Jα(y, ν, t) =
(

να +
∑
β

gαβKβ(y)εβ(t)

)
ρα(y, ν, t). (3.12)

In the asynchronous state, Jα(y, ν, t) = να . The deviations from this value,
jα(y, ν, t) = Jα(y, ν, t) − να , due to perturbations from the AS state sat-
isfy

∂jα(y, ν, t)
∂t

=
∑
β

gαβKβ(y)
dεβ(t)

dt
− να

∂jα(y, ν, t)
∂y

. (3.13)
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For synaptic interactions modeled with a difference of exponentials (see
equations 2.11), it is straightforward to show that equation 3.13 is equiv-
alent to

dεα(t)
dt

= −γ1αεα(t) + hα(t) (3.14)

dhα(t)
dt

= −γ2αhα(t) + γ1αγ2α

∑
ν

jα(1, ν, t), (3.15)

where γkα = 1/τkα for k = 1, 2. The perturbation jα has to be evaluated at
y = 1 because this corresponds to the crossing of the threshold, V = Vt (see
equation 3.7).

The AS is stable if small perturbations from the AS eventually decay. As-
suming that jα(y, ν, t), εα(t), hα(t) are proportional to exp(λt) and integrating
equation 3.13, one finds after a straightforward but tedious calculation that
λ satisfies

∏
α=E,I

[
(λ + γ1α)(λ + γ2α) − γ1αγ2αgααUα

γ1αγ2α

]
= gEIgIEUIUE, (3.16)

where

Uα(λ) =
∫ ∞

0
dν

Hα(ν)

1 − exp(−λ/ν)
(3.17)

and

Hα(ν) = Pα(ν)ν

2F−1(ν)

[
1 − exp(−λ/ν)

+ (cos(A + φ) + sin(A + φ) Aν
λ

) − exp(−λ/ν)(cos(φ) + sin(φ) Aν
λ

)

1 + (Aν/λ)2

]
(3.18)

with

A = 2
√

F−1(ν)/ν (3.19)

φ = 2 arctan(Vr/
√

F−1(ν)). (3.20)

The spectral equation, equation 3.16, determines the eigenvalues of the dy-
namical equations linearized around the AS. Note that this spectral equation
also holds if a fraction of the neurons are subthreshold and do not fire in the
AS. Indeed, an infinitesimal perturbation cannot make these neurons fire.
Therefore, they do not contribute to the destabilization of the AS.
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3.3 The Spectral Equation at the Onset of an Instability. The AS is
stable if all the eigenvalues, the solutions to equation 3.16, have a negative
real part. Therefore, continuous onset of instabilities occurs when at least
one of the eigenvalues crosses the imaginary axis when some parameter is
changed. At this onset, λ = iµ and singularities appear in the integral in
equation 3.17. These singularities can be isolated, and one finds:

Uα(iµ) =
(

A1α

2
+ π

µ
A2α − i

µ

2
A3α

)
, (3.21)

where

A1α =
∫ ∞

0
dνHα(ν) (3.22)

A2α =
∞∑

n=1

Hα

( µ

2πn

) ( µ

2πn

)2
(3.23)

A3α =
∞∑

n=1

∫ π

−π

dy ctg
(y

2

) Hα(
µ

y+2nπ
)

(y + 2nπ)2

+
∫ π

0
dy ctg

(y
2

) Hα(
µ
y )

y2 . (3.24)

These integrals are nonsingular. In general, they have to be evaluated
numerically. The onset of instabilities of the AS is determined by taking the
real and imaginary part of equation 3.16. The simultaneous solution of these
equations determines µ and the coupling at the onset of instabilities as a
function of the other parameters of the model.

At instability onset, the synaptic currents in the unstable mode oscillate
with a frequency given by the imaginary part of the eigenvalue, µ. The
dephasing δ between the oscillations of the two populations is

exp(iδ) ∝ εI/εE = gEEUE − (λ/γ1E + 1)(λ/γ2E + 1)

|gEI|UI
. (3.25)

A positive (resp. negative) value of the phase lag δ means that the oscillation
of the inhibitory population is in advance (resp. delayed) over the excitatory
population.

The solutions of equation 3.16 can be classified according to the temporal
properties of the corresponding unstable modes of instability. If µ �= 0, the
instability occurs through a Hopf bifurcation (Strogatz, 2000). This can hap-
pen in two ways. In the first, called a supercritical Hopf bifurcation, the AS
loses stability, and simultaneously stable oscillations of the network activ-
ity appear with vanishingly small amplitude and finite frequency. The latter
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is equal to µ/2π . The phase lag between the inhibitory and the excitatory
population activity is δ (see equation 3.25). In the second, called a subcritical
Hopf bifurcation, the AS loses its stability by coalescing with an unstable
state in which the activity of the network oscillates. This is a necessary (but
not sufficient) condition for having a region in the parameter space where
the stable AS coexists with two states of synchronous oscillations—one sta-
ble and one unstable. The stable oscillatory state persists in some regions
where the AS is unstable and the unstable oscillatory state no longer exists.
The values of µ and δ determined by the stability analysis now correspond
to the frequency and the phase lag between the two populations in the un-
stable oscillatory state at bifurcation. However, if the amplitude of the stable
oscillations at the bifurcation is small, these values should also provide a
good estimate of the frequency and the phase lag in the stable oscillatory
state near the bifurcation. This point needs to be verified with numerical
simulations (see section 6). Finally, if µ = 0, there is a saddle node (SN)
bifurcation (Strogatz, 2000).

To study how the stability of the asynchronous states depends on the
synaptic properties, we construct phase diagrams for a fixed distribution of
the firing rates of the two populations, PE(ν) and PI(ν), taking as parameters
the strength of the four interactions. This implies that when the interaction
strengths are changed, the external average inputs (or the firing thresholds)
have to be modified accordingly to satisfy equation 3.2 for the two popu-
lations. Because of the normalization of the synaptic interactions, changing
the synaptic time constants does not affect the firing-rate distribution in the
AS. To study their role on the emergence of synchrony, the synaptic time
constants can be varied while maintaining constant all the other parameters.

4 Synchrony in a Two-Population Model: The Symmetric Case

A detailed analysis of the conditions of the AS stability as a function of
synaptic coupling strength, synaptic kinetics, and distributions of firing
rates is a formidable task. In this section, we focus on a situation where,
τ1E = τ1I = τ1, τ2E = τ2I = τ2, and PE(ν) = PI(ν). We term this situation the
symmetric case. It turns out that to a large extent, this case can be investi-
gated analytically and that the results thus obtained are highly instructive
for understanding the general properties of the two-population network.

4.1 The Instabilities of the Asynchronous State. In the symmetric case,
for all α, Uα(λ) = U(λ) where U(λ) is given by equation 3.17. Therefore
equation 3.16 becomes

(iµ + γ1)
2(iµ+γ2)

2−γ1γ2(iµ+γ1)(iµ+γ2)UT +γ 2
1 γ 2

2 U2D = 0, (4.1)

where U is a function of µ, T = gEE + gII and D = gEEgII − gEIgIE. The latter
parameters are the trace and the determinant of the matrix gαβ , respectively.
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Figure 4: Phase diagram of a two-population QIF network in the symmetric
case. The determinant and the trace of the coupling matrix areD = gEEgII−gEI gIE

andT = gEE+gII, respectively. The standard deviation of the current distribution
is σE = σI = 0.1. The average firing rates in the AS are νE = νI = 50 Hz. The
synaptic time constants are τ1E = τ1I = 1 msec, τ2E = τ2I = 4 msec. In the gray
region, the AS is stable. See the text for an explanation of the different lines. The
dotted line is the limit of L4 in the limit of infinite synaptic time constants (see
section 5.3).

Therefore, one can completely describe the role of the synaptic strength in
a two-dimensional plane spanned by these two effective parameters.

Let us consider point X0 = (D = 0,T = 0). A particular realization of
point X0 is obtained in the absence of coupling. Therefore, at X0, the AS is
marginally stable if the system is homogeneous, that is, for σE = σI = σ = 0.
If one introduces any level of heterogeneities, the AS becomes stable in
some region around this point. The size of this region depends on σ (or,
equivalently, on the dispersion of the firing rates in the AS). This result holds
independent of the parameters and the firing rates distribution provided the
symmetry is preserved. It shows that there is always some domain in the
D,T plane where the AS is stable.

What are the boundaries of this region, and what are the instabilities on
these boundaries? An example of the network phase diagram is shown in
Figure 4. It was obtained by solving equation 4.1 for synaptic rise and decay
times of 1 msec and 4 msec, respectively, the average firing rate of the two
populations, ν = 50 Hz, and the standard deviation of the external input
distribution, σ = 0.1. The distribution of firing rates for these parameters
is shown in Figure 3. The region of stability of the AS is bounded by four
lines.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603321043685&iName=master.img-000.jpg&w=191&h=155
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Line L1 is deduced from equation 4.1 by taking µ = 0. It is straightfor-
ward to see that the equation of the line is given by

T = U(0)D + 1/U(0) (4.2)

with

U(0) =
∫ ∞

0
dν

P(ν)ν

2F−1(ν)

[
1 + sin(A + φ) − sin(φ)

A

]
. (4.3)

For the parameters of Figure 4, U(0) = 0.36. On this line, an SN bifurcation
occurs. Above the line, the AS with νE = νI = 50 Hz is unstable through
an SN bifurcation. At the instability onset, the unstable mode grows expo-
nentially but does not oscillate. This corresponds to a change in the average
firing rates of the two populations, νE and νI, but not to the emergence of
synchrony in the network.

Before discussing the general meaning of transition line L2, we consider
two cases:

1. P ≡ gEIgIE = 0, gII = 0, gEE > 0. The two populations are noninteract-
ing, and the inhibitory neurons are decoupled. For such parameters,
the states of the network are represented in the (D,T ) plane by the
line segment: D = 0,T > 0. There is one instability with real eigen-
value for the unstable mode on this segment at point XE = (0, 1/U(0)),

which belongs to L1. All other instabilities in this segment occur in the
region above L1 (not shown in Figure 4). Therefore, for the parameters
of the figure, the excitatory population cannot develop synchrony by
itself.

