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1 Introduction

We will review in this chapter some developments in the use of the theory of
stochastic processes and nonlinear dynamics in the study of large scale dynami-
cal models of interacting spiking neurons. Without aiming at a full coverage of
the subject, we will review the basic principles underlying the approach, provide
a very brief (and probably biased) selection of key theoretical results in the last
decade, and give a short account of our own work on the subject.

Undertaking to summarize the way in which a large set of interacting neurons
can be usefully described as a stochastic dynamical system in biologically moti-
vated modelling, the question present itself as to why on earth the brain, exhibiting
clear signs of a very sophisticated organization in its ability to perform perception
and processing tasks, should be approached as a stochastic system in the first place.

David H. Hubel remarked, in a nice popular science book [1], that anybody
claiming that the brain can be described as a random system must have never
looked at a real brain. In fact, the intriguing possibility, surfacing now and then
in the physicists’ approach to the problem, is that the structured aspects of the
brain activity are, at least in part, ‘mesoscopic’ emerging dynamical properties of a
largely ‘random’, underlying intricate web of neurons and synapses. Withrandom
we allude here to the combination of several effects, ranging from the microscopic
noise in the single synaptic transmission events, to the irregular pattern of synaptic
connectivity among neurons in a population. Most notably, the messages the neu-
rons exchange in the stereotyped language of temporal sequences of spikes, bear
an impressive resemblance to samples of stochastic point processes.

If, then, one takes the view that the spike traffic can be usefully described as
being generated by suitable stochastic processes, how can one recover the stimulus
dependence of neural activity, and whatever features attach a functional meaning
to the activity of neurons? The latter should appear as modulations of the statistical
quantities describing the sequences of spiking events in a population of neurons,
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such that for example the time- dependent average, variance, or correlation of the
spike trains will turn out to express computationally relevant features of the collec-
tive neural dynamics.

In cortical conditions, if we are allowed to speak about a ‘typical’ neuron,
even its ‘rest’ condition will in fact be a very noisy one: an ongoing synaptic
bombardment due to thespontaneous activityof the surrounding neural population.
Even though the spike emission rate is very low in spontaneous activity (few spikes
per second), the typical neuron has very many afferents (thousands of them), which
sum to several tens of thousand spikes per second received in ‘rest’ conditions [2].

On top of this deafening background noisesignalshave to find their way, solv-
ing a hard signal-to-noise ratio problem, the signal being whatever modifications
in the neural activities are evoked by a stimulation or a computation, and the noise
is the unspecific spontaneous activity.

A possible solution is to make signals detectable by extra spikes coming to our
neuron, from aselectiveset of cells belonging to a sensory or processing path-
way: either making the selective emission rate overwhelmingly high, or having
many neurons selectively increase their frequency. Experimental evidence on the
selective emission rates in the cortex tends to rule out the former solution.

One way to implement the latter, population-rate based, solution to the signal-
to-noise ratio problem relies on the ability of the noise to modulate the sensitivity
of the neural system to small changes in the average rate of afferent spikes. For
example, a population of neurons having their membrane potential fluctuating just
below threshold ([3, 4]) due to background noise can very quickly react to small
changes in the average input current. Another example, which received recently
much attention, is thestochastic resonancescenario [5].

Another rate-based approach, pursued with considerable success in the last 15
years or so, is to have stimulus-induced, highly nonlinear dynamics of the collec-
tive state of an interacting population of neurons with intense feedback. The popu-
lation can signal significant changes in the statistics of neurons’ input by jumping
from the global, unspecific spontaneous state to a selective collective state. Also
in this case, the noise can act as a key dynamical ingredient, i.e. favoring multi-
stability.

The above rate-based scenarios do not require, or entail, the establishment of
any special temporal structure in the spike trains travelling in the population; the
time dependent average emission rate, the oldest and simplest neural correlate of
a stimulation in the electrophysiology tradition, would still be an essentially com-
plete dynamical description of the system.

Alternatively, the strategy could be that of relying on the precise timing of
‘meaningful’ spikes, having them count because they are detected to be correlated
in time, in the face of their relatively small number. Such a possibility cannot

2



be ruled out, and it is in fact both a major line of research, and an hotly debated
issue; on the other hand, even when experimental findings seem in favor of this
hypothesis, it is still to be figured out in details how the putative synchronization
taking place in one set of neurons could be efficiently ‘read’ by downstream neural
populations.

With a caution about the above mentioned, and well known, persisting debate
on the ultimate nature of the neural code, in this brief review we conform to the
view that the average spike emission rate in a neural population completely char-
acterizes the system, and will set aside from now on questions of principle as for
the biological motivations and plausibility, and will concentrate on techniques and
results in the probabilistic approach to the dynamics of ensembles of neurons.

The main steps involved in the construction of such an approach are essentially
the following: i) Define the specific single neuron model (different types of leakage
currents, adaptation etc.); ii) Characterize the single neuron dynamics of the cho-
sen model for stochastic input currents: typically (under conditions to be specified)
Gaussian, white (or moderately colored) noise. The usual quantities of interest are
the averagefirst passage time(see later), the statistical distribution of the time
intervals between spikes, the equilibrium distribution of the neuron’s membrane
potential, in a stable asynchronous state; iii) Extend the stochastic formulation to
a population of interacting neurons, making the statistics of the neurons’ afferent
currents dependent on the average activity of those same neurons; iv) Work out
the stationary properties in the interacting case; v) Compute the corrections due to
the finite number of neurons in the population; vi) Devise approximate methods
for dealing with the transient behavior of the system (at least for not too large de-
partures from the reference stable asynchronous state, where a linearization will
be possible); vii) Characterize the frequency response properties (the power spec-
trum) of the neural population; viii) Venture to move, with the same equipment, to
the open sea of dynamical states far from stable asynchronous conditions or small
perturbations of them, such as collective oscillations,i.e. limit cycles of the system
dynamics, and other attractors.

2 Stochastic single neuron dynamics

In the following we will adopt as the single neuron model the Integrate-and-fire (IF)
model, most widely used workhorse in neural modelling; we shall neither review
the motivations for the IF model, nor shall we discuss its many variations and their
biological plausibility (for a thorough discussion see for example [6, 7, 8]). We
will simply state its general form, and most of the results that follow will in fact be
quite general in the IF-neuron framework.

3



The generic IF neuron is point-like and described only by the value of its mem-
brane potentialV at timet:

V̇ = f(v) + I(V, t)/C (1)

whereC is the capacitance of the neuron’s membrane (which will be omitted in
the following, assuming the current to be measured in units of voltage/time). Two
choices for the leakage termf(v) correspond to theLeakyandLinear IF neuron

f(v) =
{− v

τ leaky IF
−β linear IF

(2)

The first is the most frequently version of IF neuron, while the second (see [9]) is a
version of the Gerstein and Mandelbrot linear model [10], in which a key ingredient
is introduced: a lower bound on theV values, acting as a reflecting barrier for the
corresponding stochastic process (see below). The latter IF model was found to be
convenient for electronic VLSI implementations [11, 12].

The driving current in Eq. (1) is

I(V, t) = I(t) =
∑

k

Jkδ(t− tk − δk), (3)

and is assumed in general to be a stochastic spike train, each contributing a PSP
(post-synaptic potential)Jk (the jump inV induced by a single spike). Such a
random sequence of ‘weighted’ instantaneous events is sometimes called amarked,
stochastic point process.

δk is the time that the spike emitted at timetk takes to reach the target neuron.
The afferent spikes composing the input currentI(t) will be in general emitted

by different neurons: the point processI will then be the superposition of several
point processes.

A key assumption in what follows is that the spikes impinging on the target neu-
ron are statistically independent events. As we will discuss later, such assumption
is not as severe as it might appear at first sight, since for spike rates and connectiv-
ity typical of cortical conditions the above independence assumption will be found
to be reasonable even for a network of interacting neurons with feedback.