2. P = gEIgIE = 0, gEE = 0, gII < 0. As in the previous case, the two
populations are noninteracting, but now the excitatory neurons, rather
than the inhibitory ones, are decoupled. This situation is mapped in
the phase diagram on segment D = 0,T < 0. An instability with a
pure imaginary eigenvalue λ = iµc occurs on this segment at point
XI = (0, gc) where gc and µc are solutions to the complex equation:

(iµc + γ1)(iµc + γ2) = γ1γ2gcU(iµc). (4.4)

Solving this equation yields gc = −0.98, µc = 3.02, that is, µc/(2πνI) ≈
0.96. Therefore, at XI, the mutual inhibitory interactions I-I become
strong enough to destabilize the AS with a Hopf bifurcation where
synchrony emerges on the timescale of the spiking average period.
Other solutions of equation 4.4 exist, but they are not relevant since
they occur in the region below XI, where the AS is already unsta-
ble. This mechanism, where synchrony of neural activity emerged
in one population of neurons, has been studied by several authors
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(van Vreeswijk,1996; Wang & Buszáki, 1996; White, Chow, Ritt, Soto-
Treviño, & Kopell, 1998; Neltner, Hansel, Mato, & Meunier, 2000;
Golomb & Hansel, 2000; Golomb, Hansel, & Mato, 2001).

We now consider the general case, P = gEIgIE �= 0, in which the two
populations interact.

It is straightforward to see that if T and D satisfy the relationship

T = D
gc

+ gc, (4.5)

then equation 4.1 is satisfied with µ = µc.
Equation 4.5 defines a straight line (L2) in the (T ,D) plane on which a

Hopf bifurcation occurs. Obviously XI belongs to this line. The intersection
of L1 and L2 defines a point, A ≈ (−2.72, 1.8), where the real parts of
the two eigenvalues vanish. One corresponds to an SN bifurcation and the
other to a Hopf bifurcation. At that point, the AS becomes unstable through
a codimension 2 bifurcation called a Gavrielov-Guckenheimer bifurcation
(Kuznetsov, 1998). The points on L1 and L2 to the left of A are not relevant
as instability onset since they are inside a region where the AS is already
unstable.

The pattern of synchrony into which population α (α = E, I) settles de-
pends in general on the ratio

Rα = µ

2πνα

. (4.6)

Here Rα is close to one, and neurons fire on the average about one spike
per period in the unstable mode. However, the phase relationship between
the spikes and the collective oscillations can change from cycle to cycle.
Consequently, the phase distribution is broad but unimodal.

It can be easily shown that on L2,

εI

εE
= gEE − gc

|gEI| . (4.7)

Therefore, on this line, the phase lag is constant, δ = 0, that is, at the insta-
bility onset, the activities in the two populations oscillate in phase.

Point B on L2 defined by D = g2
c ≡ DB,T = 2gc ≡ TB is a multicritical

point where two eigenvalues have a vanishing real part. This can be shown
by expanding equation 3.16 in the vicinity of B. One finds two other critical
lines, L3 and L4, tangent to L2 in B. Sufficiently close to B, these lines are
given by the equation

T − TB = β1(D − DB) + β2(D − DB)2, (4.8)
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where

β1 = 1
gc

(4.9)

β2 = − |W′(µc)|2
4g3

c�e(W′(µc))2 . (4.10)

Here we have defined W(µ) = γ1γ2U(iµ)/(iµ + γ1)(iµ + γ2), and W′(µ)

is the derivative of W with respect to µ. For the parameters of Figure 4,
β1 = −1.02 and β2 = 47.9. Hence, the expansion, equation 4.8, truncated
at second order, is a good approximation to L3 and L4, only very close to
B. This is why it seems to be a cusp in point B. Beyond B, L2 is no longer
relevant for the instability of the AS.

We conclude that on AB, the AS undergoes an instability to spike-to-spike
synchrony. This instability, driven by the I-I interactions, is the extension in
the framework of two populations of the instability that occurs in one pop-
ulation of inhibitory neurons. The interaction between the two populations
makes this mechanism less efficient. Indeed, from equation 4.5, one sees
that when the feedback between the two populations increases, a stronger
mutual inhibitory coupling, gII, is required for the AS to be destabilized
on L2.

Point D is defined as the intersection of L4 and L1. At that point, the AS
is unstable through a codimension 2 bifurcation called a Takens-Bogdanov
bifurcation (Kuznetsov, 1998). The coordinates of D can also be obtained
by expanding equation 3.16 in the limit µ → 0. One finds that in D, D =
U(0)2,T = 2U(0).

The frequency of the unstable mode, µ, varies continuously on L3 and L4,
as shown in Figure 5. On L4, µ decreases continuously when D increases,
from µ = µc

II = 3.02 at B, to µ = 0 at D. On L3, µ increases slowly when D
increases. In the limit of largeD, µ converges asymptotically to a finite value,
µ∞, and L3 is asymptotic to the straight line defined by T = D/g∞ + gc,
where g∞ and µ∞ satisfy the equation

(iµ∞ + γ1)(iµ∞ + γ2) = γ1γ2g∞U(iµ∞). (4.11)

Note that this equation is identical to the spectral equation describing the
stability of the AS in one population of neurons. For the parameters of
Figure 4, µ∞ ≈ 3.82 and g∞ ≈ 6.5.

The ratio between the frequency of the unstable mode and the average
firing rate of the neurons, R ≡ RE = RI (see equation 4.6), is plotted in
Figure 5. This ratio is larger than 1 on L3. This means that the unstable
mode oscillates faster than the average frequency of the neurons. However
R increases by less than 25% on L3. Therefore, the synchrony that emerges
is on the timescale of the spikes. In contrast, on L4, R varies from R ≈ 1
near B to R = 0 in the vicinity of D. This means that along L4, the pattern
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Figure 5: The ratio R = µ/2πν versus the determinant of the coupling matrix,
D, on lines L3 (dashed line) and L4 (dashed-dotted line) shown in Figure 4.
Points B and D correspond to B and D shown in Figure 4.

of synchrony changes continuously from spike-to-spike synchrony to burst
synchrony in which the neurons have the time to fire several spikes on
average during one period of oscillation of the unstable mode.

The phase lag, δ, on L3 and L4 can be expressed analytically as a function
of D, T , and gEE. From equation 4.1 one finds that

(iµ + γ1)(iµ + γ2) = γ1γ2U(iµ)

2
(T ±

√
T 2 − 4D). (4.12)

Analyzing the numerical solutions of the spectral equation, one finds that
it is negative on L4 and positive on L3. Substitution in equation 3.25 gives
for the phase lag the equation

δ = ± arctan
�m(

√
T 2 − 4D)

gEE − gII
, (4.13)

where the positive (resp. negative) sign is for the phase lag on L4 (resp.
on L3).

The condition T 2 − 4D = 0 defines a line in the phase diagram to which
B, D and the point T = D = 0 belong. Therefore, T 2 −4D < 0 on L3, except
in B and D where T 2 − 4D = 0 (see definition of points B and D). Since
gEE − gII > 0,

cos δ > 0. (4.14)

The phase lag, δ, is a function of the three variables gEE, gII, and gEIgIE and
not only the reduced variables T and D. In contrast to what happens on L2,
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Figure 6: Phase lag of the population oscillations. Solid lines were obtained
from equation 3.25. The squares are results from numerical simulations of a two-
population network with NE = NI = 1600. The positive (resp. negative) part of
the x-axis corresponds to variation of gEE with gII = 0 (resp. gII with gEE = 0).
(A) In the vicinity of L3. The simulations were done keeping a fixed distance
equal to 1 from L3 and with gIE = −gEI. The positive (resp. negative) part of the
x-axis corresponds to variation of gEE (resp. gII). The standard deviation of the
current distribution is σ = 0.1. Other parameters are as in Figure 4. (B) In the
vicinity of L4. The simulations were done keeping a fixed distance equal to 2
from L4 and with gIE = −gEI. The standard deviation of the current distribution
is σ = 0.4. Other parameters are as in Figure 4.

on L3 and L4, it changes continuously and nonmonotonically. It vanishes
in B and D. This is shown, for example, in Figure 6A, where δ is plotted
against gEE (with gII = 0) along the two-line segment L3 and L4 and against
gII (with gEE = 0) for the same two lines.

Equation 4.14 implies that in general, |δ| < π/2. In particular, the activity
of the two populations can never be in antiphase. From equation 4.13, one
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Figure 7: Phase diagram of a two-population QIF network in the symmetric
case. The determinant and the trace of the coupling matrix areD = gEEgII−gEI gIE

andT = gEE+gII, respectively. The standard deviation of the current distribution
is σE = σI = 0.4. Other parameters are as in Figure 4. In the gray region, the AS
is stable. See the text for an explanation of the different lines. The dotted line is
the limit of L4 for very large synaptic time constants (see section 5.3).

sees that the maximum phase lag at the onset of instability, |δ| = π/2, is
achieved only for gEE = gII = 0 (δ = −π/2 on L3 and δ = π/2 on L4).
Finally, on line L3, in the limit of very large D and T , the phase lag returns
to 0, as can be seen in equation 3.25 using equation 4.11. These results are
also confirmed in the example of Figure 6B.

The two line segments, L3 and L4, intersect at point C where D(C) ≈ 7.9
and T (C) ≈ 4.3. Note that µ has different values on the two lines at C, as
can be seen from Figure 5. Therefore, at C, the AS is unstable through a
double-Hopf bifurcation (Kuznetsov, 1998). Whether L3 or L4 is the border
of stability of the AS depends on T . This is shown in Figure 4 for T > T (C).
The AS loses stability on L4, whereas for T < T (C), this occurs on L3.

4.2 The Effect of Heterogeneities. We now consider how the phase dia-
gram for the stability of the AS is modified when the level of heterogeneities
varies.

Figure 7 shows the phase diagram in the symmetric case forσE = σI = 0.4,
with all other parameters the same as in Figure 4. Comparing these two
figures, one sees that in spite of a significant increase in the level of het-
erogeneities, the transition line (L1) has moved only slightly. In contrast,
L2 has substantially moved toward more negative values of T and D. This
can be easily understood because to compensate for the increased desyn-
chronizing effect of the heterogeneities, stronger synapses are required to
destabilize the AS. Line segment L4 is barely modified in the neighborhood
of D, its crossing point with L1. A stronger effect occurs in the vicinity of

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603321043685&iName=master.img-001.jpg&w=189&h=155
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Figure 8: The ratio R = µ/2πν versus the trace of the coupling matrix, T , on line
L4 shown in Figure 7. Points B and D correspond to B and D shown in Figure 7.

B, which moves this point toward more negative values of T and D. Most
of the changes in line segment L4 when σ increases can be explained by
this stronger effect. A more dramatic change occurs for the line segment L3.
Indeed, when the heterogeneities are strong enough, L3 moves completely
to the right of L4. Moreover, on L4, T increases very slowly with D. There-
fore, all L3 becomes located well into the region where the AS is already
unstable, and this instability scenario is now irrelevant.

As in Figure 4, along line L4, the frequency of the unstable mode depends
continuously on the location. However, in contrast to that case, L4 is relevant
as an instability line all the way between points B and C. In Figure 8, we
plotted the ratio of the frequency of the emerging oscillations to the average
firing rate showing the continuous and monotonic variation of this quantity
along L4 from a value slightly larger than 1 at B corresponding to spike-to-
spike synchrony to 0 at D in the vicinity of which the network fires in
synchronous bursts.

To characterize further how the instabilities of the AS depend on the level
of heterogeneities, we computed the value of D on the four lines L1, L2, L3,
L4 as functions of the heterogeneity level, σ , for T with all other parameters
constant. The results are shown in Figure 9. As already noted from the
comparison of Figures 4 and 7, the location of L1 depends only very weakly
on the level of the heterogeneities. In contrast, the destabilization of line L2
is much more sensitive to this parameter. In Figure 9B, the line segment L3 is
clearly much more sensitive to heterogeneities than line segment L4. Indeed,
the coupling strength required on the former line increases much more
rapidly with σ than on the latter line. A consequence of this difference in
sensitivity to heterogeneities is that, as already noted, the two line segments
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Figure 9: Determinant of the coupling matrix,D, versus the standard deviation,
σ on the bifurcation lines L1, L2, L3, L4 for T = 1. The synaptic time constants
are as in Figure 4. (A) L1 (solid line) and L2 (long dashed line). (B) L3 (dashed
line) and L4 (dashed-dotted line).

L3 and L4 interchange their positions in the (D,T ) phase diagram when σ is
large enough. This happens at σ ≈ 0.15. For σ larger than this value, line L3
is located beyond the instability line L4 in a region where the AS is already
unstable. Therefore, in that case only, one instability scenario driven by the
E-I-E interaction loop is relevant.

4.3 The Effect of the Firing Rate. For a fixed architecture and coupling
strength, the average firing rate of the network depends on the external
input. To investigate how the stability of the AS depends on this input,
we studied the solutions of the spectral equation as a function of the aver-
age firing rate, keeping the variance of the threshold distribution constant,
σ = 0.1.

Figure 10A shows how the minimal coupling strength gc required for the
destabilization of the AS in one inhibitory population determined by equa-
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Figure 10: (A) The synaptic coupling, gII, at which the AS becomes unstable in
one inhibitory population versus the average firing rate of the neurons. The stan-
dard deviation of the input distribution is σ = 0.1. The synaptic time constants
are as in Figure 4. (B) The determinant, D, on the bifurcation lines L3 (dashed
line) and L4 (dashed-dotted line) versus the average firing rate of the neurons
in a two-population network (symmetric case) for T = 1. Other parameters are
as in Figure 4.

tion 4.4 varies with the average firing rate. One finds that gc is a nonmono-
tonic function of the average firing rate. The critical coupling is minimum
(gc = −0.98) for a firing rate of ν = 50 spikes per second. Note, however,
that the extremum of the curve is very shallow. Already for gc = −1.5, the
AS is unstable in a broad range of average firing rates.

Figure 10B plots Dc, the value of D at the instability onset on L3, and L4,
for T = 1. This figure shows that on L3, Dc decreases monotonically with
increasing firing rate. Moreover, this instability disappears for ν < νmin =
20 spikes per second at which value Dc diverges. In contrast, on L4, Dc is a
nonmonotonic function of the average firing rate and exists at all values of
the firing rate. The two lines intersect for ν ≈ 40 spikes per second. Below
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this value of the firing rate, the relevant instability of the AS is on L3, whereas
above this value, it is on L4.

4.4 Summary of the Results in the Symmetric Case. Our analysis of
the symmetric case reveals that in a two-population heterogeneous net-
work, the AS can lose stability in four ways. Two of these are not specific to
two-population networks and are an extension in this framework of insta-
bilities that already exist for one population: the rate instability that occurs
on L1 and the spike-to-spike synchrony instability that occurs on L2. At
the onset of the former type of instability, which depends only weakly on
heterogeneities, no synchrony occurs. In the latter case, which is sensitive
to heterogeneities, at the onset of the instability, activities in the two pop-
ulations are synchronized on the timescale of the spikes and oscillate in
phase. The two other types of instability that occur on L3 and L4 are specific
to two-population networks. On L3, the activities in the two populations
oscillate at a frequency on the order of the average firing rate, and the in-
hibitory population is oscillating ahead of the excitatory population. On L4,
the frequency of the population activity oscillations can become very slow.
This happens if both the recurrent excitation and the recurrent inhibition
(the feedback between the two populations) are strong. On L4, the oscilla-
tion of the excitatory population is ahead of the oscillation of the inhibitory
population. Finally, L3 and L4 differ in the way they depend on the level of
heterogeneities. L3 becomes irrelevant if the heterogeneities are large or the
average firing rates are small.

5 Synchrony in Two-Population Networks: The General Case

If the distributions of the firing rates of the two populations are different
in the AS or the synaptic time constants of the excitation and inhibition
are not the same, the stability of the AS (at given firing-rate distributions)
depends on three synaptic coupling parameters gEE, gII, gEIgIE and also on
the synaptic time constants.

5.1 The Effect of the Synaptic Coupling Strength. Figure 11A displays
the phase diagram of the AS in the plane −gEIgIE, gEE when gII = 0. The
synaptic time constants are τ1E = 1 msec, τ2E = 3 msec, τ1I = 1 msec, and
τ2I = 6 msec. The average firing rate of the excitatory (resp. inhibitory) pop-
ulation is 20 Hz (resp. 40 Hz), and σE = σI = 0.2 for both populations. As in
the symmetric case, if the recurrent excitation is strong enough, SN insta-
bility occurs. In the plane −gEIgIE, gEE, this instability occurs on a straight
line, the equation of which is

gEE = 1
UE(0)

− gEIgIEUI(0), (5.1)
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Figure 11: Phase diagram in the asymmetric case. The average firing rate of the
excitatory (resp. inhibitory) population is νE = 20 Hz (resp. νI = 40 Hz). The
synaptic time constants are τ1E = τ1I = 1 msec, τ2E = 3 msec, τ2I = 6 msec.
The standard deviations of the input distributions are σE = σI = 0.2. The AS
is stable in the gray region. In this figure, only the physical branches of the
instability lines are drawn. In particular, L3, which branches at B, is not drawn.
(A) gII = 0. A saddle-node bifurcation occurs on L1 (solid line) and a Hopf
bifurcation on L4 (dashed-dotted line). (B) gEE = 0. Hopf bifurcations occur on
L2 (long-dashed line) and L4 (dashed-dotted line). The difference between these
two bifurcation lines is explained in the text. At E, the instability of the AS is
due to the interactions between the two populations since gEE = gII = 0 at that
point.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603321043685&iName=master.img-003.jpg&w=203&h=341
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where Uα(0), α = E, I is given by equation 4.3, replacing the distribution
P by Pα , the firing-rate distribution in population α. For the parameters of
the figure, one finds UE(0) = 0.53 and UI(0) = 0.4. When gEE increases, this
instability can be prevented by increasing the negative feedback between
the two populations measured by gEIgIE < 0. When this feedback is strong
enough, the AS becomes unstable through a Hopf bifurcation, which occurs
on the line to the right of the phase diagram. On this line, the period of the
population rhythm varies continuously from µ ≈ 1.25 at its intersection
with the x-axis, E, (gEE(E) = 0) to µ = 0 at D. The value of µ at E corre-
sponds to a pattern in which the inhibitory (resp. excitatory) neurons fire
approximately two spikes (resp. one spike) per period of the population
oscillation. Near D, it corresponds to a pattern in which neurons tend to fire
synchronous bursts with many spikes. The properties of the instability on
this line are similar to those found on line L4 in the phase diagrams of the
symmetric case. Because of these similarities, we have denoted this line by
L4 here as well.

Figure 11B displays the phase diagram of the model in the plane −gEIgIE,

gII when gEE = 0. The other parameters are the same as in Figure 11A. The
region of stability of the AS is bounded by two lines. One, L2, corresponds
to the destabilization of the AS when gII is strong enough. Like line L2
in Figures 4 and 7, this line corresponds to the emergence of synchrony
through the I-I interaction. In contrast to the symmetric case, here µ/2π and
δ are not constant on L2. However,µ/2π always remains just slightly smaller,
by less than 4%, than the average firing rate of the inhibitory population,
and δ is always smaller than 15% of the total period.

Another difference with the symmetric case is that L2 is not straight
anymore. However, it deviates only slightly from a straight line. In similarity
with the symmetric case, the slope of L2 is negative. This means that the
feedback between the two populations plays against synchrony through
the I-I coupling. A stronger I-I coupling is required to compensate for this
feedback.

For strong enough feedback, gEIgIE, the AS can lose stability even if
gII is small. This transition occurs on the line to the right in Figure 11B.
On this line, the population frequency varies significantly. Indeed, at B,
µ/2π ≈ 40 Hz, and it is two times smaller at point E. Embedded into the
three-dimensional space, (gEE, gII, gEIgIE), this line connects to L4 from Fig-
ure 11A. We also denote this line by L4 since the instabilities occurring on
these two lines can be thought of as corresponding to a similar synchrony
mechanism. Note that the slope of L4 in Figure 11B is negative. In other
words, increasing gII plays against the destabilization of the AS through
this mechanism.

5.2 The Effect of Synaptic Time Constants. In this section, we analyze
the effect of synaptic kinetics on the stability of the AS for fixed distributions
of firing rates. First, we focus on the effect of the decay times.
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Figure 12: Phase diagrams in the plane γ2I ≡ 1/τ2I, γ2E ≡ 1/τ2I for two different
strengths of the I-I interactions. The average firing rate of the excitatory and
inhibitory populations are νE = 20 Hz and νI = 30 Hz, respectively. (A) gII = 0.
(B) gII = −7.4, Other parameters are τ1E = τ1I = 1 msec, gEE = 6, gEI gIE = −36
and σE = σI = 0.2. In the gray region, the AS is stable. On L2 (long-dashed line)
and L4 (dashed-dotted line), Hopf bifurcations occur. Along L4, the frequency
of the unstable mode µ decreases with γ2I. For instance, in A, µ/2π varies from
11 Hz for γ2I = 0.3 msec−1 to 0 for γ2I = 0. Along L2, µ remains finite and, its
variation is smaller.