For a broad class of point processes, a useful theorem guarantees that the su-
perposition of such processes is a memoryless process. Indeed, a limit theorem
in the theory of queues due to Çinlar [13] (also attributed to Grigelionis [14]) as-
sures, in loose terms, the following: the composite point process obtained by a
superposition of sufficiently ‘sparse’ and mutually independent, but otherwise ar-
bitrary, point processes approaches a Poisson process as the number of component
processes tends to infinity.
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Figure 1: Schematic illustration of the neuron’s afferent current as the superpo-
sition of stochastic point processes and the limit to a diffusion process. Top left
diagram: schematic drawing of a target neuron with the synaptic contacts on its
dendritic tree; top right: illustration of the stochastic point processes of the spikes
received from each pre-synaptic neuron, and the superposition of all of them, re-
sulting in a nearly Poisson point process; Bottom left plot: sample trajectory of
the neuron’s membrane potentialV , with instantaneous (upward or downward)
jumps upon reception of each (excitatory or inhibitory) spike, and the determinis-
tic (exponential) decay between spikes (Stein process); Bottom right plot: sample
trajectory of the neuron’s membrane potentialV in diffusion limit, for a leaky
integrate-and-fire neuron model driven by a white noise with same infinitesimal
mean and variance as the Poisson process driving the Stein process in the left plot.

Therefore, under the above hypotheses, the processI(t) is a Poisson process
and, as such, it isδ-correlated.
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Figure 1 illustrates the neuron’s input as a superposition of independent point
processes: the left drawing in the top part of the figure is a schematic represen-
tation of the target neuron, with its dendritic arborization, through which afferent
spikes come from different neurons; the corresponding superposition process is
sketched on the right. The bottom, left panel provides an example time evolution
of the membrane potentialV , as it results from the instantaneous (upward and
downward) jumps induced by incoming (excitatory and inhibitory) spikes, and the
deterministic leakage term between spikes.

At this point Eq. 1 which governs the evolution ofV is a stochastic equation
(called ‘Stein process’ for the leaky IF neuron, see [15]), to which we can asso-
ciate a probability density function (p.d.f.)p(v, t) for V such thatp(v, t)dv is the
probability thatV (t) ∈ (v, v + dv). p(v, t), as usual, can be thought of as built
up by collecting the infinite ‘histories’ (realizations) corresponding to the infinite
instances of the random currentI(t): p(v, t)dv is then the fraction of realizations
that are in(v, v + dv) at timet.

A complete description of the stochastic processV will then be provided by an
equation for the time evolution ofp(v, t), to which we now turn. In the following
we illustrate the general argument for the case of the leaky IF neuron, and we
assume for notational simplicityδk = 0, Jk = J ∀k (only excitatory spikes) and
τ = 1.

In a small time intervaldt thetransition probabilityfor v is

W (v, t + dt|w, t) = (1− ν dt) δ(v − w e−dt) + ν dt δ(v − (w e−dt + J)), (4)

the sum of the (Poisson) probabilities of the alternative events of just having de-
cayed in the absence of spikes indt, or having undergone an instantaneous jumpJ
because of a spike received indt (ν is the average rate of the Poisson events).

The law of composition of probabilities, combined with the memoryless nature
of the process give rise to the Chapman-Kolmogorov equation for the conditional
p.d.f ofv:

p(v, t + dt) =
∫

dw W (v, t + dt|w, t) p(w, t) (5)

which, upon substitution of Eq. (4), and taking into account the properties of theδ
function gives:

p(v, t + dt) = (1− ν dt) edtp(v edt, t) + ν dt edt p(edt (v − J), t) (6)

from which, assumingdt small and expanding to first order accordingly, one gets:

∂tp(v, t) = ∂v(vp(v, t)) + ν[p(v − J, t)− p(v, t)] (7)
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This is amaster equationexpressing the continuity condition on the flow in the
phase space of the system: the first term on the r.h.s. is the ‘Liouville’ flow re-
lated to the deterministic part of the equation of motion, while the second term
accounts for the balance due to spikes bringing the realizations out and into the in-
terval(v, v+dv) (being negligible the probability of multiple jumps indt). Eq. (7)
is easily generalized to the case of excitatory and inhibitory spikes, and different
allowed PSPs, and provides the sought evolution equation for the p.d.f of the mem-
brane potentialv.

2.1 The diffusion approximation

It is often convenient, and justified, to take one further step, to transform the above
master equation in aFokker-Planck, diffusion equation. The needed element is
essentially a small-J assumption. Indeed, if one performs a Taylor expansion of
Eq. (7), the followingKramers-Moyal expansionresults:

∂tp(v, t) =
∞∑

k=1

(−1)k

k!
Dk(v, t) ∂(k)

v p(v, t) (8)

where

Dk(v, t) = lim
dt→0

1
dt

∫
dxxk p(v + x, t + dt) =

{ −v + ν J k = 1
ν Jk k > 1

(9)

are the infinitesimal moments of the membrane potentialV ; the p.d.f. ofv con-
strained to bep(v, t) = δ(v). It can be proved that for the Kramers-Moyal expan-
sion either all the terms withk > 2 vanish (in which case we have thediffusion
process we will be interested in) or all the terms are non-zero (Pawula Theorem).

It can also be proved that, provided both excitatory and inhibitory spikes are
present in the input spike train, a limit process can defined, with the spike rates
tending to infinity and the EPSP/IPSP (Excitatory/Inhibitory PSP) going to zero
in such a way that the first two coefficientsD1 and D2 of the Kramers-Moyal
expansion are non-zero and all the other vanish.

The limit process turns the marked point processI(t) into a Gaussian white
noise with infinitesimal meanµ (the drift) and varianceσ2 given byD1 andD2:
essentially, the number of impinging spikes, each one contributing a very small
change inv compared to the spike emission threshold, is assumed to be large even
in infinitesimal time intervals, such that the central limit theorem applies. For prac-
tical purposes, as far as the spike emission properties of the neuron are concerned,
even when the limit procedure leading to the diffusion approximation cannot be
rigorously carried out, the same approximation still provides a good description of
the neuron’s stochastic dynamics (see later).
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The above diffusion approximation gives rise to the Fokker-Planck equation:

∂t p(v, t) = Lp(v, t), (10)

whereL is the Fokker-Planck operator

L(v, t) = −∂v(−v + µ(v, t)) +
1
2

∂2
vσ2(v, t) , (11)

generating the evolution of the p.d.f. ofV , which now follows, instead of Eq. (1),
the the well knownLangevin equationfor the brownian motion (a sample trajectory
is illustrated in the bottom right panel in Fig.1):

V̇ = f(V ) + µ(V, t) + σ2(V, t) Γ(t) (12)

whereΓ(t) is aδ-correlated white noise with zero mean and unitary variance.
Eq. (10) can be written as a continuity equation for the probability flow

∂tp(v, t) = −∂vSp(v, t) (13)

where

Sp(v, t) = (−v + µ(v, t)) p(v, t)− 1
2

∂v[σ2(v, t)p(v, t)] . (14)

The Fokker-Planck equation must be complemented by the appropriate boundary
conditions. For the IF neuron, the boundary conditions have to account for the
emission of the spike (which is not generated by the dynamics Eq. (12) of the
system, but introduced as anad hoccondition), the possibility of a lower bound
vmin on thev values, and the enforcement of the normalization of the p.d.fp(v, t).

The first condition is expressed by the fact that any realization of the stochastic
processv(t) which happens to reach the thresholdθ for spike emission ‘disap-
pears’, i.e.θ acts as anabsorbing barrier. The spike emission rate, the fraction of
realizations crossingθ per unit time, is

ν(t) = Sp(θ, t) = −1/2σ2 ∂v p(v, t)|θ . (15)

To understand which condition is appropriate for such a boundary, we remind
that for a diffusion process, given any valuev(t) ∈ [vmin, θ] taken by the process at
timet, v will be lifted by the gaussian noise with probability 1 in the subsequent in-
finitesimal time interval; the p.d.f. can nonetheless be non-zero in general because
of the compensating probability flow bringing realizations inv; this compensation
fails at θ, since by definition there is no flux of realizations coming from above.
Therefore it must be

p(θ, t) = 0 . (16)
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Next, it must be taken into account that just after spikingv is assumed to be
brought to the reset potentialH (and stay there for the absolute refractory period
τ0); each realization of the processv crossing the thresholdθ is rewound inH, and
there is no loss of realizations,i.e. the p.d.f.p(v, t) stays correctly normalized at
any time. Therefore, a condition must hold for the conservation of the fluxSp, such
that the outgoing flux inθ is exactly compensated for by a (delayed) extra influx at
H:

ν(t− τ0) = Sp(θ, t− τ0) = Sp(H+, t)− Sp(H−, t) . (17)

In what follows, we will neglect for simplicity the absolute refractory periodτ0.
Finally, a reflecting barriervmin (possiblyvmin → −∞) implies that there is

no flux crossingvmin:
Sp(vmin, t) = 0 . (18)

0

dt

2 dt

3 dt

Absorbing barrier θReset potential H = vmin

p(v,t)

v0

v0 + µ dt

v0 + µ 2 dt

√ σ2 dt

√ σ2 2 dt

Figure 2: Evolution of the p.d.f. ofV starting from a point-like initial condition
for an IF neuron whose input current is a gaussian white noise with large drift and
small variance.