Figure 12 displays the phase diagram in the (γ2I,γ2E) plane for gEE = 6,
gEIgIE = −36 and two different values of gII. We consider first the case
where gII = 0. In the limit τ2E → ∞, the AS is always stable. This is
because in that limit, the excitatory input to the inhibitory population is
not modulated in time. Therefore, it is equivalent to a positive constant
current that excites the inhibitory population. The only way synchrony
can occur in this case is through the I-I interactions, which we have as-
sumed to be zero. For finite τ2E, the AS is unstable provided τ2I is suf-
ficiently large. This defines a transition line γ2E = f (γ2I) where function
f (γ ) is an increasing function that vanishes linearly when γ → 0. On
this line, which is plotted in Figure 12A, µ is a decreasing continuous
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function of γ2I. It goes to 0 in the limit γ2I → 0. Since the decay of the
inhibition cannot be faster than its rise time (see equation 2.11), µ can-
not be larger than µ = 0.79, its value for τ2I = 1 msec, on the transi-
tion line in Figure 12A. Therefore, all along the line, the transition leads
to a synchronous bursting state. The bursts are short for fast inhibition
and long when the inhibition is slow. In Figure 12A, the AS stabilizes for
fast inhibition and slow enough excitation. In particular, the fastest exci-
tation compatible with a stable AS (attained for very fast inhibition with
τ1I = τ2I = 1 msec) is τ2E ≈ 50 msec, in the range of NMDA synaptic time
constants.

The phase diagram in the (γ2I,γ2E) plane remains qualitatively the same
as in Figure 12A, provided that gII is sufficiently small. If gII is large enough,
a second instability line appears in the region of the phase diagram corre-
sponding to fast inhibition and slow excitation. This is because for a large
enough gII, the I-I interaction can induce spike-to-spike synchrony in the
inhibitory population. This situation is shown in Figure 12B. Note that the
transition line found for gII = 0 (see Figure 12A) is still present but has been
shifted to much higher values of γ2E.

In contrast to what happens for small values of gII, when the inhibition
is fast (τ2I < 9 msec), the AS is destabilized for slow enough excitation. For
instance, for τ2I = 6 msec, this happens for τ2E larger than 20 msec. Note
that for the parameters of Figure 12B, the AS is stable if the excitatory and
inhibitory synapses are in a range corresponding to AMPA and GABAA
synapses, respectively.

5.3 The Limit of Slow Synapses. The spectral equation, equation 3.16,
can be simplified if one assumes that the synapses have infinitely long decay
time constants. We assume that γ2E = ηγ̄2E and γ2I = ηγ̄2I where η � 1 and
γ̄2E, γ̄2I are finite and we make the ansatz

λ = ηλ̄. (5.2)

Substituting in equation 3.16, expanding at the leading order in η, and us-
ing the fact that

∫ 1
0 dyK(y) = F′(F−1(ν)), one finds that at the onset of an

instability λ̄ = iµ̄ with µ̄ solution of the equation,

((iµ̄ + γ̄2E)−γ̄2EgEEUE)((iµ̄ + γ̄2I)−γ̄2IgIIUI) = gEIgIEγ̄2Eγ̄2IUEUI, (5.3)

where the quantities

Ūα =
∫ ∞

0
dνPα(ν)F′(F−1(ν)) (5.4)

do not depend on µ̄.
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Equation 5.3 is quadratic in µ̄. For µ̄ = 0, one recovers the condition
for the SN bifurcation obtained above (line L1). Another transition line is
found for µ̄ �= 0 on which synchronous oscillations emerge and have a
low frequency, µ ∝ η � 1. During one period of these oscillations, the
neurons burst synchronously since they have the time to fire several spikes
in one oscillation of the populations. If one assumes γ2E = γ2I = γ , it is
convenient to define X = gEEUE + gIIUI and Y = DUIUE. One finds that
an instability to oscillations occurs on the line X = 2 in the (X, Y) plane
and that µ ∝ η � 1 varies continuously on this line. Therefore, sufficiently
strong gEE and not too large gII are required for burst synchrony. More
generally, when γ2E �= γ2I, this onset of slow bursting occurs on a surface
in the three-dimensional space (gEE, gII, −gEIgIE). One also finds here that
a sufficiently strong gEE is required for this instability. In general, one also
finds that increasing gII prevents the emergence of synchronous bursting.

Equation 5.3 is also the spectral equation for the stability of the fixed-
point solutions of the system of two coupled equations,

1
γ̄2E

dνE

dt
= −νE + GE(gEEνE + gEIνI) (5.5)

1
γ̄2I

dνI

dt
= −νI + GI(gIEνE + gIIνI), (5.6)

where the functions Gα(hE, hI) are

Gα(x) =
∫ ∞

−∞
dIQα(I)F(I + x). (5.7)

Let us consider a two-population rate model in which the neurons have
an input-output transfer function F(x) and receive a random external input
with probability density function Qα(I) (α = E, I). In this model, the firing
rate of neuron i in population α, νiα , follows the equation

1
γ̄2α

dνiα

dt
= −νiα + F(Iiα + Isyn

iα ), (5.8)

where the total synaptic current, Isyn
iα , is given by equation 3.1 and Iiα is its

external input. It is easy to check that the dynamics of this model can be
reduced to two effective degrees of freedom: the average firing rate in the
two populations, να(t), α = E, I, which satisfy equations 5.5 and 5.6. These
two equations are nothing other than a two-population mean-field model
with transfer function Gα(x) given by equation 5.7. An example of such a
function is plotted in Figure 13. Therefore, in the limit of very slow synaptic
decay, the instabilities of our spiking model are the same as those of a rate
model (see also Ermentrout, 1994; Bressloff & Coombes, 2000).
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Figure 13: Input-output transfer function of the rate model that corresponds to
the QIF model for σ = 0.4. Other parameters as in Figure 1.

Finally, one can show that if the rise time of the synapses is also very slow
and on the same order of magnitude as their decay time, the quadratic equa-
tion for µ, equation 5.5, is replaced by a quartic equation. This situation is
similar to the previous one except that now the instability to burst synchrony
does not require mutual interactions between the excitatory neurons. Here
too the spectral equation can be derived from the mean-field equations of
a rate model. However, now it is defined by four coupled equations—two
equations for each of the two populations.

5.4 The Effect of the Average Firing Rates. The effect of the firing rates
of the two populations on the stability of the AS has been studied above in
the symmetric case in which the average firing rates of the two populations
were necessarily equal. Here, we consider the case in which the distributions
of firing rates in the two populations are different to understand how this
affects the stability of the AS. In particular, we want to investigate whether
some specific relationship (“resonance”) between the average firing rates
in the two populations is favorable to the emergence of synchrony in the
network.

The SN instability (µ = 0) depends on the firing rates through UE(0)

and UI(0). The maximal value of the recurrent excitatory feedback, gEE, is
given by

gEE = 1
UE(0)

+ |gEI|gIE
UI(0)

1 + |gII|UI(0)
. (5.9)

The quantities Uα(0), α = E, I are decreasing functions of the firing rate.
For large firing rates, they converge to a finite value. Therefore, increasing
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the firing rate of the excitatory population or decreasing the firing rate of
the inhibitory population increases gEE (i.e., stabilizes the AS with respect
to the SN instability). In particular, the maximal value of gEE at this on-
set of instability, when νI changes, is 1/UE(0) + |gEI|gIE/gII. It is reached
in the limit of very small firing rates of the inhibitory neurons. This is
because the sensitivity of the neurons to changes in their input increases
when their firing rate decreases. Therefore, the inhibitory neurons are more
efficient at low firing rates than at high firing rates at preventing the run-
away of the activity of the excitatory neurons due to the excitatory feed-
back.

In the symmetric case, we have found that the interaction with an ex-
citatory population stabilizes the AS with respect to the spike-to-spike in-
stability generated by the I-I interactions. Figure 11B provides an example
that this remains true for the general case. In order to gain more insight
into this property, we computed the value of gII on L2 for different values
of νE and νI with all the other parameters of the model held constant. The
result for νI = 50 Hz is plotted in Figure 14A; in the limit, νE → 0, gII → gc,
where gc is the critical value of the I-I coupling at which the AS would lose
stability in the inhibitory population if it were isolated from the excitatory
population. This is expected since in this limit, the excitatory population
has no effect because it is inactive. In the limit of large νE, also, gII → gc.
This is because in this limit, the modulation of the excitatory drive on the
inhibitory population becomes small, and therefore the excitatory popula-
tion has no dynamical effect on the inhibitory population. For intermediate
values of the excitatory firing rate, gII is a nonmonotonic function of νE. The
minimum value is reached for νE ≈ νI. It is about 25% more negative than gc.
Note that the position and the maximum of gII depend on νI. As a rule, we
have found that when νI is large, this maximum is more pronounced, and it
is located around a value of νE < νI as depicted in Figure 14A. These results
show that in general, the feedback between the two populations disrupts
the emergence of synchrony through the mutual interactions between the
inhibitory neurons unless the average frequencies of the two populations
differ sufficiently.

The frequencies of the two populations affect the instability on L4 in a
different way, as shown in Figure 14B. Here, we have plotted the critical
value of the feedback, −gEIgIE, between the two populations versus the fre-
quencies νE and νI for gEE = gII = 0. The feedback required to destabilize
the AS is minimum, around νE = νI ≈ 27.5 Hz. Note that this minimum is
deep but that its curvature is small. Therefore, in contrast to what happens
on L2, synchrony is favored on L4 if the average frequencies in the two
populations are similar. The behavior for line L3 is similar to the one found
for L4. The critical value of the feedback is smaller when the two popula-
tions have the same firing rate. However, in this case, the system is much
more sensitive to the difference in the firing rates. For instance, a factor of
2 between νE and νI generates an increase of a factor of 10 in the critical
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Figure 14: (A) The strength of the mutual inhibition, gII, for which the AS be-
comes unstable on line L2 versus the average frequency of the excitatory pop-
ulation, νE. The average frequency of the inhibitory population is νI = 50 Hz.
Other parameters are gEE = 2 and gEI gIE = −4. (B) −gEI gIE versus the average fir-
ing rates of the two populations for which a Hopf bifurcation (L4) occurs. Here,
gEE = gII = 0. In A and B, the synaptic time constants are τ1E = τ1I = 1 msec,
τ2E = 3 msec, τ2I = 6 msec and the standard deviations of the input distributions
are σE = σI = 0.2.