The evolution of thep(v, t) is schematically illustrated in Fig. 2:p(v, t) =
δ(v − v0). H = vmin in this case. The gaussian input current, with positive
drift, drivesp(v, t) towardsθ, while spreading it; the center of the gaussian and its
standard deviation evolve asv0 + µ t and

√
σ2 t, respectively. When the bulk of

p(v, t) reachesθ, the p.d.f. is in general much deformed with respect to a gaus-
sian, to fulfil the boundary conditionp(θ, t) = 0 (its slope inθ determines the
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instantaneous spike emission rate according to Eq. (15)). The outgoing fluxν(t)
re-entersH; the process continues, tending to the equilibrium distribution, solution
of ∂t p(v, t) = 0. p(v, t) vanishes forv < vmin because of the reflecting barrier
condition.

2.2 Statistical properties of the neuron’s firing

2.2.1 The ISI distribution

AssumingV (0) = H as the initial condition for the evolution of the membrane
potential for a generic IF neuron, we can establish a link between the spike emis-
sion rateν(t) and the p.d.f.g(t) of the Inter-Spike Intervals (ISI) in stationary
conditions (∂t µ = 0 and∂t σ2 = 0); the latter is the same as the p.d.f. of the time
needed to the membrane potential to cross for the first time the emission threshold
starting fromH (thefirst-passage time[16]).

Pr{ISI ∈ (t, t + dt)} ≡ g(t) dt (19)

Following standard steps in the theory of renewal point processes [17] we de-
fine the probabilitygn(t) dt that then-th spike is emitted in(t, t + dt), after one is
emitted att = 0. Under the renewal hypothesis, that the intervals are statistically
independent, the following convolution recursion rule holds:

g1(t) = g(t)

gn(t) =
∫ t

0
g(t− t′) gn−1(t′) dt

From thegn(t) one can derive therenewal intensity function, which is nothing but
the spike emission rate:

ν(t) ≡
∞∑

n=1

gn(t)

= g(t) +
∞∑

n=2

∫ t

0
gn−1(t′) g(t− t′) dt

= g(t) +
∫ t

0

∞∑

n=1

gn(t− τ) g(τ) dτ (20)

ν(t) = g(t) +
∫ t

0
ν(t− τ) g(τ) dτ (21)
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The Laplace transformν(s) of ν(t) has then a simple form:

ν(s) =
g(s)

1− g(s)
(22)

whereg(s) is the Laplace transform of the ISI’s p.d.f.. Conversely if we knowν(t)
it is possible to computeg(t) inverting its Laplace transform:

g(s) =
ν(s)

1 + ν(s)
. (23)

For a renewal point process it can be shown that the auto-correlation function of
the spike train is equivalent for positive time lag toν(t).
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Figure 3: ISI distribution and current-to-rate transfer function for the IF neuron.
In the left panel we illustrate the distribution of the ISI for an IF operating in a
regime dominated by fluctuations. Solid line: histogram of the ISI sampled from
a simulation; dotted line: theoretical prediction for the ISI distribution (numerical
inversion of the Laplace transform of the ISI distribution of Eq. (23); dotted line:
the ISI exponential distribution for a Poisson process with the same mean emission
rate. In the right panel the current-to-rate transfer functionΦ(µ, σ2) vsµ is plotted
for different values ofσ2. The thicker the line, the higherσ2.

Starting from this it is straightforward to derive an expression for the asymp-
totic emission frequency of the neuronlimt→∞ ν(t) ≡ ν0. Expanding in Taylor’s
seriesg(s) it can be written:

g(s) = g(0) + s g′(0) + s2
∞∑

n=2

g(n)(0)
n!

sn−2 (24)
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and sinceg(s) =
∫∞
0 g(t) exp(−s t) dt is also the moment generating function

g(n)(0) = 〈(−t)n〉 =
∫ ∞

0
(−t)n g(t) dt (25)

we have

g(0) = 1
g′(0) = −〈t〉

and

ν(s) =
g(s)

s

(
〈t〉 −∑∞

n=1
〈(−t)(n+1)〉

(n+1)! sn

) (26)

from which we can clearly distinguish a pole ats = 0 representing a constant non
vanishing contribution to the emission rateν(t), corresponding toν0. Inverting the
Laplace transform, for a time long enough to forget the initial condition (V (0) =
H) one has

ν0 =
g(0)
〈t〉 =

1
〈t〉 (27)

which is the well known relationship between the asymptotic mean emission fre-
quencyν0 and the average first-passage time〈t〉.

2.2.2 The current-to-rate transfer function Φ(µ, σ2)

It is relevant to derive the above asymptotic mean emission rate as a function of
the parameters defining the afferent current,µ andσ2: the current-to-rate transfer
functionΦ(µ, σ2). To accomplish this we follow [9]. Starting from the expression
for the p.d.f. ofv in stationary conditions (p0(v))

−∂v[(f(v) + µ(v)) p0(v)] +
1
2

∂2
v [σ2(v) p0(v)] = 0 (28)

and imposing the boundary conditions for the flux conservation, and for the ab-
sorbing and reflecting barriers, we can expressp0(v) as a function ofµ andσ2 and
the unknown asymptotic emission frequencyν0, which can be explicitly computed
by imposing the normalization condition and solving the integral equation

1 =
∫ θ

vmin

p0(v, ν0, µ, σ2) dv (29)

such that
ν0 = Φ(µ, σ2) . (30)
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It is important to fully realize, however, that such expected equivalence be-
tween single neuron properties likeΦ(µ, σ2) = 1/〈t〉 and the asymptotic emission
rateν0 derived from a population density approach, holds because of course the
statistics in the ‘time’ and the one in the ‘population’ are equivalent in stationary
conditions, a kind of ergodic statement. On the other hand, in non stationary con-
ditions the population approach provides a very general framework, in which the
dynamics can be accurately described on arbitrarily small time scales, which the
time-based approach does not allow.

3 The population dynamics

Starting from the reduction of the neural dynamics to a stochastic process discussed
in the previous section, we completely characterize the system behavior through a
population formulation in which neurons loose their identity, and everything is de-
scribed in terms of a probability flow. The shift in perspective is in several ways
analogous to the one leading the physicist from the description of the random ve-
locity of a molecule in a gas, alternating constancy between collisions and sharp
changes upon hitting other molecules or a wall, and the formulation of the problem
in terms of the probability density function of the velocity at timet, defined over
the relevant statistical ensemble.

Much as in the case of the molecules in a gas, all neurons havingV ∈ (v, v +
dv) at time t are indistinguishable; at timet + dt they will be “ anonymously”
propagated by the Chapman-Kolmogorov kernel. Indeed, the totally “anonymous”
character of the re-distribution of the realizations is a consequence of the memory-
less nature of the driving noise.

Bringing the above treatment into the domain of interacting populations of IF
neurons involves incorporating into the formalism the recurrent part of the neurons’
afferent current due to the activity of all the neurons in the population. To the extent
that one can still consider in the coupled network the firing of different neurons as
independent events (see also the discussion at the beginning of Section3.3), the af-
ferent current will still be described as a Gaussian white noise1. The radically new
ingredient is that, as we will see in the present Section, the infinitesimal moments
of the afferent current now recursively depend on the average emission rate they

1We remark that the diffusion approximation, and the Fokker-Planck formalism, can be extended
to non-instantaneous synaptic currents, in which case the diffusion problem gets an additional di-
mension, and the noise driving the dynamics ofv is no longer white. This colored noise case has
been treated under some approximations in [18, 19] at the level of the single neuron dynamics, and
the frequency response of the neuron have been shown to strongly depend on the memory of the
driving noise.
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determine, and thenν(t) becomes the only variable characterizing the state of the
system and the effective vehicle of interaction among neurons in the population.

3.1 The mean-field approximation

Different neurons can have afferent currents with different statistics. Furthermore
the single neuron features, like the leakage term, may differ from cell to cell. In
what follows we will consider “homogenous” populations of neurons: Cells in
the same population have the same single neuron properties, and share the same
connectivity (average number of synaptic connections). Under such conditions, in
the limit of a large numberN of neurons, the moments of the afferent current to a
neuron are the same for all the cells [2], and are expressed as functions ofν(t) [4],
now interpreted as the emission rate of pre-synaptic neurons

µ(v, t) = µ[v, ν(t)]
σ2(v, t) = σ2[v, ν(t)]

.

To the extent that the neuron is a typical member of its population, its instantaneous
emission rate will be the same (up to delays) as theν driving it, and closing this
loop makes the Fokker-Planck equation (10) non-linear, because the infinitesimal
moments depend themselves on the emission rateν(t) and therefore on the system
state, so thatL = L(p).

The assumption that the probability of firingν(t) dt in the interval(t, t + dt)
is the same for all the neurons in the population is known as themean-field ap-
proximation. It allows to completely describe the population dynamics following
the only observableν(t). Indeed, as we will see in what follows, the evolution
equation forν, at least in the linear approximation, can be expressed in such a way
that thep(v, t) no longer appears. It is then tempting to speculate that, even in the
general non linear case, since the time evolution ofp(v, t) is ultimately determined
by ν throughµ andσ2, the dynamics of the probability flowν is in fact a complete
description of the dynamics ofp(v, t) (once the initial conditions are given). The
seemingly non recoverable loss of information which takes place when reducing
the motion ofp(v, t) to that ofν(t) could be avoided because of the peculiar de-
pendence of the Fokker-Planck equation on theν itself; a related concept will be
touched upon in Section 3.3, where we emphasize that different ‘histories’V (t) in
the ensemble described byp(v, t) only communicate to each other via spikes.

3.2 The “emission rate” equation

We now compute the dynamical equation for the emission rateν(t) following [20]
through an eigenfunction expansion of the p.d.f. ofV .
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The Fokker-Planck operator (11) has a set of eigenfunctions and associated
eigenvalues:

L |φn〉 = λn(t) |φn〉 . (31)

Defining the inner product〈ψ|φ〉 =
∫ θ
vmin

ψ(v, t)φ(v, t) dv, the adjoint operator

L+ ( 〈ψ|Lφ〉 = 〈L+ ψ|φ〉) has eigenfunctions|ψm〉 and eigenvalues̃λm, that are
in general different from those ofL, becauseL is not Hermitian. In the above
expressions the time dependence is implicitly due to the time dependence ofµ and
σ2. Assumingφn as a complete set of eigenfunctions, the boundary conditions
(16), (17) and (18) must be satisfied by eachφn(v, t), and they determine also the
boundary conditions forψ, and the expression forL+ [21, 22].

The following conditions on the eigenfunctionsψn of L+ result:

ψn(θ, t) Sφn(θ, t) = ψn(H, t) Sφn(θ, t− τ0)
∂vψn(vmin, t) = 0
∂vψn(H+, t) = ∂vψn(H−, t),

assumingψn andφn to be continuous functions in the interval(vmin, θ).
The adjoint operator is then given by

L+(v, t) = [f(v) + µ(v, t)] ∂v +
1
2
σ2(v, t)∂2

v , (32)

which is the evolution operator for the backward Kolmogorov equation, completely
equivalent to Eq. (10).

The L+ definition implies that eigenfunctions with different eigenvalues are
orthogonal; for the completeness assumption (I =

∑
n |φn〉〈ψn|), L andL+ have

the same eigenvalues (λm = λ̃m), and with an appropriate normalization the two
set of eigenfunctions are biorthonormal:〈ψn|φm〉 = δnm.

p(v, t) can then be expressed as

|p〉 =
∑

n

an|φn〉, (33)

wherean = 〈ψn|p〉 are the time dependent coefficients of the modal expansion.
Sincep is reala∗n = a−n.

The dynamics of thean can be determined directly from the Fokker-Planck
equation (10) (see for instance Ref. [22])

ȧn = 〈ψn|∂t p〉+ 〈∂t ψn|p〉
= 〈ψn|Lp〉+

∑
m

am〈ν̇ ∂ν ψn|φm〉

= 〈L+ ψn|p〉+ ν̇
∑
m

am〈∂ν ψn|φm〉
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and then
ȧn = λn an + ν̇

∑
m

am〈∂ν ψn|φm〉 (34)

Here we have used the fact that the only time dependence ofψ is implicitly due to
the moments of the current,µ andσ2, which are in turn functions of the rateν(t) (in
other words, external input is assumed to be stationary). If several populations are
present, their emission rates will contribute to∂t ψ (see [20]), including external
neurons, and〈∂ν ψn|φm〉 should be regarded as apopulation coupling term; it
vanishes ifν does not enter the afferent current.

The formalism can be extended to time-dependent external input, which would
give rise to additional time derivatives and coupling terms. When a first order per-
turbative approach is viable, the transfer function of the system can be computed,
and its the frequency response to time-varying inputs can be characterized (in [19]
the single neuron case with oscillatory input is treated).

We also mention, but do not discuss, that the formalism can be extended to sev-
eral interacting populations [20]. See also [23, 24, 4, 25, 8, 6] for other discussions
of the multi-population case in the framework of the diffusion approach.

Closing the above mentioned loop which defines the mean field approximation,
implies writingν(t) for givenp(v, t). From Eqs. (15) and (33) one gets:

ν = −1
2

∑
n

an σ2(v, t) ∂v φn(v, t)

∣∣∣∣∣
v=θ

(35)

Equations (34) and (35) describe completely the dynamics of the neural pop-
ulation and provide an effective way to reduce the dimensionality of the problem
because, as we will see later, a finite (and small) number ofas is often enough for
an adequate description of the time evolution ofν.

The following remarks provide a simplification. It can be proved that only the
stationary mode contributes to the normalization condition forp(v, t), from which
it follows thata0 = 1 at all times. Sinceψ0 = 1, the coupling term〈∂ν ψ0|φm〉 =
0. Furthermore the flux due to the stationary modeφ0 is the current-to-rate transfer
functionΦ(µ, σ2):

Φ(ν) = Φ(µ(v, ν), σ2(v, ν)) = −1
2

∂v σ2(v, t) φ0(v, t)
∣∣∣∣
v=θ

.

The (non linear)emission rate equationsystem can be written in matrix form
as: {

~̇a = (Λ + C ν̇)~a + ~c ν̇

ν = Φ + ~f · ~a , (36)
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where~a is the vector of the modal expansion coefficients withn 6= 0; the elements
of ~f are the fluxes across the absorbing barrier for the non-stationary modes2

fn = −1
2
∂v σ2(v, t) φn(v, t)

∣∣∣∣
v=θ

∀n 6= 0, (37)

the elements of~c are the coupling terms between then-th mode and the stationary
one

cn = 〈∂ν ψn|φ0〉 ∀n 6= 0,

while C is the matrix of the coupling terms between the non-stationary modes

Cnm = 〈∂ν ψn|φm〉 ∀n,m 6= 0.

Λ is a diagonal matrix whose elements are the eigenvalues ofL

Λnm = λn δnm ∀n,m 6= 0.

Such matrices and vectors depend on time throughν(t). If spikes are transmitted
with delayδ, the afferent currents depend on the delayed activityν(t− δ) [20].

We remark in passing thatδ is meant here and in the following as aneffective
delay, integrating the time needed for the spike to propagate, and characteristic
times of the synaptic currents induced by the spike (see also [26]).

A non-stationaryν(t) embodies the changes in time of the average statistical
properties of the neurons’ afferent current, and can correlate the activities of two
given neurons; this should be regarded as a “trivial” correlation due to the input part
of the current that neurons have in common ( self-consistently taken into account in
the above mean field treatment). This does not imply a breakdown of theindepen-
dencehypothesis which is at the heart of the formalism. The collective activity is
still adequately described by a renewal, non-stationary Poisson process completely
determined byν: Neurons are independent, conditionally to the average emission
rate.

3.3 The “finite-size” effects

The incoherent fluctuations accounted for byσ2 are ultimately the expression of
the independence of neurons’ firing; either because of a sparse connectivity, such
that neurons share a negligible portion of common input, and/or because of the
quenched randomness which even for high connectivity arises from a variability of
synaptic efficacies, the fluctuations sensed by any given neuron add incoherently.