−gEIgIE (data not shown here), while the change on L4 is less than 100%.
This behavior is similar to the one found in the previous section: line L3 is
a much less robust transition than line L4.
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6 Numerical Simulations

The study of the solutions of equation 3.16 has allowed us to determine in the
parameter space the AS stability region and the different ways this state can
become unstable. The goal of this section is to complete the characterization
of these instabilities and the patterns of synchrony that emerge beyond their
onset. We focus on the following questions:

• Are the transitions at the onset of instabilities sub- or supercritical
when they occur through a Hopf bifurcation?

• To what extent is the imaginary part of the unstable eigenvalue on the
instability lines a good estimator of the frequency of the population
in the stable oscillatory state in which the network settles beyond but
close to these lines? Is the phase lag, δ, computed from the linearized
dynamics, a good estimator for the actual phase lag between the os-
cillations of the activities in the two populations in the stable state
near the instability onset? The answer to these two questions depends
critically on the nature of the Hopf bifurcation.

• Which one of the excitatory or inhibitory populations is more syn-
chronized near onset of synchrony? How can their relative level of
synchrony be controlled?

In principle, the answer to the first question can be determined analyt-
ically by expanding the dynamics beyond the linear order. However, this
calculation is extremely involved and is beyond the scope of this article.
Therefore, to clarify all these issues, we relied on numerical simulations.
These were performed by integrating the dynamics of the network using
a second-order Runge-Kutta scheme with a fixed time step, dt = 0.1 msec.
This algorithm was supplemented by an interpolation for the determination
of the firing times of the neurons (Hansel, Mato, Neltner, & Meunier, 1998;
Shelley & Tao, 2001).

6.1 The Nature of the Hopf Bifurcations. In a subcritical Hopf bifurca-
tion, the stable fixed point, a stable limit cycle, and an unstable limit cycle
can coexist in some range of the control parameter near the onset of bifur-
cation. This does not happen if the bifurcation is supercritical. One can use
this criterion to characterize the nature of a Hopf bifurcation in numerical
simulations by checking whether the system displays a hysteresis when
the control parameter is changed continuously from a value where only
the fixed point exists up to values where only the limit cycle is stable and
backward.

We performed numerical simulations in the vicinity of the three lines
L2, L3, and L4. The state of the network was characterized by computing
the synchrony level χ in the two populations, as explained in appendix C.
Simulations with different network sizes were compared to check that syn-
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chrony was not due to a finite-size effect. An example of the results of this
study is shown in Figures 6.1A through 15C for σ = 0.1 and network size
NE = NI = 12, 560 near instability points chosen on L2, L3, and L4, respec-
tively. No hysteresis is apparent in the vicinity of the instability points on
L2 (see Figure 15A). Although a small hysteresis cannot be completely ex-
cluded, our simulations were unable to detect it. In contrast, near L3 and L4,
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the network displays some hysteresis (see Figures 15B and 15C). However,
this is a small effect since the range of coupling strength in which it occurs,
as well as the value of the synchrony parameters, χ , on the left branches of
the hysteresis, are small.

When σ increases, a hysteresis also appears near the instability points on
L2. This effect can be seen by comparing Figures 15A and 15D, which were
obtained forσ = 0.1 andσ = 0.4, respectively. However, this is a small effect,
which can hardly be distinguished from sample-to-sample fluctuations if
the network size is too small (result not shown). Near L4, for this value of
σ , the hysteresis has shrunk and cannot be seen.

6.2 The Frequency of the Synchronous Oscillations and the Phase Lag
Between the Two Populations. Our simulations indicate that a supercriti-
cal Hopf bifurcation occurs on L4 for large levels of heterogeneities. There-
fore, one expects that the pattern of synchrony should be correctly predicted
by our linear stability analysis near the bifurcation. This is confirmed in
Figure 16A, where simulation results for the frequency of the population
oscillations near L4 are plotted for the parameters of the phase diagram in
Figure 7.

The simulations were performed along a line parallel to line L4, and
the results are compared with the value predicted from a linear stabil-
ity analysis. In Figure 17A, the potentials of one excitatory neuron and
one inhibitory neuron are plotted for T = 5.25,D = 8. On this point,
the global frequency is much smaller than the firing rate of the neurons.
This means that the system must be bursting, as observed in the simulation.

Figure 15: Facing page. The level of synchrony in the excitatory population close
to the Hopf bifurcations lines in the symmetric case. For each value of the bifurca-
tion control parameter (corresponding to the x-axis), the network was simulated
during 60,000 time steps. At the end of the run, the final state of the network
was kept and used as initial conditions to run a new simulation after the control
parameter was incremented. In each figure, two lines are shown. One corre-
sponds to a sweep positive increment and the other to a negative increment.
The standard deviation of the input is σ = 0.1 (A) The strength of the recurrent
excitation is fixed gEE = 2 and gII was changed. For each value of gII, gEI gEI is
varied to keep D = 0. Predicted transition on L2 at T = −1.11 (vertical arrow).
(B) The E-E and I-I couplings are fixed: gEE = gII = 0. The E-I and I-E coupling
are varied with gEI = −gIE. Predicted transition on line L3 at D = 1.98 (vertical
arrow). (C) The E-E and the I-I interactions are fixed, gEE = 5, gII = 0 and gEI

and gIE are changed simultaneously with gEI = −gIE. Predicted transition on L4
at D = 7.9 (vertical arrow). (D) gII and gEI, gIE are changed such that gEI = −gIE

and D = −1. Predicted transition on L2 at T = −4.2 (vertical arrow). (E) The
E-E and the I-I interactions are fixed: gEE = gII = 0 and gEI and gIE are changed
simultaneously with gEI = −gIE. Predicted transition on L4 at D = 8.11.
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Figure 16: The frequency of the population activity oscillations near the onset
of instability of the AS. The lines represent the predicted frequency from the
solution of the spectral equation, equation 3.16. The squares are the results from
simulations. A network of NE = NI = 1600 was simulated during 60,000 time
steps and the frequency oscillation was obtained by evaluating the autocorre-
lation of the average membrane potential. (A) Parameters as in Figure 7. The
simulations were done near L4 at distance 2 away from L4 with gIE = −gEI and
keeping gII = −2. (B) Parameters as in Figure 4. The simulations were done at a
distance 1 away from line L3 with gIE = −gEI and keeping gII = −2. (C) Param-
eters of Figure 7. The simulations were done at a distance 2 away from line L2
varying gIE = −gEI and keeping gEE = 0.

The Hopf bifurcations that occur on L3 (for small levels of heterogeneities)
as well as on L2 if the level of heterogeneities is sufficient were found to be
subcritical. Therefore, one expects that the actual oscillation frequencies and
phase lags near these lines should deviate from the values obtained for the

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603321043685&iName=master.img-004.png&w=306&h=295
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Figure 17: Synchronous oscillations in which neurons fire bursts of spikes. Pa-
rameters as in Figure 7 with T = 5.25 and D = 8. (A) Excitatory neuron (lower
trace) and inhibitory neuron (upper trace). (B) The membrane potential of the
excitatory (resp. inhibitory) neurons averaged over all the population (lower
line, resp. upper line).

unstable mode in the linear stability analysis. In spite of this, a reasonable
agreement between the predictions and the simulation values was found as
shown in Figures 16B and 16C. This is because the hysteresis near L2 has a
small range and a small amplitude (see, e.g., Figure 15B).

In Figure 6, the phase lag between the oscillations of the activity of the
two populations is plotted as a function of gEE for gII = 0 (A) and as a
function of gII for gEE = 0 (B). The solid and dashed lines correspond to the
predictions from our analytical results. Results from numerical simulations
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performed in the vicinity of the instability lines are represented by squares.
They were estimated from the position of the cross-correlation peak of the
activities of the two populations. In agreement with the linear theory, the
phase lag on L3 and L4 are nonmonotonic functions of the coupling. For
instance, on line L4, it reaches a maximum of π/2 when gEE = gII = 0 and
then decreases as one approaches points B or D in the phase diagram. The
negative sign of the phase lag means that the oscillation of the activity of
the excitatory population is ahead of the inhibitory one. Note that on L3, the
lag has the opposite sign, that is, the inhibitory population oscillates ahead
of the excitatory one. On line L4 near D, the linear theory predicts that the
phase lag should become small and vanish at D. This is confirmed by our
numerical simulations, as shown in Figure 17B.

Finally, the linear theory predicts that at the instability onset on L2,
the phase lag should be zero. Therefore, δ is expected to be small near
L2 when synchrony occurs. Our simulations are in line with this predic-
tion.

6.3 The Level of Synchrony in the Two Populations. For strong enough
gII, the activity of the inhibitory neurons can synchronize as a result of their
mutual coupling. If the feedback between the two populations, −gEIgIE is
weak, the dynamical state of the inhibitory population should not be per-
turbed much. However, the excitatory population is now entrained by the
inhibitory one. Therefore, it develops synchrony. The level of synchrony in
the excitatory population depends on the coupling gEI. For small gEI, one
expects the excitatory population to be weakly synchronized, and the level
of synchrony should increase with gEI. These expectations were confirmed
by our numerical simulations. Moreover, under these conditions, the in-
hibitory population was always substantially more synchronized than the
excitatory one (results not shown). More generally, we found this property
to be true in the vicinity of L2 even for large values of −gEIgIE. This can
be seen in Figure 18, where the synchrony measures, χE and χI, are plotted
against −gIEgEI, for gEI = −gIE/4 (A) and for gEI = −4gIE (B). In both cases,
the transition point on L2 occurs for the same value of −gIEgEI, namely,
−gIEgEI ≈ 3.25. This agrees with the fact that the spectral equation depends
on only gEI and gIE through their product. However, the level of synchrony
in the two populations also depends on the ratio gEI/gIE. On both curves, the
inhibitory population is always more synchronized than the excitatory one.
The synchrony in the excitatory population varies nonmonotonically with
gEIgIE, with an intermediate region where the AS is stable. This is because
the feedback between the two populations has two opposing effects. On the
one hand, it drives the excitatory population, and on the other, it disrupts
the synchrony induced by the mutual I-I interactions in the inhibitory pop-
ulation. Finally, increasing gEI (for fixed gEIgIE) increases χE. This is because
the larger the |gEI|, the stronger is the inhibitory drive on the excitatory
population.
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Figure 18: The synchrony level of the excitatory (solid line) and the inhibitory
populations (dashed line) versus −gEI gIE. The strength of the E-E and I-I in-
teractions are fixed: gEE = 2, gII = −2. Other parameters νE = νI = 50 Hz,
σE = σI = 0.2. A network with NE = NI = 1600 neurons was simulated for dif-
ferent values of gEI and a fixed ratio gEI/gIE. (A) gEI/gIE = −1/4. (B) gEI/gIE = −4.
The level of synchrony was calculated as explained in appendix C (average over
6 seconds). The theory predicts that the AS becomes unstable at −gEI gIE = 3.25
(on L2) and −gEI gIE = 5.7 (on L4) as indicated by the arrows.

In all our numerical simulations, we found that in the vicinity of L2, the
level of synchrony is larger in the inhibitory population than in the excita-
tory one. This is in contrast with what happens near L3. This is shown in
Figure 19. Here, for a given value of −gEIgIE, the relative level of synchrony
depends strongly on the balance between gEI and gIE. For large gEI and
small gIE, the synchrony in the excitatory population is higher than in the
inhibitory one. The opposite happens if gIE is large and |gEI| is small. The
same figure also shows that the synchrony levels near line L4 are affected in
the same way by the balance between gEI and gIE. Making the excitatory to
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Figure 19: The synchrony level of the excitatory (solid line) and the inhibitory
populations (dashed line) vs. −gEI gIE. The strength of the E-E and I-I interactions
is fixed: gEE = 2, gII = −2. Other parameters νE = νI = 50 Hz, σE = σI = 0.1.
A network with NE = NI = 1600 neurons was simulated for different values of
gEI and a fixed ratio gEI/gIE. (A) gEI/gIE = −1/4 (B) gEI/gIE = −4. The level of
synchrony of the two populations was calculated as explained in appendix C
(average over 6 seconds). The theory predicts that the AS becomes unstable at
−gEI gIE = 2.96 (on L2) and −gEI gIE = 5.42 (on L3) as indicated by the arrows.

inhibitory interaction stronger makes the inhibitory population more syn-
chronized, and vice versa.

7 Discussion

In this work, we have analyzed the synchronization properties of a fully
connected two-population system. We have not intended to present a com-
plete model of the cortex, but a simple network model that is amenable to
analytical treatment. A natural but nontrivial extension of our work would
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be to study the stability of asynchronous states in networks with more struc-
tured patterns of connectivity such as the ones found in the visual cortex,
which include local or intracolumnar connections between neurons with
similar feature preference, vertical connections between different layers,
and feedback connections from higher cortical areas. For instance, one ex-
pects that in a network with space-dependent interactions, instabilities of
the AS may lead to traveling waves or other spatiotemporal patterns in
which hot spots of activity move across the system (Ben Yshai, Hansel, &
Sompolinsky, 1997; Hansel & Sompolinsky, 1998; Golomb, 1998; Golomb &
Ermentrout, 1999).

7.1 Three Mechanisms for Synchrony in Two-Population Networks.

7.1.1 The Mutual Inhibition Mechanism. The activity of inhibitory neu-
rons can be synchronized on the timescale of the spikes through their mu-
tual interactions. It has been proposed that hippocampal γ rhythms can
be driven by populations of inhibitory interneurons whose activity is syn-
chronized through this mechanism (Buzsáki & Chrobak, 1995). Synchrony
in one population of inhibitory neurons has been extensively studied in re-
cent years theoretically (van Vreeswijk, Abbott, & Ermentrout, 1994; Hansel,
Mato, & Meunier, 1995; van Vreeswijk, 1996; Wang & Buszáki, 1996; White et
al., 1998; Chow, 1998; Chow, White, Ritt, & Kopell, 1998; Golomb & Hansel,
2000; Neltner et al., 2000; Whittington, Traub, Kopell, Ermentrout, & Buhl,
2000) and experimentally (Whittington, Traub, & Jefferys, 1995; Traub, Whit-
tington, Colling, Buzsáki, & Jefferys, 1996; Traub, Jefferys, & Whittington,
1999, for a review). Here, we have generalized this mechanism to take into
account the effect of a second excitatory population. When the cross-talk
interaction between the two populations is not too large, we have found
that the AS becomes unstable if the mutual inhibition is sufficiently strong.
Excitation plays against this destabilization in two ways. For a given value
of the feedback between the two populations (fixed value of |gEIgIE|), the
strength of the mutual inhibition gII required to destabilize the AS increases
with gEE. Also, for a given gEE, a larger mutual inhibition is required if
the feedback between the two populations is increased. If |gEIgIE| is too
strong, another mechanism for the destabilization of the AS can occur, as
discussed below. These desynchronizing effects of the excitatory population
are stronger when the average firing rates of the two populations are more
similar. In the example shown in Figure 14, |gII| is maximal when the firing
rates of the two populations are similar. Therefore, as far as the value of gII
is concerned, the excitatory population has a strong influence. In contrast,
we have found that the frequency of the unstable mode at the transition is
mainly determined by the average firing rate of the inhibitory population
and depends only weakly on the properties of the excitatory population
and on the way the two populations interact. Related to this fact, we have
shown that the phase shift between the two populations is very small even
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if their average firing rates are very different. In view of these features, this
mechanism can arguably be based on the synchronization of the inhibitory
population.

Our analysis focuses on the mechanisms for destabilization of the AS. We
address this problem by studying local bifurcations of the AS. Therefore,
we did not address the issue of rhythm properties under strong synchrony.
Strongly synchronized states could coexist with the weakly synchronous
states or even the AS. The only way to address this question (and the ques-
tion of the size of the attraction basins of the stable states) is with extensive
numerical simulations. The fact that the frequency of the unstable mode is
determined to a large extent by the average firing rate of the neurons in the
AS does not contradict previous results indicating that when the synchrony
is substantial, the rhythm frequency can depend on the synaptic time con-
stant of mutual inhibition (Whittington et al., 1995; Chow et al., 1998; White
et al., 1998).

7.1.2 The Cross-Talk Mechanisms. We have demonstrated that the AS can
be destabilized with two qualitatively different mechanisms by the cross-
talk interactions between the two populations.

In the first mechanism (on L4), the inhibitory population lags behind the
excitatory one. Therefore, in the unstable mode, an increase in activity of
the excitatory population makes the inhibitory neurons increase their ac-
tivity. This generates in return an increase in inhibition of the excitatory
neurons, which tends to prevent simultaneous firing of many of these neu-
rons. Sufficiently strong feedback between the two populations will prevent
the perturbation from decaying, and synchrony will emerge. Mutual exci-
tation of excitatory neurons favors the development of this instability since
it helps to amplify perturbations in the E population. Mutual inhibition of
inhibitory neurons disrupts the development of this instability since it re-
duces the excitability of this population. In this mechanism, synchrony is
induced by recurrent inhibition of the excitatory population. It has been
investigated mostly by numerical simulations in previous studies and has
been proposed as a mechanism for γ oscillations (Jefferys, Traub, & Whit-
tington, 1996). However, as shown here, this mechanism can lead to slow
oscillations. The oscillations can be so slow that the neurons develop bursts
of action potentials.

In the second type of cross-talk instability (on L3), the inhibitory popu-
lation tends to fire in advance with respect to the excitatory one, preventing
the excitatory neurons from firing. In return, this deexcitation reduces the
activity of the inhibitory neurons. This instability does not decay provided
that the feedback between the two populations is sufficiently strong. The
global oscillations near this instability are on the order of or faster than the
average firing rate of the neurons.

These two mechanisms are qualitatively different from the mutual inhi-
bition mechanism. Indeed, we have found that the frequency of population
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activity as well as the phase shift between the oscillations in the two popula-
tions vary substantially and continuously on the corresponding instability
surfaces. Also, the emerging oscillations in the two populations can display
a large phase shift, δ. However, in all the examples we have studied, the
numerical solution of the spectral equation reveals that |δ| < π

2 . We did not
prove this statement in general. However, we have proved that in the sym-
metric case, |δ| = π/2 on onset instability lines L3 and L4 at gEE = gII = 0.
We have also shown that δ has a local maximum at that point. Without
the assumption of symmetry between the two populations, we have also
shown that the oscillations of the two populations become in phase when
the emerging rhythm becomes very slow.

7.1.3 Robustness of Synchrony to Heterogeneities. A systematic and com-
parative study of the robustness of the various modes of destabilization
would be a very tedious task. Nevertheless, some general trends emerge
from the study of the spectral equation in the symmetric case. The coupling
strengths required for destabilization on L2 and L3 depend crucially on the
heterogeneity level (see Figure 9). This is in contrast with what happens
for L1 and L4 where the dependence is much weaker. Thus, the recurrent
inhibition is the most robust mechanism for synchronous oscillations. An-
other difference between line L3 and the other lines is that for sufficiently
large σ , L3 lies completely inside a region, which is beyond instability line
L4. Therefore, when the level of heterogeneities increases, this line becomes
physically irrelevant. In this sense, the mechanism corresponding to this in-
stability line is much less robust than the other mechanisms. Similar trends
were also found in all the examples we investigated after relaxing the sym-
metry assumption.

Recent studies have suggested that because of heterogeneities, synchrony
in inhibitory networks can be difficult to achieve (White et al. 1998; Chow et
al., 1998). Our study provides an example of a model in which the desynchro-
nizing effect of large levels of heterogeneities can be overcome provided that
the external excitatory drive and the synaptic interactions are sufficiently
strong. Simulation results in the framework of a conductance-based model
were found to be consistent with this conclusion (Neltner et al., 2000). This is
in contrast with the behavior of inhibitory networks of leaky integrate-and-
fire models where for sufficiently large level of heterogeneities, the AS is
always stable (Golomb et al., 2001). For sufficiently strong coupling, the AS
is stable even if the network is homogeneous. This is yet another difference
with the present model. Below, we elaborate further on these differences.

7.2 Getting Rid of Synchrony. The frequent occurrence of synchronous
neuronal activity in physiopathological states in the brain (see Bergman
et al., 1998; McCormick & Contreras, 2001) suggests that in many situ-
ations, synchronous states of activity need to be prevented. The issue is
to understand how synchrony can be prevented in particular in systems
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where massive feedback interactions are observed. Our analysis shows that
even if the interactions are strong, a suitable balance between excitation
and inhibition stabilizes the AS. We have proved this statement for our
model in full generality and analytically under the assumption of sym-
metry between the two populations. Indeed, for D = T = 0, the AS is
marginally stable without heterogeneities, and it becomes stable when het-
erogeneities are added. Besides the presence of heterogeneities, this implies
that if the excitatory feedback connections, gEE, are strong, the two popu-
lations must interact strongly, and the mutual interactions of the inhibitory
neurons must be strong to ensure that the AS is stable. In particular, if
gII is not strong enough, the system tends to fire synchronous bursts. In-
creasing gII reduces the excitability of the inhibitory population, preventing
the synchronous bursts from developing. This desynchronizing effect of
mutual inhibition also holds in the nonsymmetric case, as shown in Fig-
ure 11.