2Not to be individually considered as probability currents, since theφns are not individually
probability density functions.
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Besides those fluctuations, the finite number of neuronsN determines, as we
discuss below, both a stochastic modulation of the momentsµ andσ2 (thus provid-
ing a kind of second level of stochastic description of the system), and an additional
correction due to finite sampling.

The first finite-N effect arises as a coherent modulation of the stochastic affer-
ent current: the number of spikes emitted in a time intervaldt by the network is a
Poisson variable with mean and varianceNν(t)dt, as observed in Refs. [26, 27].
The estimate ofν(t) is then a stochastic processνN (t), well described in the limit
of largeNν by

νN (t) = ν(t) + η(t) = ν(t) +

√
ν(t)
N

Γ(t) , (38)

whereΓ(t) is a white noise as in the Langevin equation (12), andν(t) is the firing
probability per unite time in the infinite network.

Since the recurrent part of the afferent current to a neuron is proportional to
νN , i.e. the global population activity, such finite-N fluctuations are coherently
felt by all neurons in the network: The, now stochastic, momentsµ(v, νN (t)) and
σ2(v, νN (t)) of the afferent current, all experience the same fluctuation, since they
are driven by the collective activityνN . This approach leads then to a “ stochastic
version” of the Fokker-Planck operatorL, LN , and consequently of the equation
(10). Stochasticity disappears in the limitN →∞ because

lim
N→∞

νN (t) = ν(t).

Besides the above modulation ofµ and σ2, finite-N effects show up as a
stochastic component of the boundary conditions. This is in fact merely a reflec-
tion of a trivial fact, i.e. that sampling the p.d.f.p(v, t) through a finite sample
involves fluctuations in the counting process; this has non-trivial consequences on
the formulation of the finite-N emission rate equation.

For the sake of the argument, let us think about a fully ‘finite-N’ treatment of
the problem. This would trivially require the solution of theN Langevin equations
for theN neurons; the resultingνN is, as we remarked, a fluctuating quantity. A
random instantaneous excess/defect ofνN with respect to the infinite-N counter-
partν would, via the boundary condition requiring each history to be rewound in
H after the spike, produce an excess/defect in the flow enteringH, with respect to
the infinite-N Sp.

While the implementation of such a program would be cumbersome, a hint at
a simplification is provided by the trivial observation that neurons only talk to each
other through spikes: the membrane potentials of different neurons never interact
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directly in the considered models. This suggests that, for the purpose of the dy-
namical description of the emission rateνN (t), the above finite-N effects could be
incorporated by a suitable effective fluctuation in the boundary condition enforc-
ing the conservation of the probability flux in the Fokker-Planck equation for the
infinite- N p.d.f. p(v, t). N -dependent fluctuations inSp emulate the effects of the
above random excess/defects through a singular source/sink term in the probability
flow in H:

∂t p(v, t) = LN p(v, t) + δ(v −H) [νN (t)− ν(t)]

= LN p(v, t) + δ(v −H)

√
ν(t)
N

Γ(t) (39)

This equation, together with Eq. (38), describes the dynamics of a population of
neurons for finiteN , from which one can derive the finite-N emission rate equa-
tion analogous to Eq. (36).

In summary, the interplay between the two levels of description,νN andν,
can be viewed as follows: For finiteN eachV still evolves, as already remarked,
according to the Langevin equation (12), since to a very good approximation its
afferent current is aδ-correlated Gaussian process; so, the purely diffusive part of
the collective dynamics is still captured by the Fokker-Planck equation forp, the
evolution equation for an infinite ensemble of neurons. Then, the finiteN is taken
into account on the boundaries (i.e., upon spikes emission), which in a sense make
a finite subset of the infinite number of neurons “real”.

As a complete set over which to expand the above stochastic Fokker-Planck
equation we still take the eigenfunctions ofLN , with their eigenvalues, which are
now stochastic, explicit functions ofνN . The use of this stochastic moving basis
leads to the following expression for the emission rate equation:





~̇a = (Λ + C ν̇N )~a + ~c ν̇N + ~ψ
√

ν/N Γ
ν = Φ + ~f · ~a

νN = ν +
√

ν/N Γ
, (40)

where the elements of~ψ are the non-stationary eigenfunctions of the adjoint oper-
atorL+

N , evaluated at the reset potential,ψn(H, t). For simplicity we omitted the
dependence on time, which is the same as in the Eq. (15). It should be noted that
the above stochastic emission rate equation exhibits a complicated dependence on
the finite-size noise, beingΛ, C and~c all functions ofνN : This is the expression
of the noisy nature of the operatorLN in this context.

The above fluctuations act as an ongoing series of instantaneous endogenous
perturbations, and as such they probe the characteristic times of the system. This
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will show up very clearly in the study of the finite-N power spectral density of the
collective activity, as we will see later.

3.4 “Noise-dominated” and “Drift-dominated” regimes

We now discuss the phenomenological implications of two quite distinct dynamical
regimes for a system of IF neurons: a quasi deterministic one, in which fluctuations
are a small correction, and one in which the dynamics is dominated by fluctuations.

When the mean driving force alone is not enough to makeV cross the threshold
θ, so that a positive diffusion term is necessary to have the emission of a spike, the
neurons are evolving in anoise-dominated, sub-thresholdregime, whereas when
the emission of an action potential can occur also in the absence of noisy affer-
ent currents, and the neurons are in adrift-dominated, supra-thresholdregime of
activity [4, 3, 9, 26, 23]. We remark in particular that for the IF neuron with con-
stant leakage, the linear neuron introduced in [10], the noise-dominated regimes
requires a reflecting barrier, preventingV from drifting towards−∞ whatever the
noise; the linear model endowed with a reflecting barrier was first studied in [9].

Fig. 4 illustrates how the activity regime determines the statistical properties
of the single neuron spike train. Left panels: irregular firing (high coefficient of
variation, the ratioCV = σISI/µISI between the standard deviation and the mean
of the inter-spike intervals) corresponds to a noise-dominated regime, while regular
spike trains (right panels) are related to a drift-dominated regime. Such a spread
in the coefficient of variation of inter-spike intervals of the single neuron does
not spoil the hypothesis of the theory, as long as the independence of the firing
of different neurons holds [9, 23], which is reasonable in biologically plausible
conditions [28].

From Fig. 4 it is also apparent how much the dynamics ofp(v, t), and then of
ν(t), differs in this two regimes: For the noise-dominated case (left) thep(v, t)
spreads rapidly, as in a diffusive medium, andV stays most of the time well be-
low the emission threshold, due to the strong negative deterministic force; con-
sequentlyν(t) smoothly approach the asymptotic stationary emission rateν0. In
the drift-dominated regime (right), because of the small fluctuations in the afferent
current, more time is required to spread thep(v, t), and at the beginning the neu-
rons approach coherently the emission threshold, driven by the dominating positive
deterministic force. The transient ofν(t) is then characterized by neurons emitting
spikes almost synchronously, until the noise ofI(t) completely erases the memory
of the initial conditions.

The very simple case shown in Fig. 4 is that of an infinite population of non-
interacting neurons. Sinceµ and σ2 do not depend onν, ∂ν ψn = 0 and the
coupling terms vanish (C = 0 and~c = 0). The emission rate equation (36) has
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Figure 4: Transient behavior of a population of uncoupled neurons at noise-
dominated (left) and drift-dominated (right) regime: Att = 0 all the neurons
starts withV (0) = vmin = 0. Upper plots: The membrane potentialversustime
of a neurons in the population. Middle plots: p.d.f.p(v, t) of V , darker regions
correspond to high density of realizations. Lower plots: emission rateν(t) versus
time, thick gray lines data from simulations, thin black curves the emission rate dy-
namics predicted by Eq. (41) when only the first one (dotted), two (dash – dotted)
or three (solid) couples of modes are taken into account.

now an explicit solution

ν(t) = Φ(µ(t), σ2(t)) + ~f(t) · e
R t
0 Λ(t′) dt′~a(0).

If the afferent current is stationary, the eigenvalues, the flux vector and the current-
to-rate transfer function are constants and the emission rate is

ν(t) = Φ(µ, σ2) +
∑

n

fn an(0) eλn t. (41)
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so that the spectrum ofL determines directly the characteristic times of the popu-
lation dynamics (the same result for uncoupled neurons was derived in [29]). As
t →∞, ν → Φ(µ, σ2), consistently with a negative real part of the eigenvalues.