7.3 Application to the Stability of Persistent Activity. Hebb (1949) pro-
posed that the representation of an object in short-term memory consists of
the set of cortical cells that this object activates when it is presented. Accord-
ing to this hypothesis, the reverberation of excitation across this set is able
to maintain activity even when the stimulus has been removed, thus pre-
serving a memory of the object. In other words, the network displays multi-
stability. The fact that persistent activity requires strong excitatory feedback
poses the problem of control of neural activity in persistent states at firing
rates in the range 10 to 30 spikes per second, as observed in experiments.
Wang (1999) has argued, mostly on the basis of numerical simulations, that
to achieve a stable persistent state with activities in a physiological range
(10–50 Hz), recurrent excitatory synapses must be dominated by a slow
component. It was subsequently proposed that NMDA synapses were re-
quired to achieve such states. Another possibility is that inhibition controls
the firing rate (Rubin and Sompolinsky, 1989). However, recurrent inhibi-
tion can also induce synchrony, and this can be incompatible with low rate
persistent activity. Indeed, if the neurons fire synchronously in some short
time window, the fast excitatory feedback will decay before the neurons fire
their next spike. Note, however, that weak synchrony may be compatible
with persistent activity.

The results shown in Figure 12 indicate that strong mutual inhibitory in-
teractions with synaptic time constants in a range corresponding to GABAA
synapses stabilize the AS even if the recurrent excitation is mediated by
nonsaturating AMPA synapses. Therefore, strong GABAA mutual inhibi-
tion should help achieve a stable persistent state. This is in line with the
conclusions of our previous study (Hansel & Mato, 2001), in which the
threshold distribution had a finite support. Here, we show that this is true
for a gaussian distribution of threshold without truncation (see Figure 3).
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At first glance, this contradicts the results of Wang (1999). However,
I-I interactions were not included in Wang’s study. This may explain why
it concluded that stable persistent activity was impossible to achieve with
AMPA excitatory synapses and that NMDA synapses were necessary. One
should note that recent anatomical and physiological studies have revealed
that I-I connections are numerous and strong in the cortex (Sik, Penttonen,
Ylinen, & Buzsáki, 1995; Tarczy-Hornoch, Martin, Jack, & Stratford, 1998;
Gupta, Wang, & Markram, 2000). The role we suggest for these connec-
tions in the stability of persistent activity fits nicely with these experimental
results, without excluding that NMDA synapses could also contribute to
delay period activity in cortex.

7.4 Comparison with Networks of Leaky (Linear) Integrate-and-Fire
Networks. In the absence of noise, a very precise fine tuning of the external
input is required to get a LIF neuron to fire below 8 spikes per second. This
is due to the logarithmic behavior of the ν-I curve near current threshold.
Furthermore, there is an exponential divergence of the function H(ν) (the
equivalent of equation 3.18 for the leaky integrate-and-fire neuron; Golomb
et al. 2001) when ν → 0 unless P(x) vanishes at least exponentially fast
when x → 0. In this situation, U also diverges, and the spectral equation is
not well defined. This divergence is due to the fact that at very low rates,
the LIF model spends an exponentially long time near the threshold. This is
because leaky integrate-and-fire neurons integrate their inputs in a purely
passive way. As a consequence, if the external currents the neurons receive
are distributed according to a gaussian, the resulting distribution of firing
rate does not vanish sufficiently fast at zero firing rate for the integrals in
H(ν) to converge. To avoid this problem, a gaussian distribution of period
was chosen in Golomb et al. (2001). In contrast, for the QIF model in the limit
of very low rates, H(ν) goes as (exp(−λ/ν)−1)P(ν)/ν. Therefore, in this limit,
U is proportional to the average period of the population, which is defined
even if the distribution of firing rates does not vanish at zero frequency.

Another difference between the two models is that in LIF inhibitory net-
works, instability of the AS can lead to cluster states (van Vreeswijk, 1996;
Neltner et al., 2000; Golomb & Hansel, 2000). The number of clusters thus
generated can be rather large, especially at low firing rates. This does not
happen in our model, since the numerical solution of the spectral equa-
tion reveals that the onsets to clustering instabilities are always within the
regions where the AS is already unstable. These instabilities are therefore
irrelevant for the AS. Of course, this does not exclude the possibility that
clustering occurs far from the onset of the instabilities in our model as well.
The origin of this different behavior can be clarified in the weak coupling
limit. In this limit, the instabilities of the AS can be related to the Fourier ex-
pansion of the response function, Z(φ), of the neurons, where φ is the phase
variable describing the position of the neuron on its limit cycle (Kuramoto,
1984; Neltner et al., 2000). Destabilization of the AS through an n-cluster
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instability mode in a heterogeneous network requires a large Fourier coef-
ficient of order n. In the LIF model, the function Z is an exponential and is
discontinuous at φ = π/2. Therefore, all the Fourier coefficients are large
and even diverge in the limit of small firing rates. One can further show that
in this limit, the order of the unstable leading mode increases. In contrast,
for the QIF, the amplitude of the response function diverges but proportion-
ally to cos(φ) (up to a constant). Therefore, the dominant mode becomes the
first one. This difference has its origin in the way the membrane potential
approaches the threshold potential at low rate. In the LIF the derivative of
the membrane potential that is just before the spike threshold goes to zero
with the firing rate. This is not the case for the QIF where this derivative is
proportional to V2

t �= 0.

7.5 Relation to Previous Studies. Mechanisms of neuronal synchrony
have been addressed in recent years, following two different and comple-
mentary theoretical approaches. One has been to study the conditions under
which fully synchronized states or more general phase-locked states are sta-
ble in fully connected networks of identical neurons (Wang & Rinzel, 1992;
Hansel, Mato, & Meunier, 1993b; van Vreeswijk et al., 1994; Hansel, et al.,
1995; White et al., 1998; Chow, 1998; Crook, Ermentrout, & Bower, 1998).
The other approach has been to investigate the conditions of the stability of
the asynchronous state of a large neuronal system (Abbott & van Vreeswijk,
1993; Gerstner & van Hemmen, 1993; Treves, 1993; van Vreeswijk, 1996,
2000; Brunel & Hakim, 1999; Brunel, 2000; Golomb & Hansel, 2000; Neltner
et al., 2000; Gerstner, 2000). The latter approach was followed here.

This article aims to contribute to a comprehensive understanding of
the patterns of synchrony in two-population heterogeneous neuronal net-
works with full connectivity. In order to make the model more amenable
to analytical calculations, noise was not introduced. An expected conse-
quence of adding input noise is to increase the parameter domain where
the AS is stable. Still, if the noise is not too strong, simulations indicate
that three instabilities may occur for the AS. However, another type of in-
stability can also be found if the noise is strong enough. It leads to a state
in which the population oscillations are faster than the average firing rate
of the neurons. In this state, the firing pattern of the neurons can be very
irregular, and averaging over a large number of neurons is necessary to
reveal the existence of the underlying rhythmic component in the network
activity. Such patterns of synchrony, called fast oscillations, were studied
first by Brunel and Hakim (1999) in sparse networks of inhibitory leaky
integrate-and-fire neurons. The results of this study were subsequently gen-
eralized to the case of two populations with sparse connectivity (Brunel,
2000; N. Brunel, C. Geisler, & X.-J. Wang, private communication Dec. 2001).
More recently, Brunel and Hansel (2002) have shown that sparse connectiv-
ity was not required for fast oscillations to take place but that they can
occur in a fully connected network of inhibitory neurons in the presence
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of strong input noise. Increasing the coupling destabilizes the AS, leading
to a state where the neurons fire synchronously at a rate that can be sig-
nificantly smaller than the population oscillations. Therefore, when noise
is also present, the AS can become unstable through four generic mecha-
nisms.

The all-to-all connectivity considered here can be thought of as the ex-
treme case of a system in which the connectivity is high. Indeed, we have
checked that our results still hold when the connectivity is random and
sufficiently dense (results not shown). However, an important difference
exists between the collective behavior of densely and sparsely connected
networks. In densely connected networks in the absence of input noise, the
neurons discharge in a very regular manner. This is because the fluctua-
tions in the synaptic input are small—of the order of O(1/K), where K is
the connectivity. In contrast, in sparse networks with strong excitatory and
inhibitory synapses, the firing of the neurons can be highly irregular even if
no input noise is present (van Vreeswijk & Sompolinsky, 1996, 1998; Brunel,
2000). In this state, the stochasticity of the firing is of deterministic origin,
and the fluctuations in the synaptic input remain large due to a balance
between excitation and inhibition.

We have shown that in the presence of an excitatory population, a stronger
coupling is required to synchronize activity through mutual inhibition. A
similar conclusion was reported in Traub, Jefferys, and Whittington (1997)
relying on a simulation of a detailed conductance-based model. These au-
thors found that excitation can destroy a synchronous state generated by
mutual inhibition. We should also remark that the desynchronizing effect
of excitation is a characteristic feature of type I neurons. For type II neurons
(such as in the Hodgkin-Huxley model), excitation can have a strongly syn-
chronizing effect, especially at low firing rates (Hansel, Mato, & Meunier,
1993b; Hansel et al., 1993a, 1995).

The fact that mutual inhibition can prevent recurrent inhibition to induce
synchrony was noted by Tsodyks, Skaggs, Sejnowski, and McNaughton
(1997) in the framework of a two-population rate model. In this work,
strengthening the I-I interactions was shown to prevent the two popula-
tions from developing synchronous oscillatory rate modulations. Since we
have seen that in the limit of infinitely slow synapses, the spectral equation
becomes equivalent to the spectral equation of a rate model, it is not sur-
prising that in that limit, our conclusions agree with the results of Tsodyks
et al. (1997). However, mutual inhibition is a powerful way to generate syn-
chrony on a timescale comparable to the timescale of AMPA and GABAA
interactions. Therefore, it was not clear a priori that this mechanism would
still hold for these synapses. Our detailed stability analysis of the AS shows
that this is indeed the case.