For Reλn < 0, after a time greater then1/minn |Reλn|, initial conditions and
transients are forgotten, and the stationary population activity is the same as the
static emission rateΦ(µ, σ2) of the single neuron. A hierarchy of characteristic
times (1/|Reλn|) emerges (see [20] for linear IF neurons and [30, 31, 29] for leaky
IF neurons in drift-dominated regimes) such that for non stationary conditions, only
a small number of modes are required in order to have a good approximation to the
time evolution of the emission rateν(t) [22, 29, 20].

Fig. 4 also shows the theoretical prediction from Eq. (41) ofν(t) superimposed
to simulation results: It is apparent that even in the severe condition of a transient
due to a sudden stepwise external stimulation, theν(t) is well described by the
theory, and only a small number of mode (3 pairs of eigenfunctions in the case
shown) are needed in order to accurately reproduce the emission rate from few
millisecond after the stimulation onset.

Starting from this general features of the IF neurons we conjecture in [20] that
the eigenvalues ofL are real for noise-dominated regimes and complex conjugates
for drift-dominated regimes. The conjecture was confirmed by explicit calculation
in the case of the linear IF neurons.

When the interaction is turned on the “population characteristic times” are ob-
viously a complex mixture of single neuron properties and the properties of the
collective activity.

3.5 Interacting neurons

Starting from the formulation of the population dynamics via an emission rate
equation, in what follows we characterize the behavior of an ensemble of homo-
geneous interacting IF neurons. We remark that, while the mean-field descrip-
tion of networks of interacting spiking neurons, in the absence of fluctuations, is a
long studied subject, the study of the mean-field including fluctuations (sometimes
termedextended mean-field) is relatively recent (see [6] for a review of results).

3.5.1 Asynchronous states and their properties

The population activity is in an “asynchronous” state when, in the limitN → ∞,
the neurons fire at a constant rates:ν(t) = ν0. An example of such a state is
the one asymptotically approached in Fig. 4 after a time long enough to forget the
initial conditions.
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From the point of view of the nonlinear dynamics, asynchronous states are
fixed points of the autonomous system (15):

{
~a = 0
ν = Φ(ν)

. (42)

This is the self-consistency equation introduced in Ref. [2], and used in the context
of a mean field treatment in Ref. [4]. As expected, the condition~a = 0 implies that
the p.d.f. ofV at the fixed point is the stationary mode (p(v) = φ0(v)).

With a time dependent perturbation approach we can study the local stability
of the fixed points, their nature and the relaxation times to approach them. We start
setting~a = ε~a1 + ε2 ~a2 + . . . andν = ν0 + ε ν1 + ε2 ν2 + . . ., whereν0 is the
solution of the self-consistency equation (42), andε is the size of the perturbation
from the fixed point.

Expanding the emission rate equation around(~a = 0, ν0), to first order inε we
obtain {

~̇a1(t) = Λ(ν0)~a1(t) + ~c(ν0) ν̇1(t− δ)
ν1(t) = Φ′(ν0) ν1(t− δ) + ~f(ν0) · ~a1(t)

, (43)

where we have taken into account a delayδ in the spike transmission. From this
system of ordinary differential equations with constant coefficients the Laplace
transform of the perturbationν1(s) =

∫∞
0 ν(t) e−s t dt can be computed [20]. The

stability conditions and the characteristic times of the transient dynamics are in
principle derived by standard methods, by calculating the poles ofν1(s), the zeros
of its denominator, satisfying the equation

(es δ − Φ′)− ~f · (s I−Λ)−1 ~c s = 0 . (44)

where(s I−Λ)−1 is a diagonal matrix with elements1/(s− λn).
To characterize the poles we resort to approximations; we will see in the fol-

lowing two subsections how two kinds of small-coupling approximation allow us
to characterize two sets of poles ofν1(s), which expose very different dynamical
features.

Local stability The asynchronous stateν(t) = ν0 is stable if all the polessn of
ν1(s) have a negative real part. To evaluate the stability conditions, we first look, in
the limit of small coupling~c, for poles on the imaginary axes which, if they exist,
separate the region of stability from that of instability. A crude, small coupling
approximation to Eq. (44) (zeroth order in~c) is

es δ = Φ′ , (45)
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Its solutions are quite different depending on the excitatory or inhibitory nature of
the neurons. For a population of excitatory neuronsΦ is a monotonically increasing
function ofν, Φ′(ν) > 0. In the caseΦ′(ν0) = 1 it is easy to see thats = 0 is a
real pole ofν1(s). This is an exact solution also of the Eq. (44) and determines a
transition from stable to unstable steady states for the system because when

Φ′(ν0) > 1 (46)

the real pole becomes positive andν0 is an unstable state. We can get an insight
into the dependence of the real part of the pole onΦ′ from the solutions of (45):

s(0)
n = (lnΦ′ + i 2nπ)/δ (47)

for excitatory neurons and

s(0)
n = (ln |Φ′|+ i (2 n− 1)π)/δ (48)

for inhibitory neurons, whose transfer functionΦ decreases when inhibitory recur-
rent activity increases (Φ′ < 0). n runs over the integers. Better approximations
for sn can be obtained considering the first-order perturbation in~c [20]. At first
order one finds that for an inhibitory network an asynchronous state is stable when

Φ′ & −1 . (49)

Note that in the zeroth-order perturbation the couplings still appear through the
slope of the transfer functionΦ′: the stronger the coupling the higher the sensi-
tivity of the system to a fluctuation of the collective activity. It turns out that the
polessn move towards the imaginary axis for increasing|Φ′|. So, not surpris-
ingly, increasing the intensity of the recurrent coupling brings the network towards
instability.

A noteworthy implication of the above stability analysis is that asingle neuron
feature, the slope ofΦ, determines in general the stability of the fixed pointν0 for
apopulationof neurons.

The infinite set of poles responsible for the stability of the system is due to
the presence of the effective delayδ: we therefore call themtransmission poles

s
(t)
n . For a system close enough to the stability boundary, activity at very high

frequencies of order1/δ can arise. Transmission poles disappear for uncoupled
neurons.

It is important to realize that the above oscillations are a genuine network prop-
erty, not needing the single neurons to fire regularly at the frequency of the oscil-
lation (see also [26] and the discussion in Section 3.5.2).

This set of of poles was first observed in a mean-field approach not taking into
account fluctuations in the afferent current in Ref. [24], where they are termed the
gross structureof the spectrum.
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Relaxation times For uncoupled neurons the poles ofν1(s) are the eigenvalues
of the Fokker-Planck operator. This suggests a guess for finding other sets of poles
as small-coupling perturbations of theλn. For a population of neurons in a drift-
dominated regime (complex conjugates eigenvalues) a first order approximation in
~c for the first pair of eigenvalues gives [20]:

s1 = λ1

(
1 +

f1 c1

1− Φ′ + λ1 δ

)
, (50)

ands−1 = s∗1.
For the excitatory population (Φ′ > 0), from Eq. (50) it can be seen that when,

starting from an uncoupled network, the recurrent excitatory coupling increases,
the numerator of the fraction in the parentheses increases, and the denominator
decreases asΦ′ → 1. Thereforeτ1 ≡ −1/Re(s1), the longest characteristic time
of the system, becomes small, so that the system reaches more quickly the steady
state. A new family of poles can then be obtained by repeating the procedure for
all the eigenvalues. The new poles have an opposite dependence on the intensity
of the coupling with respect to the transmission poless

(t)
n : A stronger interaction

moves them away from the imaginary axis; this, combined with the fact that the
eigenvalues (zeroth order approximation to the new poles) always have a negative
real part, tells that they are never responsible for the instability of the asynchronous
states.

Since the latter polessn are intimately related to the pure “free” diffusion pro-
cess, directly related to the eigenvalues of the Fokker-Planck operator, we term
themdiffusionpoless(d)

n .
Far from the stability boundary,s(d)

n have real parts smaller in module than
those of the transmission poles, so that they are, in the situations of interest, re-
sponsible for the characteristic time of the approach to an asynchronous stateν0.

In Fig. 5 we illustrate the time course of the population mean activityν(t)
for a network of inhibitory neurons which, starting from an asynchronous state of
very low activity, undergoes a sudden increase of the excitatory external afferent
input and relaxes to a new stable asynchronous state of higher activity. The black
line showsν(t) from a simulation (see the Caption for details); the gray line is the
theoretical prediction resulting from keeping only four pairs of terms in the spectral
expansion (which in particular implies four pairs of diffusion poles, corresponding
to the four pairs of eigenvalues).

In view of the potential of the theory for a computationally inexpensive de-
scription of the system, it is important to notice that the apparent good agreement
between theory and simulation is obtained with a very small number of terms.

In the low noise limit the diffusion poles can be associated with the character-
istic times and resonant frequencies observed in previous works using a mean-field
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Figure 5: Transient response to a step change in the external emission rate of a pop-
ulation of inhibitory neurons in a drift-dominated regime: Simulationsvs theory.
For t < 0 the network is in an asynchronous stationary state with mean emission
rateν = 0.2Hz. At t = 0 an instantaneous increase of the rate of external neu-
rons, thereafter kept constant, drives the activity towards a new stable state with
ν = 20Hz. The solid black line is the mean of the activity from 10 simulations of
a coupled network (5000 inhibitory linear IF neurons). The thick gray line is the
theoretical prediction, obtained from the first 4 pairs of diffusion poles (adapted
from [20]).

approach with deterministic afferent current [30, 24, 31, 27], and called in [24] the
fine structureof the spectrum. The variance of the recurrent afferent current, taken
into account in the present theory, dramatically affects the behavior of the system,
as it was recognized in Ref. [31] and [29] for the case of external noise.

Even if the resonant response due to the diffusion poles is never enough to chal-
lenge the network local stability, for suitable (large) delays a ‘coupling’ between
the transmission and the diffusion poles emerges which facilitates the ignition of an
unstable regime (driven anyway by the transmission poles) at frequencies around
multiples ofν0 [32].

Power spectrum of the collective activity It turns out that, as we will see shortly,
the above discussion of the characteristic times of the neural population is not
affected by finite size effects. In general, though, the dynamical properties of the
system are sensitive to finite-N corrections, and it is appropriate at this point to
briefly sketch how the emission rate equations are affected by the finiteness ofN .
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For finiteN asynchronous states are represented by a distribution of emission
rates around the mean field fixed pointν0. The local analysis leading to the emis-
sion rate equation Eq. (43) can be applied in the same way to this case.

We assumeN to be large enough, for givenν0, that the fluctuationsη(t) of ~a1

induced by the finite-size, of amplitude
√

ν(t)/N =
√

(ν0 + ν1(t) + . . .)/N , are
small enough in order not to spoil the linear approximation.

Retaining only the leading order inη(t),

η0(t) =
√

ν0

N
Γ(t)

we will then write
{

~̇a1(t) = Λ~a1(t) + ~c ν̇1(t− δ) + ~ψ η0(t)
ν1(t) = Φ′ ν1(t− δ) + ~f · ~a1(t) + η0(t)

, (51)

where all the time-independent terms are evaluated atν(t) = ν0.
As anticipated, the previously discussed questions about the stability and the

transients are not altered by the finite-size effects, because the pole composition
of the Laplace transformν1(s) of ν1(t) is unaffected by the presence ofη0, which
enters the numerator ofν1(s).

From the above reduction of the finite size network activity to a linear stochas-
tic system, it is of interest to compute the frequency content of theνN (t), i.e. its
power spectral densityP (ω)

P (ω) is computed from theν1(s) (calculated for imaginary argument and ne-
glecting the terms due to the initial conditions) and, up to an additiveδ(ω) term, is
given by

P (ω) =

∣∣∣1 + ~f · (i ω I−Λ)−1 ~ψ
∣∣∣
2

∣∣∣(ei ω δ − Φ′)− i ~f · (i ω I−Λ)−1 ~c ω
∣∣∣
2

ν0

N
. (52)

From the above equation it is natural to viewP (ω) as the power spectrum of
the output of a linear system which receives a white noise with power spectrum
|η0(ω)|2 = ν0/N as input, with a transfer functionT (ω) :

P (ω) = |T (ω) η0(ω)|2

Therefore, the finite-size fluctuations giving rise to theη0-terms in Eq. (51) effec-
tively act as an endogenous source of white noise, and as such they continuously
probe the frequency response of the system even for stationary input.

P (ω) has two series of peaks: the first is centered around the imaginary part
of the polessn, whose width is proportional to Resn. Combined with the above
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discussion of the repertoire of poles ofν1(s), and the wide range they span in the
complex plane, this tells us that in a system of coupled spiking neurons the resonant
frequencies cover a range from very low (∼ 10Hz) to very high values of order
1/δ; these latter peaks have been recognized in [24, 26].

It is interesting to see from the above discussion how even the simple sce-
nario of the linearized analysis of asynchronous states exhibits a phenomenology
in which many different characteristic frequencies coexist, comparable in richness
with the wide range of characteristic oscillations emerging from the experimental
studies of cross-correlations.

The numerator of the first term in Eq. (52) induces the second set of peaks
corresponding to theλ. So we can recognize two qualitatively different finite-
N contributions toP (ω): one is related to going fromL to LN in Eq. (39) and
produces the first set of peaks; it has in principle a global effect onP (ω), but it
turns out to significantly affect only the high-ω part related to transmission poles.

The other finite-N contribution toP (ω) is the one determined by the fluctua-
tions of the re-entering flux atH, and has a major effect for low-ω. This provides
phenomenological evidence for the role of the latter source of finite-N noise. A
dramatic manifestation of its effect is illustrated by the case of uncoupled neurons,
where the coherent finite-N correction toµ andσ2 is absent.

In fact in this case the numerator of Eq. (52) is the only element that does not
vanish (Φ′ = 0 and~c = 0):

P (ω) =
∣∣∣1 + ~f · (i ω I−Λ)−1 ~ψ

∣∣∣
2 ν0

N
. (53)

It provides a non-trivial contribution only at low frequency, since

~f · (i ω I−Λ)−1 ~ψ =
∑

n 6=0

fnψn(H)
i ω − λn

tends to zero whenω →∞, whereP (ω) approaches the power spectrum of a white
noise. In drift-dominated regimes resonant peaks are predicted around Imλn ∼
n ν0, typically at low frequency (remember we conjectured, and verified in the
case of Linear IF neuron, that Imλn = 0 for noise-dominated regimes).

Figure 6 illustrates the main feature emerging from the analysis of the power
spectrumP (ω). The top panel shows the theoretical prediction and simulation
data for a population of inhibitory neurons in a noise-dominated regime: the only
spectral peaks are those related to the transmission poles (the delay is 2 ms in the
case shown). In the drift-dominated regime (bottom panel) the spectrum gets a
low-ω structure because of theλn contribution, which gives rise to resonances at
multiples of the population emission rate. The asymptoticP (ω) is ν0/N in both
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Figure 6: Power spectrum of the activity of a population of inhibitory neurons in a
stationary, drift-dominated (bottom) and noise-dominate (top) regime: Simulations
vs theory. The solid black line is the power spectrum from a60 seconds simula-
tion; the thick gray line is the theoretical prediction; the dashed line is the power
spectrum of the white noise with varianceν0/N , beingν0 = 20Hz andN = 5000
for drift-dominated case, andν0 = 4Hz andN = 2000 for noise-dominated case
(adapted from [20]).

cases, as predicted. The agreement between theory and simulation is very good,
apart from a small discrepancy at very low frequencies for the drift-dominated case.

If a distribution of delays is introduced, it can be argued and verified in simula-
tions, that the high-ω part of the spectrum gets flattened, thus affecting mostly the
transmission part of the spectrum [33].

As expected, this has implications for the stability of the network, since the
damping of the high frequency tail of the spectrum can be viewed as an effective
increase of the real part of the high-ω, transmission poles, thereby helping keep-
ing the system away from the stability boundary (see also Ref. [26] for a similar
remark).
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3.5.2 Oscillatory states

The linearized analysis illustrated so far exposed a very rich structure of the fre-
quency response properties of the neural population, and showed how the stability
properties are related to the single-neuron current-to-rate transfer function and to
the distribution of spike transmission delays.
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Figure 7: Time course of the population activityν(t) of an inhibitory network,
from the numerical solution of the Fokker-Planck equation. From top to bottom,
the panels show, for increasing values of the recurrent inhibitory coupling,ν(t)
following the onset of an external current att = 10 ms, which is kept stationary
for the whole interval, and such that the asymptotic emission rate is20 Hz for all
the panels.