A desynchronizing effect of mutual inhibition was also reported by Bush
and Sejnowski (1996) in simulations of a two-population model of a column
in primary visual cortex. It was found that when the inhibition between the
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basket cells is increased, the temporal modulation of the local field potential
is decreased and the neurons are less bursty. However, in this work, the firing
rate of the neurons changed when the mutual inhibition was increased.
Another difference with our work is that in the simulations presented by
Bush and Sejnowski, the neurons were intrinsic bursters. Therefore, in their
case, the desynchronizing effect of mutual inhibition could also have been
the consequence of a disruption of the intrinsic bursting when the inhibitory
synaptic input became stronger.

Excitatory cells in cortex display strong spike adaptation, whereas in-
terneurons do not. To reduce the number of parameters of our two-popu-
lation model, we assumed the dynamics of the two populations were iden-
tical and spike adaptation was not introduced in the excitatory dynamics.
Recent theoretical studies have investigated the dynamics of excitatory net-
works of neurons with spike adaptation (van Vreeswijk & Hansel, 2001;
Fuhrman, Markram, & Tsodyks, 2002). In these works, it was demonstrated,
mostly analytically, that excitation and spike adaptation can cooperate to
create synchronous oscillatory activity and that the frequency of these oscil-
lations depends on the kinetics of the adaptation process. In particular, if the
excitatory recurrent feedback and the adaptation is sufficiently strong and
slow, the network settles into a state in which the neurons fire synchronous
bursts (van Vreeswijk & Hansel, 2001). How an additional population of in-
hibitory neuron modifies this type of synchronous state was subsequently
studied, relying on numerical simulations (van Vreeswijk & Hansel, 2001).
The main conclusion was that recurrent inhibition of the excitatory popula-
tion (E-I-E feedback loop) plays against the emergence of the synchronous
bursts but that mutual inhibition (I-I interactions) favors it. In contrast, we
have found in our model that recurrent inhibition favors the synchronous
bursting that emerges on instability lines L3 and L4 but that mutual inhi-
bition disrupts it. Keeping in mind that spike-to-spike synchrony can be
induced by mutual inhibition, inhibitory interactions can thus have a spec-
trum of qualitatively different effects in two-population networks.

Appendix A: The Wang-Buszáki Model

The dynamical equations for the conductance-based neuron model used in
this work are (Wang & Buszáki, 1996):

C
dV
dt

= Iext−gNam3
∞h(V−VNa)−gKn4(V − VK)−gl(V−Vl)+Isyn (A.1)

dh
dt

= h∞(V) − h
τh(V)

(A.2)

dn
dt

= n∞(V) − n
τn(V)

. (A.3)
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The parameters gNa, gK, and gl are the maximum conductances per sur-
face unit for the sodium, potassium, and leak currents, respectively, and
VNa, VK, and Vl are the corresponding reversal potentials. The capacitance
per surface unit is denoted by C. The external stimulus on the neuron is
represented by an external current Iext, and the synaptic current due to the
interactions with other neurons in the network is Isyn. The functions m∞(V),
h∞(V), and n∞(V) and the characteristic times (in milliseconds) τm, τn, τh, are
given by

x∞(V) = ax/(ax + bx), τx = 1/(ax + bx)

with x = m, n, h and:

am = −0.1(V + 35)/(exp(−0.1(V + 35)) − 1) (A.4)

bm = 4 exp(−(V + 60)/18) (A.5)

ah = 0.35 exp(−(V + 58)/20) (A.6)

bh = 5/(exp(−0.1(V + 28)) + 1). (A.7)

The other parameters of the sodium current are gNa = 35 mS/cm2 and
VNa = 55 mV. The delayed rectifier current is described in a similar way as
in the HH model with

an = −0.05(V + 34)/(exp(−0.1(V + 34)) − 1) (A.8)

bn = 0.625 exp(−(V + 44)/80) (A.9)

and gK = 9 mS/cm2 and VK = −90 mV. Other parameters of the model are
C = 1 µF/cm2, gl = 0.1 mS/cm2, and Vl = −65 mV.

This neuron model displays an SN bifurcation at the current threshold
to repetitive firing, Ic, in the vicinity of which the relationship between the
current, I, injected in the neuron and its firing rate behaves like f ∝ √

I − Ic
for I > Ic. Therefore, they are able to fire at an arbitrarily small rate. This
is also seen in Figure 1, which represents the frequency-current relation of
this model.

Appendix B: Reduction of a Conductance-Based Model to the QIF
Model

We consider a type I conductance-based model. The equations of the single-
neuron dynamics can be written in compact form:

dX
dt

= F(X) + G(X). (B.1)
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In the case of the WB model, X, F, and G are three-dimensional vectors with:

X1 = V (B.2)

X2 = h (B.3)

X3 = n (B.4)

F1(X) = (Ic−gNam3
∞h(V−VNa)−gKn4(V−VK)−gl(V−Vl))/C (B.5)

F2(X) = (h∞(V) − h)/τh(V) (B.6)

F3(X) = (n∞(V) − n)/τn(V) (B.7)

G1 = I − Ic (B.8)

and G2 = G3 = 0. Following Ermentrout (1996), one can study this dynamics
in the vicinity of firing onset. One writes:

G(X) = εN(X), (B.9)

where ε � 1. For ε < 0, the neuron is not firing. It displays a stable fixed
point: X = X̄(I). For ε > 0, the neuron fires action potentials. At ε = 0, a
bifurcation occurs. The Taylor expansion of F(X) around X� = X̄(Ic) is

F(X) = F(X�) + A(X − X�) + Q(X − X�, X − X�) + · · · (B.10)

where A and Q are, respectively, the Jacobian and the Hessian matrices of
F evaluated at X�. Since an SN bifurcation occurs at X�, the matrix A has
one zero eigenvalue. The corresponding normalized eigenvector will be
denoted by e. Similarly, AT, the transpose of A, has a zero eigenvalue. We
will denote by f the corresponding eigenvector satisfying f.e = 1. For small
ε > 0, the solution X(t) of equation B.1 can be expanded,

X(t) = X� + √
εz(t)e (B.11)

where the scalar quantity z satisfies (Ermentrout & Kopell, 1986)

dz
dt

= √
ε(η + qz2), (B.12)

where: η = f.N(X�) and q = f.Q(e, e). This equation can easily be solved.
Assuming that η and q have the same sign, one finds

z(t) =
√

η

q
tan

√
ηqε(t − t0), (B.13)

where t0 is a constant. Function z diverges when the argument of the tangent
is a multiple of π/2. These divergences correspond to the firing of an action
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potential in the original system (Ermentrout & Kopell, 1986). Therefore, in
the limit ε → 0, the firing frequency of the neuron vanishes as

ν = B
√

I − Ic, (B.14)

with

B =
√

ηq
π

. (B.15)

Coefficient B can be calculated by diagonalizing matrix A. It turns out that
due to the particular structure of this matrix, expressions for e, f, Q(e, e)

can be derived analytically in terms of the gating functions (this fact has
apparently escaped attention in previous papers). In particular, for the WB
model, one finds that

e = K(1, h
′
∞, n

′
∞) (B.16)

f = 1
LK

(
1, τh

∂F1

∂h
, τn

∂F1

∂n

)
(B.17)

where

K = 1√
1 + (h′

∞)2 + (n′
∞)2

(B.18)

L = 1 + τh
∂F1

∂h
h

′
∞ + τn

∂F1

∂n
n

′
∞. (B.19)

The derivative of function f (V) with respect to V has been denoted f
′
. In

these expressions, all the functions have to be evaluated for V, n∞, h∞ at the
fixed point of the dynamics.

Finally we find:

B = 1
πL

√√√√1
2

(
∂2F1

∂V2 +2
∑
i=2,3

X′
i

∂2F1

∂V∂Xi
+(n′

∞)2 ∂2F1

∂n2 +
∑
i=2,3

X′′
i
∂F1

∂Xi

)
. (B.20)

The Taylor expansion of the dynamics, equation B.10, is valid in the limit
of low firing rate except during an action potential where the variable z di-
verges. If I is sufficiently close to threshold, an approximate trajectory for the
vector X(t) can be computed from z(t) and the vector e. This approximation
is a good description of the behavior of the neuron except during the spikes,
which are of short duration. It becomes exact in the limit I → Ic. Therefore,
near the firing onset, one can replace the full model, equation B.1, by the
reduced model, equations B.11 and B.12, where all the parameters can be
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computed from the full model. In particular, the shape of the f-I curve near
threshold is given by equation B.14.

When I − Ic is not small, this reduction is no longer exact. However, one
can generalize it heuristically as follows. We consider that action poten-
tials are fired whenever z crosses (from below) some threshold, zt. Then z
is immediately reset to a value zr and it evolves again according to equa-
tion B.12.

The two phenomenological parameters, zt and zr, cannot be determined
by the exact reduction method detailed above. Instead, we estimate them
by requiring that the f − I curve fits the f − I curve of the full model as well
as possible.

Appendix C: A Measure for the Synchrony Level

To characterize the degree of synchrony in a population of N neurons in the
simulations, we measure the temporal fluctuations of the membrane poten-
tial averaged over the population (Hansel & Sompolinsky, 1992; Golomb &
Rinzel, 1993, 1994; Ginzburg & Sompolinsky, 1994). The quantity

V(t) = 1
N

N∑
i=1

Vi(t) (C.1)

is evaluated over time, and the variance σ 2
V = 〈[V(t)]2〉t − [〈V(t)〉t]2 of its

temporal fluctuations is computed where 〈. . .〉t denotes time averaging.
After normalization of σV to the average over the population of the single
cell membrane potentials σ 2

Vi
= 〈 [Vi(t)]2〉t − [〈Vi(t)〉t]2, one defines χ(N),

χ (N) = σ 2
V

1
N

∑N
i=1 σ 2

Vi

, (C.2)

which is between 0 and 1. The central limit theorem implies that in the limit,
N → ∞ χ(N) behaves as

χ (N) = χ (∞) + a
N

+ O
(

1
N

)
, (C.3)

where a > 0 is a constant. In particular, χ(N) = 1, if the system is fully
synchronized (i.e., Vi(t) = V(t) for all i), and χ (N) = O(1/N) if the state
of the system is asynchronous. In the asynchronous state, χ(∞) = 0. More
generally, the larger χ(∞) > 0, the more the population is synchronized. In
networks with more than one population of neurons, we define a synchrony
measure χ for each population separately.
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