In particular we showed that, when inhibition is present, the instability of the
population can show up as an oscillatory departure from the asynchronous state.
This is suggested by a nonzero imaginary part of the transmission poles guiding
the instability, and indeed Fig. 7 illustrates how, for the same inhibitory network
in the bottom panel of Fig. 6, a global oscillatory state sets in upon crossing the
stability boundary; the oscillation has the frequency predicted from the imaginary
part of the transmission pole which first develops a positive real part. From top to
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bottom in the figure, we show the predictedν(t) from the numerical integration of
the Fokker-Planck equation for the same inhibitory population of neurons firing at
the same mean rate, for increasing values of the synaptic coupling (and therefore of
|Φ′|). For the value ofΦ′ corresponding to the fourth panel the asynchronous state
of the network is predicted by the theory to become unstable. Consistently with the
theoretical prediction, as the system approaches the stability boundary the transient
high frequency oscillation (related to the relevant transmission pole) require more
time to be forgotten (the real part of the pole gets smaller, while the imaginary
part stays essentially constant); the low frequency oscillation enveloping the high
frequency one, related to the diffusion pole, is more and more quickly extinguished.

On the other hand, in general the linear analysis is unable to describe the system
beyond the stability boundary, and further steps have to be taken to accomplish
this. In [26, 34] this program was undertaken, for an inhibitory network, and the
results were then extended, under some approximations, to an excitatory-inhibitory
network in [23].

The methods involved a third order perturbation analysis, and allowed the char-
acterization of different regimes of synchronous and asynchronous activity (see
Fig. 8): synchronous regular, in which the system exhibits global oscillations, with
underlying very regular single neuron spike trains of comparable frequency;syn-
chronous irregular, with a fast oscillating collective activity, underlain by single
neurons firing irregularly at a rate much lower than the frequency of the global
oscillation;asynchronous irregular, the global asynchronous state we have mostly
been dealing with in the previous Sections, built up by irregular single spike trains.
As expected, transitions between the above (and others) regions in the system’s
‘phase diagram’ are mainly guided by the balance between the excitatory and in-
hibitory coupling, for given neuron’s parameters and transmission delays.

3.6 Scope of the diffusion-based population approach

The above discussion, and a much larger body of phenomenology, show that the
repertoire of collective dynamical states accessible to a recurrent network of IF
neurons is huge, and includes regimes as disparate as asynchronous states, fast or
slow globally oscillatory states (with a range of possibilities as to the properties of
the single neuron firing underlying them), bursting states, and a variety of point-
like or chaotic attractors.

Besides, depending on the external input, or the internal dynamics, the neural
population can make transitions between these states, which can be very quick or
gradual.

In view of the potential of the diffusion-based population approach for describ-
ing an interesting subset of the above dynamical regimes, it is relevant to under-
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Figure 8: Illustration of the ‘phase diagram’ of a simulated excitatory-inhibitory
network. For each of the four examples the temporal evolution of the global ac-
tivity ν(t) of the system is reported, together with the firing times (raster plots) of
fifty randomly chosen neurons. In thesynchronous regular(SR) state, the network
is almost fully synchronized and neurons fire regularly at high rates. In the fast
oscillatorysynchronous irregular(SI) state, there is a fast oscillation of the global
activity, and neurons fire irregularly at a rate which is lower than the global fre-
quency. In theasynchronous irregular(AI) state, the global activity is stationary
(up to the finite-size fluctuations) and neurons fire irregularly. In the slow oscil-
latory synchronous irregular(SI) state, there is a slow oscillation of the global
activity, and neurones firing irregularly at very low rates. From [35], by permis-
sion.

stand to what extent the hypotheses at the roots of the approach could be broken in
different scenarios.

Essentially, the breakdown of at least three hypotheses could spoil the ap-
proach: the independence of the afferent spikes composing the input current to
the neurons (conditional to the momentsµ andσ2); the smallness of each post-
synaptic contribution and the large number of afferent spikes per unit time; the
homogeneity of the neural population.
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Figure 9: Comparison between the depolarization distribution predicted by the
Fokker-Planck equation (solid gray line) and the one from a simulation of 100000
uncoupled Linear IF neurons subject to Poissonian excitatory input (in black). The
initial condition for the depolarization distribution is concentrated aroundV =
θ/2. The picture shows the p.d.f. after1s; this is enough to reach equilibrium. The
short black horizontal lines show the size of the EPSP of each afferent spike. The
population emission rates from the Fokker-Planck equation and the simulation are
in excellent agreement. Neurons are in a signal dominated regime. It is seen that
near the reset potential (V = 0), which is also a reflecting barrier for the process,
the diffusion is poorly reproduced by the simulation: the granularity determined
by the finite size of the jumpsJ is not yet compensated for by spreading due to
random noise and deterministic leakage. Yet, the good agreement in the region
near threshold is enough to guarantee an excellent estimate of rates (∼ ∂vp(v, t)|θ)

Without aiming at a thorough discussion, we just provide in the present Section
some hints at a wide range of applicability of the dynamical description based on
the Fokker-Planck equation.

First, it turns out that, even when the diffusion approximation is not strictly
valid, and the dynamics of the membrane potentialV (t) is not accurately described
in its full range by the Fokker-Planck equation, the dynamics of the collective
spiking activityν(t) is still captured by the approach.
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We provide an example in Fig. 9, where simulation and theory are compared for
a purely excitatory network (see also [36]). We mentioned above that the diffusion
approximation requires both excitation and inhibition, in order to properly scale
the infinitesimal moments; indeed, the p.d.f. ofV is poorly reproduced by the
Fokker-Planck equation far from the spike emission threshold; it also turns out
that, though, the agreement is recovered near the threshold, and this is enough to
guarantee a good description of the dynamics ofν(t).
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Figure 10: Simulationvs Fokker-Planck predictions for a recurrent network of
1000 excitatory LIF neurons. Synaptic couplings are such as to support a stable
sustained activity after releasing a50ms stimulation. Before stimulation the net-
work is in a state of stable low frequency spontaneous activity (see [9]). Top:
emission ratevs time from Fokker-Planck equation (black line) and network sim-
ulation (gray line); Bottom: Intensity plot of the depolarization p.d.f.p(v, t) vs
time.
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Fig. 10 illustrates a sample case in which the Fokker-Planck equation is used to
describe the time course of the collective activity for an excitatory network which
starts in a in a very low-rate asynchronous state, undergoes a sudden and big jump
in activity upon receiving an external stimulation, and when the stimulation is re-
leased relaxes in aselectiveasynchronous stable state with emission rate much
higher than the spontaneous one. The synaptic couplings are chosen in such a way
to allow such a double fixed point attractor in the system: starting from a situation
in which the basin of attraction of the spontaneous activity covers the whole of
the system’s state space, structuring the pattern of synaptic couplings generates a
new point attractor, and partitions the state space into two corresponding domains
(‘breaks the ergodicity’ in the limit of an infinite network); the perturbation in-
duced by the stimulation lets the system cross the barrier separating the attractors
and jump into the newly formed one.

In principle, in the relatively small network of Fig. 10, the strong and sudden
stimulation could, for example, challenge the hypotheses of the diffusion popula-
tion approach, since in such conditions one might expect ‘coherence’ effects arising
in the transient, and breaking the independence hypothesis; besides, for a not too
large network, also the central limit theorem (the diffusion approximation) assuring
that at each instant of time the afferent current is well described by a white Gaus-
sian noise could be violated. Besides, for an accurate description of the transient
also the homogeneity property should stay valid all along; this could be non trivial,
since for a finite connectivity the distribution of emission rates inside the network
can in principle get wider during the transient, which could break the homogeneity
property.

The case in the figure shows how the Fokker-Planck can accurately capture
both the stationary and the transient behaviors of the interacting network in the
situation described (even though the example shown is for illustrative purposes,
and of course the dangers mentioned above can in fact materialize in other cases).

References

[1] D. H. Hubel,Eye, Brain, and Vision(Scientific American Library, New York,
1987).

[2] D. J. Amit and M. Tsodyks, Quantitative study of attractor neural network
retrieving at low spike rates: I. substrate–spikes, and neuronal gain, Network
2, 259 (1991).

[3] C. van Vreeswijk and H. Sompolinsky, Chaos in Neuronal Networks with
Balanced Excitatory and Inhibitory Activity, Science274, 1724 (1996).

35



[4] D. J. Amit and N. Brunel, Model of global spontaneous activity and local
structured (learned) delay activity during delay periods in cerebral cortex,
Cereb. Cortex7, 237 (1997).
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